
Mach Learn (2016) 104:359–384
DOI 10.1007/s10994-016-5572-x

Cost-sensitive boosting algorithms: Do we really need
them?

Nikolaos Nikolaou1 · Narayanan Edakunni1 ·
Meelis Kull2 · Peter Flach2 · Gavin Brown1

Received: 30 March 2016 / Accepted: 24 June 2016 / Published online: 2 August 2016
© The Author(s) 2016. This article is published with open access at Springerlink.com

Abstract We provide a unifying perspective for two decades of work on cost-sensitive
Boosting algorithms. When analyzing the literature 1997–2016, we find 15 distinct cost-
sensitive variants of the original algorithm; each of these has its own motivation and claims
to superiority—so who should we believe? In this work we critique the Boosting literature
using four theoretical frameworks: Bayesian decision theory, the functional gradient descent
view, margin theory, and probabilistic modelling. Our finding is that only three algorithms
are fully supported—and the probabilistic model view suggests that all require their outputs
to be calibrated for best performance. Experiments on 18 datasets across 21 degrees of
imbalance support the hypothesis—showing that once calibrated, they perform equivalently,
and outperform all others. Our final recommendation—based on simplicity, flexibility and

Editors: Thomas Gärtner, Mirco Nanni, Andrea Passerini, and Celine Robardet.

Electronic supplementary material The online version of this article (doi:10.1007/s10994-016-5572-x)
contains supplementary material, which is available to authorized users.

B Nikolaos Nikolaou
nikolaos.nikolaou@manchester.ac.uk

Narayanan Edakunni
narayanan.unny@gmail.com

Meelis Kull
meelis.kull@bristol.ac.uk

Peter Flach
peter.flach@bristol.ac.uk

Gavin Brown
gavin.brown@manchester.ac.uk

1 School of Computer Science, University of Manchester, Kilburn Building, Oxford Road,
Manchester M13 9PL, UK

2 Department of Computer Science, University of Bristol, TheMerchant Venturers Building,Woodland
Road, Bristol BS8 1UB, UK

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-016-5572-x&domain=pdf
http://orcid.org/0000-0001-8453-7574
http://orcid.org/0000-0001-6857-5810
http://orcid.org/0000-0003-2261-9018
http://dx.doi.org/10.1007/s10994-016-5572-x

360 Mach Learn (2016) 104:359–384

performance—is to use the original Adaboost algorithm with a shifted decision threshold
and calibrated probability estimates.

Keywords Boosting · Cost-sensitive · Class imbalance · Classifier calibration

1 Introduction

Cost-sensitive prediction tasks are everywhere in real life applications—e.g. medical appli-
cations where false positives are dangerous, or rare classes in astrophysical data where a
false negative can mean missing a key scientific observation. Ensemble learning algorithms
are equivalently ubiquitous in the Machine Learning literature, being a key principle in the
winning entries of every major ML competition (Caruana and Niculescu-Mizil 2006). The
Adaboost algorithm (Freund andSchapire 1997) stands out in the field of ensemble learning—
named in a community survey as one of the top ten algorithms in datamining (Wu et al. 2008),
whilst also having a rich theoretical depth, winning the 2003 Gödel prize for the authors. It
is no surprise therefore, that significant international research effort has been dedicated to
adapting Adaboost for cost sensitive tasks. At the time of writing this article, we identify
15 distinct variants proposed in a sequence of papers (Landesa-Vázquez and Alba-Castro
2012, 2013; Masnadi-Shirazi and Vasconcelos 2007, 2011; Sun et al. 2005, 2007; Viola and
Jones 2002; Ting 2000; Fan et al. 1999) published 1997–2016. Each of these is derived from
different underlying perspectives, principles or assumptions, and each makes its own claim
to superiority in some sense—either empirically, theoretically, or pragmatically.

In this work we analyse the literature, using tools from four theoretical frameworks:
decision theory, functional gradient descent, margin theory, and probabilistic modelling.
Each one of these will turn out to have its own advantages and perspective in the analysis,
and the work could not be complete without all four.

The functional gradient descent view ensures the steps of the algorithm are consistent
with greedy minimisation of a well defined loss function which is itself a function of the
margin, thus ensuring an efficient path toward good generalisation properties. Analysis of
the loss functions from the perspective of margin theory ensures the generalisation behaviour
is in line with the defined cost-sensitive problem. The decision theoretic view ensures that
the predictions generated by boosting are used in a way that is consistent with the goal of
minimizing the expected cost of future classifications. A probabilistic analysis shows that the
models generate uncalibrated outputs, which we proceed to remedy; key to this argument is
rephrasing Adaboost as aProduct of Experts (PoE). Different cost-sensitive boosting variants
translate to different PoE models but they all suffer from the same systematic distortion of
the resulting probability estimates due to their PoE nature.

The paper is structured as follows. In Sect. 2 we introduce the problem of asymmetric
learning and the basic Adaboost algorithm. We will also briefly introduce the variety of cost
sensitive Boosting variants in the literature, and consolidate them into a common notation and
terminology. Section 3 is our main contribution, identifying desirable and undesirable prop-
erties of the algorithms from the perspective of decision theory, margin theory and functional
gradient descent and probabilistic modelling. Section 4 discusses the calibration of probabil-
ity estimates. Section 5 provides a large scale experimental study to test our hypotheses—18
datasets, 15 variants of boosting, across 21 different degrees of class imbalance. Finally,
Sect. 6 draws together the conclusions of the work, identifying directions for future work.

123

Mach Learn (2016) 104:359–384 361

2 Background

In the current section we introduce the terminology and notation behind the two key concepts
of the paper—learning in asymmetric tasks, and the ensemble learning principle known as
Boosting.

2.1 Asymmetric learning

Throughout this work we will be focusing on binary classification, for ease of exposition
and clarity. Extension to the multiclass case is often handled by breaking down the problem
into multiple binary ones, so our analysis and its results can carry over to the multiclass
case. In a binary classification task, an example can be either positive, denoted by a label
y = 1 or negative, denoted by y = −1. The class imbalance can be captured by the different
class priors: π− = N−/N and π+ = N+/N , where N+ is the number of positive training
examples, N− is the number of negative training examples and N the size of the training set.
The cost imbalance can be modelled with a cost matrix of the form

C =
[

0 cFN

cFP 0

]
, (1)

where cFP > 0 is the cost of a false positive and cFN > 0 the cost of a false negative.
The above matrix assigns a zero cost (cT P = cT N = 0) to all correct classifications—true
positives and true negatives—as is common practice (Elkan 2001). Although skewed class
and skewed cost problems are seen as different, they can be understood in a similar way
(Flach 2012; Elkan 2001). For example, suppose that the false positive cost cFP associated
with misclassifying negatives is twice the false negative cost cFN . This can be simulated
by an adjusted class prior which duplicates every negative, leading to π ′− = 2·N−

N++2·N− =
(2/3)·N−

(1/3)·N++(2/3)·N− and π ′+ = N+
N++2·N− = (1/3)·N+

(1/3)·N++(2/3)·N− . More generally, if we define

c = cFP

cFP + cFN
, (2)

then this can be simulated by an adjusted class distribution π ′− = c·N−
(1−c)·N++c·N− and π ′+ =

(1−c)·N+
(1−c)·N++c·N− . Hence we can focus on skewed cost problems in this paper without loss of
generality. Our analysis will focus on tasks with a fixed cost matrix of the form C , under
which, the cost of misclassifying the i-th example only depends on its class label yi—what
Landesa-Vázquez and Alba-Castro (2015a) refer to as class-level asymmetry—and is given
by

c(yi) =
{
cFN , if yi = 1

cFP , if yi = −1.
(3)

Given the probability p(y = 1|x), we should assign y = 1 iff the expected cost of a
positive prediction, i.e. cT P · p(y = 1|x) + cFP · p(y = −1|x) is lower than that of a
negative prediction, cT N · p(y = −1|x) + cFN · p(y = 1|x). Under the cost matrix above,
cT P = cT N = 0, so we assign x to y = 1 iff :

p(y = 1|x) · cFN > p(y = −1|x) · cFP ⇐⇒
p(y = 1|x) · cFN > (1 − p(y = 1|x)) · cFP ⇐⇒
p(y = 1|x) · (cFN + cFP) > cFP ⇐⇒
p(y = 1|x) > c,

(4)

123

362 Mach Learn (2016) 104:359–384

where we made use of p(y = −1|x) = 1− p(y = 1|x) and Eq. (2). Otherwise, x is assigned
to the negative class—when cFP = cFN this reduces to the familiar threshold of 0.5. This all
follows straightforwardly from Bayesian decision theory and simply translates to shifting the
threshold from 0.5 to c to account for the costs. The output of most learning algorithms can
be used to estimate the probability p(y = 1|x), so the decision rule of Eq. (4) in practice uses
estimates p̂(y = 1|x). A key point here, which will play a major role in the current paper, is
that ‘good’ probability estimates are not always straightforward to obtain from a classifier,
even if it has high classification accuracy—such estimates are referred to as calibrated, and
will be discussed in more detail later.

2.2 AdaBoost

AdaBoost (Freund and Schapire 1997) is an ensemble learning technique which constructs
a strong classifier H from a weighted vote of multiple weak classifiers ht , t = 1, . . . , M . A
weak classifier is one that is marginally more accurate than random guessing and a strong
classifier is one that achieves error rates arbitrarily close to the irreducible Bayes error rate.
The idea is to train each subsequent model on a new dataset in which the weights of examples
misclassified by the previous model are increased and the weights of the correctly classified
instances are decreased. This can be achieved either by reweighting or by resampling the
dataset on each round. In this work we followed the reweighting approach as some evidence
exists that it works better in practice (Quinlan 1996). We use the version of AdaBoost that
employs confidence rated predictions (Schapire and Singer 1999), where each base learner
is assigned a confidence coefficient αt . The lower the weighted error of the learner, the higher
its αt and the larger its contribution to the final decision.

The algorithm is given N training examples of the form (xi , yi), where xi ∈ X and
yi ∈ {−1,+1} and a maximum number of rounds M . On the first round of AdaBoost, all
training examples are assigned equal weights D1

i = 1
N . On each round t , we learn a model

ht to minimize the weighted misclassification error εt = ∑
i :ht (xi)�=yi D

t
i , and add it to the

ensemble, with a voting weight

αt = 1

2
log

(1 − εt

εt

)
. (5)

The distribution Dt is then updated for timestep t + 1 as

Dt+1
i ∝ e−yiαt ht (xi) × Dt

i , (6)

and normalised by Zt = ∑N
j=1 e

−y jαt ht (x j)Dt
j to make Dt+1 a valid distribution.

These will be the weights of each example on the next round. The algorithm terminates
when the maximum number M of weak learners have been added to the ensemble or when a
base learner with εt < 1/2 cannot be found.1 The final prediction on a test datapoint x is given
by the sign of the sum of the weak learner predictions ht (x) weighted by their corresponding
confidence coefficients

H(x) = sign

[
M∑
t=1

αt ht (x)

]
. (7)

1 Note that in the binary classification case, a hypothesis ht with error εt > 1/2 can be turned into one with
εt < 1/2 simply by flipping its predictions.

123

Mach Learn (2016) 104:359–384 363

In a seminal paper, Friedman et al. (2000) interpreted the original AdaBoost algorithm as a
procedure to minimize the expected exponential loss:

L Ada(Ft) = Ex,y[e−yFt (x)], (8)

by iterative fitting of terms in the additive model Ft = ∑t
τ=1 ατhτ (x).

Friedman et al. showed that if we minimize L Ada(Ft) in a greedy stagewise manner—
i.e. if at stage t we choose the optimal ht and αt considering all hτ and ατ , for τ < t as
constants—we naturally derive the steps of AdaBoost described above. This was generalized
by Mason et al. (2000) to show that functional gradient descent derives the same steps, but
allows us to choose a different loss function if we wish.

2.3 Cost-sensitive boosting algorithms

Adaboost iteratively constructs an ensemblemodel byweighted combination of a sequence of
base learners. Each base learner is guided by a weighted distribution over training examples,
that leads it to focus on the mistakes of its predecessors. To make this cost-sensitive there
are, in general, two strategies adopted.
Strategy 1: Modifying the model learnt from data
Strategy 1 includes methods that change the training phase of the algorithm. They do so
either by changing how the weights of training examples are updated alone or in conjunction
to changing the αt weights in a class-dependent manner. This can be achieved by specifying
an alternative loss function to Eq. (8), and deriving what the corresponding weight update
and αt should be. However, we could also simply manually modify the update rule without
regard of a loss function, but in a way that makes sense in an application-dependent situation.

Tables 1 and 2 summarize the changes in cost sensitive Boosting literature spanning 1997–
2016, with numerous innovative class-dependent solutions to this challenge.2 Table 1 gives
the proposed weight update rule for eachmethod and the corresponding entry in Table 2 gives
the proposed formula for αt for the same method. All of the methods presented here, with
the exception of CSB0/CSB1 and AdaCost/AdaCost(β2), reduce to the original AdaBoost
when the task is symmetric, i.e. when cFP = cFN = 1.
Strategy 2: Modifying how the model is used to make a decision
Ting (2000) proposes an appealing alternative, to trainwith the originalAdaboost, butmodify
the decision rule in a cost-respecting decision-theoretic manner. This is the ADAboost with
Minimum Expected Cost (AdaMEC) rule:

HAdaMEC (x) = sign

⎡
⎣ ∑

y∈{−1,1}
c(y)

∑
τ :hτ (x)=y

ατhτ (x)

⎤
⎦ . (9)

Equation (9) reduces to the original AdaBoost decision rule of Eq. (7) when the
task is symmetric. AdaMEC exploits Bayesian decision theory—assuming the weighted
votes are proportional to class probabilities—that is,

∑
τ :h(x)=1 ατ ∝ p(y = 1|x) and∑

τ :h(x)=−1 ατ ∝ p(y = −1|x). This will be expanded upon in later sections, but for now, we
have completed our survey of the existing cost sensitive boosting literature, and will proceed
to engage in analyzing it from different theoretical frameworks in the next section.

2 Minor variations in e.g. the weight initialization of different approaches have also been examined (Ting
2000; Landesa-Vázquez and Alba-Castro 2015a) further increasing the number of variants used in practice.
These are excluded from our analysis as, for reasons that will become clear in the subsequent sections, these
changes are not sufficient to grant any of the favourable missing properties to a variant.

123

364 Mach Learn (2016) 104:359–384

Table 1 A summary of cost-sensitive variants showing how they modify the weight updates

Algorithm Weight update rule
Dt+1
i ∝ [. . .] × Dt

i

Initial weights D1
i and

cost adjustment func-
tions

Adaboost (Schapire et al.
1997)

e−yiαt ht (xi)

CGAda (Landesa-Vázquez
and Alba-Castro 2012)

e−yiαt ht (xi) where D1
i = c(yi)

AdaC1 (Sun et al. 2007) e−c(yi)yiαt ht (xi) where D1
i = c(yi)

CSAda (Masnadi-Shirazi and
Vasconcelos 2007)

” ”

AdaDB (Landesa-Vázquez
and Alba-Castro 2013)

” ”

AdaC2 (Sun et al. 2005) c(yi)e
−yiαt ht (xi) where D1

i = c(yi)

AdaC3 (Sun et al. 2005) c(yi)e
−c(yi)yiαt ht (xi) where D1

i = c(yi)

AsymAda (Viola and Jones
2002)

c(yi)
1/Me−yiαt ht (xi) where D1

i = c(yi)
1/M (fixed M)

CSB0 (Ting 2000) γ i
t where D1

i = c(yi)

CSB1 (Ting 2000) γ i
t e

−yi ht (xi) and γ i
t =

{
c(yi), if ht (xi) �= yi
1, if ht (xi) = yi

CSB2 (Ting 2000) γ i
t e

−yiαt ht (xi)

AdaCost (Fan et al. 1999) e−βit yiαt ht (xi) where D1
i = c(yi)

AdaCost(β2) (Ting 2000) and βi
t =

{
1+c(yi)

2 , if ht (xi) �= yi
1−c(yi)

2 , if ht (xi) = yi

The original Adaboost is included for reference. The definition of αt also varies across methods and can be
looked up in Table 2

3 Examining the literature from different views

In this section we use tools from four theoretical frameworks: decision theory, functional
gradient descent, margin theory, and probabilistic modelling. This is useful to identify prop-
erties of the methods, as well as interesting in its own right, since it reflects the diversity of
positions from which Adaboost can be derived (Schapire 2013).

3.1 The functional gradient descent view

Wefirst present the view of boosting as functional gradient descent (FGD) (Mason et al. 2000;
Friedman et al. 2000), following Mason et al’s formulation. This perspective views boosting
as a procedure that greedily fits an additive model Ft (x) = ∑t

τ=1 ατhτ (x) by minimizing
the empirical risk (i.e the average loss on a training set),

J (Ft (x)) = 1

N

N∑
i=1

L(yi Ft (xi)), (10)

where L(yi Ft (xi)) is a monotonically decreasing loss function of yi Ft (xi), the margin on
the i-th example.

123

Mach Learn (2016) 104:359–384 365

Table 2 A summary of cost-sensitive variants for base learner weights αt

Algorithm Base learner weight αt

Adaboost (Schapire et al.
1997)

αt = 1
2 log

∑
i :ht (xi)=yi

Dt
i∑

i :ht (xi) �=yi
Dt
i

AdaCost(β2) (Ting 2000) ”

CSB(0,1,2) (Ting 2000) ”

CGAda
(Landesa-Vázquez and
Alba-Castro 2012)

”

AdaC1 (Sun et al. 2005) αt = 1
2 log

1+∑
i :ht (xi)=yi

Dt
i c(yi)−

∑
i :ht (xi) �=yi

Dt
i c(yi)

1−∑
i :ht (xi)=yi

Dt
i c(yi)+

∑
i :ht (xi) �=yi

Dt
i c(yi)

AdaC2 (Sun et al. 2005) αt = 1
2 log

∑
i :ht (xi)=yi

Dt
i c(yi)∑

i :ht (xi) �=yi
Dt
i c(yi)

AdaC3 (Sun et al. 2005) αt = 1
2 log

∑N
i=1 Dt

i c(yi)+
∑

i :ht (xi)=yi
Dt
i c(yi)

2−∑
i :ht (xi) �=yi

Dt
i c(yi)

2

∑N
i=1 Dt

i c(yi)−
∑

i :ht (xi)=yi
Dt
i c(yi)

2+∑
i :ht (xi) �=yi

Dt
i c(yi)

2

AsymAda (Viola and
Jones 2002)

αt = 1
2 log

∑
i :ht (xi)=yi

Dt
i c(yi)

1/M

∑
i :ht (xi) �=yi

Dt
i c(yi)

1/M (fixed M)

AdaCost (Fan et al. 1999) αt = 1
2 log

1+∑
i :ht (xi)=yi

Dt
i β

i
t −

∑
i :ht (xi) �=yi

Dt
i β

i
t

1−∑
i :ht (xi)=yi

Dt
i β

i
t +

∑
i :ht (xi) �=yi

Dt
i β

i
t

See βi
t in Table 1.

CSAda (Masnadi-Shirazi
and Vasconcelos 2007)

Numerical solution of hyperbolic equation. No closed form

AdaDB
(Landesa-Vázquez and
Alba-Castro 2013)

Numerical solution of polynomial equation. No closed form

The FGD approach tells us to add the model ht+1 that most rapidly reduces Eq. (10). This
model turns out to be that which minimizes the weighted error for a new weight distribution
Dt+1, which can be written, as Mason et al. observed, in terms of the functional derivative:

Dt+1
i =

∂
∂yi Ft (xi)

J (Ft (x))∑N
j=1

∂
∂y j Ft (x j)

J (Ft (x))
=

∂
∂yi Ft (xi)

L(yi Ft (xi))∑N
j=1

∂
∂y j Ft (x j)

L(y j Ft (x j))
. (11)

The voting weight αt is the step size in the direction of the new weak model ht , such that
it minimizes the empirical risk on the training set, i.e.

α∗
t = argmin

αt

[1

N

N∑
i=1

L
(
yi (Ft−1(xi) + αt ht (xi))

)]
. (12)

Under Eq. (11), a given loss function L(yi Ft (xi)) implies a specific form of weight
updates Dt+1

i and conversely the weight updates Dt+1
i imply a specific family of equivalent

loss functions via

Dt+1
i ∝ − ∂

∂yi Ft (xi)
L(yi Ft (xi)) 	⇒ L(yi Ft (xi)) ∝

∫
−Dt+1

i d(yi Ft (xi)). (13)

For example, in AdaBoost the loss w.r.t. the margin of the i-th example is

L Ada(yi Ft (xi)) = e−yi Ft (xi), (14)

123

366 Mach Learn (2016) 104:359–384

so the weight update rule will be

Dt+1
i = e−yi ht (xi)αt × Dt

i∑N
j=1 e

−y j ht (x j)αt × Dt
j

. (15)

Following the inverse derivation, taking the weight update rule of Eq. (15) as given and
inferring the loss function via Eq. (13), we recover that any member of the family of loss
functions

L(yi Ft (xi)) ∝ e−yi Ft (xi) + K , (16)

where K is some constant w.r.t. the margin yi Ft (xi), would lead to weights updated via
Eq. (15). Setting the integration constant to K = 0, we obtain the familiar loss of Eq. (14),
scaled by some constant. However, any function of the family defined by Eq. (16) once
minimized w.r.t. αt across the entire training set as per Eq. (12) will give us the original αt

from Adaboost, in Eq. (5).
The functional gradient descent viewpoint divides the literature in two families—those

which are consistent with it and those that are not.

Definition FGD-consistent A boosting method is functional gradient descent (FGD)-
consistent if it uses a distribution update rule and votingweightsαt that are both consequences
of greedily optimising the same, monotonically decreasing, loss function of the margin. Oth-
erwise the method is FGD-inconsistent.

Only a handful of the existing cost-sensitive boosting variants: CSAda (Masnadi-Shirazi
and Vasconcelos 2007, 2011), AdaDB (Landesa-Vázquez and Alba-Castro 2013), CGAda
(Landesa-Vázquez and Alba-Castro 2012, 2015a) have been derived by first explicitly spec-
ifying a loss function L and then following the steps of FGD. Hence the first step in our
analysis is to follow the inverse derivation for the remaining methods, taking their modified
weight update rule and inferring the loss function via Eq. (13). Since modifying the weight
updates implies a specific family of equivalent loss functions by Eq. (13), then any change
in the distribution update should be reflected in the calculation of voting weights αt , accord-
ing to Eq. (12). Otherwise, the chosen αt are sub-optimal for the purpose of the stagewise
minimization of the loss.

Results are shown below. Due to space limitations, we cannot present proofs for each
method individually, a general scheme for checking a given boosting algorithm for FGD-
consistency is presented in the Supplementary Material.

FGD-consistent FGD-inconsistent

Ada, AdaMEC, CGAda, AsymAda, CSB0, CSB1, CSB2, AdaC1,
AdaC2, CSAdaa, AdaDBa AdaC3, AdaCost, AdaCost(β2)

a CSAda & AdaDB are FGD-consistent under our definition. However, the αt under the loss function they
minimize has no closed form and requires approximation. The two variants use different approximations;
CSAda requires the solution of a hyperbolic equation, AdaDB that of a polynomial. This makes both methods
computationally intensive and subject to approximation error in the α coefficients. Thus in practice they are
not guaranteed to be FGD-consistent

For the rest of the paper, the treatment of FGD-consistency serves two purposes. Firstly, to
identify the precise loss function an algorithm is minimizing. Once this is known, additional

123

Mach Learn (2016) 104:359–384 367

properties can be evaluated, revealing whether this loss is sensible in a cost-sensitive sce-
nario. Secondly, FGD-consistency is useful for knowing whether the loss is being efficiently
optimized.

Our initial hypothesis was that methods that are FGD-inconsistent will be outperformed
by those that are FGD-consistent. However, as experiments will show, this only reveals part
of the story. As the history of Machine Learning has shown many times, an intuitive choice
of a good heuristic can result in practical advances that outperform a sophisticated theory.We
certainly do not regard the methods we name above as ‘inconsistent’ as necessarily inferior
to ‘consistent’ ones.

3.2 The decision theoretic view

Decision theory gives us straightforward and optimal rules for dealing with cost sensitive
binary problems (Flach 2012; Elkan 2001). We have reviewed this in Sect. 2.1, the result
being a simple rule: given the probability p(y = 1|x), or—in practice—a probability estimate
p̂(y = 1|x), we should make predictions using the rule:

p̂(y = 1|x)
{

> c, predict y = +1

< c, predict y = −1.
(17)

Definition (Cost-consistent) A method is cost-consistent, if the prediction rule it constructs
is equivalent to the rule of Eq. (17), for any given cost matrix of the form of Eq. (1). Otherwise
the method is cost-inconsistent.

All methods with the exception of AdaMEC, which will be discussed separately, use the
decision rule:

H(x) = sign[F(x)]. (18)

The argument about whether a method is cost-consistent (or not) hinges on the form
of the population minimizer of its loss function, i.e. what the method is attempting to
approximate. The loss function is either explicitly specified by the authors (e.g. CSAda,
CGAda) or we can infer it by the proposed weight update rule via the FGD mechanism
in Eq. (13). If we plug that population minimizer in the decision rule of Eq. (18) and
the rule can be rearranged into the form of Eq. (17), then the method is cost consis-
tent, otherwise it is not. For example, the population minimizer of the loss of AdaC2 is
F∗(x) = 1

2 log
p(y=1|x)
p(y=−1|x) + M

2 log cFN
cFP

, so it is cost-inconsistent. On the other hand, in the

case of CSAda it is F∗(x) = 1
cFP+cFN

log p(y=1|x)cFN
p(y=−1|x)cFP

, so it is cost-consistent. Table 3,
shows the decision rule implemented by each method in terms of probability estimates—
as in practice we do not have access to true probabilities. We can classify the methods as
so3:

3 Some methods in practice are used in conjunction with replacing cFP & cFN with hyperparameters to be
set via cross-validation. This has been criticized in e.g. Saberian and Vasconcelos (2012) as heuristic. Our
decision theoretic analysis shows why they resort to this choice. Being cost-inconsistent their decision rule
is not geared towards minimizing the expected cost using cFP & cFN directly from the cost matrix, despite
them being fixed, known problem characteristics.

123

368 Mach Learn (2016) 104:359–384

Cost-consistent Cost-inconsistent

AdaMEC, CGAda, AsymAda, Ada, CSB0, CSB1, CSB2, AdaC2,
AdaC1, CSAda, AdaDB AdaC3, AdaCost, AdaCost(β2)

We now present an interesting observation on theAdaMECprocedure (Ting 2000). Acknowl-
edging that Eq. (17), is the optimal decision strategy for a given probability estimate, we can
reformulate AdaMEC’s Eq. (9) in a slightly different way:

HAdaMEC (x) = sign
[
cFN × p̂(y = 1|x) − cFP × p̂(y = −1|x)] . (19)

where p̂(y = 1|x) =
∑

τ :hτ (x)=1 ατ∑t
τ=1 ατ

. This highlights that Ting’s formulation of AdaMEC

makes optimal decisions, but only when estimates of probabilities are made in a very specific
way—which we are not necessarily constrained to.

Theorem 1 The AdaMEC rule of Eq. (19) is a special case of the more general

HAdaMEC (x) = sign
[
p̂(y = 1|x) − c

]
, (20)

This generalised formulation of AdaMEC, Eq. (20), reduces to Eq. (9) when probability

estimates are raw scores of the form p̂(y = 1|x) =
∑

τ :hτ (x)=1 ατ∑t
τ=1 ατ

.

ByviewingAdaMEC in this form,wehave separated the costmatrixC from the estimation
of the probabilities p̂(y = 1|x), whereas in Eq. (9) they are somewhat tangled. In this way,
we can choose how we estimate the probabilities from the base learner outputs. One such
way is to do exactly as Ting proposes and use the (normalized) weighted vote to represent
each class probability. We are not restricted to this choice. This will be discussed in more
detail later.

3.3 The margin theoretic view

In Table 3 we summarize the loss function of all methods examined. A closer inspection
of the loss function, leads us to interesting observations regarding the training behaviour of
the method that minimizes it, which will result in different margin optimization properties.
High margin values have been linked to good generalization performance by Schapire et al.
(1997).

In Figs. 1, 2 we present loss functions of two different types versus the margin yi Ft (xi).
In Fig. 2, we notice that the lines indicating the loss on positive and negative examples
cross. When this happens, the emphasis placed on the two classes is reversed: the weights
of correctly classified examples of the expensive class are penalized more than those of
correctly classified examples of the low-cost class, contrary to the fact that the cost matrix
dictates that preserving the former is more important. This was first observed in the case
of CSAda & AdaDB by Landesa-Vázquez and Alba-Castro (2015a, b) and motivates the
following definition which will again allow us to divide the methods into two categories:

Definition (Asymmetry-preserving) Amethod is asymmetry-preserving if the ratio rL(m) of
the loss on an example of the important class over the loss on an example of the unimportant
one—given equalm = yFt (x)—remains greater or equal to 1 during training. Otherwise the
method is asymmetry-swapping.

123

Mach Learn (2016) 104:359–384 369

Ta
bl
e
3

A
su
m
m
ar
y
of

th
e
co
st
-s
en
si
tiv

e
va
ri
an
ts
sh
ow

in
g
th
e
lo
ss

fu
nc
tio

n
m
in
im

iz
ed

w
.r.
t.
th
e
en
se
m
bl
e
co
ns
tr
uc
te
d
on

ro
un
d
t
an
d
th
e
fin

al
de
ci
si
on

ru
le
,w

ri
tte
n
in

te
rm

s
of

pr
ob
ab
ili
ty

es
tim

at
es

an
d
m
is
cl
as
si
fic
at
io
n
co
st
s

M
et
ho
d

L
os
s
fu
nc
tio

n
L
(y

F
t(
x)

)
D
ec
is
io
n
ru
le
si
gn

[p̂
(y

=
1|x

)
−

θ
],w

he
re

θ
=

..
.

A
da
bo

os
t(
Sc

ha
pi
re

et
al
.1

99
7)

e−
y
F
t(
x)

1 2

A
da
M
E
C

”
c F

P
c F

P
+c

F
N

C
G
A
da

(L
an
de
sa
-V

áz
qu
ez

an
d

A
lb
a-
C
as
tr
o
20

12
,
20

15
a,
b)

c(
y)
e−

y
F
t(
x)

”

A
sy
m
A
da

(V
io
la
an
d
Jo
ne
s
20

02
)

c(
y)

t/
M
e−

y
F
t(
x)

”

C
SA

da
(M

as
na
di
-S
hi
ra
zi
an
d

V
as
co
nc
el
os

20
07

,
20

11
)

e−
c(
y)
y
F
t(
x)

”

A
da
D
B
(L
an
de
sa
-V

áz
qu
ez

an
d

A
lb
a-
C
as
tr
o
20

13
)

”
”

A
da
C
1
(S
un

et
al
.2

00
5,

20
07

)
”

”

C
SB

2
(T
in
g
20

00
)

c(
y)

q
−1

e−
y
F
t(
x)

w
he
re

q
m
od
el
s
ha
ve

m
is
cl
as
si
fie
d
x.

(c
F
P

)q
−1

(c
F
P

)q
−1

+(
c F

N
)q

−1

A
da
C
2
(S
un

et
al
.2

00
5,

20
07

)
c(
y)

t e
−y

F
t(
x)

(c
F
P

)t

(c
F
P

)t
+(

c F
N

)t

A
da
C
3
(S
un

et
al
.2

00
5,

20
07

)
c(
y)

t−
1
e−

c(
y)
y
F
t(
x)

”

C
SB

0
(T
in
g
an
d
Z
he
ng

19
98

)
C
an
no

te
xp

re
ss

C
an
no

te
xp

re
ss

C
SB

1
(T
in
g
20

00
)

lo
ss

as
a
fu
nc
tio

n
de
ci
si
on

ru
le
as

A
da
C
os
t(
β
2
)
(T
in
g
20

00
)

of
y
F
t(
x)

.
a
fu
nc
tio

n
of

c F
P
,

A
da
C
os
t(
Fa
n
et
al
.1

99
9)

c F
N
&

p̂(
y

=
1|x

)

123

370 Mach Learn (2016) 104:359–384

-2 -1 0 1 2
0

0.5

1

1.5

2

2.5

3

yFt(x)

Lo
ss

 L
(F

t(x
),

y)
Loss on round t for AdaBoost & AdaMEC

L0/1
Exponential Loss

-2 -1 0 1 2
0

0.5

1

1.5

2

2.5

3

yFt(x)

Lo
ss

 L
(F

t(x
),

y)

Loss on round t for CGAda

LCS on Pos
LCS on Neg
L(Ft(x), y) on Pos
L(Ft(x), y) on Neg

Fig. 1 Left The loss function used in Adaboost. This illustrates the reason why Adaboost is seen as a margin-
maximising method—the loss is non-zero even when an example has been correctly classified (yi F(xi) > 0).
Right The loss for CGAda in a 2:1 cost ratio—note that the same margin maximising properties hold, and that
examples of the positive (expensive) class always have a loss greater than that of examples of the negative
(cheap) class, given an equal yi F(xi)

-2 -1 0 1 2
0

0.5

1

1.5

2

2.5

3

yFt(x)

Lo
ss

 L
(F

t(x
),

y)

Loss on round t for CSAda & DBAda

LCS on Pos
LCS on Neg
L(Ft(x), y) on Pos
L(Ft(x), y) on Neg

-2 -1 0 1 2
0

0.5

1

1.5

2

2.5

3

yFt(x)

Lo
ss

 L
(F

t(x
),

y)

Loss on round t for AdaC3, t=2

LCS on Pos
LCS on Neg
L(Ft(x), y) on Pos
L(Ft(x), y) on Neg

Fig. 2 Left The loss of CSAda & AdaDB does not preserve the class asymmetry leading to asymmetry
swapping when yi Ft (xi) > 0. Beyond that point, examples of the positive (expensive) class have a lower
loss than that of examples of the negative (cheap) class, given an equal yi F(xi). Right The loss of AdaC3,
plotted here for t = 3, also exhibits asymmetry swapping, more specifically it does so when yi Ft (xi) >

((t − 1)/(cFN − cFP)) log
(
cFN
cFP

)

Variants that minimize a loss of the form K1(i)e−K2(i)yi Ft (xi), where K1(i) is a non-
decreasing and K2(i) an increasing function of c(yi) (i.e. AdaC1, AdaC3, CSAda&AdaDB)
exhibit asymmetry-swapping behaviour as can be demonstrated by Fig. 2. Conversely, vari-
ants thatminimize a loss of the form K1(i)e−yi Ft (xi),where K1(i) is a non-decreasing function
of c(yi) (i.e. AdaBoost, AdaMEC, CGAda, AsymAda, AdaC2 & CSB2) are asymmetry pre-
serving, as it is always the case that rL(m) = K1(i)/K1(j) ≥ 1, as shown in Fig. 1. A proof
sketch for checking a method for asymmetry preservation can be found in the Supplementary
Material.

Of the methods whose loss function cannot be expressed in terms of yi Ft (xi), CSB0
& CSB1 are asymmetry-preserving as their weight updates can only increase the relative
importance of the important class over the unimportant one. On the other hand AdaCost &
AdaCost(β2) do not offer such a guarantee, hence are classified as asymmetry-swapping.

123

Mach Learn (2016) 104:359–384 371

Asymmetry-preserving Asymmetry-swapping

Ada, AdaMEC, CGAda, AsymAda, AdaC1, CSAda, AdaDB,
AdaC2, CSB0, CSB1, CSB2 AdaC3, AdaCost, AdaCost(β2)

Following the observation of Landesa-Vázquez and Alba-Castro (2015a, b) that asym-
metry swapping behaviour has an adverse effect on the the generalization properties of the
final ensemble constructed, we will now investigate the effect of each loss function from an
empirical margin-theoretic perspective.

Normalizing the margin yi Ft (xi) by dividing by the 1-norm of the vector comprised
of all confidence coefficients α1, . . . , αt , we get mi = yi Ft (xi)/||α||1 ∈ [−1, 1]. The
effect that the different loss functions have on the resulting normalized margin distribu-
tion {mi |i = 1, . . . , N } is demonstrated by the results shown in Fig. 3. The figure shows
the cumulative margin distributions4 produced by AdaBoost/AdaMEC, CGAda, AsymAda,
CSAda &AdaC3 for four different degrees of imbalance on the congress dataset. The results
demonstrate that CSAda & AdaC3 are generating lower average margins than the rest of the
methods. This is attributed to the asymmetry swapping effect we analyzed earlier. It also
agrees with the observation of Landesa-Vázquez & Alba-Castro that asymmetry swapping is
having a detrimental effect on the generalization behavior, the latter being dependent on the
margin distribution.

3.4 The probabilistic model view

The probability estimates produced by boosting algorithms are subject to a systematic distor-
tion. To demonstrate this, we will make use of the view of Adaboost as a Product of Experts
(PoE) (Edakunni et al. 2011). The PoE is a probabilistic model introduced by Hinton (2002),
under which the probability of an outcome y is expressed as a normalized product of –not
necessarily normalized—probabilities of y as assigned by different experts. The conclusion
of this section is that the probability estimates of the ensemble need to be properly calibrated.

To better understand the nature of the probability estimates generated by an AdaBoost
ensemble, we now follow the inverse process of Edakunni et al. (2011). Starting from the
probability estimates themselves, we show, without introducing any assumptions, that they
correspond to a specific PoE model. The same reasoning allows us to derive similar models
for cost sensitive boosting variants thus extending Edakunni et al. (2011) to cover these
variants as well.

AdaBoost builds an additive model Ft (x) = ∑
τ ατhτ (x) to approximate

F∗(x) = argmin
F(.)

Exy

{
e−yF(x)

}
= 1

2
log

p(y = 1|x)
p(y = −1|x) . (21)

We can get an estimate of p(y = 1|x) using the AdaBoost outputs Ft (x) ≈ F∗(x),

p̂Ada(y = 1|x) = 1

1 + e−2Ft (x)
. (22)

4 In Fig. 3 we do not distinguish between the margin distributions of positive and negative examples. Consid-
ering an equal number of positives and negatives, the margin distribution produced by cost-sensitive methods
on high cost examples is on average higher than that of low cost examples, as a larger number of low cost
examples than high cost ones tend to be misclassified (hence have negative margin). The effect is more pro-
nounced as the skew ratio increases. AdaBoost/AdaMEC, being cost-insensitive in its training phase, produces
margin distributions for the two classes that are -in expectation- identical.

123

372 Mach Learn (2016) 104:359–384

-1 -0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

Margin

C
um

ul
at

iv
e

fre
qu

en
cy

Cumulative margin distributions, CFP = 1 , CFN = 1

AdaBoost/AdaMEC
CGAda
AsymAda
CSAda/AdaDB
AdaC3

-1 -0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

Margin

C
um

ul
at

iv
e

fre
qu

en
cy

Cumulative margin distributions, CFP = 1 , CFN = 2

AdaBoost/AdaMEC
CGAda
AsymAda
CSAda/AdaDB
AdaC3

-1 -0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

Margin

C
um

ul
at

iv
e

fre
qu

en
cy

Cumulative margin distributions, CFP = 1 , CFN = 5

AdaBoost/AdaMEC
CGAda
AsymAda
CSAda/AdaDB
AdaC3

-1 -0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

Margin

C
um

ul
at

iv
e

fre
qu

en
cy

Cumulative margin distributions, CFP = 1 , CFN = 10

AdaBoost/AdaMEC
CGAda
AsymAda
CSAda/AdaDB
AdaC3

Fig. 3 Cumulative (normalized) margin distributions for AdaBoost/AdaMEC, CGAda, AsymAda, CSAda &
AdaC3 for degrees of imbalance cFN

cFP
= {1, 2, 5, 10}. When cFN

cFP
= 1 all methods reduce to the original

AdaBoost and produce similar distributions, indicative of margin maximization. But when cFN
cFP

> 1, CSAda
and AdaC3 produce margins closer to 0. This is a result of asymmetry swapping and margin theory suggests
it has a negative effect on generalization

This is the form of probability estimates proposed by Friedman et al. and the most popular
choice in the boosting literature.

If we substitute Ft (x) = ∑
τ ατhτ (x) into Eq. (22), we find that the conditional probability

estimates under AdaBoost have the form of a PoE.

Theorem 2 The probability estimate of Eq. (22), assigned to class y = 1 by an AdaBoost
ensemble Ft on an example x has the form of a product of experts:

p̂Ada(y = 1|x) =
∏t

τ=1 p̂τ (y = 1|x)∏t
τ=1 p̂τ (y = 1|x) + ∏t

τ=1 p̂τ (y = −1|x) ,

with experts of the form

p̂τ (y = 1|x) =
{

ετ , if hτ (x) = −1

1 − ετ , if hτ (x) = 1,

p̂τ (y = −1|x) =
{
1 − ετ , if hτ (x) = −1

ετ , if hτ (x) = 1,

where ετ is the weighted error of the τ -th weak learner and hτ (x) ∈ {−1, 1} its prediction
on example x.

A detailed proof can be found in the Supplementary Material.

123

Mach Learn (2016) 104:359–384 373

Ta
bl
e
4

Pr
op
er
tie
s
of

co
st
-s
en
si
tiv

e
B
oo
st
in
g
al
go
ri
th
m
s

M
et
ho
d

FG
D
-c
on
si
st
en
t

C
os
t-
co
ns
is
te
nt

A
sy
m
m
et
ry
-p
re
se
rv
in
g

C
al
ib
ra
te
d
es
tim

at
es

A
da

(F
re
un

d
an
d
Sc
ha
pi
re

19
97

)
✓

✓

A
da
C
os
t(
Fa
n
et
al
.1

99
9)

A
da
C
os
t(
β
2
)
(T
in
g
20

00
)

C
SB

0
(T
in
g
an
d
Z
he
ng

19
98

)
✓

C
SB

1
(T
in
g
20

00
)

✓

C
SB

2
(T
in
g
20

00
)

✓

A
da
C
1
(S
un

et
al
.2

00
5,

20
07

)
✓

A
da
C
2
(S
un

et
al
.2

00
5,

20
07

)
✓

✓

A
da
C
3
(S
un

et
al
.2

00
5,

20
07

)

C
SA

da
(M

as
na
di
-S
hi
ra
zi
an
d

V
as
co
nc
el
os

20
07

,
20

11
)

✓
✓

A
da
D
B
(L
an
de
sa
-V

áz
qu
ez

an
d
A
lb
a-
C
as
tr
o
20

13
)

✓
✓

A
da
M
E
C
(T
in
g
20

00
;

N
ik
ol
ao
u
an
d
B
ro
w
n
20

15
)

✓
✓

✓

C
G
A
da

(L
an
de
sa
-V

áz
qu
ez

an
d
A
lb
a-
C
as
tr
o
20

12
,

20
15

a,
b)

✓
✓

✓

A
sy
m
A
da

(V
io
la
an
d
Jo
ne
s

20
02

)
✓

✓
✓

C
al
ib
ra
te
d
A
da
M
E
C

✓
✓

✓
✓

C
al
ib
ra
te
d
C
G
A
da

✓
✓

✓
✓

C
al
ib
ra
te
d
A
sy
m
A
da

✓
✓

✓
✓

123

374 Mach Learn (2016) 104:359–384

Since typically ετ is only slightly smaller than 0.5 for weak learners (this is how a weak
learner is defined), Theorem 2 suggests that the overall p̂(y = 1|x) remains close to 0.5. If
on the other hand the base learners ‘are powerful enough’ i.e. at least one ετ tends to 0, then
it dominates the PoE and the overall probability estimate tends to 0 or 1. Moreover, we can
expect the distortion to bemore pronounced asmore experts are added to the ensemble. These
are exactly the effects observed by Rosset et al. (2004) and Niculescu-Mizil and Caruana
(2005).

Following the same reasoning, we can construct PoE models for the probability estimates
of other boosting variants, thus showing that they are also subject to the same form of
distortion. For example, as the model constructed by AdaMEC is just a threshold-shifted
version of the one built by AdaBoost, Ft (x) = [Ft (x)]Ada + 1

2 log
cFN
cFP

, substituting Ft (x)
into Eq. (22), we get that the resulting probability estimates have the form

p̂AdaMEC (y = 1|x) = cFP · ∏t
τ=1 p̂τ (y = 1|x)

cFP · ∏t
τ=1 p̂τ (y = 1|x) + cFN · ∏t

τ=1 p̂τ (y = −1|x) , (23)

with expert probabilities as given in Theorem 2. Thus, an alternative view of AdaMEC is that
it classifies examples as H(x) = sign[p̂(y = 1|x) − 0.5], as AdaBoost does, but changes
the underlying probabilistic model of the conditional probabilities for the positive class to
that of Eq. (23). This new model is a weighted version of the PoE of Theorem 2, where
the probability of each class is reinforced by a multiplicative factor equal to its relative
importance. We can think of this as adding an additional expert to the PoE that captures our
prior knowledge over the asymmetry. Thus the probability estimates of boosting algorithms
are distorted in a systematic way. The next step will be to correct for that distortion and this
will be the focus of Sect. 4.

Before we close this section, note that of all the methods proposed, as we can see in
Table 4, only three satisfy all the properties of FGD-consistency, cost-consistency and
asymmetry-preservation: CGAda, AsymAda & AdaMEC. Interestingly, each of these is
drawn from one of the three main approaches for making a learning algorithm cost-sensitive:
cost-proportional resampling/reweighting of the dataset, modifying the training algorithm to
take costs into account, and shifting the decision threshold to account for the cost imbalance,
respectively.

FGD-consistency ensures that the steps of the algorithm are coherent and geared towards
greedily minimizing a monotonically decreasing loss function of the margin. Asymmetry-
preservation grants them good generalization by connecting said loss tomarginmaximization
in a cost-sensitive setting. Cost-consistency ensures that the probability estimates are used
in a way that is consistent with the goal of minimizing the expected cost of future classi-
fications. What remains is a reasonable guarantee that said probability estimates are good
approximations of the true underlying probabilities. This is achieved by calibration.

4 Calibration

Probability estimates are not always straightforward to obtain from the outputs of a classifier.
The majority of classifiers allow for their output to be treated as a score for each test example
x that indicates ‘how positive’ x is. One choice for the score of an AdaBoost ensemble on a
given instance x is

s(x) =
∑

τ :hτ (x)=1 αt∑t
τ=1 αt

∈ [0, 1], (24)

123

Mach Learn (2016) 104:359–384 375

the weighed fraction of base learners voting for the positive class. Another is

s′(x) = 1

1 + e−2Ft (x)
∈ [0, 1] (25)

which is the quantity we have been denoting with p̂(y = 1|x) and using as the estimate
of the probability of x belonging to the positive class throughout the previous sections, fol-
lowing the framework of Friedman et al. (2000) and a large body of the boosting literature.
The act of converting raw scores to actual probability estimates is called calibration. Denot-
ing with N the total number of examples, Ns the number of examples with score s and
N+,s the number of positives with score s, Zadrozny and Elkan (2002) give the following
definition:

Definition (Calibrated classifier) A classifier is said to be calibrated if the empirical proba-
bility of an example with score s(x) = s belonging to the positive class, N+,s/Ns), tends to
the score value s, as N → ∞, ∀s.

A raw score, be it of the form s(x) or s′(x), is not sufficient for making a cost-sensitive
decision regarding the instance x. What we need is a calibrated estimate of p(y = 1|x), given
which, classifying x according to the decision rule of Eq. (17) would give us a Bayes-optimal
decision.

Niculescu-Mizil and Caruana (2005) showed empirically that the scores produced by
AdaBoost exhibit a ‘sigmoid distortion’, meaning that the scores produced by AdaBoost
are a sigmoid transformation of actual probability estimates.—which agrees with the PoE
model we derived in Theorem 2. The authors also showed that once properly calibrated,
AdaBoost produced superior probability estimates to any other model included in their
study.

Niculescu-Mizil & Caruana calibrated the scores using three different approaches. The
first approach, which they dubbed logistic correction, was to use scores of the form s′(x) as
implied by the framework of Friedman et al. (2000). The second method used scores of the
form s(x) and Platt scaling (Platt 1999), originally used to map SVM outputs to conditional
class probabilities. Platt scaling consists of finding the parameters A and B for a sigmoid
mapping p̂(y = 1|x) = 1

1+eAs(x)+B , such that the likelihood of the data is maximized. Fitting
A and B requires the use of a separate validation set. The third method, was to use again
scores of the form s(x) and calibrate them via isotonic regression (Robertson et al. 1998). The
latter is non-parametric and more general as it can be used to calibrate scores which exhibit
any form of monotonic distortion (Zadrozny and Elkan 2001). Among the three methods,
Platt scaling produced the best probability estimates on small sample sizes, closely followed
by isotonic regression (Niculescu-Mizil and Caruana 2005).

In this paper we generate scores of the form s(x) under AdaMEC, CGAda & AsymAda,
being the only methods in our analysis that are FGD-consistent, cost-consistent and asymme-
try preserving. We then apply Platt scaling to calibrate them. We account for class imbalance
in the calibration set by the following correction detailed in Platt (1999): if the calibra-
tion set has N+ positive examples and N− negatives, Platt calibration uses values N++1

N++2

and 1
N−+2 , rather than 1 and 0, for the target probability estimates of positive and negative

examples, respectively. Pseudocode for this full process is provided in the supplementary
material.

With these final changes, the calibrated versions of the AdaMEC, CGAda & AsymAda
algorithms now satisfy all the properties shown on Table 4—we proceed to our experimental
section, where we compare these methods to all other variants discussed.

123

376 Mach Learn (2016) 104:359–384

5 Empirical evaluation

5.1 Experimental setup

In our empirical analysis we extend our initial explorations found in Nikolaou and Brown
(2015) and compare the performance of all methods5 we discussed to those of calibrated
AdaMEC, AsymAda & CGAda under various degrees of cost imbalance. Univariate logistic
regression models, trained with conjugate gradient descent, were chosen as base learners.
Their maximum number M was set to 100.

We used 18 datasets from the UCI repository. Multiclass problems were handled with
a one-vs-rest approach: one class was deemed as positive and all others formed the neg-
ative one. Our goal is to compare the methods under 21 different cost setups, namely
cFN
cFP

∈ { 1001 , 50
1 , 25

1 , 20
1 , 15

1 , 10
1 , 5

1 ,
2.5
1 , 2

1 ,
1.5
1 , 1

1 ,
1
1.5 ,

1
2 ,

1
2.5 ,

1
5 ,

1
10 ,

1
15 ,

1
20 ,

1
25 ,

1
50 ,

1
100 }. We

selected an equal number of positive and negative examples, to suppress the additional
effects of class imbalance, the same approach followed by Landesa-Vázquez and Alba-
Castro (2015b). This was achieved by uniformly undersampling the majority class rather
than by oversampling the minority class. Thus we avoid overfitting due to duplicates in train-
ing/testing/validation sets. A summary of the datasets used can be found in the Supplementary
Material.

We use a random 25% of the data for testing. The remaining 75% is used for training. To
perform calibration using Platt scaling, we needed to also reserve a separate validation set to
fit the parameters of the sigmoid without overfitting. A third of the training data was used to
this end. For uncalibrated methods, the entire training set was used to fit the models. After
training the models (and calibrating on the validation set, where applicable), we evaluated
them on the test set. The entire procedure is repeated 30 times. For each method, we report
average values and 95% confidence intervals.

To assess the performance of the different approaches,weuse thenormalized cost-sensitive
loss Q(θ) (Drummond and Holte 2000; Hernández-Orallo et al. 2011; Landesa-Vázquez and
Alba-Castro 2015b), for a given decision threshold θ , averaged over the test set. The loss is
given by

Q(θ) = FN R(θ) · (1 − z) + FPR(θ) · z ∈ [0, 1], (26)

where FN R(θ) is the false negative rate of the classifier at decision threshold θ , FPR(θ) its
false positive rate at that threshold and z the skew (Hernández-Orallo et al. 2011; Drummond
and Holte 2000) defined as,

z = π− · cFP

π− · cFP + π+ · cFN
∈ [0, 1]. (27)

Lower loss values are desirable, regardless of the asymmetry. When false positives and false
negatives have equal costs, i.e. for cFN = cFP , the loss reduces to the expected error rate as
measured on the test set. It is normalized in the sense that Q ∈ [0, 1], regardless of the values
of cFN and cFP . A skew z < 0.5 signifies that negative examples are more important than
positives, values z > 0.5 that positive examples are more important and z = 0.5 corresponds
to the symmetric case of all examples being equally important. For each cost setup (cFN , cFP)

, we compute the corresponding skew z and use it to quantify the asymmetry of the task. In
our analysis we explore the scenario in which class priors are balanced i.e. π+ = π− = 0.5,

5 As CSAda & AdaDB are equivalent within numerical precision (Landesa-Vázquez and Alba-Castro 2013),
we only present results for CSAda. The αt values were calculated using Newton steps and a tolerance of 10−6.

123

Mach Learn (2016) 104:359–384 377

but costs are not, therefore the skew simplifies to the cost skew

z = cFP

cFP + cFN
= c ∈ [0, 1]. (28)

Since a decision threshold θ that is optimal in training may not necessarily be optimal on a
test set, Q(θ)would constitute an optimistic assessment of the cost-sensitive performance. To
avoid this, we follow the ‘probabilistic threshold choice’ practice suggested by Hernández-
Orallo et al. (2011) and instead of cost curves (Q(θ) vs. z for optimal θ on training set), we
produce Brier curves (Q(z′) vs. z). That is, we set the threshold θ for each classifier to be
equal to the change in skew from training to deployment z′, which relates to the skew ratio
during training ztr and the skew ratio during deployment zdep via zdep = ztr ·z′

ztr ·z′+(1−ztr)·(1−z′) .
In our experiments, all methods but AdaMEC are trained under a skew ratio ztr which is
almost the same as that encountered in deployment, subject to the balance of positives and
negatives in the train and test sets on each split, so zdep ≈ ztr and the threshold used in
Eq. (26) was θ = z′ ≈ 0.5. AdaMEC was trained under a skew ratio of ztr = 0.5 (cost-
insensitive training), so on deployment the change in skew would be z′ ≈ zdep , so θ ≈ zdep .
Abusing notation, from now on we will write Q(z) to refer to the loss of a classifier under
operating condition (i.e. skew in deployment phase) zdep = z.

The area below the Brier curve is equal6 to the Brier Score (BS) (Hernández-Orallo et al.
2011), a common measure for assessing the quality of probability estimates, first proposed
by Brier (1950). The BS is defined as the mean squared difference between the probability
estimates and the actual class labels of the test examples (if the negative class is denoted
with ‘0’), hence the lower it is, the better the estimates of the model. Thus the difference of
the area under the Brier curve of AdaMEC, AsymAda & CGAda and that of their calibrated
counterpart is due to the reduction of the calibration loss component of the BS. The Q(z) = z
diagonal of a Brier curve corresponds to the ‘all-negatives’ classifier, while the Q(z) = 1− z
diagonal to the ‘all-positives’.

5.2 Analysis of experimental results

In total we examined 15 × 18 × 21 combinations of (method, dataset, skew ratio). Due
to space limitations, we cannot present all results in this paper. As an overall measure of the
performance of each method across all degrees of imbalance, we calculate the average area
under the Brier curve it attains per dataset, which equals its expected BS. The results are
shown in the Supplementary Material. In Fig. 4 we rank all methods according to their area
under the Brier curve, across all datasets—higher rank meaning lower area under the curve,
i.e. better performance.

Overall, in Fig. 4we see that calibrated versions ofAdaMEC,CGAda&AsymAda outrank
their uncalibrated counterparts. This can solely be attributed to the decrease of the calibra-
tion loss component of the BS. These results agree with our theoretical observations about
the probability estimates of boosting variants being distorted and requiring to be calibrated.
Moreover, the uncalibrated versions of AdaMEC, CGAda&AsymAda dominate the remain-
ing variants. This is again in accordance with our theoretical findings as these three methods
are the only ones that satisfy all three properties of FGD-consistency, cost-consistency and
asymmetry-preservation.

Among AdaMEC, CGAda & AsymAda, the third variant outranks the other two. This
pattern carries over to the calibrated versions of the three algorithms. This might indicate

6 In our experiments it will be an approximation, as we will be generating the Brier curve with non-uniform
skew samples to compare the algorithms on a wide range of skew values.

123

378 Mach Learn (2016) 104:359–384

Fig. 4 All methods, across all datasets, ranked by their area under the Brier curve—higher is better. This
illustrates the resilience of each method to a spectrum of changing cost ratios. The highest ranked method is
AsymAda-Calibrated

Fig. 5 Pareto plot showing the
tradeoff between the size of the
final ensemble and the rank by
area under the Brier curve. The
plot shows that calibrated
Adaboost and calibrated
AsymAda are pareto-optimal,
with the former to be preferred
for parsimonious models

1 10 20 30 40 50 60 70 80 90 100
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

R
an

k
(b

y
A

re
a

un
de

r
B

rie
r

C
ur

ve
)

Number of Learners

CSB0

CSB1

CSB2
AdaC1

AdaC2

AdaC3

AdaCost

AdaCost(β)

CSAda

AdaMEC

AsymAda
CGAda

AdaMEC−Calib

AsymAda−Calib

CGAda−Calib

some benefit of making the training phase itself cost-sensitive, but there could be a sim-
pler explanation: AsymAda creates an ensemble of predefined size M = 100. AdaMEC &
CGAda typically use about 40 weak learners of the maximum M allowed. This results in
AsymAda producing higher margin values than the other two methods, which leads to better
generalization. Some evidence for this is provided in Fig. 5, where we have plotted both
the average rank attained by each method and the average ensemble size. As we can see
calibrated AdaMEC and AsymAda lie on the pareto front of the two objectives: attaining a
high rank while building a parsimonious model.

To verify the above hypothesis we also included another set of experiments: we fixed
the ensemble size for the calibrated versions of AdaMEC, CGAda & AsymAda to be equal
for each run.7 We then compared the statistical significance of the difference in the average
ranking of their Brier scores (low rank indicating better performance) across all datasets. The

7 More precisely, AdaMEC&AsymAdawere forced to use asmanyweak learners as CGAdawith amaximum
of 100.

123

Mach Learn (2016) 104:359–384 379

Critical difference diagram at 99% C.L., for skew z = 0.009

CD

3 2 1

1.6111 Cal. AdaMEC
1.8333 Cal. CGAda

2.5556Cal. AsymAda

Critical difference diagram at 99% C.L., for skew z = 0.038

CD

3 2 1

1.75 Cal. AdaMEC
1.9167 Cal. CGAda

2.3333Cal. AsymAda

Critical difference diagram at 99% C.L., for skew z = 0.062

CD

3 2 1

1.3611 Cal. AdaMEC
1.9722 Cal. CGAda

2.6667Cal. AsymAda

Critical difference diagram at 99% C.L., for skew z = 0.166

CD

3 2 1

1.4722 Cal. AdaMEC
2.0278 Cal. CGAda

2.5Cal. AsymAda

Critical difference diagram at 99% C.L., for skew z = 0.333

CD

3 2 1

1.5 Cal. AdaMEC
2.1111 Cal. CGAda

2.3889Cal. AsymAda

Critical difference diagram at 99% C.L., for skew z = 0.5

CD

3 2 1

1.4444 Cal. AdaMEC
1.8889 Cal. CGAda

2.6667Cal. AsymAda

Critical difference diagram at 99% C.L., for skew z = 0.666

CD

3 2 1

1.5556 Cal. AdaMEC
2 Cal. CGAda

2.4444Cal. AsymAda

Critical difference diagram at 99% C.L., for skew z = 0.833

CD

3 2 1

1.5 Cal. AdaMEC
2.0556 Cal. CGAda

2.4444Cal. AsymAda

Critical difference diagram at 99% C.L., for skew z = 0.937

CD

3 2 1

1.5556 Cal. AdaMEC
1.8333 Cal. CGAda

2.6111Cal. AsymAda

Critical difference diagram at 99% C.L., for skew z = 0.961

CD

3 2 1

1.6389 Cal. AdaMEC
1.8889 Cal. CGAda

2.4722Cal. AsymAda

Critical difference diagram at 99% C.L., for skew z = 0.99

CD

3 2 1

1.7778 Cal. CGAda
1.8333 Cal. AdaMEC

2.3889Cal. AsymAda

Fig. 6 Comparison of the average Brier Score ranks across all datasets attained by AdaMEC, CGAda &
AsymAda against each other under the Nemenyi test, for every other skew ratio examined. All methods were
calibrated and used the same ensemble size on each run. Groups of methods that are not significantly different
at the 0.01 level are connected. We see that no method clearly dominates the others

123

380 Mach Learn (2016) 104:359–384

resulting critical difference diagrams (Demšar 2006), showing when the differences in loss
ranking are statistically significant at the 0.01 level under a Nemenyi post-hoc test (Nemenyi
1963) are shown in Fig. 6. The results suggest that there is no clearly dominantmethod among
these three.8 Therefore, any performance benefit AsymAda had over the other two methods
in our main results was due to its larger number of weak learners. A table showing the average
Brier Score for each method on each dataset is included in the Supplementary Material.

AdaMEC has been largely overlooked despite having some clear practical benefits. It
is more flexible than AsymAda, allowing us to e.g. grow the ensemble after the original
training if needed. It is faster than AsymAda, as fewer weak learners will be added to the
ensemble–weak learner optimization being the computational bottleneck of training. Finally
and perhaps most importantly, unlike all other methods included in this study, AdaMEC does
not need to retrain the model if the cost ratio changes in deployment. For these reasons,
as a representative of this group of methods we pick AdaMEC in subsequent comparisons,
including both its calibrated and uncalibrated versions to showcase the benefits of calibration.

Returning to the Brier score results, excluding AdaMEC, CGAda & AsymAda, the best
performing variants are CSB2 & AdaC2. AdaC1 exhibits an erratic behaviour; on about half
of the datasets examined it ranks among the top-performing methods in terms of average
BS, while in the rest of them its performance is among the poorest. AdaCost, AdaCost(β2),
CSAda and on some datasets AdaC1, were found to yield the highestBS. What thesemethods
have in common is the asymmetry-swapping effect.9

The area under the Brier curve does not take into account the variance across runs, neither
does it allow us to observe the different behaviours exhibited by each method under the
different degrees of skew. To observe these effects we need to examine the entire Brier
curve. For clarity we will only compare some representative methods against AdaMEC &
calibrated AdaMEC. CSB2 is chosen for its relatively good performance across datasets.
AdaC1 is chosen despite its erratic behaviour, since, on some datasets it ranks among the
top-performing methods. The Brier curves for some characteristic datasets can be found in
Fig. 7. The Brier curves of the remaining datasets are in the Supplementary Material. Some
additional comparisons of calibrated AdaMEC, AdaMEC, CSB2 and AdaC2 under different
evaluation measures can also be found in Nikolaou and Brown (2015).

CSB2 performs very poorly under low values of skew (0.3 < z < 0.7). This is because of
the saturation phenomenon, also observed by Landesa-Vázquez and Alba-Castro (2015b),
i.e. the tendency of CSB2 to construct ‘all-positives’ or ‘all-negatives’ models. The eagerness
of CSB2 to classify examples to the costly class is explained by our theory by the fact that
CSB2 overemphasises the costs as we saw in Table 3. This strategy starts paying off when
the degree of skew becomes very high (z ≤ 0.1 or z ≥ 0.9) when, it becomes one of the
dominant methods, second only to calibrated AdaMEC. On the other hand, AdaC1 exhibits
particularly poor performance when the skew ratio is high (z < 0.2 or z > 0.8). AdaMEC

8 This is not very surprising. All 3 approaches are approximating the minimizer F∗(x) = 1
2 log p(y=1|x)

p(y=−1|x) +
1
2 log cFN

cFP
of the loss L(FM) = Ex,y [c(y)e−yFM (x)], albeit in different ways: AdaMEC by shifting the

decision threshold, CGAda by reweighting andAsymAda bymodifying the base algorithm to simulate splitting
the asymmetry equally among all M rounds.
9 AdaCost & AdaC1 have been criticised in recent studies as being ‘unstable, repeatedly producing mean-
ingless negative, or even imaginary, αt values’ (Masnadi-Shirazi and Vasconcelos 2007, p. 8). AdaCost was
found in Landesa-Vázquez and Alba-Castro (2015b) to exhibit a similar ‘worst-than-baseline’ behaviour. The
authors also attribute it to the αt coefficients not being guaranteed to be positive reals. In our experiments we
prevented this situation from occurring by forcing the ensemble to terminate training if it cannot find a learner
with a positive real αt . Rather than adding ‘meaningless’ learners, our strategy led to ensembles consisting
of few experts, as can also be verified by Fig. 5, a potential reason for the poor performance of AdaCost,
AdaCost(β2) and—on some datasets—AdaC1.

123

Mach Learn (2016) 104:359–384 381

tends to perform well for low values of skew, but for higher degrees of imbalance (z ≤ 0.3
or z ≥ 0.7), it is outranked.

CalibratedAdaMECsacrifices part of the dataset to solve the harder problemof probability
estimation. As a result, on average it is outranked by the other methods when the task is
skew-insensitive (z = 0.5). The effect is barely detectable on most datasets as the confidence
intervals overlap. A simple solution is the use of cross-validation for calibration. But as
the imbalance increases, the investment of calibrated AdaBoost10 in estimating calibrated
probabilities pays off and it clearly dominates all other methods. On nearly all datasets and
for all values of z examined, it ranks first or tied for first among the 4 methods studied here.

A closer inspection of the individual datasets shows that calibrated AdaMEC is most
clearly outperforming the competitors on larger datasets, since a large training set allows it
to compute better probability estimates. This effect is more pronounced in datasets which are
also high-dimensional (splice, musk2, krvskp, waveform, spambase). In lower-dimensional
datasets, like mushroom, the confidence intervals for most methods tend to overlap as the
problem is easier.

6 Conclusion and future work

Weanalysed the cost sensitive boosting literature spanning the last twodecades under a variety
of theoretical frameworks. We used tools from four different perspectives to understand this:
decision theory, functional gradient descent, margin theory, and probabilistic modelling. Our
main finding is that cost-sensitive modifications seem unnecessary for Adaboost, if proper
calibration is applied.

The tools from the different theory frameworks each provide different perspectives and
strengths for the analysis.Algorithms that do not fit the functional gradient descent framework
cannot be viewed as efficient procedures to greedily minimize a loss function of the margin.
The decision theoretic analysis shows that certain methods are not implementing decision
rules that alignwith the goal of minimizing the expected cost of future classifications. Finally,
margin theory predicts that methods that invert class importance during their execution will
exhibit poor generalization performance.

Only three algorithms turn out to be consistent with the rules of these theoretical
perspectives—AdaMEC (Ting 2000), CGAda (Landesa-Vázquez and Alba-Castro 2012)
& AsymAda (Viola and Jones 2002). However, in our final theory angle, we find they share
a common flaw: they assume that AdaBoost produces well-calibrated probability estimates.
By reinterpreting Boosting as aProduct of Experts (Edakunni et al. 2011) we showed that this
assumption is violated and the estimates produced by AdaBoost deviate from true posterior
probabilities in a predictable fashion. To correct for this, we applied calibration using Platt
scaling (Platt 1999)—a detailed pseudocode for its implementation has been provided in the
Supplementary Material.11

Experiments on 18 datasets across 21 degrees of imbalance support the hypothesis—
showing that once calibrated, these three algorithms perform equivalently, and outperform
all others. Our final recommendation—based on simplicity, flexibility and performance—

10 Here we refer to calibrated AdaMEC as calibrated AdaBoost. We remind the reader that AdaMEC builds
the same model as AdaBoost, but while the latter does not shift the threshold to account for the asymmetry,
AdaMEC does. Conversely, calibrated AdaMEC builds exactly the same model as calibrated AdaBoost, but
applies threshold-shifting in the decision rule.
11 Matlab code can also be found in the link: http://www.cs.man.ac.uk/~gbrown/software/.

123

http://www.cs.man.ac.uk/~gbrown/software/

382 Mach Learn (2016) 104:359–384

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

Skew z

Lo
ss

 Q
(z

)
splice

CSB2
AdaC1
AdaMEC
Cal. AdaMEC

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

Skew z

Lo
ss

 Q
(z

)

wdbc

CSB2
AdaC1
AdaMEC
Cal. AdaMEC

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

Skew z

Lo
ss

 Q
(z

)

krvskp

CSB2
AdaC1
AdaMEC
Cal. AdaMEC

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

Skew z

Lo
ss

 Q
(z

)

mushroom

CSB2
AdaC1
AdaMEC
Cal. AdaMEC

Fig. 7 Loss Q under various degrees of skew z for some characteristic datasets included in the study. Lower
values indicate better cost-sensitive classification performance. The area under each (Brier) curve corresponds
to the Brier Score of the final model. The difference of the areas under the curve of AdaMEC and that of
calibrated AdaMEC is due to the reduction of the calibration loss component of the BS. The Q(z) = z
diagonal, corresponds to the ‘all-negatives’ classifier, while the Q(z) = 1 − z diagonal to the ‘all-positives’.
CSB2 is prone to saturating leading to high loss when the skew is high. AdaC1 is prone to ignoring the
asymmetry, leading to high loss as z moves away from 0.5. Calibrated AdaMEC, adopts in each case an
asymmetric behaviour that leads to low loss. As a result it consistently attains the lowest—or tied for lowest—
loss

is calibrated AdaMEC, i.e. to use the original Adaboost algorithm with a shifted decision
threshold, and calibrated probability estimates.

For future work, we note that, even though the calibrated algorithms examined match
or exceed the performance of other cost-sensitive variants, there are various parameters of
the calibration procedure we left unoptimized - suggesting room for improvement. Examples
include the choice of calibrationmethod, optimizing the split between training and calibration
set and the use of leave-one-out cross-validation. Another interesting research direction
would be to investigate performing training and calibration in a single step, i.e. choosing
at each round the weak learner so that the new ensemble produces calibrated probability
estimates.

Finally, our key findings have the potential to carry over to other learning algorithms
beyond Adaboost. Identifying when this is the case would mean reducing cost-sensitive
learning to probability estimation, with all the theoretical guarantees and practical advantages
discussed in this paper.

Acknowledgments Nikolaos Nikolaou and Gavin Brown were supported by the EPSRC Centre for Doctoral
Training [EP/I028099/1] andAnyScaleApplications [EP/L000725/1] grants.Meelis Kull and Peter Flachwere

123

Mach Learn (2016) 104:359–384 383

supported by the REFRAME project granted by the European Coordinated Research on Long-termChallenges
in Information and Communication Sciences & Technologies ERA-Net (CHIST-ERA), and funded by the
Engineering and Physical Sciences Research Council in the UK under Grant EP/K018728/1. The authors
would like to thank Konstantinos Sechidis, Henry Reeve, Sarah Nogueira, Andrew Webb, Joe Mellor and
Janez Demšar for their useful comments and suggestions.

Data Access Statement All research data supporting this publication are directly available within this pub-
lication.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license, and indicate if changes were made.

References

Brier, G. W. (1950). Verification of forecasts expressed in terms of probability. Monthly Weather Review, 78,
1–3.

Caruana, R., & Niculescu-Mizil, A. (2006). An empirical comparison of supervised learning algorithms. In
Proceedings of the 23rd international conference on machine learning (pp. 161–168). ACM.

Demšar, J. (2006). Statistical comparisons of classifiers over multiple data sets. Journal of Machine Learning
Research, 7, 1–30.

Drummond, C., & Holte, R. C. (2000). Explicitly representing expected cost: An alternative to ROC repre-
sentation. In Proceedings of the 6th ACM SIGKDD (pp. 198–207).

Edakunni, N. U., Brown, G., & Kovacs. T. (2011). Boosting as a product of experts. In UAI.
Elkan, C. (2001). The foundations of cost-sensitive learning. In IJCAI.
Fan, W., Stolfo, S. J., Zhang, J., & Chan, P. K. (1999). AdaCost: Misclassification cost-sensitive boosting. In

ICML (pp. 97–105).
Flach, P. A. (2012).Machine learning: The art and science of algorithms that make sense of data. Cambridge:

Cambridge University Press.
Freund, Y., & Schapire, R. E. (1997). A decision-theoretic generalization of on-line learning and an application

to boosting. Journal of Computer and System Sciences, 55(1), 119–139.
Friedman, J., Hastie, T., & Tibshirani, R. (2000). Additive logistic regression: A statistical view of boosting.

Annals of Statistics, 28, 337–407.
Hernández-Orallo, J., Flach, P. A., & Ferri, C. (2011). Brier curves: A new cost-based visualisation of classifier

performance. In Proceedings of the 28th international conference on machine learning, ICML (pp. 585–
592).

Hinton, G. E. (2002). Training products of experts byminimizing contrastive divergence.Neural Computation,
14, 1771–1800.

Landesa-Vázquez, I., & Alba-Castro, J. L. (2012). Shedding light on the asymmetric learning capability of
AdaBoost. Pattern Recognition Letters, 33(3), 247–255.

Landesa-Vázquez, I., & Alba-Castro, J. L. (2013). Double-base asymmetric AdaBoost. Neurocomputing, 118,
101–114.

Landesa-Vázquez, I., & Alba-Castro, J. L. (2015a). Revisiting AdaBoost for cost-sensitive classification. Part
I: Theoretical perspective. arXiv:1507.04125v1.

Landesa-Vázquez, I., & Alba-Castro, J. L. (2015b). Revisiting AdaBoost for cost-sensitive classification. Part
II: Empirical analysis. arXiv:1507.04126v1.

Masnadi-Shirazi, H., & Vasconcelos, N. (2007). Asymmetric boosting. In ICML.
Masnadi-Shirazi, H., &Vasconcelos, N. (2011). Cost-sensitive boosting. IEEE Transactions on Pattern Analy-

sis and Machine Intelligence, 33(2), 294–309.
Mason, L., Baxter, J., Bartlett, P., & Frean, M. (2000). Boosting algorithms as gradient descent. NIPS, 12,

512–518.
Nemenyi, P. B. (1963). Distribution-free multiple comparisons. Ph.D.: Princeton University.
Niculescu-Mizil, A., & Caruana, R. (2005). Obtaining calibrated probabilities from boosting. In UAI.
Nikolaou, N., & Brown, G. (2015). Calibrating AdaBoost for asymmetric learning. In Proceedings of multiple

classifier systems (pp. 112–124).

123

http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/1507.04125v1
http://arxiv.org/abs/1507.04126v1

384 Mach Learn (2016) 104:359–384

Platt, J. C. (1999). Probabilistic outputs for support vector machines and comparisons to regularized likelihood
methods. In A. J. Smola, P. Bartlett, B. Schölkopf, D. Schuurmans (Eds.), Advances in large margin
classifiers (pp. 61–74). Cambridge, MA: MIT Press.

Quinlan, J. R. (1996). Bagging, boosting, and C4.5. In Proceedings of the 13th national conference on AI (Vol.
1, pp. 725–730).

Robertson, T.,Wright, F., &Dykstra, R. (1988).Order restricted statistical inference. Probability and statistics
series. New York: Wiley.

Rosset, S., Zhu, J., Hastie, T., & Schapire, R. (2004). Boosting as a regularized path to a maximum margin
classifier. Journal of Machine Learning Research, 5, 941–973.

Saberian, M. J., & Vasconcelos, N. (2012). Learning optimal embedded cascades. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 34, 2005–2018.

Schapire, R. E. (2013). Explaining AdaBoost. In Empirical inference: Festschrift in Honor of Vladimir N.
Vapnik (pp. 37–52).

Schapire, R. E., Freund, Y., Bartlett, P., & Lee, W. S. (1997). Boosting the margin: A new explanation for the
effectiveness of voting methods. Annals of Statistics, 26, 1651–1686.

Schapire, R. E., & Singer, Y. (1999). Improved boosting algorithms using confidence-rated predictions.
Machine Learning, 37(3), 297–336.

Sun, Y., Kamel, M. S., Wong, A. K. C., & Wang, Y. (2007). Cost-sensitive boosting for classification of
imbalanced data. Pattern Recognition, 40(12), 3358–3378.

Sun, Y., Wong, A. K. C., & Wang, Y. (2005). Parameter inference of cost-sensitive boosting algorithms. In
Machine learning and data mining in pattern recognition (pp. 21–30).

Ting, K. M. (2000). A comparative study of cost-sensitive boosting algorithms. In ICML (pp. 983–990).
Ting, K. M., & Zheng, Z. (1998). Boosting cost-sensitive trees. In Discovery science: First international

conference (pp. 244–255).
Viola, P., & Jones,M. (2002). Fast and robust classification using asymmetricAdaBoost and a detector cascade.

In NIPS.
Wu, X., Kumar, V., Quinlan, J. R., Ghosh, J., Yang, Q., Motoda, H., et al. (2008). Knowledge and information

systems. Top 10 Algorithms in Data Mining, 14(1), 1–37.
Zadrozny, B., & Elkan, C. (2001). Obtaining calibrated probability estimates from decision trees and naive

bayesian classifiers. In ICML (pp. 609–616).
Zadrozny, B., &Elkan, C. (2002). Transforming classifier scores into accuratemulticlass probability estimates.

123

	Cost-sensitive boosting algorithms: Do we really need them?
	Abstract
	1 Introduction
	2 Background
	2.1 Asymmetric learning
	2.2 AdaBoost
	2.3 Cost-sensitive boosting algorithms

	3 Examining the literature from different views
	3.1 The functional gradient descent view
	3.2 The decision theoretic view
	3.3 The margin theoretic view
	3.4 The probabilistic model view

	4 Calibration
	5 Empirical evaluation
	5.1 Experimental setup
	5.2 Analysis of experimental results

	6 Conclusion and future work
	Acknowledgments
	References

