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Abstract 1 
 2 
We use reductive sediment leaching to extract lead (Pb) from the authigenic fraction 3 

of marine sediments and reconstruct the Pb isotope evolution of the deep central Indian Ocean 4 
over the past 250 thousand years at ~3 kyr resolution. Temporal variations define a binary 5 
mixing line that is consistent with data from ferromanganese nodules and which records 6 
mixing between two well-defined endmembers through time. The unradiogenic endmember 7 
appears to represent a widely-distributed Pb source, from mid-ocean ridges or possibly 8 
volcanic aerosols, while the radiogenic endmember coincides with the composition of 9 
Ganges-Brahmaputra river sediments that are indicative of the Himalayan weathering inputs. 10 
Glacial-interglacial Pb isotope variations are striking and can be explained by an enhancement 11 
of Himalayan contributions by two to three times during interglacial periods, indicating that 12 
climate modulates the supply of dissolved elements to the ocean. While these changes could 13 
accurately record variations in the continental chemical weathering flux in response to 14 
warmer and wetter conditions during interglacials, the relative proportions of Pb derived from 15 
the Ganges and Brahmaputra appear to have been constant through time. This observation 16 
may point towards particulate-dissolved interactions in the estuary or pro-delta as a buffer of 17 
short timescale variability in the composition (and potentially flux) of the fluvial inputs. In 18 
addition, the changes are recorded at 3800 m water depth, and with the lack of deep water 19 
formation in the Bay of Bengal, a mechanism to transfer such a signature into the deep ocean 20 
could either be reversible scavenging of dissolved Pb inputs and/or boundary exchange on the 21 
deep sea fan. Unless the mechanism transferring the Pb isotope signature into the deep ocean 22 
was itself highly sensitive to global climate cycles, and with the absence of a precessional 23 
signal in our Pb isotope data, we suggest that the Indian climate and its influence on basin-24 
scale chemical weathering were strongly modulated by glacial versus interglacial boundary 25 
conditions.  26 

 27 
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Highlights 33 
 34 

� We reconstruct the Pb isotope evolution of the deep Indian Ocean 0-250 ka BP. 35 
� Control by binary mixing between volcanic and Ganges-Brahmaputra endmembers. 36 
� Reversible scavenging or boundary exchange transfer riverine Pb into deep ocean. 37 
� Quaternary climatic variations modulate dissolved element supply to the oceans. 38 
� Himalayan weathering flux enhanced by approximately 2-3 times during interglacials. 39 

 40 

  41 



1.  Introduction 42 
 43 
Continental weathering and erosion are fundamental processes that influence the 44 

earth’s elemental cycles, ocean chemistry, atmospheric composition and climate (e.g. Raymo 45 
et al., 1988). However, potential feedbacks between climate and chemical weathering remain 46 
poorly understood because of the multiple controls on weathering rates (e.g. White and Blum, 47 
1995; Dupre et al., 2003; Riebe et al., 2004; West et al., 2005). The Himalayan orogen, via 48 
the Ganges and Brahmaputra rivers, provides a significant source of both sediments (~1000 49 
million tons/year) and dissolved elements (~100 million tons/year) to the oceans (Galy and 50 
France-Lanord, 1999; Milliman and Farnsworth, 2013), making it a good target for 51 
investigating climate-weathering links (note that for brevity, we are using ‘weathering’ to 52 
refer to the combined effect of in-situ chemical weathering and the dissolved transport of its 53 
products). Changes in Himalayan weathering have previously been invoked to explain 54 
changing ocean chemistry and climate during the Cenozoic (e.g. Edmond, 1992; Richter et al., 55 
1992), but we lack direct evidence on its temporal evolution and its response to climate 56 
change over both million-year and glacial-interglacial timescales.  57 

Past weathering rates may be obtained by analysing sedimentary archives recovered 58 
from the ocean basins. Isotopic tracers with oceanic residence times significantly longer than 59 
the mixing time of the oceans (e.g. Sr, Li isotopes) can provide evidence on the globally-60 
integrated weathering signal over a timescale comparable to their residence time (Richter et 61 
al., 1992; Misra and Froelich, 2012). However, for any forcing occurring on timescales 62 
comparable to or shorter than their residence times, such tracers will show a muted amplitude 63 
of change and a phase lag behind that forcing (Richter and Turekian, 1993). In addition, these 64 
tracers cannot provide evidence on the geographic distribution of the weathering, making it 65 
difficult to link changes in weathering fluxes to specific continental source regions. For this 66 
purpose, we require isotopic tracers with oceanic residence times shorter than the mixing time 67 
of the oceans (e.g. Nd, Hf, Pb isotopes). Such tracers have a non-uniform geographical 68 
distribution that in part reflects the location of the inputs (von Blanckenburg, 1999; Frank, 69 
2002; Goldstein and Hemming, 2003) and should respond rapidly to climatically-controlled 70 
changes in weathering inputs.  71 

Since lead (Pb) has a deep water residence time of ~50-200 years (Schaule and 72 
Patterson, 1981; Cochran et al., 1990; Henderson and Maier-Reimer, 2002), its isotopic 73 
composition is expected to be particularly sensitive to local weathering inputs. Lead isotope 74 
measurements on the authigenic fraction of marine sediments have therefore been used to 75 
trace regional weathering intensity and/or provenance through time (e.g. von Blanckenburg 76 
and Nagler, 2001; Reynolds et al., 2004; Foster and Vance, 2006; Haley et al., 2008; Gutjahr 77 
et al., 2009; Crocket et al., 2012). In the Indian Ocean, the Pb isotope signature advected by 78 
deep waters from the Southern Ocean is overwhelmed by local sources of Pb in the central 79 
Indian Ocean (Vlastelic et al., 2001), indicating the potential of Pb isotopes for tracing the 80 
local weathering sources. On million year timescales, Frank and O’Nions (1998) proposed a 81 
link between Himalayan weathering changes during the Neogene and the Pb isotopic 82 
composition of the deep central Indian Ocean recorded by ferromanganese crust SS663 83 
(Figure 1). However, with the exception of a further study on crust DODO-232D (Frank et al., 84 
2006), this approach remains under-exploited for investigating weathering in the Himalayan 85 
system, and in particular has not been applied on shorter timescales.  86 

In this study, we reconstruct the Pb isotopic evolution of the deep Indian Ocean over 87 
glacial-interglacial and shorter timescales, aiming to better constrain the Himalayan Pb 88 
contribution and assess Himalayan weathering changes in response to glacial-interglacial 89 
cycles. More specifically, we (i) test the use of acid-reductive leaching to extract past 90 
seawater Pb isotopic composition from ocean sediments; (ii) reconstruct temporal variability 91 



in the Pb isotopic composition of the central Indian Ocean from 0-250 ka; (iii) assess the 92 
sources of Pb and the mechanisms for generating that temporal variability; and (iv) consider 93 
the implications of our high resolution record for past changes in the Himalayan weathering 94 
inputs. 95 

 96 
2. Regional setting 97 
 98 

Our study is based on two marine sediment cores from the deep central Indian Ocean 99 
(Figure 1). Core SK129-CR2 (3° N, 76° E, 3800 m water depth) is located on the east side of 100 
the Chagos-Laccadive Ridge in the Central Indian Basin (Banakar, 2005) and core ODP 758 101 
(5° N, 90° E, 2925 m water depth) is located on Ninetyeast Ridge (Farrell and Janacek, 1991). 102 
Deep waters at both sites are supplied by northward-flowing Circumpolar Deep Water 103 
(CDW), which is transported from the Southern Ocean to the Central Indian Basin after 104 
crossing the Southeast Indian Ridge, either directly via the South Australia Basin or indirectly 105 
via the West Australia Basin and gaps in the Ninetyeast Ridge (Mantyla and Reid, 1995; You, 106 
2000).  107 

Both cores are located towards the distal limit of the Bengal Fan, but neither is directly 108 
influenced by the Bengal Fan sedimentation due to their elevated bathymetry, approximately 109 
600 m and 1200 m respectively above the surrounding ocean floor. Therefore, they do not 110 
record (in any simple manner) the physical inputs of the Himalayan erosion, which are 111 
supplied via the Ganges-Brahmaputra river system to the Bengal Fan. However, because of 112 
their more proximal location, they appear well-placed to record an even greater influence of 113 
Himalayan weathering on the Pb isotopic composition of Indian Ocean seawater than 114 
previously observed in ferromanganese crusts SS663 and DODO-232D (Frank and O'Nions, 115 
1998; Frank et al., 2006) (Figure 1). 116 

 117 

3. Materials and methods 118 
 119 
3.1. Sampling and age models 120 

Lead isotopes were measured on bulk sediment acid-reductive leachates at 94 depths 121 
between 8-518 cm (5-251 ka BP) in core SK129-CR2 (i.e. an average sampling resolution of 122 
~3 kyr) and at seven depths between 67-487 cm (33-249 ka BP) in core ODP 758. Both cores 123 
are dominated by carbonate ooze, with carbonate contents between 35-70 % for SK129-CR2 124 
and 50-70 % for ODP 758 (Farrell and Janacek, 1991). The age model for SK129-CR2 is 125 
constrained by radiocarbon dates for 0-33 ka BP, beyond which the benthic foraminiferal C. 126 

wuellerstorfi δ18O record is tuned to the LR04 benthic δ18O stack (Lisiecki and Raymo, 2005) 127 
at major marine isotope stage (MIS) boundaries (Supplementary Information; Tables S1-S3). 128 
For ODP 758, we use the most recently presented age model (Gourlan et al., 2010), which 129 
was also based on an orbitally-tuned δ18O record.  130 
 131 

3.2. Sediment leaching 132 
The authigenic component of the sediment was extracted by acid-reductive leaching, 133 

as described in Wilson et al. (2013). Briefly, bulk sediment samples of ~5 cm3 were leached 134 
in 30 mL 0.44 M acetic acid solution (buffered to pH 5 by sodium acetate) in 50 mL 135 
centrifuge tubes on a rotating wheel. This process was repeated until lack of reaction 136 
demonstrated that carbonate had been removed. Samples were then washed at least twice with 137 
de-ionised water. The authigenic fraction was recovered by acid-reductive leaching for 1 hour 138 
in 30 mL of a pH 2 solution of 0.02 M hydroxylamine hydrochloride (HH) in 4.4 M acetic 139 
acid. This HH leachate was centrifuged at 5000 rpm for 10 min and decanted three times in 140 
sequence, before chemical separation and mass spectrometry. 141 



We recently demonstrated that the reproducibility of sediment leachate Nd isotope 142 
data can be sensitive to the solution/solid ratios used during the leaching procedure (Wilson et 143 
al., 2013), due to the removal of authigenic components during the decarbonation step and 144 
progressive exchange with volcanic components, if present. To test the sensitivity of Pb 145 
isotopes to such a process in this location, we leached different sample sizes at two core 146 
depths in SK129-CR2 (328 cm within MIS 6 and 424 cm within MIS 7), and also analysed a 147 
subset of nine leachates from MIS 6-7 using smaller solution/solid ratios in order to prevent 148 
complete decarbonation before HH leaching. 149 

 150 

3.3. Chemical purification and mass spectrometry 151 
Full analytical methods are contained in the Supplementary Information and 152 

summarised briefly here. The Pb fraction was separated using HBr-HCl chemistry on AG1-153 
X8 anion exchange resin. The Pb isotopic composition was analysed on a Nu Plasma multi-154 
collector inductively-coupled plasma mass spectrometer (MC-ICP-MS) in the Department of 155 
Earth Sciences at the University of Cambridge, using thallium (Tl) as an internal standard to 156 
correct for mass fractionation (Hirata, 1996; Belshaw et al., 1998; Rehkamper and Mezger, 157 
2000) according to an exponential law. Concentration-matched NIST-SRM-981 Pb standards 158 
were measured after approximately every five samples, and a linear correction was applied to 159 
all data measured in each analytical session to produce agreement with the accepted 160 
composition of NIST-SRM-981 Pb (Galer and Abouchami, 1998; Abouchami et al., 2000).  161 

Our external reproducibility for each analytical session, assessed from the standard 162 

deviation (2σ) of repeat measurements of NIST-SRM-981, is in the range of 30-180 ppm for 163 
206Pb/204Pb, 60-240 ppm for 207Pb/204Pb and 50-250 ppm for 208Pb/204Pb. In addition, two 164 
internal standards (leachate samples that had been through column chemistry) were analysed 165 
in multiple analytical sessions over three years (n=14-15) and yield typical long term 166 

reproducibility (2σ) of 140 ppm for 206Pb/204Pb, 160 ppm for 207Pb/204Pb and 190 ppm for 167 
208Pb/204Pb. Replicates of 11 samples analysed in two separate sessions give results that are 168 
consistent with that external reproducibility (Table S4).  169 

Full procedural blanks for the sediment leaching were 1.9 ± 0.7 ng (1σ, n=9). In 170 
comparison to leachate samples that contained 200-1000 ng Pb, the blank contribution 171 
represents only 0.2-1.0 % of the total Pb, which in the worst case would generate an error of 172 
~100 ppm for 207Pb/204Pb and ~ 400 ppm for 206Pb/204Pb and 208Pb/204Pb. Since such errors are 173 
comparable to the external analytical reproducibility, and negligible in comparison to 174 
downcore variability, no blank correction has been applied. 175 
 176 

4. Results and discussion 177 
 178 
4.1. Reconstructing past seawater Pb isotopic composition 179 

Our reconstruction of past seawater Pb isotopic composition is based on acid-180 
reductive leaching of bulk marine sediments which is used to extract the authigenic phases 181 
(Gutjahr et al., 2007; Martin et al., 2010; Wilson et al., 2013). The authigenic fraction is 182 
operationally-defined, but considered to be dominated by ferromanganese oxides formed in 183 
bottom water or shallow pore waters. This approach has been used in relatively few studies 184 
for Pb isotope reconstructions (e.g. Gutjahr et al., 2009; Stumpf et al., 2010; Crocket et al., 185 
2012) and we have therefore investigated some important issues of the method; in particular, 186 
(i) the possibility for anthropogenic Pb contamination, and (ii) possible analytical artefacts 187 
related to the selectivity of the leaching procedure (Wilson et al., 2013). We summarise here 188 
the major outcomes of that assessment (see Supplementary Information) and further discuss 189 
the origin of the signal recorded by the authigenic phases. 190 
 191 



4.1.1. Anthropogenic contamination 192 
The leachate Pb isotope data from SK129-CR2 record relatively smooth cyclical 193 

changes coinciding with glacial-interglacial cycles (Figure 2) and mostly fall on a binary 194 
mixing line in Pb-Pb spaces (Figure 3). Within the depth range from 60-518 cm, we have 195 
excluded six samples out of 82 with less radiogenic Pb isotopic compositions that are 196 
indicative of anthropogenic contamination with approximately the Broken Hill composition 197 
(Stacey et al., 1969) (Figures S1, S2). In addition, in the top section of the core (8-56 cm), the 198 
data are somewhat noisy (Figure 2) and those samples also deviate from the binary mixing 199 
line in a manner consistent with anthropogenic contamination (Figure S2). Since the 200 
magnitude of contamination required is considerably larger than expected from our procedural 201 
blanks, we suggest that such contamination occurred during coring or core storage. For the 202 
top section (8-56 cm), we have made a correction for each sample by regressing from the 203 
Broken Hill composition onto the best-fit binary mixing lines defined by the remaining 76 204 
samples (Figure S2). That corrected data presents a smoother pattern of change across 205 
Termination I and a similar glacial-interglacial shift to that observed at previous terminations 206 
(Figure 2), suggesting that our correction is robust. Therefore, we show the corrected data 207 
from 8-56 cm in subsequent time series plots (but do not include that data in Pb-Pb plots). 208 
 209 

4.1.2. Sediment leaching reproducibility 210 
Given evidence for a potential sample size effect on the Nd isotopic compositions of 211 

sediment leachates (Wilson et al., 2013), we tested the effect on Pb isotopic compositions at 212 
two core depths (328 cm and 424 cm). We see effects from 200 ppm to 2600 ppm on 213 
206Pb/204Pb, 207Pb/204Pb and 208Pb/204Pb (Figure S1), representing on average ~10 % of the 214 
glacial-interglacial variability in the record. Since these tests represent a worst case scenario, 215 
they imply a generally reliable recovery of the authigenic Pb isotope signal. We also analysed 216 
a subset of nine samples without complete decarbonation before the leaching (Table S4) and 217 
these data are in excellent agreement with the decarbonated leachate data. The results of both 218 
tests are consistent with a mass balance argument that the recovery of authigenic 219 
compositions by sediment leaching should be more robust for Pb than Nd isotopes (Gutjahr et 220 
al., 2007). 221 

We also observe good agreement between sediment leachate data from SK129-CR2 222 
and ODP 758 (Figures 2, 3). Since these cores are located in different settings with different 223 
local sediment inputs (Ahmad et al., 2005), the effect of any detrital or volcanic 224 
contamination during leaching would be expected to differ between the cores. Therefore, the 225 
similarity of both temporal changes and absolute values provides independent support for the 226 
reliable recovery of a regionally-controlled authigenic signature. 227 
 228 

4.1.3. Seawater origin of the authigenic signal 229 
Direct measurement of the natural Pb isotopic composition of seawater is not possible 230 

due to recent anthropogenic contamination (e.g. Schaule and Patterson, 1981; Alleman et al., 231 
1999) and we therefore compare our sediment leachate data to measurements on the surface 232 
layers of ferromanganese crusts and nodules from the Indian Ocean (Frank and O'Nions, 233 
1998; Vlastelic et al., 2001; Frank et al., 2006) (Figure 3). These substrates record a bottom 234 
water Pb isotope signature that was acquired over approximately the last 0.2-2 Ma, such that 235 
these measurements should record an integrated glacial-interglacial signal that is appropriate 236 
for comparison to our high resolution late Quaternary data.  237 

Vlastelic et al. (2001) showed that Pb isotopes in surface scrapes of ferromanganese 238 
nodules from the central Indian Ocean (north of 20°S; their N-Indian domain; Figure 1) 239 
plotted on a binary mixing line in all Pb-Pb spaces (Figure 3), indicating mixing between two 240 
distinct sources of dissolved Pb. Our leachate data from sediment cores SK129-CR2 and ODP 241 



758 show glacial-interglacial variability (Figure 2) that overlaps with the binary mixing line 242 
defined by those ferromanganese nodules (Figure 3), as well as extending to more radiogenic 243 
compositions during interglacials. The excellent agreement between the two datasets indicates 244 
that our record was influenced by the same two Pb sources as those crusts, which appears to 245 
confirm both the reliable recovery of an authigenic signal and its bottom water origin. This 246 
evidence also argues against a pore water control, or other in-situ controls, because in those 247 
cases such a well-defined binary mixing line would not be expected to be replicated between 248 
multiple nodules and sediment cores in different sedimentological environments across a 249 
large area of the Indian Ocean (Figure 1). 250 

 251 
4.2. Sources of Pb to the central Indian Ocean 252 

The binary mixing line defined by glacial-interglacial variability in SK129-CR2 253 
(Figure 3) may be interpreted in terms of changes in the relative proportions of Pb supplied to 254 
seawater from two distinct sources. Potential sources include advection by ocean currents, 255 
dissolution of dust or aerosols, and more local riverine or sedimentary sources. Since that 256 
temporal variability is in good agreement with the spatial variability defined by 257 
ferromanganese crusts in the central Indian Ocean (Vlastelic et al., 2001), the Pb sources to 258 
deep water must be well defined in Pb-Pb spaces and temporally rather constant. We therefore 259 
also require mechanisms to maintain constant endmember isotopic compositions through 260 
time, such as homogenisation by ocean circulation or large river systems. 261 

At a global scale, dust may exert some control on seawater Pb isotopes (Jones et al., 262 
2000; Ling et al., 2005), but dust maps (Mahowald et al., 2006) and modelling studies 263 
(Henderson and Maier-Reimer, 2002) suggest that dust input is unlikely to be important for 264 
Pb isotopes in the central Indian Ocean. Volcanic aerosols have been suggested as an 265 
important source of Pb to the Pacific Ocean (Jones et al., 2000; Klemm et al., 2007), but the 266 
strong geographic controls on Indian Ocean Pb isotopic variability appear to rule out such an 267 
aerosol source (Vlastelic et al., 2001). In particular, Vlastelic et al. (2001) observed distinct 268 
Pb-Pb arrays in different regions of the Indian Ocean (Figure 3), with no endmember common 269 
to all arrays, pointing instead towards more local sources to each basin. Importantly, the N-270 
Indian domain does not overlap in Pb isotopic composition with the Antarctic-Indian domain 271 
(Figure 3), which is upstream in terms of deep water flow, ruling out the advection of Pb from 272 
the Southern Ocean or southern Indian Ocean as a control on Pb isotopes in the central Indian 273 
Ocean (von Blanckenburg et al., 1996; Vlastelic et al., 2001). Clearly, Pb is only advected 274 
over short path lengths in the deep Indian Ocean, reflecting its short oceanic residence time, 275 
and therefore the Pb sources must be more regional in extent. 276 

 277 

4.2.1. Radiogenic Pb endmember 278 
Figure 4 compares the SK129-CR2 leachate data to the compositions of suspended 279 

sediments from the Ganges, Brahmaputra and Lower Meghna rivers, which represent the 280 
major inputs to the Bay of Bengal in the northern Indian Ocean. Those sediments represent 281 
the bulk silicate fraction (after acetic acid leaching in order to remove any anthropogenic Pb; 282 
see Supplementary Information) of the eroded crust at the catchment scale, presented in 283 
Millot et al. (2004) for the Ganges and Brahmaputra and characterised in this study for the 284 
Lower Meghna. Although the Lower Meghna sediment should record a mixture of its Ganges 285 
and Brahmaputra tributaries, its composition does not plot exactly on the mixing line between 286 
these endmembers, which may record the effect of mineralogical sorting and/or estuarine 287 
processes in a tide-dominated delta.  288 

The key point here is that the Ganges-Brahmaputra riverine inputs are well placed in 289 
Pb-Pb spaces to represent the radiogenic endmember for the binary mixing array defined by 290 
the SK129-CR2 leachates and N-Indian nodules. In particular, we suggest that the Lower 291 



Meghna estuarine sediments must play an important role in setting the isotopic composition 292 
of Pb inputs to the northern Indian Ocean (Figure 4). We also note that the leachate data from 293 
SK129-CR2 extend towards more radiogenic Pb isotopic compositions than observed in the 294 
N-Indian nodules (Vlastelic et al., 2001) (Figure 4), with a more radiogenic average value,, 295 
which is consistent with a Ganges-Brahmaputra source because SK129-CR2 is more 296 
proximally located to that source than those nodules (Figure 1).  297 

A comparison to the Pb isotopic composition recently inferred for the Himalayan 298 
upper crust (Garcon et al., 2013) also supports that Himalayan Pb, homogenised by the 299 
Ganges-Brahmaputra-Meghna river system, represents the dominant radiogenic Pb source to 300 
the central Indian Ocean. However, in detail, and particularly for 208Pb/204Pb, there is an offset 301 
between the compositions of the Himalayan crust and the Lower Meghna sediments (Figure 302 
4), which could possibly reflect analytical differences in the Garcon et al. (2013) approach 303 
(such as a lack of acetic acid leaching to remove authigenic phases and/or an anthropogenic 304 
signal from the sediment) or uncertainty in their calculation to remove the effect of heavy 305 
minerals. 306 

Two potential mechanisms may be important for transporting this Himalayan Pb 307 
signal into the deep ocean; either (i) particle scavenging of the dissolved riverine inputs and 308 
subsequent release in the deep ocean (Henderson and Maier-Reimer, 2002; Siddall et al., 309 
2008), or (ii) boundary exchange with Himalayan erosion products on the deep sea Bengal 310 
Fan (Vlastelic et al., 2001; Lacan and Jeandel, 2005). Given the rapidity of reversible 311 
scavenging, the former mechanism implies a quite direct link between the Himalayan 312 
weathering inputs and the Pb isotopic composition of the deep ocean and should preserve 313 
climatic modulation at all frequencies. In contrast, if boundary exchange is the key 314 
mechanism, then the Pb isotopic composition of the Indian Ocean may only be linked 315 
indirectly to the Himalayan weathering. In detail, boundary exchange could operate through 316 
either particle scavenging of dissolved Pb in the Lower Meghna estuary or surface ocean, 317 
forming labile coatings on grains that subsequently release Pb into bottom water from the 318 
Bengal Fan, or by the direct dissolution of Himalayan erosion products after their arrival in 319 
the deep ocean. In either case, boundary exchange could potentially act as a low pass filter on 320 
the riverine signal. In that view, the rather smooth variations on glacial-interglacial timescales 321 
(Figure 2) could point towards boundary exchange as the key mechanism. However, recent 322 
models (Arsouze et al., 2009) and experiments (Pearce et al., 2013) advocate a rapid boundary 323 
exchange process on the timescale of months to decades. 324 

 325 

4.2.2. Unradiogenic Pb endmember 326 
The unradiogenic endmember for the central Indian Ocean appears harder to constrain. 327 

Volcanic aerosols could provide a globally well-mixed atmospheric source of unradiogenic 328 
Pb and their composition has been inferred indirectly from the leachable component of 329 
Chinese loess (Jones et al., 2000; Klemm et al., 2007). Based on their isotopic composition 330 
(Figure 5), we cannot rule out such aerosols as a potential unradiogenic endmember for the 331 
central Indian Ocean, but we consider them unlikely to be a major contributor because the 332 
Indian Ocean Pb-Pb arrays defined by ferromanganese nodules (Vlastelic et al., 2001) do not 333 
converge on such a common endmember (Figure 3). Instead, we suggest that a more regional 334 
volcanic source supplies unradiogenic Pb to the deep central Indian Ocean. Although there is 335 
wide variability between individual basalt samples, the mean composition of mid-ocean ridge 336 
basalt (MORB) from the Indian Ocean (Iwamori et al., 2010) is consistent with the required 337 
unradiogenic Pb source (Figure 5). The temporal constancy may in this case reflect averaging 338 
of a large number of small Pb sources and homogenisation by ocean circulation.  339 

The exact mechanism involved in supplying Pb from the volcanic ridges is uncertain, 340 
but it may arise from the interaction between seawater and widely distributed volcanic 341 



seafloor sediments, or could instead be concentrated where deep waters flow through fractures 342 
in the ridges along their pathway into the central Indian Ocean. For example, basalts of the 343 
Southeast Indian Ridge at 120-125°E, which is the location of the major deep inflow (Mantyla 344 
and Reid, 1995), or more locally those of the Central Indian Ridge, have suitable Pb isotopic 345 
compositions to represent this endmember (Figure 5). Evidence is emerging that hydrothermal 346 
plumes provide a significant source of soluble iron to the deep ocean, including along the 347 
Central Indian Ridge (Nishioka et al., 2013), which suggests that they may also be an 348 
important Pb source. Such a hydrothermal source of Pb is further supported by the Pb isotope 349 
compositions of hydrothermal-influenced ferromanganese nodules collected in proximity to 350 
the Indian Ocean ridges (Vlastelic et al., 2001). Those samples fall along a mixing line that is 351 
consistent with their derivation primarily from a local MORB source, with a lesser 352 
contribution from Pb scavenged from ambient seawater (Figure 5). 353 

 354 

4.2.3. Evidence against incongruent weathering 355 
The Pb isotopic composition of inputs to the ocean may also be influenced by isotopic 356 

fractionation during incongruent weathering (e.g. Erel et al., 1994; Harlavan and Erel, 2002), 357 
through the preferential dissolution of highly radiogenic minerals or the preferential 358 
mobilisation of radiogenic Pb isotopes from radiation-damaged sites in minerals. Either 359 
process could lead to a decoupling between the Pb isotopic composition of the detrital 360 
sedimentary inputs and that released to solution, as a function of weathering mechanism or 361 
intensity (e.g. von Blanckenburg and Nagler, 2001; van de Flierdt et al., 2002; Reynolds et al., 362 
2004; Foster and Vance, 2006; Gutjahr et al., 2009). However, those observations were 363 
predominantly made in glaciated regions of the North Atlantic and a number of observations 364 
suggest that incongruent dissolution is not an important effect in the Indian Ocean: 365 

(i) A single binary mixing line defines both the spatial mixing in nodule data from 366 
the N-Indian domain of Vlastelic et al. (2001) and the glacial-interglacial mixing in cores 367 
SK129-CR2 and ODP 758 (Figure 3), suggesting a constancy of the Pb sources through time. 368 
It seems highly unlikely that incongruent weathering, which could potentially control 369 
temporal changes, would produce the same trend in Pb-Pb spaces as mixing, which controls 370 
the spatial pattern. 371 

(ii) The Himalayan crustal inputs inferred from Lower Meghna riverine sediment 372 
compositions are well located in Pb-Pb spaces to define the radiogenic Pb endmember for 373 
deep central Indian Ocean seawater (Figure 4) if the weathering is close to congruent. 374 

(iii) Whereas a shift towards more radiogenic Pb isotopes in North Atlantic 375 
ferromanganese crusts at the onset of Northern Hemisphere glaciation has been attributed to 376 
incongruent weathering (von Blanckenburg and Nagler, 2001), no comparable shift is seen in 377 
Indian Ocean crusts at the onset of glaciation over the Himalayas (Frank, 2002). 378 

Such evidence against a control by incongruent weathering supports our description of 379 
Indian Ocean seawater Pb isotopic composition in terms of mixing between Himalayan and 380 
volcanic endmembers, with approximately unchanging compositions through time that are 381 
well characterised by the composition of the measured solid phases. 382 

 383 
4.3. Climate modulation of Pb isotopes through glacial-interglacial cycles 384 

The benthic oxygen isotope record from SK129-CR2 reflects the combined influences 385 
of global sea level, deep sea temperature and hydrography, and therefore provides a good 386 
reference frame for the approximate timing of glacial and interglacial periods (Figure 6). In 387 
that context, there is a clear climatic modulation of the Pb isotopes at the ~3 kyr resolution of 388 
our record. Lead isotopes were more radiogenic during interglacial than glacial periods 389 
(Figure 6), indicating that an increased proportion of Pb at these times was derived from 390 
Himalayan weathering products via the Ganges-Brahmaputra (Figure 4).  391 



We first consider whether changes in the northward advection of the unradiogenic 392 
volcanic Pb signature by bottom currents could have influenced the records at SK129-CR2 393 
and ODP 758. At present, the evidence on glacial versus interglacial flow speeds in the deep 394 
Indian Ocean is rather limited, being restricted to the western basins, but points towards flow 395 
speeds that were similar or slightly stronger during interglacial than glacial periods (McCave 396 
et al., 2005; Thomas et al., 2007). In that case, we would require a major decrease in the 397 
volcanic Pb flux released from the ocean floor during interglacials in order to explain the 398 
more radiogenic values seen in the record at this time. Instead, we suggest that the volcanic 399 
Pb sources were most likely approximately constant through time, and infer that the temporal 400 
changes predominantly record changes in the continentally-derived source. In that scenario, 401 
climatic modulation could arise from either increased Himalayan weathering inputs or 402 
increased boundary exchange with Himalayan sediments during interglacials.  403 

Interglacial periods were characterised by lower sedimentation rates at SK129-CR2 404 
and lower productivity in the region (Rostek et al., 1997; Punyu et al., 2014), both of which 405 
may have decreased boundary exchange locally and reduced the Himalayan imprint in the 406 
deep ocean. Deep waters were also better oxygenated during interglacials (Pattan and Pearce, 407 
2009), which may also have decreased boundary exchange if this process is enhanced by 408 
reducing conditions. We also provided evidence from Nd isotopes for a rather constant 409 
boundary exchange process between glacial and interglacial periods in the western Indian 410 
Ocean (Wilson et al., 2012). Therefore, even if boundary exchange is important for 411 
transferring the Himalayan weathering signature into the deep ocean, it appears hard to 412 
explain the SK129-CR2 Pb isotope record by oceanic controls on that boundary exchange 413 
process.  414 

Alternatively, if reversible scavenging of the dissolved inputs was the important 415 
mechanism transferring the Himalayan signature to our sites, then sediment fluxes into the 416 
Bay of Bengal may also have contributed to the observed changes. To the extent that existing 417 
records from the Bengal Fan are representative of the whole fan, sedimentation rates appear to 418 
have been elevated during interglacials (Goodbred, 2003), which may have enhanced particle 419 
scavenging on the fan and reduced the surface ocean residence time of Pb. Therefore, this 420 
process also appears to work in the wrong direction to explain the observed changes, because 421 
it would have restricted the Pb supply reaching our deep open ocean sites during interglacial 422 
periods. 423 

Instead, since the Himalayan basin experienced warmer and wetter conditions during 424 
interglacial than glacial periods (Kudrass et al., 2001; Galy et al., 2008; Caley et al., 2011), 425 
we suggest that our Pb isotope record is predominantly recording significantly elevated 426 
continental weathering fluxes during interglacials. In particular, the coincidence with salinity 427 
changes in the Bay of Bengal (Kudrass et al., 2001; Figure 6e) and dust-based aridity 428 
reconstructions from the Arabian Sea (Caley et al., 2011; Figure 6c) suggests that 429 
precipitation and runoff were important controls on those weathering inputs. Our proposed 430 
weathering mechanism is also in agreement with the recent study of Lupker et al. (2013), 431 
which provided independent evidence for elevated Himalayan weathering during the 432 
Holocene compared to the Last Glacial Maximum based on mobile element depletion and 433 
hydration extent in the solid erosion products on the Bengal Fan. According to Lupker et al. 434 
(2013), Himalayan weathering predominantly occurs on the Ganges-Brahmaputra floodplains, 435 
and such an environment would likely have been highly sensitive to climatic change. 436 

It is worth emphasising one further point, which is that the well-defined binary mixing 437 
line in our seawater reconstructions also appears to constrain that the proportions of dissolved 438 
Pb derived from the Ganges and Brahmaputra catchments were constant through time (Figure 439 
4). It seems perhaps surprising that the weathering changes described above should have 440 
occurred uniformly over such a large spatial scale, although that interpretation has been made 441 



for the physical erosion based on detrital sediment provenance (Lupker et al., 2013). 442 
Alternatively, this observation may reflect the mechanism by which the Himalayan Pb signal 443 
is transferred to the Indian Ocean. If the Himalayan Pb signature is transferred to seawater 444 
through particulate-dissolved interaction from the Lower Meghna estuary to the pro-delta, 445 
then sediment mixing and remobilisation could act to average and smooth any short timescale 446 
temporal variability in the proportions of Ganges and Brahmaputra inputs. 447 

 448 
4.3.1. Quantification of weathering changes 449 

In this section, we use a simple isotope mass balance based on binary mixing between 450 
a Himalayan endmember (Lower Meghna sediments) and an Indian Ocean MORB 451 
endmember to provide semi-quantitative constraints on the proposed weathering changes 452 
(Figure 7). Based on those endmembers, we infer that the proportion of Himalayan Pb at the 453 
location of SK129-CR2 increased from ~70 % during glacial periods to 85-90 % during 454 
interglacial periods (Figure 7a). With the further assumption of unchanging volcanic Pb 455 
fluxes through time, we estimate that the Himalayan Pb fluxes were enhanced by a factor of 456 
two or more throughout interglacial compared to glacial periods, and by up to 3.5 times for 457 
short periods of the Holocene and MIS 7 (Figure 7b). That simple calculation also assumes 458 
that there was no change in deep ocean current strength and no change in the extent of non-459 
conservative behaviour through processes such as particle scavenging.  460 

Given the possibility of temporal changes in the processes affecting Pb transport to 461 
our site, we suggest that our evidence may only provide a semi-quantitative estimate of 462 
Himalayan weathering fluxes. Nevertheless, it is instructive to compare our estimate to the 463 
recent estimate of Lupker et al. (2013) that was based on potassium (K) depletion in detrital 464 
sediments from the Bengal Fan. In their simplest scenario, they inferred a three-fold 465 
enhancement of Himalayan weathering fluxes between the Last Glacial Maximum and the 466 
Holocene, with two-fold to 10-fold enhancements also possible depending on assumptions 467 
about detrital sediment fluxes and other uncertainties in their model. Despite the different 468 
approaches of the two studies, there is a good agreement between our estimate (Figure 7) and 469 
their lower end estimates. In fact, our approach is quite complementary to that of Lupker et al. 470 
(2013) because it does not require that detrital sedimentation rates are known and it does not 471 
assume or require a steady state. Therefore, agreement between the two studies suggests that 472 
in each case the model assumptions were reasonable to provide a first order reconstruction of 473 
weathering fluxes. We further note that using the average value of the Lower Meghna for K 474 
depletion, rather than the 0-2 ka sediment core interval used by Lupker et al. (2013), would 475 
enhance the inferred changes in weathering fluxes from LGM to modern by another ~25 % 476 
and, while keeping the Pb-based and K-based estimates within error, could hint at a non 477 
steady state for the riverine sediments that is likely driven by anthropogenic forcing. 478 

Any estimate of weathering fluxes based on a single element or isotope system is 479 
potentially biased towards mineral phases in which that element is concentrated. The 480 
reconstruction based on K depletion was attributed to predominantly biotite weathering 481 
(Lupker et al., 2013), but may be broadly indicative of silicate weathering fluxes. For Pb, 482 
which is mostly contained in clays, feldspars and micas (Garcon et al., 2014), silicate 483 
weathering will also be the main control. Unfortunately, the anthropogenic contribution to 484 
dissolved Pb in modern river catchments precludes the determination of the Pb/cation ratio 485 
released by weathering as a function of weathering intensity, but the close agreement between 486 
our estimates of weathering fluxes from Pb isotopes and those derived from the cations 487 
(Lupker et al., 2013) suggests only a small variation in the Pb/cation ratios in the continental 488 
dissolved load over the range of observed changes in weathering intensity, which is also 489 
supported by the lack of evidence for incongruent Pb release based on isotopic data (Section 490 
4.2.3). One clear outcome from the comparison between the two studies is that Himalayan 491 



weathering changes of at least a factor of two between glacial and interglacial periods are 492 
required.   493 

It has previously been suggested that neodymium (Nd) isotopes in this part of the 494 
Indian Ocean may also provide evidence of enhanced Himalayan weathering inputs during 495 
interglacial periods (Burton and Vance, 2000; Stoll et al., 2007; Gourlan et al., 2010). 496 
However, more recent evidence demonstrates that those Nd isotope records correspond to a 497 
deep water rather than a surface water signal (Tachikawa et al., 2013). In that case, given the 498 
significantly longer oceanic residence time of Nd than Pb (Frank, 2002; Goldstein and 499 
Hemming, 2003), those records are subject to significant modulation by the water mass 500 
composition advected from the Southern Ocean (Frank and O'Nions, 1998; Frank et al., 501 
2006). In particular, over the last glacial cycle the evolution of the deep Indian Ocean is 502 
almost identical to that of the deep South Atlantic core RC11-83 (Piotrowski et al., 2009). 503 
Therefore, although there is a broad agreement between our Pb isotope record and those Nd 504 
isotope records on a glacial-interglacial timescale, we argue that they are predominantly 505 
responding to glacial-interglacial forcing through independent processes. The strength of our 506 
Pb isotope approach is that the multiple isotopes provide strong constraints on Pb sources, 507 
while the short residence time of Pb (and low deep ocean concentration) make it sensitive to 508 
local sources and insensitive to long path length advection, as previously demonstrated by 509 
Vlastelic et al. (2001) and discussed earlier. 510 
 511 

4.4. Relationship with the Indian monsoon 512 
In contrast to the glacial-interglacial changes, there is no evidence for precessional 513 

(~23 kyr) or sub-orbital controls on our Pb isotope record, which shows a surprisingly smooth 514 
pattern of changes (Figure 6). This observation contrasts with continental climate 515 
reconstructions from southeast Asian speleothems (Wang et al., 2001; Wang et al., 2008; 516 
Cheng et al., 2009), which are dominated by precessional forcing in phase with Northern 517 
Hemisphere summer insolation (Figure 6). These speleothem oxygen isotope records were 518 
interpreted in terms of variability of the East Asian Summer Monsoon, but may also reflect 519 
changes in the Indian Summer Monsoon (Dong et al., 2010; Pausata et al., 2011). Marine 520 
reconstructions of the Indian Summer Monsoon (e.g. Caley et al., 2011) also show a 521 
precessional signature, although with different phasing (Figure 6). Since the Indian Summer 522 
Monsoon is expected to influence precipitation patterns in the region, the lack of precessional 523 
variability in the Pb isotope record from SK129-CR2 seems a surprising result.  524 

We first consider whether precessional and shorter timescale variability in weathering 525 
inputs could be smoothed before being recorded in our record. One potential smoothing 526 
process could involve sediment recycling and reversible exchange in the floodplains, but 527 
recent studies have suggested a short timescale for fine-grained sediment transfer within the 528 
Ganges basin, on the order of 0.5-1.5 kyr (Galy and Eglinton, 2011; Lupker et al., 2012). 529 
Therefore, such processes should not be responsible for any significant smoothing at the ~3 530 
kyr resolution of the SK129-CR2 record. Sea level change could potentially influence the 531 
remobilisation of sediments and the dynamics of estuarine and/or delta front particulate-532 
dissolved interactions, influencing the transfer of riverine Pb to seawater. However, the Pb 533 
isotope record changes closely in phase with the glacial-interglacial climate transitions 534 
inferred from benthic oxygen isotopes, with no apparent lag or smoothing on timescales of a 535 
few thousand years (Figure 6), suggesting that such a process should not have been capable of 536 
obscuring precessional timescale variability if it had been present. 537 

In the absence of evidence for smoothing processes on longer than millennial 538 
timescales, we consider that the lack of a precessional signature is a real feature of our record. 539 
With the exception of the Chinese speleothem records, many previous monsoon 540 
reconstructions have been restricted to Termination I, where both precessional and glacial-541 



interglacial forcing were combined, whereas the climate evolution in the Himalayan basin 542 
over longer timescales remains rather poorly constrained. In the case of a recent 543 
reconstruction of the Indian continental climate from grain size analysis in Arabian Sea core 544 
MD04-2861 (Caley et al., 2011) (Figure 6c), significant glacial-interglacial changes in aridity 545 
are inferred whereas precessional variability is somewhat muted. If that record is 546 
representative of the regional climate, then it appears to support that changes in the 547 
Himalayan weathering flux were indeed closely coupled to precipitation and/or temperature 548 
change. In other words, the Indian monsoon strength may have been strongly modulated by 549 
glacial boundary conditions, such that the Indian continental climate and associated 550 
weathering fluxes were dominated by the glacial-interglacial forcing. 551 

 552 
4.5. Reassessment of the Himalayan inputs over the last 25 Ma 553 

Having argued above that continental weathering exerted a major control on the 554 
glacial-interglacial Pb isotope variability, and given the similar magnitude of change in Pb 555 
isotopes between the early Miocene and present (Figure 8), it is tempting to transfer our 556 
weathering interpretation to the longer timescale evolution of this system. Such a perspective 557 
could potentially provide evidence on climate-weathering feedbacks over million year 558 
timescales, as well as the influence of Himalayan tectonics on weathering.  559 

The original proposal that ferromanganese crusts SS663 and DODO-232D (Figure 1) 560 
recorded enhanced Himalayan inputs at ~20-8 Ma (Frank and O'Nions, 1998; Frank et al., 561 
2006) was based on elevated 208Pb/206Pb ratios in that interval (Figure 8). However, the Pb 562 
isotope data now available from Himalayan river sediments and our new evidence from 563 
SK129-CR2 and ODP 758 together demonstrate that 206Pb/204Pb ratios (or other ratios to 564 
204Pb) are more appropriate for tracing the Himalayan inputs (Figure 4). Considering the 565 
modern Himalayan sources, 208Pb/206Pb actually decreases when 206Pb/204Pb increases to 566 
accompany increased Himalayan inputs (Figure 8). Therefore, it appears that the Himalayan 567 
signature recorded in those crusts started to increase at ~14 Ma and continued to increase, 568 
possibly stepwise, towards a maximum at ~2 Ma that has persisted to the present day.  569 

There is therefore a contrast between elevated Himalayan inputs during warm 570 
interglacial periods of the Quaternary, and increasing Himalayan inputs from ~14-2 Ma 571 
(Figure 8) during a time of predominantly global cooling. If interpreted in terms of 572 
weathering changes, the implication is that factors other than climate, such as tectonics and 573 
the associated rock uplift and physical denudation (Riebe et al., 2001), may have provided the 574 
major controls on Himalayan weathering inputs over these long timescales. Indeed, given 575 
dating uncertainties for ferromanganese crusts (Nielsen et al., 2011), the inferred increase in 576 
Himalayan weathering since ~14 Ma may have been coincident with enhanced Himalayan 577 
exhumation and erosion starting ~15 Ma (Clift et al., 2008). This evidence could possibly 578 
indicate a switch between a kinetic (climate) control over short (kyr) timescales and a supply 579 
control related to tectonic uplift and denudation over longer (Myr) timescales. However, the 580 
inferred decrease in Himalayan erosion rates from ~10-3 Ma (Clift et al., 2008) does not 581 
appear to be recorded in those Pb isotope records. The paucity of reliable mass accumulation 582 
rates for the entire Bengal Fan could cast some doubts on such inferences on Himalayan 583 
erosion rates over this period, or alternatively this observation may point towards multiple 584 
controls on this system that are not yet fully understood.  585 

In particular, when considering such long timescales, a number of other factors could 586 
influence those ferromanganese crust records in addition to continental weathering fluxes. For 587 
example, the shift towards more radiogenic Pb isotopes could record an increasing proximity 588 
of the crusts to the Ganges-Brahmaputra source or changes in the radiogenic Pb endmember 589 
due to exhumation of the Lesser Himalayas within the Himalayan orogen. Changes in the 590 
volcanic Pb source, or in the pattern and/or strength of ocean currents, could also play a role, 591 



but are poorly constrained on these timescales. Therefore, future studies should aim to 592 
provide better constraints on the changing locations of seawater archives in relation to 593 
sediment sources and on potential changes in sediment source compositions. Records from 594 
multiple locations could also help to better constrain the transport processes transferring the 595 
Himalayan Pb signature into the deep ocean and the possible role of marine processes in 596 
modulating the Pb isotope signal. 597 

 598 

5. Conclusions 599 
 600 

Lead isotope reconstructions from sediment leachates in the deep central Indian Ocean 601 
are in good agreement with data from spatially-distributed ferromanganese nodules (Vlastelic 602 
et al., 2001) and ferromanganese crust records (Frank and O'Nions, 1998; Frank et al., 2006), 603 
confirming the suitability of sediment leaching approaches for reconstructing past bottom 604 
water Pb isotopic compositions. Temporal variations during the last 250 ka define a binary 605 
mixing line in Pb-Pb spaces, indicating a control by two major Pb sources to the central 606 
Indian Ocean with approximately constant endmember compositions through time. The 607 
unradiogenic endmember appears to represent a well-mixed source of Pb, likely from 608 
volcanic ridge inputs, while the radiogenic endmember corresponds to the composition of 609 
river sediments of the Lower Meghna, transferred into the deep ocean by reversible 610 
scavenging and/or boundary exchange. This observation supports the hypothesis of Frank and 611 
O’Nions (1998) that Pb supplied from the Himalayas influences the deep water Pb isotopic 612 
composition in the central Indian Ocean.  613 

Glacial-interglacial variability in Indian Ocean Pb isotopic composition from 0-250 ka 614 
BP is striking and can be explained by a two- to three-fold enhancement of Himalayan inputs 615 
during interglacials. In the simplest case, that record is potentially recording changes in 616 
continental weathering fluxes that were strongly modulated by climate, consistent with 617 
evidence from a recent independent approach (Lupker et al., 2013). However, a number of 618 
uncertainties remain, including the possible role of particulate-dissolved interactions in 619 
buffering short timescale variability in the Pb isotopic composition and/or flux of the fluvial 620 
inputs, and the oceanic transport of Pb. In order to fully exploit this approach, and especially 621 
to understand the longer timescale evolution of the system, we need to better constrain the 622 
mechanisms transferring the Himalayan signature into the deep ocean, as well as spatial and 623 
temporal patterns in Pb isotope distribution. 624 
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 849 

 850 
Figure 1: Location map for studied cores SK129-CR2 (3°N, 76°E, 3800 m depth) and ODP 758 (5°N, 851 
90°E, 2925 m depth) (yellow circles). Ferromanganese crusts with existing Pb isotope records are 852 
SS663 (Frank and O'Nions, 1998) and DODO-232D (Frank et al., 2006) (red squares). 853 
Ferromanganese crusts and nodules whose surface layers were analysed for Pb isotopes are also 854 
plotted (von Blanckenburg et al., 1996, pink diamonds; Vlastelic et al., 2001, orange diamonds, their 855 
N-Indian domain). Blue arrows show schematic representation of the deep circulation (after Mantyla 856 
and Reid, 1995; You, 2000) and dotted line shows the extent of the Bengal Fan. Also shown are 857 
sediment cores SO93-126KL (Kudrass et al., 2001) and MD04-2861 (Caley et al., 2011) (grey 858 
pentagons); Chinese speleothems from Sanbao and Hulu caves (Wang et al., 2001; Wang et al., 2008; 859 
Cheng et al., 2009) (grey stars); major rivers (Br=Brahmaputra, Ir=Irrawaddy, Sal=Salween) and 860 
schematic representation of Indian Summer Monsoon (ISM) and East Asian Summer Monsoon 861 
(EASM) (green and purple arrows). 862 
 863 



 864 
 865 
Figure 2: Sediment leachate Pb isotope data from SK129-CR2 plotted on an age scale and compared 866 
to sediment leachate data from ODP 758. Panels show 208Pb/204Pb, 207Pb/204Pb and 206Pb/204Pb records. 867 
Both measured data and anthropogenic-corrected data are plotted for the 8-56 cm section of SK129-868 
CR2 (see Supplementary Information for full details). Measurement uncertainty is shown with error 869 
bars for 207Pb/204Pb and is comparable to or smaller than symbol sizes for 206Pb/204Pb and 208Pb/204Pb. 870 
 871 



 872 
 873 
Figure 3: Sediment leachate Pb isotope data from SK129-CR2 and ODP 758 plotted as Pb-Pb plots 874 
(207Pb/204Pb versus 206Pb/204Pb, 208Pb/204Pb versus 206Pb/204Pb) and compared to data from Indian Ocean 875 
ferromanganese crusts (Frank and O'Nions, 1998; Vlastelic et al., 2001; Frank et al., 2006). Samples 876 
from the N-Indian domain of  Vlastelic et al. (2001) are located on Figure 1, while the other domains 877 
of that study  represent other regions of the Indian Ocean (N, North; A, Antarctic; S, South; SW, 878 
Southwest; see Figure 5 of Vlastelic et al., 2001). The SK129-CR2 data are in good agreement with 879 
the N-Indian array (Vlastelic et al., 2001), with the surface layers of ferromanganese crusts SS663 and 880 
DODO-232D (Frank and O'Nions, 1998; Frank et al., 2006), and with data from two ferromanganese 881 
crusts studied by von Blanckenburg et al. (1996) (Figure 1) which are not plotted here due to their 882 
significantly larger measurement uncertainties. Measurement uncertainty is shown with error bars for 883 
207Pb/204Pb and is comparable to or smaller than symbol sizes for 206Pb/204Pb and 208Pb/204Pb. 884 



 885 

 886 
 887 
Figure 4: Pb-Pb plots assessing the radiogenic Pb endmember for SK129-CR2 and the N-Indian 888 
domain. Filled symbols show authigenic data and open symbols show detrital data. Ferromanganese 889 
nodule data are from Vlastelic et al. (2001). Ganges and Brahmaputra suspended sediment data are 890 
from Millot et al. (2004). Lower Meghna suspended sediment data are from this study. The estimate of 891 
Himalayan upper crust composition is from Garcon et al. (2013). Dotted lines indicate the theoretical 892 
mixing line between Ganges and Brahmaputra sediment, but note that measured data from the Lower 893 
Meghna plot above this line. Arrows indicate the approximate mixing between the SK129-CR2 array 894 
and the Lower Meghna composition. Measurement uncertainty is comparable to or smaller than 895 
symbol sizes. 896 



 897 

 898 
 899 
Figure 5: Pb-Pb plots assessing the unradiogenic Pb endmember for SK129-CR2 and the N-Indian 900 
domain. Indian MORB data (Iwamori et al., 2010) are plotted from 30-130°E, together with their 901 
mean value, and the mean values for the Southeast Indian Ridge 120-125°E (SEIR) and Central Indian 902 
Ridge 10°N-25°S (CIR). Arrows indicate the approximate mixing between those mean values and the 903 
SK129-CR2 array. Also shown are the compositions of ferromanganese nodules from Indian ridges 904 
(Vlastelic et al., 2001) and the composition of a globally well-mixed volcanic aerosol source inferred 905 
from the leachable component of Chinese loess (Jones et al., 2000). Other data references are 906 
described in Figure 4 caption. Measurement uncertainty is comparable to or smaller than symbol sizes. 907 
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 909 
 910 
Figure 6: SK129-CR2 Pb isotope record compared to global and regional climate records. (A) SK129-911 
CR2 benthic δ18O (blue squares) corrected to equilibrium values (+0.64) and compared to the LR04 912 
benthic δ18O stack (black line) (Lisiecki and Raymo, 2005). Numbers along the x axis are MIS 913 
numbers. (B) SK129-CR2 leachate 206Pb/204Pb (yellow circles for measured data, white circles for 914 
anthropogenic-corrected data for Termination I). (C) Reconstruction of continental aridity based on 915 
grain size of the silt fraction in Arabian Sea core MD04-2861 (Caley et al., 2011; see Figure 1 for 916 
location). (D) Indian Summer Monsoon stack from Arabian Sea core MD04-2861 (Caley et al., 2011). 917 
(E) Bay of Bengal salinity reconstructed from planktonic oxygen isotopes in core SO93–126KL 918 
(Kudrass et al., 2001; see Figure 1 for location). (F) Chinese speleothem δ18O compilation from Hulu 919 
and Sanbao Caves (Wang et al., 2001; Wang et al., 2008; Cheng et al., 2009; see Figure 1 for 920 
locations), with Hulu cave data adjusted by -1.6‰ to account for their offset from Sanbao. (G) July 921 
insolation at 65°N (Berger and Loutre, 1991). Note that the records in (C-F) are plotted on their 922 
original published age scales. ISM = Indian Summer Monsoon.  923 



 924 
 925 
Figure 7: Constraints on the Himalayan Pb flux to SK129-CR2 based on Pb isotope mass balance 926 
calculations. The upper plot (dotted lines) shows the fraction of Himalayan Pb at SK129-CR2, based 927 
on mixing between mean Indian MORB (206Pb/204Pb = 17.9663, 207Pb/204Pb = 15.4801, 208Pb/204Pb = 928 
37.8670; Figure 5) and the Lower Meghna riverine composition (Figure 4). The lower plot (solid 929 
lines) converts this fraction into a Himalayan flux relative to the Last Glacial Maximum (~21 ka BP), 930 
based on the assumption of a constant volcanic flux. The calculations are carried out separately for 931 
each of the three Pb isotope ratios, while the black line is based on the mean Himalayan fraction from 932 
the three calculations. 933 
  934 
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 936 
 937 
Figure 8: Time series evolution of deep central Indian Ocean Pb isotopic composition reconstructed 938 
from sediment leachates in core SK129-CR2 (this study) and ferromanganese crusts SS663 (Frank and 939 
O'Nions, 1998) and DODO-232D (Frank et al., 2006) (see Figure 1 for crust locations). Crust ages are 940 
based on the original published age models. Note the break in the age axis at 0.25 Ma. The yellow 941 
band on the 208Pb/206Pb plot highlights the period with elevated 208Pb/206Pb ratios which was originally 942 
attributed to increased Himalayan inputs during this period (Frank and O'Nions, 1998). The orange bar 943 
on the 206Pb/204Pb plot highlights the period during which we now infer increasing Himalayan 944 
contributions in those crusts. Error bars are only shown where these are larger than the symbols, with 945 
the exception of the 208Pb/206Pb data for SS663 for which uncertainties were not reported.  946 
 947 



SUPPLEMENTARY INFORMATION 

 

“Quaternary climate modulation of Pb isotopes in the deep Indian Ocean linked to the 

Himalayan chemical weathering” by Wilson D.J., Galy A., Piotrowski A.M., and 

Banakar V.K.  

 

 

1. Age model 

 

The age model for SK129-CR2 is constrained by planktonic radiocarbon dates for 0-

33 ka BP (Table S1), beyond which the benthic foraminiferal C. wuellerstorfi δ
18

O record 

(Table S2) is tuned to the LR04 benthic δ18
O stack (Lisiecki and Raymo, 2005) at major 

marine isotope stage (MIS) boundaries. Linear interpolation was used between all 

radiocarbon and benthic δ18
O tie points. The depth-age tie points and linear sedimentation 

rates are detailed in Table S3. We note that the LR04 record has an absolute age uncertainty 

of ~4 kyr over this time period (Lisiecki and Raymo, 2005). 

 

2. Chemical purification and mass spectrometry – complete method details 

 

The Pb fraction was separated using BioRad AG1-X8 anion exchange resin (100-200 

µm mesh) in 100 µl Teflon columns in laminar flow hoods using quartz-distilled acids. The 

columns were washed with 6M HCl and primed with 0.7M HBr before samples were loaded 

in 0.7M HBr. After washing with 0.7M HBr and 2M HCl, the Pb was eluted in 6M HCl and 

dried down, before being taken up in 2% HNO3 for analysis by mass spectrometry.  

The Pb isotopic composition was analysed on a Nu Plasma multi-collector 

inductively-coupled plasma mass spectrometer (MC-ICP-MS) in the Department of Earth 

Sciences at the University of Cambridge. Thallium (Tl) was used as an internal standard to 

correct for mass fractionation (Hirata, 1996; Belshaw et al., 1998) according to an 

exponential law. The reliability of this approach was optimised by using matrix- and 

concentration-matched standards and samples (Rehkamper and Mezger, 2000), spiking with a 

constant Pb/Tl ratio (~2) and mixing Pb and Tl immediately prior to analysis (Kamenov et 

al., 2004). The mercury (Hg) beam was also monitored at mass 202, allowing for an 

interference correction for the 
204

Hg on 
204

Pb using the natural 
204

Hg/
202

Hg ratio, itself 

corrected for mass fractionation assessed by Tl and using an exponential law.  

Concentration-matched NIST-SRM-981 Pb standards were measured after 

approximately every five samples, and a linear correction was applied to all data measured in 

each analytical session in order to produce agreement with the accepted composition of 

NIST-SRM-981 Pb (Galer and Abouchami, 1998; Abouchami et al., 2000). The standard 

deviation (2σ) of repeat measurements of NIST-SRM-981 measured and Tl-corrected as a 

sample provides our external reproducibility for samples analysed during each analytical 



session, giving reproducibility in the range of 30-180 ppm for 
206

Pb/
204

Pb, 60-240 ppm for 
207

Pb/
204

Pb and 50-250 ppm for 
208

Pb/
204

Pb. Two internal standards (leachate samples that 

had been through column chemistry) were also analysed in multiple analytical sessions over 

three years (n=14-15) and yield typical long term reproducibility (2σ) of 140 ppm for 
206

Pb/
204

Pb, 160 ppm for 
207

Pb/
204

Pb and 190 ppm for 
208

Pb/
204

Pb. For 11 samples, replicates 

were analysed in two separate analytical sessions and give results that are consistent with that 

external reproducibility (Table S4). 

Full procedural blanks for the sediment leaching were 1.9 ± 0.7 ng (1σ, n=9). Blanks 

analysed for isotopic composition gave average values of 
206

Pb/
204

Pb = 18.11 ± 0.44, 
207

Pb/
204

Pb = 15.56 ± 0.07 and 
208

Pb/
204

Pb = 37.77 ± 0.33 (1σ, n=7), consistent with a 

mixture between sample Pb and anthropogenic Pb with an approximately Broken Hill 

composition (Stacey et al., 1969). Leachate samples typically contained 400-1000 ng Pb, so 

the blank contribution represents only 0.2-0.5% of the total Pb. Therefore, no blank 

correction has been applied. In the smallest samples analysed, which contained ~200 ng Pb, 

the blank could contribute up to ~1% of the Pb and produce an error of ~100 ppm for 
207

Pb/
204

Pb and ~ 400 ppm for 
206

Pb/
204

Pb and 
208

Pb/
204

Pb. This error is comparable to the 

external analytical reproducibility, and remains negligible in comparison to downcore 

variability in SK129-CR2, which is ~30 times larger. 

 

3. Assessing anthropogenic contamination of sediment leachates 

 

All measured leachate Pb isotope data from SK129-CR2 (Table S4) are plotted 

against core depth in Figure S1 and as Pb-Pb plots in Figure S2. These data reveal changes 

through time across two full glacial cycles that mostly fall on a binary mixing line in Pb-Pb 

space. Within the depth range from 60-518 cm, most samples form a relatively smooth 

pattern of temporal variability, but six samples out of 82 fall significantly outside of that 

smooth pattern, in each case towards less radiogenic Pb isotopic compositions (Figure S1). 

These samples also lie significantly away from the binary mixing line defined by the other 

samples in 
207

Pb/
204

Pb v 
206

Pb/
204

Pb space (Figure S2), with higher 
207

Pb/
204

Pb for a given 
206

Pb/
204

Pb. In contrast, any such divergence away from binary mixing is less apparent in 
208

Pb/
204

Pb v 
206

Pb/
204

Pb space. Together, these observations appear to indicate anthropogenic 

contamination by a contaminant with approximately the Broken Hill composition (Stacey et 

al., 1969) (Figure S2), which has been shown to be the main source of anthropogenic Pb for 

the 20
th

 century (van de Velde et al., 2005). 

Whereas such contamination from 60-518 cm appears to be occasional and distributed 

randomly, in the upper section of the core (8-56 cm) the majority of samples appear to 

deviate away from the binary mixing line, also in a similar direction (Figure S2). This 

behaviour produces a somewhat spiky time series (Figure S1) and a smaller magnitude of 



deglacial change for Termination I than for the other glacial-interglacial transitions in the 

record, especially for 
208

Pb/
204

Pb and 
206

Pb/
204

Pb. These observations are also consistent with 

anthropogenic contamination. However, the amount of contamination that would be required 

is considerably larger than can be explained by any of our measured procedural blanks 

(Section 3.3 of the main text) and there is not such a persistent artifact in the remainder of the 

leachate record. We therefore suggest that the contamination in the 8-56 cm section of the 

core likely occurred during coring or core storage and processing, rather than during leaching 

in the laboratory.  

For those samples described above for which we suspect anthropogenic 

contamination, we have attempted to make a correction by regressing from the Broken Hill 

composition (Stacey et al., 1969), which is taken to represent the most likely composition for 

the anthropogenic contaminant, onto the best-fit binary mixing line through the data from the 

remaining 76 samples (Figure S2). As can be seen in Figure S1, the correction is relatively 

larger for 
208

Pb/
204

Pb and 
206

Pb/
204

Pb than for 
207

Pb/
204

Pb. The corrected data for the 8-56 cm 

section show a smoother pattern of change across Termination I (Figure S1) and a similar 

magnitude of glacial-interglacial variability to that observed at previous terminations. For the 

other six samples suspected to be contaminated, this correction also leads to a significant 

improvement, since on average the divergence from the temporal patterns of 
208

Pb/
204

Pb and 
206

Pb/
204

Pb defined by the remainder of the data is reduced by ~80 % (Figure S1). The 

apparent improvement of the corrected data over the raw data in terms of autocorrelation 

between adjacent samples further supports our suggestion of anthropogenic contamination.  

Since we are uncertain of the source or isotopic composition of the contaminant, those 

six outlying data points (Figure S1) are excluded from further discussion. For the 8-56 cm 

section of the record, our correction appears reasonably robust and we include the corrected 

data in Table S5. Those corrected data from 8-56 cm are plotted in the time series plots, but 

are not plotted in the Pb-Pb plots because the mixing trend is well defined by the 76 

measured data not requiring a correction. 

 

4. Sediment leaching reproducibility 

 

We tested the effect of sample size during leaching (Wilson et al., 2013) in the case of 

one glacial sample (328 cm) and one interglacial sample (434 cm) from SK129-CR2 (Table 

S4). At 328 cm, the smaller sample is less radiogenic by ~ 1000 ppm, 350 ppm and 550 ppm 

for 
206

Pb/
204

Pb, 
207

Pb/
204

Pb and 
208

Pb/
204

Pb respectively (Figure S1), which is larger than the 

measurement uncertainty. The direction of change is consistent with a minor volcanic 

contamination of the smaller sample, as suggested previously for Nd isotopes (Wilson et al., 

2013), but the magnitude is only ~10 % of the magnitude of glacial-interglacial Pb isotope 

changes. At 434 cm, the smaller sample is instead more radiogenic than the larger sample 

(Figure S1), which is not the direction expected for volcanic contamination. Since we 



suggested that the large sample at 434 cm may have been affected by anthropogenic 

contamination, it is hard to assess the reproducibility related to sample size in this case. 

Overall, this sample size test should represent a worst case scenario, and suggests that less 

than 10 % of the glacial-interglacial variability in the record may be explained by leaching 

systematics.  

In a second test, we used low solution/solid ratios to prevent complete decarbonation 

before HH leaching on a subset of 9 samples (Table S4). There is excellent agreement for Pb 

isotopes between these data and the remainder of the data measured on decarbonated 

leachates. Given evidence that the use of low solution/solid ratios is a more reliable approach 

for deep sea authigenic Nd isotope reconstructions (Wilson et al., 2013), this good agreement 

provides further confidence in our Pb isotope reconstruction.  

Overall, the above tests suggest a generally reliable recovery of the authigenic Pb 

isotope signal by sediment leaching in core SK129-CR2, in agreement with a more general 

mass balance argument that leaching should be more robust for Pb isotopes than for Nd 

isotopes (Gutjahr et al., 2007). 

 

5. Detrital sediment Pb isotopic composition of the Lower Meghna 

 

Sample BGP 21 was collected from the Lower Meghna during the monsoon period 

and represents the whole silicate fraction of the suspended load. It was leached with 1 M 

acetic acid to remove authigenic components before dissolution and measurement of its Pb 

isotopic composition (Galy and France-Lanord, 2001). Its Pb isotopic composition is 
206

Pb/
204

Pb = 19.297 ± 0.005, 
207

Pb/
204

Pb = 15.796 ± 0.005, 
208

Pb/
204

Pb = 39.72 ± 0.01 (all 2σ 

errors). 

 

  



 
 
Figure S1: Sediment leachate Pb isotope data from SK129-CR2 plotted against core depth. Panels 

show 
208

Pb/
204

Pb, 
207

Pb/
204

Pb and 
206

Pb/
204

Pb records. The leachate data considered reliable are plotted 

as black squares and a line. Small sample size tests at 328 cm and 434 cm are plotted as yellow 

diamonds. Anthropogenic contamination is suspected for the top section of the core (8-56 cm) and six 

other samples: the raw data are shown as red triangles and circles, and the data corrected for 

anthropogenic contamination (assuming a Broken Hill composition; see Figure S2) are shown as 

white triangles and circles. The approximate position of Terminations I, II and III within the core are 

shown along the x axis. 

 



 

 
Figure S2: Sediment leachate Pb isotope data from SK129-CR2 plotted as Pb-Pb crossplots: 
207

Pb/
204

Pb versus 
206

Pb/
204

Pb, 
208

Pb/
204

Pb versus 
206

Pb/
204

Pb. The leachate data considered reliable are 

plotted as black squares. Small sample size tests at 328 cm and 434 cm are plotted as yellow 

diamonds. Anthropogenic contamination is suspected for the top section of the core (0-56 cm) and six 

other samples: the raw data are shown as red triangles and circles, and the data corrected for 

anthropogenic contamination (assuming a Broken Hill composition) are shown as white triangles and 

circles. The arrow indicates the approximate direction of mixing towards an anthropogenic 

contaminant with the composition of Broken Hill (Stacey et al., 1969), from which the data have been 

corrected onto the mixing line defined by the reliable data. 

 

  



Table S1: Radiocarbon data for SK129-CR2 
 

Depth 
 

(cm) 

Sample 
identification 

Species 
14

C age 
 

(yrs) 

error 
14

C age 
res. corr. 

(yrs) 

Calendar 
age 

(yrs BP) 

error 

2.5 SUERC-13140 sacculifer 3727 35 3377 3616 43 

12 SUERC-13141 sacculifer 6039 35 5689 6462 39 

18 SUERC-13142 sacculifer 9170 35 8820 9876 107 

22 SUERC-13143 sacculifer 9038 35 8688 9618 50 

26 SUERC-13144 sacculifer 11896 38 11546 13411 59 

30 SUERC-13147 sacculifer 13048 39 12698 14796 88 

36 SUERC-13148 sacculifer 14341 43 13991 16320 126 

40 SUERC-13149 sacculifer 14117 42 13767 16026 118 

44 SUERC-13150 sacculifer 14909 44 14559 17249 171 

52 SUERC-13665 sacculifer 17841 61 17491 20677 102 

58 ANU-5020* menardii 21580 80 21230 25421 129 

64 SUERC-13669 sacculifer 22409 94 22059 26536 147 

78 SUERC-13671 ruber 28849 189 28499 33888 248 

 

Notes: 
Radiocarbon analysis of planktonic foraminifera at the Scottish Universities Environmental Research 
Centre (SUERC) AMS Facility (5MV NEC AMS), except for sample at 58 cm (denoted by *) which was 
picked by Luke Skinner and run by Stewart Fallon at the Australian National University AMS Lab. 
SUERC analyses were funded by grant allocation 1198.1006. Samples were hydrolysed to CO2 using 
85% orthophosphoric acid at 25°C. The gas was converted to graphite by Fe/Zn reduction. The errors 

are reported as 1σ. Conversion applied a uniform 350 y reservoir correction (Butzin et al., 2005; Cao 
et al., 2007) and was converted to calendar years using the Fairbanks et al. (2005) calibration curve 
01.07 (see http://radiocarbon.LDEO.columbia.edu). These data were originally presented in 
Piotrowski et al. (2009), but there was an error in how the reservoir correction was applied which has 
been corrected here. 

  



Table S2: Benthic oxygen isotope data from SK129-CR2 
 

Depth 
(cm) 

Age 
(ka BP) 

δδδδ
18

OCib 
Piotrowski 
et al. 2009 

δδδδ
18

OCib 
Wilson et 
al. 2015 

δδδδ
18

OCib 
combined 

0 2.28 2.88 
 

2.88 

8 5.26 2.55 
 

2.55 

14 7.28 2.72 
 

2.72 

16 8.10 3.31 
 

3.31 

18 8.93 3.41 
 

3.41 

22 10.97 3.84 
 

3.84 

24 12.19 4.01 
 

4.01 

26 13.41 4.16 
 

4.16 

30 14.80 4.14 
 

4.14 

32 15.14 4.04 
 

4.04 

36 15.83 4.53 
 

4.53 

40 16.53 4.15 
 

4.15 

44 17.25 4.16 
 

4.16 

48 18.96 4.22 
 

4.22 

52 20.68 4.13 
 

4.13 

56 23.84 4.20 
 

4.20 

58 25.42 4.12 
 

4.12 

60 25.79 3.96 
 

3.96 

62 26.16 4.10 
 

4.10 

64 26.54 4.01 
 

4.01 

66 27.59 4.22 
 

4.22 

68 28.64 4.24 
 

4.24 

70 29.69 3.62 
 

3.62 

72 30.74 3.79 
 

3.79 

74 31.79 3.77 
 

3.77 

76 32.84 3.88 
 

3.88 

78 33.89 3.76 
 

3.76 

80 34.89 3.78 
 

3.78 

82 35.89 3.77 
 

3.77 

84 36.90 3.81 
 

3.81 

86 37.90 3.93 
 

3.93 

88 38.90 3.90 
 

3.90 

90 39.91 3.81 
 

3.81 

92 40.91 3.93 
 

3.93 

94 41.91 3.84 
 

3.84 

96 42.91 3.89 
 

3.89 

98 43.92 3.53 
 

3.53 

100 44.92 3.65 
 

3.65 

102 45.92 3.69 
 

3.69 

104 46.93 3.67 
 

3.67 

106 47.93 3.59 
 

3.59 

108 48.93 3.68 
 

3.68 

110 49.93 3.76 
 

3.76 

112 50.94 3.73 
 

3.73 

114 51.94 3.66 
 

3.66 

116 52.94 3.80 
 

3.80 

118 53.95 3.60 
 

3.60 

120 54.95 3.63 
 

3.63 



124 56.95 3.59 
 

3.59 

132 60.97 3.71 
 

3.71 

140 64.98 3.94 
 

3.94 

142 65.98 4.09 
 

4.09 

144 66.98 4.36 
 

4.36 

146 67.99 3.98 
 

3.98 

148 68.99 4.18 
 

4.18 

150 69.99 3.77 
 

3.77 

152 70.99 3.87 
 

3.87 

154 72.00 3.85 
 

3.85 

156 73.00 3.57 
 

3.57 

160 75.00 3.38 
 

3.38 

162 76.16 4.07 
 

4.07 

164 77.33 3.53 
 

3.53 

166 78.49 3.28 
 

3.28 

168 79.65 3.21 
 

3.21 

170 80.82 3.21 
 

3.21 

172 81.98 3.41 
 

3.41 

174 83.14 3.32 
 

3.32 

178 85.47 
 

3.33 3.33 

186 90.12 3.42 
 

3.42 

194 94.78 3.12 
 

3.12 

198 97.10 
 

3.21 3.21 

210 104.08 3.15 
 

3.15 

214 106.41 3.31 
 

3.31 

218 108.73 3.29 
 

3.29 

222 111.06 3.45 
 

3.45 

224 112.22 3.33 
 

3.33 

228 114.55 2.85 
 

2.85 

232 116.88 3.08 
 

3.08 

236 119.20 3.18 
 

3.18 

240 121.53 2.88 
 

2.88 

242 122.69 2.71 
 

2.71 

244 123.86 2.88 
 

2.88 

248 126.18 3.34 
 

3.34 

250 127.35 2.70 
 

2.70 

252 128.51 2.86 
 

2.86 

254 129.67 2.21 
 

2.21 

256 130.84 3.44 
 

3.44 

258 132.00 2.44 
 

2.44 

260 132.83 3.89 
 

3.89 

262 133.66 4.21 
 

4.21 

264 134.49 4.01 
 

4.01 

266 135.32 4.18 
 

4.18 

270 136.99 4.13 
 

4.13 

274 138.65 4.40 
 

4.40 

278 140.31 4.27 
 

4.27 

282 141.97 4.14 
 

4.14 

286 143.63 4.30 
 

4.30 

290 145.30 4.19 
 

4.19 

294 146.96 4.11 
 

4.11 

298 148.62 4.15 
 

4.15 



300 149.45 4.17 
 

4.17 

306 151.94 4.33 
 

4.33 

320 157.76 
 

4.13 4.13 

326 160.25 
 

4.09 4.09 

334 163.58 
 

3.75 3.75 

342 166.90 
 

4.11 4.11 

344 167.73 
 

3.78 3.78 

344 167.73 
 

3.95 3.95 

346 168.56 
 

3.80 3.80 

350 170.23 
 

3.77 3.77 

352 171.06 
 

3.79 3.79 

356 172.72 
 

3.78 3.78 

358 173.55 
 

3.84 3.84 

364 176.04 
 

3.89 3.89 

366 176.87 
 

3.89 3.89 

374 180.20 
 

3.97 3.97 

378 181.86 
 

3.82 3.82 

380 182.69 
 

3.63 3.63 

382 183.52 
 

3.97 3.97 

384 184.35 
 

3.86 3.86 

386 185.18 
 

3.91 3.91 

390 186.85 
 

3.91 3.91 

392 187.68 
 

3.71 3.71 

394 188.51 
 

3.84 3.84 

396 189.34 
 

3.44 3.44 

400 191.00 
 

3.55 3.55 

402 192.42 
 

3.21 3.21 

402 192.42 
 

3.31 3.31 

404 193.84 
 

3.42 3.42 

408 196.68 
 

3.28 3.28 

410 198.11 
 

3.60 3.60 

412 199.53 
 

3.20 3.20 

414 200.95 
 

3.18 3.18 

416 202.37 
 

3.10 3.10 

418 203.79 
 

3.00 3.00 

420 205.21 
 

3.06 3.06 

422 206.63 
 

3.33 3.33 

424 208.05 
 

3.31 3.31 

426 209.47 
 

3.17 3.17 

426 209.47 
 

3.49 3.49 

428 210.89 
 

3.21 3.21 

432 213.74 
 

2.97 2.97 

438 218.00 
 

3.18 3.18 

444 220.14 
 

3.67 3.67 

446 220.86 
 

2.93 2.93 

450 222.29 
 

3.61 3.61 

456 224.43 
 

3.57 3.57 

462 226.57 
 

3.48 3.48 

468 228.71 
 

3.62 3.62 

474 230.86 
 

3.61 3.61 

480 233.00 
 

3.40 3.40 

484 235.40 
 

3.38 3.38 



488 237.80 
 

3.11 3.11 

490 239.00 
 

3.20 3.20 

490 239.00 
 

3.28 3.28 

494 241.40 
 

2.78 2.78 

498 243.80 
 

3.06 3.06 

500 245.00 
 

3.70 3.70 

504 246.43 
 

3.90 3.90 

508 247.86 
 

3.88 3.88 

512 249.29 
 

3.88 3.88 

518 251.43 
 

3.88 3.88 

 

Notes: 
All oxygen isotope data are from C. wuellerstorfi, either from Piotrowski et al. (2009) or Wilson et al. 

(2015). Measurements were made in the Godwin Laboratory on Cibicidoides wuellerstorfi (> 212 µm). 
Foraminifera (typically 2 to 5 specimens) were transferred into sample vials, crushed, and soaked in a 
solution of 3 % hydrogen peroxide for 30 minutes before being removed. After an acetone ultrasonic 
bath, the samples were dried at 50 °C overnight. The samples were analysed using a Micromass 
Multicarb Sample Preparation System attached to a VG SIRA or VG PRISM mass spectrometer. Each 
run of 30 samples was accompanied by 10 reference carbonates and 2 control samples. The results 
are reported with reference to the international standard Vienna PeeDee Belemnite (VPDB) and the 

precision is better than ± 0.08 ‰ for δ
18

O. 

  



Table S3: Age model tie points for SK129-CR2 
 

Depth 
 

(cm) 

Calendar 
age 

(ka BP) 

Sed rate 
below 

(cm/ka) 

Method Notes 

2.5 3.616 3.34 
14

C 
 

12 6.462 2.44 
14

C 
 

20 9.747 1.64 
14

C average of two closely spaced 
14

C measurements 

26 13.411 2.89 
14

C 
 

30 14.796 5.81 
14

C 
 

38 16.173 5.58 
14

C average of two closely spaced 
14

C measurements 

44 17.249 2.33 
14

C 
 

52 20.677 1.26 
14

C 
 

58 25.421 5.38 
14

C 
 

64 26.536 1.90 
14

C 
 

78 33.888 1.99 
14

C 
 

156 73 2.00 MIS 4/5 
 

160 75 1.72 YTT first appearance of Youngest Toba Tuff 

258 132 2.41 MIS 5/6 
 

400 191 1.41 MIS 6/7 
 

438 218 2.80 MIS 7.3/7.4 
 

480 233 1.67 MIS 7.4/7.5 
 

500 245 2.80 MIS 7/8 
sedimentation rate below MIS 7-8 boundary is 
unconstrained and based on sedimentation rate in 
the subsequent glacial period MIS 7.4 

 

Notes: 
The age model is constrained by radiocarbon dates for 0-34 ka, and thereafter graphical correlation of 

benthic δ
18

O to the LR04 benthic δ
18

O stack (Lisiecki and Raymo, 2005). The first appearance of the 
Youngest Toba Tuff (Banakar, 2005; Mark et al., 2014) also provides an independent age estimate 
that is consistent with the LR04 based age model.  

  



Table S4: All measured leachate Pb isotope data for SK129-CR2 and ODP 758 

 
Core Depth Age Size Number Notes Measured data Anthropogenic Corrected data 

  cm ka BP g leaches   206/204 2σσσσ 207/204 2σσσσ 208/204 2σσσσ contamination? 206/204 207/204 208/204 

SK129-CR2 8 5.26 2.6 6 18.9505 0.0024 15.7574 0.0022 39.2759 0.0063 possible 19.1058 15.7764 39.4934 

SK129-CR2 12 6.46 2.3 5 18.9950 0.0009 15.7619 0.0011 39.3386 0.0034 possible 19.0983 15.7745 39.4816 

SK129-CR2 16 8.10 2.3 6 18.9771 0.0024 15.7564 0.0022 39.3190 0.0063 possible 19.0723 15.7679 39.4410 

SK129-CR2 20 9.75 2.2 5 18.8598 0.0009 15.7401 0.0011 39.1495 0.0034 possible 19.0556 15.7636 39.4147 

SK129-CR2 24 12.19 2.2 6 18.8740 0.0024 15.7358 0.0022 39.1601 0.0063 possible 19.0093 15.7518 39.3424 

SK129-CR2 28 14.10 2.8 5 18.8832 0.0009 15.7305 0.0011 39.1654 0.0034 possible 18.9612 15.7395 39.2671 

SK129-CR2 32 15.14 3.3 6 18.7867 0.0024 15.7197 0.0022 39.0406 0.0063 possible 18.9641 15.7403 39.2718 

SK129-CR2 36 15.83 3.1 5 18.8672 0.0009 15.7254 0.0011 39.1361 0.0034 possible 18.9371 15.7334 39.2295 

SK129-CR2 40 16.53 1.4 6 18.8765 0.0024 15.7203 0.0022 39.1422 0.0063 possible 18.8934 15.7222 39.1612 

SK129-CR2 44 17.25 3.1 5 18.8390 0.0009 15.7204 0.0011 39.0869 0.0034 possible 18.9247 15.7302 39.2100 

SK129-CR2 52 20.68 1.4 6 18.8632 0.0024 15.7190 0.0022 39.1293 0.0063 possible 18.8944 15.7225 39.1628 

SK129-CR2 56 23.84 3.1 5 18.8847 0.0009 15.7252 0.0011 39.1608 0.0034 possible 18.9217 15.7294 39.2054 

SK129-CR2 60 25.79 2.8 6 18.9160 0.0024 15.7282 0.0022 39.2021 0.0063 

SK129-CR2 62 26.16 2.8 5 18.9146 0.0009 15.7260 0.0011 39.1937 0.0034 

SK129-CR2 64 26.54 3.3 5 18.9270 0.0009 15.7300 0.0011 39.2159 0.0034 

SK129-CR2 66 27.59 3.2 5 18.9253 0.0009 15.7289 0.0011 39.2065 0.0034 

SK129-CR2 68 28.64 3.6 6 18.9289 0.0024 15.7334 0.0022 39.2234 0.0063 

SK129-CR2 70 29.69 2.9 5 18.9136 0.0009 15.7283 0.0011 39.1958 0.0034 

SK129-CR2 74 31.79 4.0 6 18.9472 0.0024 15.7369 0.0022 39.2473 0.0063 

SK129-CR2 78 33.89 2.6 5 18.9472 0.0009 15.7350 0.0011 39.2425 0.0034 

SK129-CR2 80 34.89 3.0 6 18.9458 0.0024 15.7354 0.0022 39.2445 0.0063 

SK129-CR2 86 37.90 2.9 5 18.9038 0.0009 15.7282 0.0011 39.1793 0.0034 

SK129-CR2 92 40.91 2.0 4 18.9224 0.0018 15.7310 0.0038 39.2135 0.0082 

SK129-CR2 100 44.92 3.0 6 18.9308 0.0024 15.7327 0.0022 39.2181 0.0063 

SK129-CR2 106 47.93 2.6 4 18.9383 0.0018 15.7369 0.0038 39.2440 0.0082 

SK129-CR2 110 49.93 2.7 5 18.8734 0.0009 15.7307 0.0011 39.1423 0.0034 contaminated 18.9713 15.7421 39.2830 

SK129-CR2 116 52.94 2.4 6 18.9510 0.0024 15.7375 0.0022 39.2574 0.0063 

SK129-CR2 126 57.96 2.6 4 18.9526 0.0018 15.7380 0.0038 39.2585 0.0082 

SK129-CR2 136 62.97 4.6 5 18.9324 0.0009 15.7349 0.0011 39.2299 0.0034 

SK129-CR2 144 66.98 4.7 5 18.9556 0.0009 15.7362 0.0011 39.2590 0.0034 

SK129-CR2 148 68.99 4.8 6 18.9221 0.0024 15.7379 0.0022 39.2177 0.0063 

SK129-CR2 152 70.99 4.5 5 18.9500 0.0009 15.7441 0.0011 39.2813 0.0034 

SK129-CR2 156 73.00 5.1 6 18.9888 0.0024 15.7494 0.0022 39.3399 0.0063 

SK129-CR2 160 75.00 4.1 5 18.9779 0.0009 15.7471 0.0011 39.3086 0.0034 

SK129-CR2 162 76.16 3.0 6 19.0084 0.0024 15.7547 0.0022 39.3546 0.0063 

SK129-CR2 164 77.33 3.2 5 18.9792 0.0009 15.7524 0.0011 39.3061 0.0034 

SK129-CR2 168 79.65 2.9 6 19.0280 0.0024 15.7588 0.0022 39.3750 0.0063 

SK129-CR2 178 85.47 6.6 5 19.0369 0.0018 15.7594 0.0038 39.3770 0.0082 



SK129-CR2 182 87.80 3.3 5 19.0451 0.0009 15.7590 0.0011 39.3887 0.0034 

SK129-CR2 190 92.45 2.7 6 19.0356 0.0024 15.7600 0.0022 39.3844 0.0063 

SK129-CR2 198 97.10 6.0 5 19.0466 0.0018 15.7621 0.0038 39.4002 0.0082 

SK129-CR2 202 99.43 2.5 5 19.0438 0.0009 15.7640 0.0011 39.3938 0.0034 

SK129-CR2 210 104.08 2.7 6 18.7709 0.0024 15.7365 0.0022 39.0596 0.0063 contaminated 19.1149 15.7787 39.5075 

SK129-CR2 212 105.24 1.9 5 19.0736 0.0018 15.7615 0.0038 39.4134 0.0082 

SK129-CR2 216 107.57 1.9 5 19.0747 0.0018 15.7591 0.0038 39.4065 0.0082 

SK129-CR2 224 112.22 2.3 5 19.0498 0.0018 15.7653 0.0038 39.3995 0.0082 

SK129-CR2 230 115.71 3.0 6 19.0408 0.0024 15.7640 0.0022 39.4050 0.0063 

SK129-CR2 240 121.53 3.4 6 19.0291 0.0024 15.7616 0.0022 39.3897 0.0063 

SK129-CR2 246 125.02 2.5 5 19.0144 0.0009 15.7580 0.0011 39.3677 0.0034 

SK129-CR2 252 128.51 2.9 5 18.9961 0.0009 15.7541 0.0011 39.3380 0.0034 

SK129-CR2 254 129.67 3.0 6 18.9870 0.0024 15.7500 0.0022 39.3175 0.0063 

SK129-CR2 256 130.84 2.8 5 18.9739 0.0009 15.7453 0.0011 39.2897 0.0034 

SK129-CR2 258 132.00 2.3 6 18.9677 0.0024 15.7433 0.0022 39.2800 0.0063 

SK129-CR2 260 132.83 2.9 5 18.9426 0.0009 15.7417 0.0011 39.2369 0.0034 

SK129-CR2 264 134.49 3.2 6 18.9212 0.0024 15.7305 0.0022 39.1907 0.0063 

SK129-CR2 270 136.99 3.3 6 18.9252 0.0024 15.7274 0.0022 39.1940 0.0063 

SK129-CR2 280 141.14 2.5 4 18.9086 0.0018 15.7281 0.0038 39.1840 0.0082 

SK129-CR2 290 145.30 2.6 4 18.9137 0.0018 15.7249 0.0038 39.1840 0.0082 

SK129-CR2 296 147.79 2.0 4 18.9135 0.0018 15.7263 0.0038 39.1855 0.0082 

SK129-CR2 304 151.11 2.1 4 18.8981 0.0018 15.7204 0.0038 39.1463 0.0082 

SK129-CR2 310 153.61 2.8 4 18.8996 0.0018 15.7230 0.0038 39.1583 0.0082 

SK129-CR2 320 157.76 3.8 9 18.9053 0.0012 15.7164 0.0013 39.1571 0.0040 

SK129-CR2 328 161.08 4.6 10 L 18.9173 0.0010 15.7253 0.0010 39.1849 0.0021 

SK129-CR2 328 161.08 1.9 10 S 18.8983 0.0010 15.7198 0.0010 39.1632 0.0021 

SK129-CR2 334 163.58 3.4 9 18.9348 0.0012 15.7222 0.0013 39.2066 0.0040 

SK129-CR2 344 167.73 3.0 10 18.9565 0.0010 15.7346 0.0010 39.2537 0.0021 

SK129-CR2 350 170.23 2.7 10 18.9617 0.0010 15.7346 0.0010 39.2576 0.0021 

SK129-CR2 358 173.55 3.2 10 18.9665 0.0033 15.7353 0.0031 39.2634 0.0095 

SK129-CR2 358 173.55 3.2 10 rep 18.9717 0.0034 15.7389 0.0025 39.2769 0.0079 

SK129-CR2 366 176.87 2.7 9 18.9739 0.0012 15.7415 0.0013 39.2794 0.0040 

SK129-CR2 372 179.37 6.7 5 * 18.8642 0.0018 15.7260 0.0038 39.1272 0.0082 contaminated 18.9442 15.7352 39.2406 

SK129-CR2 378 181.86 6.0 9 18.9711 0.0012 15.7426 0.0013 39.3065 0.0040 

SK129-CR2 386 185.18 4.8 9 18.9909 0.0012 15.7480 0.0013 39.3355 0.0040 

SK129-CR2 394 188.51 4.9 9 19.0108 0.0012 15.7531 0.0013 39.3641 0.0040 

SK129-CR2 404 193.84 3.4 11 19.0374 0.0033 15.7604 0.0031 39.4120 0.0095 

SK129-CR2 404 193.84 3.4 11 rep 19.0361 0.0034 15.7591 0.0025 39.4090 0.0079 

SK129-CR2 408 196.68 7.0 5 * 19.0723 0.0018 15.7704 0.0038 39.4533 0.0082 

SK129-CR2 414 200.95 3.7 11 19.1210 0.0033 15.7783 0.0031 39.5095 0.0095 

SK129-CR2 414 200.95 3.7 11 rep 19.1214 0.0034 15.7779 0.0025 39.5091 0.0079 

SK129-CR2 418 203.79 2.4 5 19.1083 0.0009 15.7745 0.0011 39.4831 0.0034 



SK129-CR2 422 206.63 7.6 5 * 19.0702 0.0018 15.7688 0.0038 39.4409 0.0082 

SK129-CR2 424 208.05 3.6 9 18.4534 0.0012 15.6961 0.0013 38.6685 0.0040 contaminated 19.1021 15.7755 39.4874 

SK129-CR2 426 209.47 3.0 11 19.0458 0.0033 15.7582 0.0031 39.4041 0.0095 

SK129-CR2 426 209.47 3.0 11 rep 19.0465 0.0034 15.7598 0.0025 39.4074 0.0079 

SK129-CR2 434 215.16 3.0 11 L 18.9589 0.0033 15.7505 0.0031 39.2945 0.0095 contaminated 19.0443 15.7607 39.3971 

SK129-CR2 434 215.16 3.0 11 L, rep 18.9582 0.0034 15.7493 0.0025 39.2851 0.0079 contaminated 

SK129-CR2 434 215.16 1.7 11 S 19.0081 0.0033 15.7476 0.0031 39.3417 0.0095 

SK129-CR2 434 215.16 1.7 11 S, rep 19.0077 0.0034 15.7469 0.0025 39.3396 0.0079 

SK129-CR2 438 218.00 5.3 5 * 19.0359 0.0018 15.7580 0.0038 39.3829 0.0082 

SK129-CR2 446 220.86 6.5 5 * 19.0344 0.0005 15.7542 0.0016 39.3607 0.0043 

SK129-CR2 450 222.29 4.7 9 19.0279 0.0012 15.7487 0.0013 39.3388 0.0040 

SK129-CR2 462 226.57 5.5 5 * 19.0135 0.0005 15.7516 0.0016 39.3330 0.0043 

SK129-CR2 468 228.71 4.2 9 19.0200 0.0012 15.7517 0.0013 39.3553 0.0040 

SK129-CR2 474 230.86 2.5 11 18.9960 0.0033 15.7484 0.0031 39.3327 0.0095 

SK129-CR2 474 230.86 2.5 11 rep 19.0002 0.0034 15.7505 0.0025 39.3407 0.0079 

SK129-CR2 484 235.40 7.9 5 * 19.0219 0.0005 15.7570 0.0016 39.3683 0.0043 

SK129-CR2 488 237.80 2.7 11 19.0307 0.0033 15.7582 0.0031 39.3822 0.0095 

SK129-CR2 488 237.80 2.7 11 rep 19.0295 0.0034 15.7573 0.0025 39.3768 0.0079 

SK129-CR2 494 241.40 3.0 5 * 19.0212 0.0005 15.7573 0.0016 39.3633 0.0043 

SK129-CR2 498 243.80 2.7 11 18.9920 0.0033 15.7464 0.0031 39.3165 0.0095 

SK129-CR2 498 243.80 2.7 11 rep 18.9924 0.0034 15.7461 0.0025 39.3157 0.0079 

SK129-CR2 504 246.43 3.2 11 18.9714 0.0033 15.7424 0.0031 39.2912 0.0095 

SK129-CR2 504 246.43 3.2 11 rep 18.9676 0.0034 15.7365 0.0025 39.2719 0.0079 

SK129-CR2 508 247.86 1.8 9 18.9606 0.0012 15.7284 0.0013 39.2484 0.0040 

SK129-CR2 512 249.29 3.9 11 18.7316 0.0033 15.7150 0.0031 38.9328 0.0095 contaminated 18.9775 15.7437 39.2926 

SK129-CR2 512 249.29 3.9 11 rep 18.7307 0.0034 15.7136 0.0025 38.9286 0.0079 contaminated 

SK129-CR2 518 251.43 5.6 5 * 18.9247 0.0005 15.7266 0.0016 39.2017 0.0043 

ODP 758 A1 H1 67-69 67 33 13.2 6 19.0040 0.0011 15.7391 0.0016 39.2354 0.0049 

ODP 758 A1 H2 64.5-67  214.5 77 7.3 6 18.9620 0.0011 15.7481 0.0016 39.3243 0.0049 

ODP 758 A1 H2 123.5-125.5 273.5 128 9.1 6 18.9767 0.0011 15.7558 0.0016 39.3633 0.0049 

ODP 758 A1 H3 13-15.5 313 143 9.3 6 18.8993 0.0005 15.7258 0.0016 39.2116 0.0043 

ODP 758 A1 H3 94-96 394 192 9.4 6 18.9877 0.0018 15.7515 0.0038 39.3609 0.0082 

ODP 758 A1 H4 8-10 458 233 8.6 6 18.9868 0.0018 15.7544 0.0038 39.3608 0.0082 

ODP 758 A1 H4 37-39 487 249 9.2 6   18.9376 0.0018 15.7389 0.0038 39.2859 0.0082         

Notes: 

This table contains all measured data and data after correction for anthropogenic contamination where contamination was suspected. 

Core  Identifiers for ODP Leg 121 Site 758 are Hole, Core, Type, Section, Interval 

Depth  Depth in cm below sea floor           

Size (g) Wet weights after decarbonation 

Number leaches Number of times leached in ~30 mL acetic acid before HH leaching 



L Large sample size test 

S Small sample size test 

rep Mass spectrometry replicate 

* Leached using low solution/solid ratios to prevent complete decarbonation before HH leaching 

possible Samples where a small anthropogenic contamination is suspected; followed by data corrected as described in Supplementary Information 

contaminated Samples with clear anthropogenic contamination identified; followed by data corrected as described in Supplementary Information 

2σ 
 

 

Uncertainties are based on the standard deviation (2σ) of repeat measurements of concentration-matched NIST-SRM-981 in each analytical 

session. Long term reproducibility (2σ) assessed from two internal standards (leachate samples) is 140 ppm for 
206

Pb/
204

Pb, 160 ppm for 
207

Pb/
204

Pb and 190 ppm for 
208

Pb/
204

Pb   

 

 

 



Table S5: Leachate Pb isotope data for plotting for SK129-CR2 

            
Core Depth Age Size Notes 206/204 2σσσσ 207/204 2σσσσ 208/204 2σσσσ 

  cm ka BP g               

SK129-CR2 8 5.26 2.6 corrected 19.1058 0.0024 15.7764 0.0022 39.4934 0.0063 

SK129-CR2 12 6.46 2.3 corrected 19.0983 0.0009 15.7745 0.0011 39.4816 0.0034 

SK129-CR2 16 8.10 2.3 corrected 19.0723 0.0024 15.7679 0.0022 39.4410 0.0063 

SK129-CR2 20 9.75 2.2 corrected 19.0556 0.0009 15.7636 0.0011 39.4147 0.0034 

SK129-CR2 24 12.19 2.2 corrected 19.0093 0.0024 15.7518 0.0022 39.3424 0.0063 

SK129-CR2 28 14.10 2.8 corrected 18.9612 0.0009 15.7395 0.0011 39.2671 0.0034 

SK129-CR2 32 15.14 3.3 corrected 18.9641 0.0024 15.7403 0.0022 39.2718 0.0063 

SK129-CR2 36 15.83 3.1 corrected 18.9371 0.0009 15.7334 0.0011 39.2295 0.0034 

SK129-CR2 40 16.53 1.4 corrected 18.8934 0.0024 15.7222 0.0022 39.1612 0.0063 

SK129-CR2 44 17.25 3.1 corrected 18.9247 0.0009 15.7302 0.0011 39.2100 0.0034 

SK129-CR2 52 20.68 1.4 corrected 18.8944 0.0024 15.7225 0.0022 39.1628 0.0063 

SK129-CR2 56 23.84 3.1 corrected 18.9217 0.0009 15.7294 0.0011 39.2054 0.0034 

SK129-CR2 60 25.79 2.8 18.9160 0.0024 15.7282 0.0022 39.2021 0.0063 

SK129-CR2 62 26.16 2.8 18.9146 0.0009 15.7260 0.0011 39.1937 0.0034 

SK129-CR2 64 26.54 3.3 18.9270 0.0009 15.7300 0.0011 39.2159 0.0034 

SK129-CR2 66 27.59 3.2 18.9253 0.0009 15.7289 0.0011 39.2065 0.0034 

SK129-CR2 68 28.64 3.6 18.9289 0.0024 15.7334 0.0022 39.2234 0.0063 

SK129-CR2 70 29.69 2.9 18.9136 0.0009 15.7283 0.0011 39.1958 0.0034 

SK129-CR2 74 31.79 4.0 18.9472 0.0024 15.7369 0.0022 39.2473 0.0063 

SK129-CR2 78 33.89 2.6 18.9472 0.0009 15.7350 0.0011 39.2425 0.0034 

SK129-CR2 80 34.89 3.0 18.9458 0.0024 15.7354 0.0022 39.2445 0.0063 

SK129-CR2 86 37.90 2.9 18.9038 0.0009 15.7282 0.0011 39.1793 0.0034 

SK129-CR2 92 40.91 2.0 18.9224 0.0018 15.7310 0.0038 39.2135 0.0082 

SK129-CR2 100 44.92 3.0 18.9308 0.0024 15.7327 0.0022 39.2181 0.0063 

SK129-CR2 106 47.93 2.6 18.9383 0.0018 15.7369 0.0038 39.2440 0.0082 

SK129-CR2 116 52.94 2.4 18.9510 0.0024 15.7375 0.0022 39.2574 0.0063 

SK129-CR2 126 57.96 2.6 18.9526 0.0018 15.7380 0.0038 39.2585 0.0082 

SK129-CR2 136 62.97 4.6 18.9324 0.0009 15.7349 0.0011 39.2299 0.0034 

SK129-CR2 144 66.98 4.7 18.9556 0.0009 15.7362 0.0011 39.2590 0.0034 

SK129-CR2 148 68.99 4.8 18.9221 0.0024 15.7379 0.0022 39.2177 0.0063 

SK129-CR2 152 70.99 4.5 18.9500 0.0009 15.7441 0.0011 39.2813 0.0034 

SK129-CR2 156 73.00 5.1 18.9888 0.0024 15.7494 0.0022 39.3399 0.0063 

SK129-CR2 160 75.00 4.1 18.9779 0.0009 15.7471 0.0011 39.3086 0.0034 

SK129-CR2 162 76.16 3.0 19.0084 0.0024 15.7547 0.0022 39.3546 0.0063 

SK129-CR2 164 77.33 3.2 18.9792 0.0009 15.7524 0.0011 39.3061 0.0034 

SK129-CR2 168 79.65 2.9 19.0280 0.0024 15.7588 0.0022 39.3750 0.0063 

SK129-CR2 178 85.47 6.6 19.0369 0.0018 15.7594 0.0038 39.3770 0.0082 

SK129-CR2 182 87.80 3.3 19.0451 0.0009 15.7590 0.0011 39.3887 0.0034 

SK129-CR2 190 92.45 2.7 19.0356 0.0024 15.7600 0.0022 39.3844 0.0063 

SK129-CR2 198 97.10 6.0 19.0466 0.0018 15.7621 0.0038 39.4002 0.0082 

SK129-CR2 202 99.43 2.5 19.0438 0.0009 15.7640 0.0011 39.3938 0.0034 

SK129-CR2 212 105.24 1.9 19.0736 0.0018 15.7615 0.0038 39.4134 0.0082 

SK129-CR2 216 107.57 1.9 19.0747 0.0018 15.7591 0.0038 39.4065 0.0082 

SK129-CR2 224 112.22 2.3 19.0498 0.0018 15.7653 0.0038 39.3995 0.0082 

SK129-CR2 230 115.71 3.0 19.0408 0.0024 15.7640 0.0022 39.4050 0.0063 

SK129-CR2 240 121.53 3.4 19.0291 0.0024 15.7616 0.0022 39.3897 0.0063 

SK129-CR2 246 125.02 2.5 19.0144 0.0009 15.7580 0.0011 39.3677 0.0034 



SK129-CR2 252 128.51 2.9 18.9961 0.0009 15.7541 0.0011 39.3380 0.0034 

SK129-CR2 254 129.67 3.0 18.9870 0.0024 15.7500 0.0022 39.3175 0.0063 

SK129-CR2 256 130.84 2.8 18.9739 0.0009 15.7453 0.0011 39.2897 0.0034 

SK129-CR2 258 132.00 2.3 18.9677 0.0024 15.7433 0.0022 39.2800 0.0063 

SK129-CR2 260 132.83 2.9 18.9426 0.0009 15.7417 0.0011 39.2369 0.0034 

SK129-CR2 264 134.49 3.2 18.9212 0.0024 15.7305 0.0022 39.1907 0.0063 

SK129-CR2 270 136.99 3.3 18.9252 0.0024 15.7274 0.0022 39.1940 0.0063 

SK129-CR2 280 141.14 2.5 18.9086 0.0018 15.7281 0.0038 39.1840 0.0082 

SK129-CR2 290 145.30 2.6 18.9137 0.0018 15.7249 0.0038 39.1840 0.0082 

SK129-CR2 296 147.79 2.0 18.9135 0.0018 15.7263 0.0038 39.1855 0.0082 

SK129-CR2 304 151.11 2.1 18.8981 0.0018 15.7204 0.0038 39.1463 0.0082 

SK129-CR2 310 153.61 2.8 18.8996 0.0018 15.7230 0.0038 39.1583 0.0082 

SK129-CR2 320 157.76 3.8 18.9053 0.0012 15.7164 0.0013 39.1571 0.0040 

SK129-CR2 328 161.08 4.6 18.9173 0.0010 15.7253 0.0010 39.1849 0.0021 

SK129-CR2 334 163.58 3.4 18.9348 0.0012 15.7222 0.0013 39.2066 0.0040 

SK129-CR2 344 167.73 3.0 18.9565 0.0010 15.7346 0.0010 39.2537 0.0021 

SK129-CR2 350 170.23 2.7 18.9617 0.0010 15.7346 0.0010 39.2576 0.0021 

SK129-CR2 358 173.55 3.2 18.9665 0.0033 15.7353 0.0031 39.2634 0.0095 

SK129-CR2 366 176.87 2.7 18.9739 0.0012 15.7415 0.0013 39.2794 0.0040 

SK129-CR2 378 181.86 6.0 18.9711 0.0012 15.7426 0.0013 39.3065 0.0040 

SK129-CR2 386 185.18 4.8 18.9909 0.0012 15.7480 0.0013 39.3355 0.0040 

SK129-CR2 394 188.51 4.9 19.0108 0.0012 15.7531 0.0013 39.3641 0.0040 

SK129-CR2 404 193.84 3.4 19.0374 0.0033 15.7604 0.0031 39.4120 0.0095 

SK129-CR2 408 196.68 7.0 19.0723 0.0018 15.7704 0.0038 39.4533 0.0082 

SK129-CR2 414 200.95 3.7 19.1210 0.0033 15.7783 0.0031 39.5095 0.0095 

SK129-CR2 418 203.79 2.4 19.1083 0.0009 15.7745 0.0011 39.4831 0.0034 

SK129-CR2 422 206.63 7.6 19.0702 0.0018 15.7688 0.0038 39.4409 0.0082 

SK129-CR2 426 209.47 3.0 19.0458 0.0033 15.7582 0.0031 39.4041 0.0095 

SK129-CR2 438 218.00 5.3 19.0359 0.0018 15.7580 0.0038 39.3829 0.0082 

SK129-CR2 446 220.86 6.5 19.0344 0.0005 15.7542 0.0016 39.3607 0.0043 

SK129-CR2 450 222.29 4.7 19.0279 0.0012 15.7487 0.0013 39.3388 0.0040 

SK129-CR2 462 226.57 5.5 19.0135 0.0005 15.7516 0.0016 39.3330 0.0043 

SK129-CR2 468 228.71 4.2 19.0200 0.0012 15.7517 0.0013 39.3553 0.0040 

SK129-CR2 474 230.86 2.5 18.9960 0.0033 15.7484 0.0031 39.3327 0.0095 

SK129-CR2 484 235.40 7.9 19.0219 0.0005 15.7570 0.0016 39.3683 0.0043 

SK129-CR2 488 237.80 2.7 19.0307 0.0033 15.7582 0.0031 39.3822 0.0095 

SK129-CR2 494 241.40 3.0 19.0212 0.0005 15.7573 0.0016 39.3633 0.0043 

SK129-CR2 498 243.80 2.7 18.9920 0.0033 15.7464 0.0031 39.3165 0.0095 

SK129-CR2 504 246.43 3.2 18.9714 0.0033 15.7424 0.0031 39.2912 0.0095 

SK129-CR2 508 247.86 1.8 18.9606 0.0012 15.7284 0.0013 39.2484 0.0040 

SK129-CR2 518 251.43 5.6   18.9247 0.0005 15.7266 0.0016 39.2017 0.0043 

Notes: 
           

This table contains the data considered reliable and most appropriate for plotting. 
   

Replicate data (rep in Table S4) and data from small samples (S in Table S4) have been removed. 
   

Where anthropogenic contamination was identified (contaminated in Table S4) the data have also been removed. 
  

For 8-56 cm the data included here are the data corrected for minor anthropogenic contamination. 
   

 

Uncertainties are based on the standard deviation (2σ) of repeat measurements of concentration 

matched NIST-SRM-981 in each analytical session. Long term reproducibility (2σ) assessed from two 
internal leachate samples is 140 ppm for 

206
Pb/

204
Pb, 160 ppm for 

207
Pb/

204
Pb and 190 ppm for 

208
Pb/

204
Pb    
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