- 1 **Short title:** The role of hydrocarbons in cyanobacteria
- 2 **Corresponding author:** David Lea-Smith.
- 3 Department of Biochemistry, University of Cambridge, U.K. CB2 1QW

5 Hydrocarbons are essential for optimal cell size, division and growth of cyanobacteria

6

- 7 **Authors**: David J. Lea-Smith^{1,*}, Maite L. Ortiz-Suarez², Tchern Lenn³, Dennis J. Nürnberg^{3,†},
- 8 Laura L. Baers¹, Matthew P. Davey⁴, Lucia Parolini⁵, Roland G. Huber⁶, Charles A. R. Cotton^{1,†},
- 9 Giulia Mastroianni³, Paolo Bombelli¹, Petra Ungerer³, Tim J. Stevens⁷, Alison G. Smith⁴, Peter J.
- 10 Bond^{2,6,8}, Conrad W. Mullineaux³, Christopher J. Howe¹

11

- 12 **Research article**: Membranes, transport and bioenergetics
- 13 **Affiliations:**
- ¹Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QW, UK.
- ² Centre for Molecular Science Informatics, Department of Chemistry, University of Cambridge,
- 16 Cambridge, CB2 1EW, UK.
- ³ School of Biological and Chemical Sciences, Queen Mary University of London, London, E1
- 18 4NS, UK.
- ⁴ Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK.
- ⁵ Department of Physics, University of Cambridge, Cambridge, CB3 0HE, UK.
- ⁶ Bioinformatics Institute, (A*STAR), 30 Biopolis Str., #07-01 Matrix, Singapore 138671.

- ¹ MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK.
- ⁸ National University of Singapore, Department of Biological Sciences, 14 Science Drive 4,
- 3 Singapore 117543.

- 5 One sentence summary: Optimal cell growth and division of cyanobacteria is dependent upon
- 6 hydrocarbons inducing flexibility in the multiple internal thylakoid membranes of cyanobacteria,
- 7 which occurs via accumulation of these compounds within the lipid bilayer.

8

- 9 Author contributions: D.J.L-S., C.J.H. conceived the original screening and research plans;
- 10 D.J.L-S., P.J.B., C.W.M., C.J.H. supervised the experiments; D.J.L-S., M.L.O-S., T.L., D.J.N.,
- 11 L.L.B., M.P.D., L.P., C.A.R.C., G.M., P.B., P.U. performed most of the experiments; D.J.L-S.,
- 12 M.L.O-S., T.L., D.J.N., L.L.B., M.P.D., T.J.S., P.J.B., C.W.M., C.J.H. designed the experiments
- and analyzed the data; D.J.L-S., conceived the project and wrote the article with contributions of
- all the authors; D.J.L-S., P.J.B., C.W.M., C.J.H. supervised and complemented the writing.

15

- 16 **Funding information:** T.L. was supported by BBSRC Research Grant BB/J016985/1 to C.W.M.
- 17 D.J.L-S. was supported by the Environmental Services Association Education Trust. L.L.B was
- supported by a BBSRC Doctoral Training Grant (BB/F017464/1)

19

- † Present address: Department of Life Sciences, Imperial College London, London, SW7 2AZ,
- 21 UK.

22

1 Corresponding author e-mail: djl63@cam.ac.uk

Abstract

1

21

22

23

2 Cyanobacteria are intricately organized, incorporating an array of internal thylakoid membranes, 3 the site of photosynthesis, into cells no larger than other bacteria. They also synthesize C15-C19 4 alkanes and alkenes, which results in substantial production of hydrocarbons in the environment. 5 All sequenced cyanobacteria encode hydrocarbon biosynthesis pathways, suggesting an 6 important, undefined physiological role for these compounds. Here we demonstrate that 7 hydrocarbon deficient mutants of Synechococcus sp. PCC 7002 and Synechocystis sp. PCC 6803 8 exhibit significant phenotypic differences from wild type, including enlarged cell size, reduced 9 growth and increased division defects. Photosynthetic rates were similar between strains, 10 although a minor reduction in energy transfer between the soluble light harvesting phycobilisome 11 complex and membrane bound photosystems was observed. Hydrocarbons were shown to 12 accumulate in thylakoid and cytoplasmic membranes. Modelling of membranes suggests these 13 compounds aggregate in the centre of the lipid bilayer, potentially promoting membrane 14 flexibility and facilitating curvature. In vivo measurements confirmed that Synechococcus sp. 15 PCC 7002 mutants lacking hydrocarbons exhibit reduced thylakoid membrane curvature 16 compared to wild-type. We propose that hydrocarbons may have a role in inducing the flexibility 17 in membranes required for optimal cell division, size and growth, and efficient association of 18 soluble and membrane bound proteins. The recent identification of C15-C17 alkanes and alkenes 19 in microalgal species suggests hydrocarbons may serve a similar function in a broad range of 20 photosynthetic organisms.

4

Introduction

- 2 Cyanobacteria (oxygenic photosynthetic bacteria) are found in nearly every environment on
- 3 Earth and are major contributors to global carbon and nitrogen fixation (Galloway et al., 2004;
- 4 Zwirglmaier et al., 2008). They are distinguished amongst prokaryotes in containing multiple
- 5 internal thylakoid membranes, the site of photosynthesis, and a large protein compartment, the
- 6 carboxysome, involved in carbon fixation. Despite these extra features, cyanobacteria can be as
- 7 small as 0.6 μm in diameter (Raven, 1998).

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

1

All cyanobacteria with sequenced genomes encode the pathway for the biosynthesis of hydrocarbons, implying an important, although as yet undefined, role for these compounds (Lea-Smith et al., 2015). The major forms are C15-C19 alkanes and alkenes, which can be synthesized from fatty acyl-ACPs by one or other of two separate pathways (Figure 1) (Schirmer et al., 2010; Mendez-Perez et al., 2011). The majority of species produce alkanes and alkenes via acyl-ACP reductase (FAR) and aldehyde deformylating oxygenase (FAD) (Schirmer et al., 2010; Li et al., 2012; Coates et al., 2014; Lea-Smith et al., 2015). Cyanobacterial species lacking the FAR/FAD pathway synthesize alkenes via olefin synthase (Ols) (Mendez-Perez et al., 2011; Coates et al., 2014; Lea-Smith et al., 2015). This suggests that hydrocarbons produced by either pathway serve a similar role in the cell. Homologues of FAR/FAD or Ols are not present in other bacteria, or plant and algal species. However, C15-C17 alkanes and alkenes, synthesized by an alternate, uncharacterized pathway, were recently detected in a range of green microalgae including Chlamydomonas reinhardtii, Chlorella variabilis NC64A and several Nannochloropsis species (Sorigue et al., 2016). In Chlamydomonas reinhardtii, hydrocarbons were primarily localized to the chloroplast, which originated in evolution from a cyanobacterium that was engulfed by a host organism (Howe et al., 2008). Hydrocarbons may therefore have a similar role in cyanobacteria,

some green microalgae species and possibly a broader range of photosynthetic organisms.

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

2

Hydrocarbons act as antidesiccants, waterproofing agents and signaling molecules in insects (Howard and Blomquist, 2005) and prevent water loss, ensure pollen viability and influence pathogen interactions in plants (Kosma et al., 2009; Bourdenx et al., 2011). However, the function of hydrocarbons in cyanobacteria has not been determined. Characterization of cyanobacterial hydrocarbon biosynthesis pathways has provided the basis for investigating synthetic microbial biofuel systems, which may be a renewable substitute for fossil fuels (Schirmer et al., 2010; Choi and Lee, 2013; Howard et al., 2013). However, secretion of long chain hydrocarbons from the cell into the medium, which is likely essential for commercially viable production, has not been observed in the absence of a membrane solubilization agent (Schirmer et al., 2010; Tan et al., 2011). Cyanobacterial hydrocarbons also have a significant environmental role. Due to the abundance of cyanobacteria in the environment, hydrocarbon production is considerable, with hundreds of millions of tons released into the ocean per annum following cell death (Lea-Smith et al., 2015). This production may be sufficient to sustain populations of hydrocarbon-degrading bacteria, which can then play an important role in consuming anthropogenic oil spills (Lea-Smith et al., 2015).

19

20

21

22

23

Here, we investigated the cellular location and role of hydrocarbons in both spherical *Synechocystis* sp. PCC 6803 (*Synechocystis*) and rod-shaped *Synechococcus* sp. PCC 7002 (*Synechococcus*) cells. We developed a model of the cyanobacterial membrane which indicated that hydrocarbons aggregate in the middle of the lipid bilayer and when present at levels

- 1 observed in cells, lead to membrane swelling associated with pools of hydrocarbon. This
- 2 suggested that alkanes may facilitate membrane curvature. In vivo measurements of
- 3 Synechococcus thylakoid membrane conformation are consistent with this model.

5

6

Results

Hydrocarbons predominantly localize to thylakoid and cytoplasmic membranes

- 7 Recently we demonstrated that 115 sequenced cyanobacteria isolated from a broad range of
- 8 environments contain either the far/fad or ols genes, encoding the enzymes for alkane/alkene
- 9 biosynthesis (Lea-Smith et al., 2015). In an additional 32 recently sequenced genomes from
- 10 cyanobacteria we found the same situation with the majority, 133/147, containing far/fad
- 11 homologues (Table S1). Clearly there is an important role for these compounds in cyanobacteria.
- 12 In order to investigate this, we disrupted the two different biosynthetic pathways in two species
- of cyanobacteria that are also morphologically distinct. Far in Synechocystis and ols in
- 14 Synechococcus, were disrupted by insertion of a kanamycin resistance cassette into the open
- reading frame (Figure S1). In wild-type Synechocystis 1.44 mg/g dry cell weight (DCW) of
- alkanes, predominantly heptadecane and 8-heptadecene were detected (Tan et al., 2011), whereas
- in Synechococcus 0.61 mg/g DCW of alkenes, specifically nonadecene (Mendez-Perez et al.,
- 18 2011), were present (Figure S2). In contrast, in mutant cells lacking either FAR or Ols, no
- 19 hydrocarbons were observed. Complementation of Δ FAR by insertion of far into a neutral site on
- the chromosome restored alkanes to wild-type levels (Figure S1; Figure S2).

21

- 22 Due to their hydrophobic and non-polar characteristics, hydrocarbons were expected to localize
- predominantly to membranes. This was confirmed in purified plasma and thylakoid membrane

1 fractions from Synechocystis (Figure 2A, B). Alkanes constituted 5.63% and 17.41% of the

2 plasma and thylakoid membrane lipid fractions, respectively (Figure 2C; Figure S3). Alkanes

comprised 8.92% of the total Synechocystis membrane lipid fraction. Given that thylakoids

constitute a larger proportion of cellular membrane than plasma membranes this suggests that a

hydrocarbon rich portion of the thylakoid membrane was purified during this process. In total

Synechococcus membrane fractions, alkenes constituted 5.34% of total lipids (Figure 2C).

7

8

10

11

12

13

14

15

16

17

18

3

4

5

6

Hydrocarbon-deficient strains exhibit enlarged cell size and division defects

9 To determine how loss of hydrocarbons affects cell morphology, we used bright-field

microscopy. ΔFAR cells were significantly larger than wild-type Synechocystis (11.02 vs 4.63)

μm³) (Figure 3A, B; Figure S4; Table S2), which was confirmed via particle counting

measurements (11.49 vs 4.58 µm³) (Figure 3C; Table S3). In addition, a significantly larger

percentage of ΔFAR cells were actively dividing (47.4 vs 40.1%) (Figure 3F; Table S4).

Division defects were also apparent in Δ Ols, which formed long chains of up to twelve cells and

abnormal rods (Figure 3D; Figure S4). The width of ΔOIs cells was significantly larger than

wild-type Synechococcus (1.76 vs 1.61 µm), which resulted in a significant increase in cell

volume (3.89 vs 3.08 µm³) (Figure 3E; Table S2). Overall these results indicate a role for

hydrocarbons in limiting cell size and ensuring normal cell division.

19

20

22

23

Hydrocarbons are essential for optimal cell growth

Strains were then cultured under continuous moderate light (40 µmol photons m⁻² s⁻¹) to 21

determine whether a lack of hydrocarbons in the membrane affected growth. Due to the

difference in cell size between wild-type and hydrocarbon deficient mutants, which affects the

optical properties of the culture (Figure 4A-D), growth was measured both by cell counting and by optical density. The increase in cell number during exponential growth was approximately four fold higher in wild-type *Synechocystis* cultures, compared to ΔFAR (Figure 4A). Moreover, photobleaching increased in ΔFAR cells after two days growth, as measured by the amount of chlorophyll per cell (Figure 4E). This suggests that cell damage was occurring during this time. The enlarged phenotype of ΔFAR was maintained over this growth period (Figure 4G). Wildtype Synechococcus also demonstrated a statistically significant 1.4 fold increase in cell number during exponential growth compared to ΔOIs (Figure 4B), although photobleaching was not observed (Figure 4F). Under moderate light, when starting with an equal amount of culture as determined by optical density, growth of the wild-type was 2.2 fold faster than ΔFAR (Figure S5A). Growth of wild-type Synechococcus was 1.5 fold faster than ΔOIs (Figure S5B). The difference in growth rates between wild-type Synechocystis and Synechococcus and the hydrocarbon deficient mutants was similar at a higher light intensity of 120 µmol photons m⁻² s⁻¹ (Figure S5C, D). Overall these results demonstrate the importance of hydrocarbons for optimal cell growth.

16

17

18

19

20

21

22

23

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

The absence of hydrocarbons has minor effects on photosynthetic performance

Other cellular traits were then examined to determine whether these could affect cell growth. The maximum photosynthetic rate, as measured by oxygen evolution per unit of chlorophyll, was not reduced in the Δ FAR and Δ Ols mutants (Figure 5A, B). An increase in respiration was observed in Δ FAR cells, with a two-fold higher rate observed compared to wild-type (Figure 5C). In algae, respiration increases with cellular size (Tang and Peters, 1995), and our data suggest that the same relationship may occur in cyanobacteria. Despite the increased respiratory rate, growth of

1 ΔFAR was still impaired under light/dark cycles (Figure S6). However, respiration was similar

2 between wild-type and ΔOls (Figure 5D). Photoinhibition was also comparable between wild-

3 type and hydrocarbon deficient strains (Figure 5E, F).

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

The absorbance profile and emission spectra of the photosynthetic and light harvesting complexes were then examined. Absorbance was slightly reduced in both hydrocarbon deficient mutants in the 400-550 nm range (Figure S7), the portion of the spectra corresponding to carotenoid and chlorophyll absorption. However, the carotenoid/chlorophyll ratio was not significantly different between strains (Table S5), suggesting that the altered absorbance profile of the hydrocarbon-deficient mutants could be due to differences in light scattering, which have a greater effect at shorter wavelengths in the spectrum. Analysis of the hydrocarbon deficient mutants via 77K fluorescence emission spectra showed minor but consistent differences in energy transfer efficiency from phycobilisomes to the reaction centers of photosystems in ΔFAR and ΔOls, a blue shift in the peak between 680-700nm in ΔFAR, indicative of increased uncoupling of phycobilisomes from photosystems (Figure S8A, B), and an altered photosystem II to photosystem I ratio (Figure S8C, D). Given that the oxygen evolution rates of the hydrocarbon deficient strains are similar to wild-type, the cumulative effect of these changes on photosynthetic efficiency must be minor. Overall, these results suggest that differences in cell size and division may be the major factors in the impaired growth observed in hydrocarbon deficient mutants.

21

22

Hydrocarbons may induce membrane flexibility by accumulating within the lipid bilayer

Molecular dynamics simulations have become an invaluable technique used to investigate the nanoscale organization of lipid membranes (Marrink et al., 2009; Vattulainen and Rog, 2011), particularly in complex membrane systems (Ingolfsson et al., 2014; Manna et al., 2014). In order to understand how hydrocarbons could affect membrane properties, a novel symmetrical membrane model system was simulated based on the pseudo-atomistic Martini force field, with an approximately 4:1 mapping of heavy atoms to coarse-grained particles (Figure S9) (Lopez et al., 2013). The present model used 16 different lipid types corresponding to the four major groups present in cyanobacteria: phosphatidylglycerol, monogalactosyl-diacylglycerol, digalactosyl-diacylglycerol and sulfoquinovosyl-diacylglycerol, in a ratio as experimentally determined in Synechocystis (Table S6) (Sheng et al., 2011). The system contained a total of 2,400 lipids, resulting in a large membrane slab with dimensions of approximately 21 x 27 nm. The hydrocarbon heptadecane was added randomly to the solvent of the equilibrated membranes after 2 µs, and observed to enter the bilayer within the first 50 ps of simulation due to its hydrophobicity. Heptadecane became fully incorporated within ~20 ns, remained solvated within the membrane for the full 5 µs of simulation, and was localized between the two monolayers, alongside the lipid tails at the center of the bilayer (Figure 6A-D).

17

18

19

20

21

22

23

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

In symmetrically modelled membranes where no flip-flopping of individual lipids across leaflets occurs, like the one studied here, a flat lamellar bilayer would be expected. This was the case in the absence of alkanes, in which a stable, non-curved membrane was observed (Figure 6A). Addition of hydrocarbons led to their spontaneous insertion and clustering within the bilayer core, with a concomitant increase in membrane thickness from ~3.27 nm to ~3.95 nm, irrespective of concentration. The overall lipid lateral diffusion coefficients in all systems were

within experimentally reported ranges (Kana, 2013). Pools of clustered hydrocarbon molecules were associated with a reduction in lipid chain order and packing efficiency, particularly at ≥5 % mol/mol hydrocarbon concentrations (Figure S10). Moreover, increasing amounts of hydrocarbon dissolved within the bilayer centre which led to localized swelling on one side of the membrane, around the sites of hydrocarbon accumulation, as visually evident in the cross-sections (Figure 6B-D). The swelling settled in one direction or another, and this direction did not change during the simulation, presumably due to the stochastic distribution of solubilized hydrocarbons within the membrane. This is consistent with neutron diffraction studies, which indicated alkane incorporation and swelling of dioleoyl lecithin bilayers (White et al., 1981). The accumulation of hydrocarbons thus increased the flexibility of the membrane and induced localized swelling. It should also be noted that the use of an alternative lipid parameter set developed for the membranes of *Thermosynechococcus vulcanus* and *Spinacia oleracea* (van Eerden et al., 2015) similarly induced swelling and disorder in our bilayer model in the presence of alkanes.

The level of swelling observed at ≥7.5 % mol/mol hydrocarbons due to the presence of a large hydrocarbon pool eventually destabilized the membrane, resulting in a phase transition to a non-lamellar bilayer. In a macroscopic system, and/or under conditions of fixed simulation volume, the membrane swelling and lipid disorder would be expected to result in induction of significant bilayer curvature. Typically, membrane curvature depends upon induced asymmetry of one monolayer compared to another (McMahon and Gallop, 2005). Local clustering of non-bilayer forming lipids could also lead to curvature. Monogalactosyl-diacylglycerol is one such lipid, whereas phosphatidylglycerol, digalactosyl-diacylglycerol and sulfoquinovosyl-diacylglycerol

favor flat lamellar phases (Shipley et al., 1973; Tilcock, 1986), and local monogalactosyl-

diacylglycerol enrichment could hinder the formation of complete lamellar bilayer phases, even

in combination with other thylakoid lipids (Murphy, 1982).

4

5

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

2

3

Synechococcus hydrocarbon-deficient mutants demonstrate reduced membrane curvature

6 To assess the effects of hydrocarbon deficiency on membrane conformation in *Synechocystis* and

Synechococcus we used thin-section electron microscopy. Electron micrographs of the wild-type

and hydrocarbon-deficient mutants suggested that the thylakoid membranes are more planar in

the mutants, although this effect could only be properly quantified and verified in

Synechococcus, due to its more regular thylakoid membrane layout and its elongated cell shape.

In thin-section images from *Synechococcus* we selected cells which appeared circular in profile:

in these cases we could be sure that the thin-section cut across the cell perpendicular to the long

axis, since any other section would be non-circular (Figure S11). In the circular sections, the

thylakoid membranes appear as an array of roughly parallel membrane sacs, each spanning the

gap between a pair of poorly-defined bodies close to the plasma membrane termed the "thylakoid

centers" (Kunkel, 1982; Stengel et al., 2012). Typically, each thin section showed 2-4 thylakoid

centers distributed around the cell perimeter, with the thylakoid membrane sacs extending

between them.

To derive a quantitative measure of membrane curvature, we traced the membrane between two

thylakoid centers and measured its length, and also measured the straight-line distance between

the thylakoid centers (Figure 6E). The ratio of these two measures reflects the curvature of the

membrane. We measured the curvature of over 100 membrane segments from each strain. There

- was no significant difference between the means of the wild-type and ΔOls inter-node distances.
- 2 On average, thylakoid membranes in wild-type cells were found to be more curved than those of
- 3 Δ Ols (Figure 6F). The mean length ratio was 1.09 \pm 0.06 in wild-type versus 1.06 \pm 0.07 in
- Δ Ols, with the relatively high standard deviations reflecting a range of membrane curvatures in
- both the wild-type and Δ Ols (Figure 6F; Figure S12). Nevertheless the difference in the means is
- 6 highly significant, with a *p*-value of 0.00007 from a Student's *t*-test.

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

Discussion

Here we have shown a role for hydrocarbons in two morphologically different cyanobacterial species. While both hydrocarbon deficient mutants display increased cell size, division defects and reduced growth, a more severe phenotype was observed in ΔFAR cells (Figure 3; Figure 4). Spherical cells have a larger fraction of highly curved membranes than rod-shaped cells. In the case of cyanobacteria greater membrane flexibility would be required in order to incorporate multiple thylakoid membranes and to divide efficiently. High-resolution inelastic neutron scattering experiments of Synechocystis cells demonstrated dynamic flexibility within thylakoid membranes which differed between light and dark periods, suggesting that, if hydrocarbons affect curvature, these compounds may also have a role in other cellular functions (Stingaciu et al., 2016). While the division dynamics of cyanobacteria are poorly understood, in the spherical bacterium Staphylococcus aureus, cells divide by first forming a septum, leading to development of two daughter cells connected via a narrow peripheral ring, followed by an abrupt separation event (Zhou et al., 2015). This form of division induces high stress on cellular components and is dependent on extreme curvature in membranes. A similar division event in Synechocystis and other spherical cyanobacteria requires the induction of membrane curvature not only in the

cytoplasmic membrane but also in the thylakoid membranes, in order that these are efficiently distributed between daughter cells. By contrast, rod shaped cells divide by first increasing in volume and length, followed by formation of a septum in the middle of the extended cell and subsequent separation (Wu and Errington, 2012). This form of cell division would require less induction of membrane curvature in the cytoplasmic membrane and thylakoid membranes and would be necessary at only one end of the cell. Interestingly, in the Δ Ols strain, hydrocarbons were more important for efficient daughter cell separation than division, as shown by the formation of chains of cells (Figure 3D).

Although the Δ Ols mutant showed significantly less thylakoid membrane curvature on average than wild-type *Synechococcus*, examples of membrane curvature could be observed in this strain (Figure 6, Figure S10), despite the natural tendency of lipid bilayers to adopt a flat shape (Graham and Kozlov, 2010). Moreover, since simulations indicated that they integrate into the middle of the bilayer (Figure 6B-D), hydrocarbons would be unable to orientate the direction of curvature, suggesting that their major role may be to induce the required flexibility in membranes. Therefore hydrocarbons cannot be the only factor determining membrane curvature: other factors must contribute to both the direction and maintenance of curvature. In addition it was observed that after successive rounds of sub-culturing, typically six to eight, that the size difference between the hydrocarbon deficient mutants and wild-type strains was reduced and *Synechococcus* Δ Ols cells no longer formed chains of cells. That suggests that other factors in the cell were compensating for the loss of hydrocarbons.

1 An Arabidopsis thaliana protein, CURT1A, has been shown to induce membrane curvature in 2 chloroplast membranes (Armbruster et al., 2013). A homologous protein in Synechocystis, CurT, 3 has recently been shown to have a similar role in thylakoid membranes (Heinz et al., 2016). 4 Deletion of CurT resulted in a reduction in growth and extreme differences in thylakoid 5 membrane organization, with the thylakoids appearing to cross the cytoplasm and not converging 6 on the 'thylakoid centres'. In contrast to ΔFAR, cell size was not affected although 7 photosynthesis was reduced. The $\Delta curT$ strain also displayed disassociated phycobilisomes, 8 similar to what was observed in Δ FAR and Δ Ols (Figure S8A, B). This strongly suggests that the 9 degree of membrane curvature is essential for optimal phycobilisome:photosystem interaction 10 and may also influence contact of other soluble proteins with membrane bound components. 11 Therefore it is possible that, if hydrocarbons do alter membrane curvature, then this is augmented 12 and orientated by CurT. In $\Delta curT$, the thylakoid membranes were still highly curved, indicating 13 that other factors are involved in inducing membrane curvature (Heinz et al., 2016). Homologues 14 of CurT are present in the majority of sequenced cyanobacterial strains (Table S1). Notable 15 exceptions include Gloeobacter species, which lack thylakoid membranes (Rippka et al., 1974; 16 Rexroth et al., 2011; Saw et al., 2013), and therefore may not require orientation of membrane 17 curvature or may regulate it by other means. In other bacterial species this includes turgor 18 pressure or force applied via cytoskeletal components (Cabeen et al., 2009). The glycolipid 19 monogalactosyl-diacylgycerol may also help stabilize this curvature, given its tendency to favor 20 non-lamellar phases (Shipley et al., 1973; Murphy, 1982; Tilcock, 1986). Other as yet 21 unidentified factors may also contribute to membrane curvature. 22 Hydrocarbons may also have additional functions in cells not identified in this study, such as 23 modulating membrane permeability (Valentine and Reddy, 2015). The use of planar lipid

bilayers as model systems has demonstrated that the addition of hexadecane increases membrane thickness and reduces membrane permeability (Dilger and Benz, 1985). Therefore, the increase in cell size may be due to a combination of factors: differences in osmotic pressure due to reduced membrane permeability; outward physical pressure on the cell applied by a series of less curved thylakoid membranes and division impairment, which would result in hydrocarbon deficient strains being larger than wild-type before cell separation. However, in the case of *Synechococcus* cells it is interesting that an increase in size was only observed along the long axis of the cell, where outward physical pressure applied by less curved thylakoid membranes would be expected to have the greatest effect.

Conclusion

Given that maintaining optimal growth and cell division is important in all ecosystems (Raven, 1998), the role of hydrocarbons in supporting optimal growth through potentially inducing membrane flexibility and reducing membrane permeability may be sufficient to explain the strong evolutionary pressure to retain hydrocarbon biosynthesis in cyanobacteria. It may also explain why similar hydrocarbons are produced by some microalgae species. An additional advantage is that unlike phospholipids or proteins, hydrocarbons do not contain either phosphorus or nitrogen, which are limited in many environments, notably in the open ocean where *Synechococcus* and *Prochlorococcus* species dominate (Flombaum et al., 2013). Moreover, the non-reactive properties of hydrocarbons make them resistant to oxidative damage (Valentine and Reddy, 2015), which is a major issue in cyanobacteria due to constant electron production from photosynthesis and respiration (Lea-Smith et al., 2015). Hydrocarbon induced membrane curvature may therefore represent a unique, low-risk and efficient system of inducing

1 flexibility and reducing permeability in one of the most biologically important and ancient

membrane systems on the planet.

3

4

5

2

Materials and methods

Bioinformatics

6 Protein BLAST comparisons (Altschul et al., 1990) were performed using inferred protein 7 sequences for Synechocystis sll0209 (FAR), sll0208 (FAD) and slr0483 (CurT) and 8 Synechococcus Syn7002_A1173 (Ols) (WP_012306795) with the completed cyanobacterial 9 genomes listed in the NCBI database (http://www.ncbi.nlm.nih.gov/genome/browse/) and Biller 10 et al., 2014 (Biller et al., 2014). For FASTA BLAST comparisons of Ols only matches across the 11 majority of the gene (>90%) were included, due to the conservation of many domains in 12 polyketide synthase proteins. Protein BLAST comparisons of FAR, FAD and Ols were also performed against the bacterial and eukaryotic sequences in the NCBI database in order to 13

15

14

16

17

18

19

20

21

22

23

Bacterial strains, media and growth conditions

confirm that these proteins are cyanobacterial specific.

Synechocystis and Synechococcus strains were routinely cultured in BG11 medium with 10 mM sodium bicarbonate (Castenholz, 1988) at 30°C and grown under moderate light (30-40 μmol photons m⁻² s⁻¹) with shaking at 120 rpm unless otherwise indicated. HEPES and vitamin B12 were added to Synechococcus cultures to a final concentration of 10 mM and 4 μg/L, respectively. 10 mM sodium bicarbonate was also added to Synechococcus cultures every two days. 15 g/L of agar was used for preparation of solid media and supplemented with 30-100

1 μg/mL of kanamycin or 5% sucrose (w/v) when necessary. Cultures incubated at 120 μmol

photons m⁻² s⁻¹ were bubbled with air to prevent carbon limitation.

Plasmid construction

All primers are listed in Table S7. Polymerase chain reactions were performed by standard procedures using Phusion high fidelity DNA polymerase (NEB). The genome sequence of *Synechocystis* and *Synechococcus* (Kaneko et al., 1996) was consulted via Cyanobase (http://genome.kazusa.or.jp/cyanobase) for primer design. Gene deletion of *Sll0209* was performed by amplifying a 1750 bp fragment spanning *Sll0209* and flanking regions using primers Sll0209for and Sll0209rev, followed by insertion into the *Xbal/Sph1* sites of pUC19. The *aph* gene conferring kanamycin resistance was excised from pUC4K (Vieira and Messing, 1982) and inserted into the *HincII* site in the middle of the fragment to generate pSll0209. Gene deletion of *ols* (SYNPCC7002_A1173) was performed by amplifying a 1922 bp fragment in the 5' region using primers Olsfor and Olsrev, followed by insertion into the *EcoRI/SalI* sites of pUC19. The *aph* gene was inserted into the blunt ended *BamHI* in the middle of the fragment to generate pOls.

Gene deletion of *phaAB* was performed by amplifying a 1069 bp fragment upstream of *phaA* using primers PhaABleftfor and PhaABleftrev and a 1087 bp fragment downstream of *phaB* using primers PhaABrightfor and PhaABrightrev, followed by insertion of the respective fragments into the *XbaI/BamHI* and *SacI/EcoRI* sites of pUC19 to generate pPhaAB-1. The *BamHI* digested *npt1/sacRB* cassette from pUM24Cm (Ried and Collmer, 1987) was inserted into the *BamHI* site between the upstream and downstream fragments to generate pPhaAB-2. To

- 1 generate the plasmid for complementation (pSll0209comp) of ΔSll0209 the entire Sll0209 gene
- 2 plus 295 bp of upstream region and 263 bp of downstream region was amplified using primer
- pairs Sll0209compfor and Sll0209comprev and inserted into the *BamHI/SacI* sites of pPhaAB-1.

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

Generation of mutant strains

Generation of marked mutants was conducted according to Lea-Smith et al., 2013; Lea-Smith et al., 2016). Approximately 1 µg of plasmids pSll0209, pOls and pPhaAB-2 were mixed with Synechocystis or Synechococcus cells for 6 hours in liquid medium, followed by incubation on BG11 agar plates for approximately 24 hours. An additional 3 mL of agar containing kanamycin was added to the surface of the plate followed by further incubation for approximately 1-2 weeks. Transformants were sub-cultured to allow segregation of mutant alleles. In the case of the hydrocarbon deficient mutants this was performed by streaking the strains on BG11 agar plates containing 30 µg/mL of kanamycin, followed by a subsequent restreak on a BG11 agar plate containing 100 µg/mL of kanamycin. Typically, segregated mutants were obtained within two weeks. This is in contrast to a recent report, in which hydrocarbon deficient Synechocystis mutants were only obtained after approximately six months, most likely due to these strains being segregated on BG11 agar plates containing a maximum of 40 µg/mL of kanamycin (Berla et al., 2015). Repeated streaking over a six month period could also result in selection of numerous secondary mutations. Given that a complemented strain was not generated or examined in the Berla et al study it is therefore impossible to determine whether the phenotype observed was caused by deletion of hydrocarbons or secondary mutations. Due to this factor and the difference in time in generating mutants a direct comparison between the results

1 reported by Berla et al. (Berla et al., 2015) and this study is difficult due to the instability of the

hydrocarbon deficient strains.

3

5

6

7

8

9

10

11

12

13

14

2

4 Segregation was confirmed by PCR using primers Sll0209for/Sll0209rev, Olsfor/Olsrev or

Phafor/Pharev, which flank the inserted region (Figure S1). Generation of unmarked mutants was

carried out according to Xu et al (Xu et al., 2004) and Lea-Smith et al (Lea-Smith et al., 2013;

Lea-Smith et al., 2016). To remove the npt1/sacRB cassette and insert the S110209

complementation cassette, the phaAB marked knockout was transformed with 1 µg of the

markerless pSll0209comp construct. Following incubation in BG11 liquid medium for 4 days

and agar plates containing sucrose for a further 1-2 weeks, transformants were patched on

kanamycin and sucrose plates. Sucrose resistant, kanamycin sensitive strains containing the

unmarked deletion were confirmed by PCR using primers flanking the insert region (Figure

S1B). The ΔSII0209 mutant was generated in the ΔPhaAB:SII0209 background in order to

produce the complement strain.

15

16

17

18

19

20

The Δ Ols mutant could not be complemented due to the large size of the gene (8163 bp).

Therefore wild-type Synechococcus and Δ Ols were sequenced using the IlluminaMiSeq personal

sequencer and mapped to the Synechococcus genome. Apart from the expected deletion in ols,

only a single point mutation in Δ Ols, leading to a silent mutation, was observed, when compared

to the wild-type.

21

22

23

For characterization, mutant strains were sub-cultured in liquid medium no more than two times

and streaked on solid medium a maximum of six times, due to the instability of the mutant. After

1 this period the size difference between the hydrocarbon deficient mutants and wild-type strains

2 was reduced, suggesting that another factor in the cell was compensating for the loss of

hydrocarbons. Strains could not be prepared as glycerol stocks, since this also resulted in a

change in the phenotype. After this period of sub-culturing, fresh mutants were constructed for

5 analysis.

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

3

4

Extraction and analysis of total hydrocarbons

All chemicals were purchased from Sigma chemicals. For extraction of total hydrocarbons, 1.5 mL of dichloromethane was added to pelleted dried cells in glass vials and hydrocarbons were extracted and analyzed by gas chromatography-mass spectrometry (GC-MS) according to Lea-Smith et al (Lea-Smith et al., 2015). Hydrocarbons and lipids were extracted from Synechocystis thylakoid, cytoplasmic and total membrane fractions and Synechococcus total membrane fractions based on the method in Davey et al. (Davey et al., 2008) where 1 mL (3 mL for total membrane fractions) of chilled (-20 °C) solvent (methanol:chloroform:water, 2.5:1:1) was added to the membrane fraction tube, vortexed, and left in ice with occasional shaking. After 30 min, tubes were centrifuged (16,000 g, 2 min, 4°C). The supernatant was removed and placed in a chilled tube on ice. The remaining pellet was re-extracted with 0.5 mL (1.5 mL for total membrane fractions) chilled (-20°C) methanol:chloroform, 1:1 for 30 min. After centrifuging as described earlier, the supernatants were combined in a 2 mL tube. The organic chloroform phase was separated from the aqueous phase by adding 250 µL (750 µL) chilled water and extracted into a new glass 2 mL GC sample vial. The chloroform phase was dried (GeneVac EZ-2; SP Scientific) and re-suspended in 200 µL heptane. The extracts were stored at -80°C before analysis of total alkanes and lipids (FAMEs). For negative controls, extraction blanks were

- 1 carried out without cyanobacteria (no significant amounts of hydrocarbons were detected) and
- 2 positive controls consisted of adding 1 mg/mL standard alkane mix (Sigma C8-C20 Alkane mix)
- 3 to a blank extraction procedure.

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

Purification of membrane fractions

Plasma and thylakoid membranes were isolated using a combination of sucrose density centrifugation followed by aqueous two-phase partitioning according to Norling et al (Norling et al., 1998) and Huang et al (Huang et al., 2002). Synechocystis cells were grown at 30°C under 50 umol photons m⁻² s⁻¹ of white light in BG-11 medium with bubbling air. All steps were carried out at 4°C unless otherwise stated. 2 L of cells harvested at OD_{750nm} = 0.9-1.0 were resuspended in Buffer A (20mM potassium phosphate pH7.8) and broken with glass beads. Unbroken cells and debris was pelleted by centrifugation at 3,000 x g for 10 min. The supernatant was centrifuged at 103,000 x g for 30 min to pellet total membranes. Total membranes were made up to a concentration of 42% sucrose by the addition of solid sucrose and placed onto a discontinuous sucrose gradient comprising of 3ml layers of 50% (w/w), 42% (w/w with total membranes), 40% (w/w), 38% (w/w), 35% (w/w), 30% (w/w), 10% (w/w) sucrose in Buffer A, and centrifuged at 125,000 x g for 15 hours. The fraction between 38-42% was collected, diluted with Buffer A and centrifuged at 125,000 x g for 45 min to pellet membranes. Pelleted membranes were homogenised in Buffer B (5mM potassium phosphate pH7.8, 0.25M sucrose) to a weight of 3.75 g and applied to a 6.25 g polymer mixture of 5.8% Dextran T-500 and 5.8% polyethylene glycol 3350 in Buffer B. The partitioning system was gently inverted 35 times at 4°C and centrifuged at 1000 x g to facilitate phase separation. Pure thylakoid membranes were obtained from the lower phase after five further partitionings in the 5.8% polymer mixture. Pure

1 plasma membranes were obtained from the ninth upper phase after three partitionings in the

2 initial polymer mixture of 5.8%, three further partitionings in 6.2% and a final three partitionings

3 in 6.4%. Purified plasma and thylakoid membranes were diluted in Buffer B and pelleted by

centrifugation at 125,000 x g for 1 hour and homogenised in a minimal volume of the same

5 buffer.

6

7

9

10

11

12

13

14

15

16

17

18

19

4

Identification and quantification of hydrocarbons in the membrane fractions

8 Hydrocarbons in the heptane extract were identified by GC-MS (Thermo Scientific Trace GC

1310 – ISQ LT Single Quadruple EI MS, A1-1310 Autosampler) with a Phenomenex Zebron

ZB-5MSi Capillary GC Column (30m x 0.25mm x 0.25 μm). The injection volume was 1 μL

with a 10:1 split ratio with an injector temperature of 300 °C, using helium as a carrier gas at a

constant flow of 1.0 mL min-1. The following gradient was used: initial oven temperature 70 °C,

2 min; 76 °C, 1 min; 250 °C at 6 °C min-1; 330 °C at 50 °C min-1. The transfer line temperature

was 250 °C. The mass spectrometry conditions in the positive mode were: ion source, 250 °C;

mass range 45-650 Da; scan time of 0.35 seconds. Heptadecane and nonadecene were identified

by co-retention with standards and NIST mass spectral search libraries (National Institute of

Standards and Technology NIST v2.0), 8-heptadecene was identified using the NIST library

alone. Heptadecane and nonadecene were quantified using standard curves derived from peak

areas of heptadecane and nonadecene standards, 8-heptadecene was quantified using peak areas

derived from heptadecane standards (0.06 - 31 μ g/mL).

21

22

20

Identification and quantification of total lipids in the membrane fractions

- 1 The total lipid content of the heptane extract was converted to fatty acid methyl esters (FAMEs)
- as described by Davey et al. (Davey et al., 2014). The FAMEs were separated and identified
- 3 using GC-MS as described in the membrane alkane analysis section but with a 35:1 split
- 4 injection ratio, injector temperature of 230 °C, helium at a constant flow rate of 1.2 ml min⁻¹, and
- 5 with the following gradient: initial oven temperature, 60 °C for 2 min; 150 °C at 15 °C min⁻¹;
- 6 230 °C at 3.4 °C min⁻¹. The detector temperature was 250 °C with a scan time of 0.174 seconds.
- 7 FAMEs were identified by co-elution with a FAME standards and NIST libraries and were
- 8 quantified and summed using standard curves derived from C16:0 methyl esters.

10

11

12

13

14

15

16

17

18

19

20

21

22

23

Modelling of *Synechocystis* membranes

The *in silico* cyanobacterial membrane lipid compositions were based on the experimental lipid extractions and characterization of Synechocystis by Sheng et al., 2011). Four major classes of cyanobacterial lipids were used: phosphatidylglycerol (PG), monogalactosyldiacylglycerol (MGDG), digalactosyl-diacylglycerol (DGDG) and sulfoquinovosyldiacylglycerol (SQDG), with various acyl tails differing in length and degree of saturation. These lipids contain a palmitic (16:1 $^{\Delta 9}$) tail at the sn-2 position, and another acyl tail of variable length and saturation at the sn-1 position (Murata et al., 1992). The composition of the lipid tails in the in silico membranes was adapted to coarse grained resolution, i.e. an approximately 4:1 mapping of heavy atoms to coarse-grained particles, using the Martini force field (Lopez et al., 2013). The structure of the lipid head groups and representative tails included in the model are compared to their coarse grained topologies in Figure S9, where the mapping of the Martini bead types are shown and labeled. Standard bonded parameters were used. The compositions determined by Sheng et al. (Sheng et al., 2011) are shown in Table S6, and compared to the number of lipids

1 used in our model membranes to reproduce as closely as possible this composition. The

hydrocarbon heptadecane was added in varying quantities to study the effects of this compound

3 on membrane properties.

4

6

7

8

9

10

2

5 A total of 2,400 lipids were used to build symmetric bilayers, consisting of 16 different lipid

types. The system was solvated with 11,323 water beads, corresponding to ~45,000 waters,

ensuring that the bilayer was well hydrated. Hydrated sodium counterion particles were added to

neutralise the charges of PG and SQDG lipids. Heptadecane was added randomly to the solvent

in the equilibrated membranes after 2 µs. The amounts used were 2.5, 5.0 and 7.5 mol %,

corresponding to 60, 120 and 180 alkane molecules, respectively. The initial unit cell dimensions

of all membrane systems were 21.0 x 27.5 x 9.0 nm in the x, y, and z directions.

12

13

15

16

17

18

19

20

21

22

23

11

Simulation details

14 The molecular dynamics simulations were performed using the GROMACS 4.5.5 MD package.

The Martini lipid force field was used (Marrink et al., 2007), due to its proven performance in

describing complex lipid membrane properties. Initially, a system containing 200 randomly

placed 18:1 DGDG molecules surrounded by solvent was simulated for 200 ns, yielding a pre-

equilibrated bilayer. The lipid types were then converted at random to yield a membrane with the

appropriate composition (Table S6), using in-house code. Following minimization and a further

200 ns equilibration, the coordinates of this bilayer system were then multiplied in the x- and y-

dimensions to produce the full 2,400 lipid bilayer. A 1 µs equilibration simulation followed.

Steepest descent was used for minimisation, and a 40 fs time step was used together with the

leap-frog algorithm during simulations. Lennard-Jones (excluding scaled 1-4) interactions were

smoothly switched off between 0.9 and 1.2 nm, using a force switch. Electrostatic interactions

were calculated using a shifted potential with a cut-off of 1.2 nm, with a distance-dependent

dielectric constant of 15. The neighbour list of 1.4 nm was updated every 10 steps. The

isothermal-isobaric ensemble (NpT) was used. The pressure (1 bar) and temperature (316 K)

coupling parameters were set to 5 ps semi-isotropically, and 10 ps, respectively (Berendsen et al.,

6 1984). All systems were simulated for 5 μs.

7

8

10

11

12

13

14

2

3

4

5

Electron Microscopy

9 Synechococcus cultures were grown to $OD_{750nm} = \sim 0.3$ and harvested by centrifugation (3000 x

g; 10 min), fixed and embedded according to the protocol described in Nürnberg et al using

potassium permanganate as additional fixative (Nurnberg et al., 2014). Thin sections were cut

with a glass knife at a Reichert Ultracut E microtome and collected on uncoated, 300 mesh

copper grids. High contrast was obtained by post-staining with saturated aqueous uranyl acetate

and lead citrate (Reynolds, 1963) for 4 min each. The grids were examined in a JOEL JEM-1230

transmission electron microscope at an accelerating potential of 80 kV.

16

17

18

19

20

21

22

23

15

Curvature measurements

In transverse sections, the thylakoid membranes, 3-5 membranes thick, of wild-type

Synechococcus and ΔOIs cells, appear to emanate from 3-4 well-spaced nodes on the edge of the

cell, like pages of a book, which is lying open, that fan out from its spine. The "spine" of this

"book" can be imagined to run longitudinally along the cell from pole to pole. Spline curves

were hand-fitted to individual membrane layers as far as they could be traced by eye from node

to node in ImageJ. The ratio of the length of the curved line drawn to its Feret diameter

- 1 (maximum calliper distance i.e. the straight line distance between start and end points of the
- 2 line in most cases) was taken to be a measure of its curvature. The 124 membranes from 9 wild-
- 3 type cells and 102 membranes form 12 ΔOls cells were analyzed. Statistical tests were performed
- 4 in Matlab.

6

Confocal fluorescence Microscopy

- 7 For confocal microscopy, mid-logarithmic phase cells were spotted onto BG11 1 % (w/v) agar
- 8 plates and visualized with a Leica laser-scanning confocal microscope SP5 using a x63 oil-
- 9 immersion objective (Leica HCX PL APO lambda blue 63.0x1.40 OIL UV). Chlorophyll a
- 10 fluorescence was detected by using an excitation wave length of 488 nm and an emission range
- from 670 to 720 nm. Images were captured with a pinhole of 95.5 µm which corresponds to an
- optical section thickness of 0.8 µm and by 4x line averaging. Analyses were performed with
- 13 ImageJ 1.47i (http://imagej.nih.gov/ij) and Origin. The cell volume was determined from the
- mean diameter for *Synechocystis* cells assuming a sphere, and from the mean diameter and width
- of Synechococcus cells by assuming an ellipsoidal shape. A Student's t test was used for
- 16 comparison of cell volumes between strains with P<0.05 being considered statistically
- 17 significant.

18

19

Cell counting

- Numbers of cells per unit of volume were measured by counting the cells directly using a
- Beckman Coulter 2Z particle counter. Measurements were performed by diluting 20-100 μL of
- 22 cells in 10 mL of measuring buffer. The cell diameter of *Synechocystis* cells was directly
- 23 measured using the same instrument. Cell volume was calculated from these measurements. Due

to the rod shape of *Synechococcus*, the cell size of this bacterium could not be determined using

2 this device.

3

4

6

7

8

9

10

11

Cell division

5 A semi-automated counting of cells was used to determine the number of cells that were in the

process of division by segmenting the image based on fluorescence intensity and cell size. A

frequency table of the number of cells observed to be above and below the size threshold

(interpreted to be dividing and divided respectively) was generated (Table S4). A 2-way Chi-

square test yielded a significant result showing that the proportions of dividing versus divided

cells is not independent of the strain and therefore suggests that there are more dividing cells in

 Δ FAR than in the wild-type with statistical significance.

12

13

15

16

17

18

19

20

21

22

Measurements of cell growth

14 Growth rate constants as determined by cell counting were calculated during early exponential

phase (0-46 hours and 0-44 hours, respectively, for *Synechocystis* and *Synechococcus* strains

cultured under 40 µmol photons m⁻² s⁻¹ light). Growth rate constants as determined by optical

density were calculated during early exponential phase (0-40 hours and 0-90 hours, respectively,

for Synechocystis strains cultured under 40 and 120 µmol photons m⁻² s⁻¹ light; 0-26 hours and 0-

90 hours, respectively, for *Synechococcus* strains cultured under 40 and 120 µmol photons m⁻² s⁻¹

light; and 18-78 hours for Synechocystis strains cultured under 12 hour light (40 µmol photons

 m^{-2} s⁻¹)/12 hour dark cycles). A Student's paired t test was used for comparison of growth

between strains, *P*<0.05 being considered statistically significant.

23

Chlorophyll measurements

2 The amount of chlorophyll in *Synechocystis* samples was measured by subtracting the 750 nm 3 optical density (OD) value from the 680 nm OD value and multiplying the total by 10.854, 4 according to Lea-Smith et al (Lea-Smith et al., 2013). To determine the correlation between OD 5 values versus the chlorophyll concentration of Synechococcus, a range of samples was measured 6 at 750 nm and 680 nm, in addition to measuring the chlorophyll concentration according to the method of Porra et al. (Porra et al., 1989). A strong correlation ($r^2 = 0.9983$) was observed 7 8 (Figure S13). The amount of chlorophyll in Synechococcus samples was then measured by 9 subtracting the 750 nm OD value from the 680 nm OD value and multiplying the total by 12.959.

10

11

1

Photosynthesis, photoinhibition and respiration measurements

12 Photoinhibition, photosynthesis and respiration were determined according to Lea-Smith et al 13 (Lea-Smith et al., 2014). Photosynthetic O₂ evolution rates and O₂ depletion rates (respiration) were determined on cell cultures at $OD_{750nm} = \sim 0.5$ (~ 2.3 nmol Chl ml⁻¹ in Synechocystis or ~ 4 14 nmol Chl ml⁻¹ in Synechococcus) using an oxygen electrode system (Hansatech Ltd) maintained 15 16 at 30°C. Δ FAR cell cultures were collected at an OD_{750nm} = ~0.4 and concentrated to an OD_{750nm} 17 = ~0.5 prior to analysis. Following dark equilibration (10 min), O₂ exchange rates were recorded for 10 min at increasing light intensities (10, 20, 50, 95, 240, 450, 950 and 2000 µmol 18 photons m⁻² s⁻¹), using Realite MR16+C 24°, 12 volt, 50 watt C13 white LED lamps (Deltech 19 20 UK, London), which have a spectra similar to sunlight. Each light period was followed 21 immediately by 10 min in darkness to calculate the respiration rates. The respiration rate 22 following illumination at each light intensity period was subtracted to estimate the real rate of 23 photosynthetic O_2 evolution. To measure photoinhibition, cell cultures of $OD_{750nm} = \sim 0.2$ (~ 1

1 nmol Chl ml⁻¹ in Synechocystis or ~1.3 nmol Chl ml⁻¹ in Synechococcus) were first dark

2 equilibrated (10 min), and the rate of O₂ evolution was recorded for 50 min at a light intensity of

2000 μmol photons m⁻² s⁻¹ in *Synechocystis* and 3000 μmol photons m⁻² s⁻¹ in *Synechococcus*. All

measurements were standardized to the initial rate. A Student's paired t test was used for all

comparisons, *P*<0.05 being considered statistically significant.

6

7

9

10

11

12

13

3

4

5

77K fluorescence

8 77K fluorescence measurements were performed on cells harvested during the exponential

growth phase at an $OD_{750nm} = \sim 0.3$, diluted to a final chlorophyll concentration of 5 μ M and

placed into glass sample tubes. After dark adaptation at room temperature for approximately 10

min, samples were then snap-frozen in liquid nitrogen. 77K Fluorescence emission spectra were

recorded by a Perkin Elmer LS55 fluorescence spectrometer from 620nm - 800nm with either

600 nm (phycobilisome excitation) or 435 nm (chlorophyll excitation).

14

15

16

18

19

20

21

22

23

Absorbance measurements

17 Absorbance measurements on whole cells were performed according to Lea-Smith et al (Lea-

Smith et al., 2014). Cultures were harvested during the exponential growth phase at an OD_{750nm} =

~0.4. Cultures were placed in a 4 ml fluorescence cuvette (1 cm path length) and positioned in

front of the entrance port of an integrating sphere. A light source sent light via an input fiber into

the cuvette containing the sample and the light leaving the sample in the forward direction was

collected by the integrating sphere. The extinction spectra were recorded using a USB4000-UV-

VIS Ocean Optics Spectrometer connected to the integrating sphere with an output fibre optic

and interfaced to a computer. The cuvettes containing the samples were positioned at different

2 distances (0 mm and 5 mm) from the entrance port of the sphere and the absorbance spectrum

was obtained via the SpectraSuite® Spectroscopy operating software. The nominal absorption

spectrum was then calculated using the equation according to Merzlyak et al, 2000 (Merzlyak

5 and Nagvi, 2000).

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

3

4

Carotenoid quantification

performance liquid chromatography (HPLC) High was performed analyze carotenoid/chlorophyll a ratios. Pigments were extracted from freeze dried samples (triplicates) by three subsequent extraction steps in ice-cold methanol. After addition of methanol the samples were vortexed vigorously, incubated on ice for 10 min and centrifuged for 10 min at 4 °C at 14,000 rpm. The supernatants of all three extraction steps were combined and filtered using 13 mm, 0.22 µm PTFE syringe disc filters. 200 µl of each sample was loaded onto a Dionex HPLC system, which was equipped with a LiChrospher 100 RP-18 (5um) reverse-phase column (Merck 1.50943.0001). The flow rate was set at 1 mL/min and the mobile phase composed of two eluents (A: 0-12 min; B: 12-23 min). A: 87% acetonitrile, 10% methanol, 3% 0.1M Tris buffer pH-8. B: 80% methanol, 20% hexane. Pigments were detected spectrophotometrically at 447 nm and absorbance spectra data was collected from 350-750 nm. The relative quantity of each pigment resolved was determined by integration of the area under the 447 nm peak (mAUxmin). Pigments were identified using published absorbance spectra data (Mohamed and

22

23

21

Acknowledgments:

Vermaas, 2004).

- 1 We thank Pietro Cicuta (Department of Physics, University of Cambridge), Gabriele Kaminski
- 2 Schierle (Department of Chemical Engineering and Biotechnology, University of Cambridge)
- 3 and James Locke, Arijit Das and Bruno Martins (Sainsbury Laboratory, Cambridge) for useful
- 4 discussion.

- 6 Figure legends
- 7 Figure 1: Hydrocarbon biosynthesis is encoded in all sequenced cyanobacteria. Detailed are
- 8 the two hydrocarbon biosynthetic pathways, indicated in blue and red, respectively, in
- 9 cyanobacteria. The number of species encoding the enzymes in each pathway is indicated.

10

- 11 Figure 2: Hydrocarbons accumulate within cyanobacterial membranes. Detection of (A)
- 12 CP47 and (B) SbtA in purified plasma and thylakoid membrane fractions (replicates 1-3). Small
- amounts of CP47 were consistently detected in the purified plasma membrane fractions. 5 μ g
- protein was loaded, with antibodies diluted 1:2,000. PM: plasma membrane. TM: thylakoid
- membrane. (C) Percentage of hydrocarbons as total lipids in Synechocystis total, thylakoid and
- plasma membranes and *Synechocystis* total membrane samples. Results are from three biological
- 17 replicates. Mean \pm S.D. is indicated. Statistical significance was determined by a Student's t-test.

18

- 19 Figure 3: Hydrocarbon deficient mutants have increased cell size and division defects. (A)
- 20 Bright-field images of wild-type Synechocystis (left) and ΔFAR (right) cells. Scale bars
- 21 correspond to 5 µm. Cell volume of *Synechocystis* strains quantified via (B) measuring the
- diameter of cells from confocal microscopy images and (C) particle counting measurements. (D)
- 23 Bright-field images of wild-type Synechococcus (left) and ΔOls (right) cells. Scale bars

1 correspond to 5 μm. (E) Cell volume of Synechococcus strains quantified via measuring the

width and length of cells from confocal microscopy images. (B, C, E) Mean \pm S.D. is indicated.

3 Statistical significance was determined by a Student's t-test. (F) Percentage of single versus

actively dividing Synechocystis cells. Statistical significance was determined by a 2-way Chi-

5 square test.

6

10

11

12

13

14

15

16

17

18

19

4

Figure 4: Hydrocarbons are essential for optimal growth of *Synechocystis* and Synechococcus. Growth of (A, C) Synechocystis and (B, D) Synechococcus under 40 μmol photons m⁻² s⁻¹ light. An equal number of cells, approximately 5x10⁶ for Synechocystis strains

and $1x10^7$ for *Synechococcus* strains, were added to each culture. This corresponded to an

OD_{750nm} equal to 0.07±0.001, 0.127±0.009 and 0.06±0.002 for wild-type *Synechocystis*, ΔFAR

and ΔFAR:comp (C), respectively, and 0.076±0.003 and 0.105±0.008 for wild-type

Synechococcus and ΔOls (D), respectively. The growth rate constants for wild-type

Synechocystis, ΔFAR and ΔFAR :comp were $1.24\pm0.20x10^6$, $3.08\pm0.13x10^5$ (p=0.0169) and

 1.52 ± 0.14 x 10^6 cells.h⁻¹, respectively, and for wild-type *Synechococcus* and ΔOls were

 $1.98 \pm 0.02 \times 10^6$ and $1.42 \pm 0.04 \times 10^6$ cells.h⁻¹ (p=0.0009), respectively. (E, F) The amount of

chlorophyll per cell (in attomol) in Synechocystis and Synechococcus strains, respectively. (G)

Cell diameter of *Synechocystis* strains. Results are from three biological replicates. Errors bars

indicate S.D. Asterisks indicate significant differences between wild-type and hydrocarbon

deficient samples (Student's paired t test: P < 0.05).

21

23

20

22 Figure 5: Photosynthetic rates and photoinhibition are similar between wild-type and

hydrocarbon-deficient mutants. Oxygen evolution was measured at different light intensities in

1 (A) Synechocystis and (B) Synechococcus to examine photosynthesis. The maximum 2 photosynthetic rate of wild-type Synechocystis, ΔFAR and ΔFAR:comp was 0.311±0.025, 3 0.329 ± 0.024 and 0.299 ± 0.028 µmol O_2 .nmol Chl⁻¹.hr⁻¹, respectively, and of wild-type 4 Synechococcus and ΔOls was 0.283 ± 0.03 and 0.303 ± 0.018 µmol O_2 .nmol Chl⁻¹.hr⁻¹, 5 respectively. Respiration was determined by measuring oxygen consumption following each 6 light period in (C) Synechocystis and (D) Synechococcus. The average oxygen consumption rate following dark periods after 95 μmol photons m⁻² s⁻¹ of wild-type Synechocystis, ΔFAR and 7 8 Δ FAR:comp was 0.041±0.008, 0.083±0.006 and 0.043±0.01 µmol O₂.nmol Chl⁻¹.hr⁻¹, 9 respectively, and of wild-type Synechococcus and ΔOls was 0.027±0.005 and 0.027±0.007 μmol 10 O₂.nmol Chl⁻¹.hr⁻¹, respectively. Photoinhibition was determined by measuring oxygen evolution at a light intensity of (E) 2000 µmol photons m⁻² s⁻¹ in Synechocystis and (F) 3000 µmol photons 11 m⁻² s⁻¹ in Synechococcus. All results are from six to nine separate biological replicates. Errors 12 13 bars indicate S.D. Asterisks indicate significant differences between wild-type and hydrocarbon 14 deficient samples (Student's paired t test: P < 0.05).

15

16

17

18

19

20

21

22

23

Figure 6: Hydrocarbons disrupt membrane order by integrating into the lipid bilayer.

Modelling of cyanobacterial membranes containing (A) 0, (B) 2.5, (C) 5 and (D) 7.5 mol heptadecane/mol total lipids in the bilayer. Hydrocarbons are shown as red van der Waals spheres. Lipids are shown in stick representation, and colored as follows: lipid head group rings are shown in magenta, phosphate beads in tan, sulfate beads in yellow, diglycerol beads in pink, and lipid tails in cyan. Snapshots show the direction of swelling associated with alkane accumulation that the membranes settled into, which was stochastic. (E) Electron micrograph of a transverse section of *Synechococcus* illustrating measurement of the curvature index, given by

- 1 the ratio of the length of the membrane section (yellow line) and the shortest distance between
- 2 the ends of the membrane section (cyan line) (F) Comparison of lines with curvature index
- 3 derived from membrane measurements. Mean \pm S.D. is indicated. Statistical significance was
- 4 determined by a 2-tailed t-test. The distance of the inter-node measurements was similar between
- 5 strains (Wild-type: 616 ± 147 nm, \triangle Ols: 582 ± 142 nm; 2-tailed t-test: P=0.1, α =0.05).

References

- Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215: 403-410
- Armbruster U, Labs M, Pribil M, Viola S, Xu W, Scharfenberg M, Hertle AP, Rojahn U, Jensen PE, Rappaport F, Joliot P, Dormann P, Wanner G, Leister D (2013) *Arabidopsis* CURVATURE THYLAKOID1 proteins modify thylakoid architecture by inducing membrane curvature. Plant Cell 25: 2661-2678
- Berendsen HJC, Postma JPM, Vangunsteren WF, Dinola A, Haak JR (1984) Molecular-Dynamics with Coupling to an External Bath. Journal of Chemical Physics 81: 3684-3690
- Berla BM, Saha R, Maranas CD, Pakrasi HB (2015) Cyanobacterial Alkanes Modulate Photosynthetic Cyclic Electron Flow to Assist Growth under Cold Stress. Scientific Reports 5
- Biller SJ, Berube PM, Berta-Thompson JW, Kelly L, Roggensack SE, Awad L, Roache-Johnson KH, Ding H, Giovannoni SJ, Rocap G, Moore LR, Chisholm SW (2014) Genomes of diverse isolates of the marine cyanobacterium *Prochlorococcus*. Scientific Data 1
- Bourdenx B, Bernard A, Domergue F, Pascal S, Leger A, Roby D, Pervent M, Vile D, Haslam RP, Napier JA, Lessire R, Joubes J (2011) Overexpression of *Arabidopsis* ECERIFERUM1 promotes wax very-long-chain alkane biosynthesis and influences plant response to biotic and abiotic stresses. Plant Physiol 156: 29-45
- Cabeen MT, Charbon G, Vollmer W, Born P, Ausmees N, Weibel DB, Jacobs-Wagner C (2009) Bacterial cell curvature through mechanical control of cell growth. Embo Journal 28: 1208-1219
- Castenholz RW (1988) Culturing methods for Cyanobacteria. Method Enzymol 167: 68-93
- Choi YJ, Lee SY (2013) Microbial production of short-chain alkanes. Nature 502: 571-+
- Coates RC, Podell S, Korobeynikov A, Lapidus A, Pevzner P, Sherman DH, Allen EE, Gerwick L, Gerwick WH (2014) Characterization of cyanobacterial hydrocarbon composition and distribution of biosynthetic pathways. PLoS One 9: e85140
- Davey MP, Burrell MM, Woodward FI, Quick WP (2008) Population-specific metabolic phenotypes of *Arabidopsis lyrata* ssp *petraea*. New Phytologist 177: 380-388
- Davey MP, Horst I, Duong GH, Tomsett EV, Litvinenko ACP, Howe CJ, Smith AG (2014) Triacylglyceride production and autophagous responses in *Chlamydomonas reinhardtii* depend on resource allocation and carbon source. Eukaryotic Cell 13: 392-400
- Dilger JP, Benz R (1985) Optical and Electrical-Properties of Thin Monoolein Lipid Bilayers. Journal of Membrane Biology 85: 181-189
- Flombaum P, Gallegos JL, Gordillo RA, Rincon J, Zabala LL, Jiao N, Karl DM, Li WK, Lomas MW, Veneziano D, Vera CS, Vrugt JA, Martiny AC (2013) Present and future global distributions of the marine Cyanobacteria *Prochlorococcus* and *Synechococcus*. PNAS 110: 9824-9829
- Galloway JN, Dentener FJ, Capone DG, Boyer EW, Howarth RW, Seitzinger SP, Asner GP, Cleveland CC, Green PA, Holland EA, Karl DM, Michaels AF, Porter JH, Townsend AR, Vorosmarty CJ (2004) Nitrogen cycles: past, present, and future. Biogeochemistry 70: 153-226
- Graham TR, Kozlov MM (2010) Interplay of proteins and lipids in generating membrane curvature. Current Opinion in Cell Biology 22: 430-436
- Heinz S, Rast A, Shao L, Gutu A, Gugel IL, Heyno E, Labs M, Rengstl B, Viola S, Nowaczyk MM, Leister D, Nickelsen J (2016) Thylakoid Membrane Architecture in *Synechocystis* Depends on CurT, a Homolog of the Granal CURVATURE THYLAKOID1 Proteins. Plant Cell
- Howard RW, Blomquist GJ (2005) Ecological, behavioral, and biochemical aspects of insect hydrocarbons. Annu Rev Entomol 50: 371-393
- Howard TP, Middelhaufe S, Moore K, Edner C, Kolak DM, Taylor GN, Parker DA, Lee R, Smirnoff N, Aves SJ, Love J (2013) Synthesis of customized petroleum-replica fuel molecules by targeted modification of free fatty acid pools in *Escherichia coli*. Proceedings of the National Academy of Sciences of the United States of America 110: 7636-7641
- Howe CJ, Barbrook AC, Nisbet RER, Lockhart PJ, Larkum AWD (2008) The origin of plastids. Philos Trans R Soc Lond B Biol Sci 363: 2675-2685
- Huang F, Parmryd I, Nilsson F, Persson AL, Pakrasi HB, Andersson B, Norling B (2002) Proteomics of Synechocystis sp. strain PCC 6803: identification of plasma membrane proteins. Mol Cell Proteomics 1: 956-966

- Ingolfsson HI, Melo MN, van Eerden FJ, Arnarez C, Lopez CA, Wassenaar TA, Periole X, de Vries AH, Tieleman DP, Marrink SJ (2014) Lipid Organization of the Plasma Membrane. Journal of the American Chemical Society 136: 14554-14559
- Kana R (2013) Mobility of photosynthetic proteins. Photosynthesis Research 116: 465-479
- Kaneko T, Sato S, Kotani H, Tanaka A, Asamizu E, Nakamura Y, Miyajima N, Hirosawa M, Sugiura M, Sasamoto S, Kimura T, Hosouchi T, Matsuno A, Muraki A, Nakazaki N, Naruo K, Okumura S, Shimpo S, Takeuchi C, Wada T, Watanabe A, Yamada M, Yasuda M, Tabata S (1996) Sequence analysis of the genome of the unicellular cyanobacterium *Synechocystis* sp. strain PCC6803. II. Sequence determination of the entire genome and assignment of potential protein-coding regions (supplement). DNA Res 3: 185-209
- Kosma DK, Bourdenx B, Bernard A, Parsons EP, Lu S, Joubes J, Jenks MA (2009) The impact of water deficiency on leaf cuticle lipids of *Arabidopsis*. Plant Physiol 151: 1918-1929
- Kunkel DD (1982) Thylakoid Centers Structures Associated with the Cyanobacterial Photosynthetic Membrane System. Archives of Microbiology 133: 97-99
- Lea-Smith DJ, Biller SJ, Davey MP, Cotton CA, Perez Sepulveda BM, Turchyn AV, Scanlan DJ, Smith AG, Chisholm SW, Howe CJ (2015) Contribution of cyanobacterial alkane production to the ocean hydrocarbon cycle. Proc Natl Acad Sci U S A 112: 13591-13596
- Lea-Smith DJ, Bombelli P, Dennis JS, Scott SA, Smith AG, Howe CJ (2014) Phycobilisome-deficient strains of *Synechocystis* sp. PCC 6803 have reduced size and require carbon-limiting conditions to exhibit enhanced productivity. Plant Physiol 165: 705-714
- Lea-Smith DJ, Bombelli P, Vasudevan R, Howe CJ (2015) Photosynthetic, respiratory and extracellular electron transport pathways in cyanobacteria. Biochim Biophys Acta
- Lea-Smith DJ, Ross N, Zori M, Bendall DS, Dennis JS, Scott SA, Smith AG, Howe CJ (2013) Thylakoid terminal oxidases are essential for the cyanobacterium *Synechocystis* sp. PCC 6803 to survive rapidly changing light intensities. Plant Physiol 162: 484-495
- Lea-Smith DJ, Vasudevan R, Howe CJ (2016) Generation of Marked and Markerless Mutants in Model Cyanobacterial Species. J Vis Exp
- Li N, Chang WC, Warui DM, Booker SJ, Krebs C, Bollinger JM, Jr. (2012) Evidence for only oxygenative cleavage of aldehydes to alk(a/e)nes and formate by cyanobacterial aldehyde decarbonylases. Biochemistry 51: 7908-7916
- Lopez CA, Sovova Z, van Eerden FJ, de Vries AH, Marrink SJ (2013) Martini Force Field Parameters for Glycolipids. Journal of Chemical Theory and Computation 9: 1694-1708
- Manna M, Rog T, Vattulainen I (2014) The challenges of understanding glycolipid functions: An open outlook based on molecular simulations. Biochimica Et Biophysica Acta-Molecular and Cell Biology of Lipids 1841: 1130-1145
- Marrink SJ, de Vries AH, Tieleman DP (2009) Lipids on the move: Simulations of membrane pores, domains, stalks and curves. Biochimica Et Biophysica Acta-Biomembranes 1788: 149-168
- Marrink SJ, Risselada HJ, Yefimov S, Tieleman DP, de Vries AH (2007) The MARTINI force field: Coarse grained model for biomolecular simulations. Journal of Physical Chemistry B 111: 7812-7824
- McMahon HT, Gallop JL (2005) Membrane curvature and mechanisms of dynamic cell membrane remodelling. Nature 438: 590-596
- Mendez-Perez D, Begemann MB, Pfleger BF (2011) Modular synthase-encoding gene involved in alpha-olefin biosynthesis in *Synechococcus* sp. strain PCC 7002. Appl Environ Microbiol 77: 4264-4267
- Merzlyak MN, Naqvi KR (2000) On recording the true absorption spectrum and the scattering spectrum of a turbid sample: application to cell suspensions of the cyanobacterium *Anabaena variabilis*. J Photochem Photobiol B 58: 123-129
- Mohamed HE, Vermaas W (2004) Slr1293 in *Synechocystis* sp. strain PCC 6803 Is the C-3',4' desaturase (CrtD) involved in myxoxanthophyll biosynthesis. J Bacteriol 186: 5621-5628
- Murata N, Wada H, Gombos Z (1992) Modes of Fatty-Acid Desaturation in Cyanobacteria. Plant and Cell Physiology 33: 933-941
- Murphy DJ (1982) The Importance of Non-Planar Bilayer Regions in Photosynthetic Membranes and Their Stabilization by Galactolipids. Febs Letters 150: 19-26
- Norling B, Zak E, Andersson B, Pakrasi H (1998) 2D-isolation of pure plasma and thylakoid membranes from the cyanobacterium *Synechocystis* sp. PCC 6803. FEBS Lett 436: 189-192

- Nurnberg DJ, Mariscal V, Parker J, Mastroianni G, Flores E, Mullineaux CW (2014) Branching and intercellular communication in the Section V cyanobacterium *Mastigocladus laminosus*, a complex multicellular prokaryote. Molecular Microbiology 91: 935-949
- Porra RJ, Thompson WA, Kriedemann PE (1989) Determination of Accurate Extinction Coefficients and Simultaneous-Equations for Assaying Chlorophyll-a and Chlorophyll-B Extracted with 4 Different Solvents Verification of the Concentration of Chlorophyll Standards by Atomic-Absorption Spectroscopy. Biochimica Et Biophysica Acta 975: 384-394
- Raven JA (1998) The twelfth Tansley Lecture. Small is beautiful: the picophytoplankton. Functional Ecology 12: 503-513
- Rexroth S, Mullineaux CW, Ellinger D, Sendtko E, Rögner M, Koenig F (2011) The plasma membrane of the Cyanobacterium *Gloeobacter violaceus* contains segregated bioenergetic domains. Plant Cell 23: 2379-2390
- Reynolds ES (1963) Use of Lead Citrate at High Ph as an Electron-Opaque Stain in Electron Microscopy. Journal of Cell Biology 17: 208-&
- Ried JL, Collmer A (1987) An nptI-sacB-sacR cartridge for constructing directed, unmarked mutations in gram-negative bacteria by marker exchange-eviction mutagenesis. Gene 57: 239-246
- Rippka R, Waterbury J, Cohenbazire G (1974) Cyanobacterium Which Lacks Thylakoids. Archives of Microbiology 100: 419-436
- Saw JHW, Schatz M, Brown MV, Kunkel DD, Foster JS, Shick H, Christensen S, Hou SB, Wan XH, Donachie SP (2013) Cultivation and Complete Genome Sequencing of *Gloeobacter kilaueensis* sp nov., from a Lava Cave in Kilauea Caldera, Hawai'i. PLoS One 8
- Schirmer A, Rude MA, Li X, Popova E, del Cardayre SB (2010) Microbial biosynthesis of alkanes. Science 329: 559-562
- Sheng J, Vannela R, Rittrnann BE (2011) Evaluation of methods to extract and quantify lipids from Synechocystis PCC 6803. Bioresource Technology 102: 1697-1703
- Shipley GG, Green JP, Nichols BW (1973) The phase behavior of monogalactosyl, digalactosyl, and sulphoquinovosyl diglycerides. Biochim Biophys Acta 311: 531-544
- Sorigue D, Legeret B, Cuine S, Morales P, Mirabella B, Guedeney G, Li-Beisson Y, Jetter R, Peltier G, Beisson F (2016) Microalgae synthesize hydrocarbons from long-chain fatty acids via a light-dependent pathway. Plant Physiol
- Stengel A, Gugel IL, Hilger D, Rengstl B, Jung H, Nickelsen J (2012) Initial steps of photosystem II de novo assembly and preloading with manganese take place in biogenesis centers in *Synechocystis*. Plant Cell 24: 660-675
- Stingaciu LR, O'Neill H, Liberton M, Urban VS, Pakrasi HB, Ohl M (2016) Revealing the Dynamics of Thylakoid Membranes in Living Cyanobacterial Cells. Scientific Reports 6
- Tan X, Yao L, Gao Q, Wang W, Qi F, Lu X (2011) Photosynthesis driven conversion of carbon dioxide to fatty alcohols and hydrocarbons in cyanobacteria. Metab Eng 13: 169-176
- Tang EPY, Peters RH (1995) The Allometry of Algal Respiration. Journal of Plankton Research 17: 303-315 Tilcock CP (1986) Lipid polymorphism. Chem Phys Lipids 40: 109-125
- Valentine DL, Reddy CM (2015) Latent hydrocarbons from cyanobacteria. Proceedings of the National Academy of Sciences of the United States of America 112: 13434-13435
- van Eerden FJ, de Jong DH, de Vries AH, Wassenaar TA, Marrink SJ (2015) Characterization of thylakoid lipid membranes from cyanobacteria and higher plants by molecular dynamics simulations. Biochim Biophys Acta 1848: 1319-1330
- Vattulainen I, Rog T (2011) Lipid Simulations: A Perspective on Lipids in Action. Cold Spring Harb Perspect Biol 3
- Vieira J, Messing J (1982) The pUC plasmids, an M13mp7-derived system for insertion mutagenesis and sequencing with synthetic universal primers. Gene 19: 259-268
- White SH, King GI, Cain JE (1981) Location of Hexane in Lipid Bilayers Determined by Neutron-Diffraction. Nature 290: 161-163
- Wu LJ, Errington J (2012) Nucleoid occlusion and bacterial cell division. Nature Reviews Microbiology 10: 8-12
- Xu H, Vavilin D, Funk C, Vermaas W (2004) Multiple deletions of small Cab-like proteins in the cyanobacterium *Synechocystis* sp. PCC 6803: consequences for pigment biosynthesis and accumulation. J Biol Chem 279: 27971-27979

- Zhou XX, Halladin DK, Rojas ER, Koslover EF, Lee TK, Huang KC, Theriot JA (2015) Mechanical crack propagation drives millisecond daughter cell separation in *Staphylococcus aureus*. Science 348: 574-578
- Zwirglmaier K, Jardillier L, Ostrowski M, Mazard S, Garczarek L, Vaulot D, Not F, Massana R, Ulloa O, Scanlan DJ (2008) Global phylogeography of marine *Synechococcus* and *Prochlorococcus* reveals a distinct partitioning of lineages among oceanic biomes. Environ Microbiol 10: 147-161