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P2P networks are the mechanism used by cryptocurrencies to disseminate system information while keeping the whole system as
much decentralized as possible. Cryptocurrency P2P networks have new characteristics that propose new challenges and avoid
some problems of existing P2P networks. By characterizing the most relevant cryptocurrency network, Bitcoin, we provide details
on different properties of cryptocurrency networks and their similarities and differences with standard P2P network paradigms.
Our study allows us to conclude that cryptocurrency networks present a new paradigm of P2P networks due to the mechanisms
they use to achieve high resilience and security. With this new paradigm, interesting research lines can be further developed, both
in the focused field of P2P cryptocurrency networks and also when such networks are combined with other distributed scenarios.

1. Introduction

Since 2009, when the Bitcoin cryptocurrency [1] was released,
a plethora of more than 600 different cryptocurrency proposals
have appeared. 0e market capitalization of cryptocurrencies
surpasses 51 billion US dollars (data retrieved from http://
coinmarketcap.com/ on May 8, 2017) with Bitcoin leading the
market as of today.

Security and robustness are probably the most important
properties for a currency, and cryptocurrencies achieve them
by using cryptographic techniques and a decentralized ap-
proach. Decentralization avoids both a single point of failure
and a single trust anchor but potentially introduces dis-
cordances between parties. In order to reach consensus
among nodes, cryptocurrencies take advantage of a distrib-
uted mechanism that allows the system to maintain a single
unambiguous view of its state [2], the blockchain.

To support the communication between different entities
of a cryptocurrency, a decentralized P2P approach is adopted
to deploy the so-called P2P cryptocurrency network, that is,
the communication overlay that transports all data needed in
the cryptocurrency system. 0e main goals of such a network
are, firstly, to allow members of the network to synchronize

their view of the system state and, secondly, to disseminate
peer information in order to allow peers to reenter the system
after a disconnection.

Although the goals of P2P networks are shared among all
blockchain-based cryptocurrencies, there is no standard for
P2P cryptocurrency networks. In this paper, we analyze the
Bitcoin P2P network to characterize general P2P crypto-
currency networks. Two main reasons made us choose
Bitcoin as the subject of analysis. On one hand, far beyond
the economic impact, being the largest cryptocurrency also
conveys technical implications: both the volume of in-
formation flowing through its network and its size and
heterogeneity surpass any other deployed cryptocurrency.
On the other hand, being Bitcoin the first open-source
cryptocurrency proposed, other new cryptocurrencies are
developed as a software fork of the Bitcoin reference imple-
mentation. Although new cryptocurrencies have tweaked the
Bitcoin source code in order to achieve different properties, an
in-depth analysis shows that network mechanisms are usually
unmodified and, in fact, even multiple cryptocurrencies share
exactly the same network behavior as Bitcoin [3].

0e first objective of this paper is twofold. On one hand,
the paper fully describes the Bitcoin P2P network. On the
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other hand, it characterizes the network to show how the
aforementioned network goals, together with the special
format of the information being transmitted through the
network, conform to a new paradigm for P2P networks.0is
characterization will point out how, when considering
cryptocurrency P2P networks, some of the well-known
problems of P2P networks are not a concern, while other
problems pose entirely new challenges.

0e second objective of this paper is to analyze to what
extent the adoption of cryptocurrencies, and their un-
derlying P2P networks, can be a powerful tool for the de-
velopment of distributed applications withmobile components.
0ere are three relevant properties of cryptocurrencies that can
be used as building blocks for such applications: secure dis-
tributed payment mechanisms, distributed storage with in-
tegrity by design, and secure transfer and distribution of digital
assets. We analyze how these properties can be used to support
distributed applications such as mobile crowdsensing or dis-
tributed IP/name resolution, to cite just two examples.

0e structure of this paper is the following. First of all, in
Section 3 and preceded by a basic description of the Bitcoin
system, we provide a global description of all the elements in
the Bitcoin P2P network, an overview that, to our best
knowledge, lacked in the scientific literature (the only ref-
erence we are aware of is [4], and it is mainly focused on the
economic aspects of the Bitcoin network). Second, in Sec-
tions 4 and 5, we perform a deep analysis of the Bitcoin
network, which is compared to other existing P2P paradigms
through a well-known P2P taxonomy. 0is characterization
allows us to provide enough evidence to show that P2P
cryptocurrency networks represent a new paradigm for P2P
networks. Finally, in Section 6, we identify different applications
in the field of mobile computation where cryptocurrencies may
be applied, and we point out some of the opportunities and
challenges that such an interaction may entail.

2. A Basic Description of the Bitcoin System

In this section, we point out themain ideas to understand the
basic functionality of the Bitcoin cryptocurrency. Such
a background is needed to understand the underlying P2P
network that supports the communication between Bitcoin
entities. However, the complexity of Bitcoin makes it im-
possible to provide a full description of the system in this
review, so interested readers can refer to Narayanan et al.’s
book [2] for a detailed and more extended explanation on
the Bitcoin system.

Bitcoin is a cryptocurrency based on accounting entries
[5]. 0erefore, bitcoins should not be seen as digital tokens
but as the balance of a Bitcoin account. A Bitcoin account is
defined by an elliptic curve cryptography key pair. 0e
Bitcoin account is publicly identified by its Bitcoin address,
obtained from its public key. Using this public information,
users can send bitcoins to that address (notice that the terms
“public key,” “address,” or “Bitcoin account” refer to the
same concept). 0en, the corresponding private key is
needed to spend the bitcoins of the account. Special purpose
software, commonly referred as wallets, has been developed
to create and manage those private keys and addresses.

Payments in the Bitcoin system are performed through
transactions between Bitcoin accounts. A Bitcoin transaction
indicates a Bitcoin movement from source addresses to
destination addresses. Source addresses are known as input
addresses in a transaction, and destination addresses are
named output addresses. As it can be seen in Figure 1, a single
transaction can have one or multiple input addresses and
one or multiple output addresses.

A transaction (implicitly) details the exact amount of
bitcoins to be transferred from each input address. 0e same
applies to the output addresses, indicating the total amount
of bitcoins that would be transferred to each account (al-
though in this case, the specification is explicitly made). 0e
Bitcoin protocol forces input addresses to spend the exact
amount of a previously received transaction (notice that, in
Figure 1, there are two input addresses that are exactly the
same, which indicates that bitcoins have arrived to this
Bitcoin account in two separate transactions). 0erefore,
each input must unambiguously indicate the previous
transaction identifier (a transaction is identified in the
Bitcoin system by its hash value) and the index of the output
where the bitcoins were received. As a consequence, at any
given moment, an output may be in two states: either already
spent or not yet spent. An output that has not been spent is
known as unspent transaction output, or UTXO.

Finally, the owner of the input addresses should perform
a digital signature using his private keys to authorize
a Bitcoin transfer, proving that he is the real owner of such
accounts (although this is the standard form of Bitcoin
verification for regular Bitcoin transfer transactions, the
verification of a transaction can be much more complex and
is based on the execution of a stack-based scripting language
(more details can be found in Chapter 3 of [2])).

Before accepting a payment from a standard transaction,
the receiver should

(i) validate that the digital signatures are correct;
(ii) validate that the bitcoins of the input addresses are

not previously spent.

0e first validation can be performed with the in-
formation included in the transaction itself (field ScriptSig)
together with the information of the transaction identified in
the Previous output (Index) (field scriptPubKey). 0e second
validation prevents double-spending in the Bitcoin system,
and it is performed through a ledger, the blockchain, where
all previous transactions are annotated.

0e blockchain is a general append-only ledger con-
taining all Bitcoin transactions performed since the system
started to operate (back in 2009), and it is freely replicated
and stored in different nodes of the Bitcoin network, making
the Bitcoin a completely distributed system.

Transactions are included in the blockchain at time
intervals, rather than in a flow fashion, and such an addition
is performed by collecting all new transactions of the system,
compiling them together in a data structure called block, and
including the block at the top of the blockchain. Every time
that a block containing a specific transaction is included in
the blockchain such a transaction is said to be a confirmed
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transaction since it has already been included in the block-
chain and can be checked for double-spending prevention.

Blocks are data structures that mainly contain a set of
transactions that have been performed in the system (Figure
2). To achieve the append-only property, the inclusion of
a block in the blockchain is a hard problem, so adding blocks
to the blockchain is time- and work-consuming. Further-
more, every block is indexed using its hash value, and every
new block contains the hash value of the previous one (see
the field Previous block in Figure 2). Such a mechanism
ensures that the modification of a block from the middle of
the chain would imply to modify all remaining blocks of the
chain from that point to the top in order to match all hash
values.

Adding a block to the blockchain is known as themining
process, a process that is also distributed and that can be
performed by any user of the Bitcoin network using specific-
purpose software (and hardware). 0e mining process uses
a hashcash proof-of-work system, first proposed by Back as
an antispam mechanism [6]. 0e proof of work consists of
finding a hash of the new block with a value lower than
a predefined target (notice that the value of the target de-
termines the difficulty of the mining process. Bitcoin adjusts
the target value depending on the hash power of the miners
in order to set the throughput of new blocks to 1 every 10
minutes (in mean)).0is process is performed by brute force
varying the nonce value of the block. Once the value has
been found, the new block becomes the top block of the

Figure 1: Bitcoin transaction example: four input addresses and two output addresses (data from http://blockchain.info).

Figure 2: Example of a Bitcoin block (data from http://blockchain.info).
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blockchain, and all miners discard their work on that block
and move to the next one.

Mining new blocks is a structural task in the Bitcoin
system since it helps to con�rm the transactions of the
system. For that reason and also assuming that mining
implies a hard work, miners have to be properly rewarded. In
the Bitcoin system, miners are rewarded with two mecha-
nisms. �e �rst one provides them with newly created
bitcoins. Every new block includes a special transaction,
called generation transaction or coinbase transaction (see the
�rst transaction in Figure 2), in which it does not appear to
have any input address and the output address is determined
by the miner who creates the block, who obviously indicates
one of its own addresses (the amount of a generation
transaction is not constant, and it is determined by the
Bitcoin system. Such a value, started in 50 bitcoins, is halved
every four years, �xing asymptotically to 21 million the total
number of bitcoins that will ever be created).

�e Bitcoin system needs to disseminate di�erent kinds
of information, essentially, transactions and blocks. Since
both are generated in a distributed way, the system transmits
such information over the Internet through a P2P network,
that we describe in detail in the next section.

3. Description of the Bitcoin P2P Network

Bitcoin was �rst presented to the public in a white paper [1]
describing its main concepts. Some months later, an open-
source implementation of the Bitcoin client was released,
giving birth to the cryptocurrency we now know and the P2P
network that supports it. Such P2P network de�nition and
implementation have been cloned in multiple new crypto-
currencies that derive from the Bitcoin implementation. In

such new cryptocurrencies, the network con�guration has
been implemented almost identically. For instance, as de-
scribed in [3], Litecoin, Dogecoin, Dash, and Peercoin have
exactly the same network message types of Bitcoin, being the
resulting networks for those cryptocurrencies very similar
and in some cases identical to the Bitcoin one.

Since its deployment in 2009, where the only Bitcoin
client available was the reference client, the Bitcoin network
is now made up of very heterogeneous peers, whose hard-
ware capabilities and software implementations di�er largely
from each other. Moreover, even new protocols have been
created with the goal of optimizing certain tasks the Bitcoin
ecosystem needs.

In order to describe the existing Bitcoin network, we �rst
identify some of the properties that characterize Bitcoin
peers. After that, we review the most common peer con-
�gurations, using the properties described before. Finally, we
describe the composition of the current Bitcoin network.

3.1. Properties Describing Bitcoin Nodes. As we have already
mentioned, Bitcoin peers are heterogeneous, presenting
notable di�erences in both their hardware and software. In
this section, we focus on describing the main properties that
de�ne a Bitcoin node: the exact part of the blockchain stored,
its main functionalities, its connectivity, and the protocols it
uses to communicate with other nodes. Figure 3 summarizes
such a classi�cation.

Peers participating in the network store some data about
the blockchain. However, the exact data they store di�er
largely, from a few megabytes to dozens of gigabytes. Full
blockchain peers store a complete and up-to-date version of
the blockchain (on September 2016, the total size of block
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Figure 3: Bitcoin node classi�cation.
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headers and transactions consists of 80GB of data). Pruned
blockchain peers store an up-to-date version of the block-
chain with complete blockchain data for at least the last 2
days (the number of days for which to store complete
blockchain data can be tuned by users. Pruned mode is
estimated to reduce disk usage to around 2GB [7]). Al-
though only storing complete blockchain data for a few days,
pruned nodes are able to securely validate transactions
because they indeed store the required information from
their previous history of the blockchain, that is, metadata
about all known blocks and the UTXO set. Simplified
payment verification (SPV) clients have an up-to-date ver-
sion of the blockchain headers (a block header is an 80-byte
structure. On September 2016, the Bitcoin blockchain has
432,000 blocks, thus needing around 33MB of the disk
space). Additionally, SPV clients may store transaction data
from some transactions of interest. SPV clients are usually
deployed in mobile devices such as smartphones, where
having the full blockchain is generally unaffordable.

Peers can also be classified on the basis of their func-
tionality. 0ere are three functionalities needed for the
Bitcoin system to work. Mining is the computationally ex-
pensive task of trying to create blocks. New blocks are
appended to the end of the blockchain, thus making the
public ledger grow. Peers that perform mining are known as
miners. Some peers perform validation and relaying of the
transactions and blocks they receive, that is, they relay to
other peers valid transaction and block data, together with
network data. Some peers also have a wallet functionality,
that is, they store a set of key pairs, they track the amount of
bitcoins deposited on addresses associated with those keys,
and they are able to create transactions that spend those
bitcoins. 0ese functionalities do not necessarily exclude
each other, that is, a peer may perform more than one
functionality at the same time. Additionally, although not
strictly necessary for Bitcoin to work, some peers may
provide other functionalities. For instance, they may provide
a DNS service, that offers information about existing peers;
a block explorer service, where it is possible to query for
transaction and block data through a graphical interface; an
exchange service, where users can buy or sell bitcoins in
exchange for other currencies; and mixing services, where
users are able to obfuscate the history of their coins.

Depending on their connectivity, peers can be classified
into listening peers or nonlistening peers. Listening peers are
nodes that accept incoming connections, while nonlistening
nodes are those not doing so. Although most Bitcoin full
implementations listen for incoming connections, some
network configurations do not allow these connections to be
created (e.g., peers behind NAT).

Even though the original Satoshi Bitcoin paper implicitly
assumed that peers would use only one protocol, the Bitcoin
economy has grown much bigger than the original speci-
fication, giving place for lots of protocols to arise.We will use
the term “Bitcoin protocol” to refer to the network protocol
used by the current standard implementation, the Satoshi
client. Other protocols that currently exist on the Bitcoin
system are mainly targeted to optimize pooled mining and
speed up data propagation. Getblocktemplate is the new

Bitcoin pooled mining protocol (supersedes the previous
mining protocol getwork), where the full block data are sent to
miners. 0is allows miners to change the content of the block
by themselves, thus gaining autonomywith respect to the pool
servers. Stratum is a protocol first designed for lightweight
clients and later extended to handle pooled mining. With
respect to mining, it does not send full blocks to miners, thus
better scaling with the number of transactions but providing
less autonomy to miners to decide what to include in the
blocks. 0e Bitcoin relay network has a protocol for com-
municating with Corallo’s fast relay network backbone, a
6-node network intended to speed up the relaying of Bitcoin
data. Similarly, Falcon is also a backbone of nodes intended to
make Bitcoin data propagation faster. Peers can connect to
Falcon using either the Bitcoin protocol or a specially
designed network protocol that relays packets as received
(instead of waiting for all packets of a full block to be received
before starting to relay that block). Again with the purpose of
speeding up the block propagation, FIBRE (Fast Internet
Bitcoin Relay Engine) is a protocol that uses UDP with
forward error correction to decrease the delays produced by
packet loss. It also introduces the usage of compression to
reduce the amount of data sent over the network. 0e
lightning network is arising as one of the solutions to Bitcoin
scalability limitations. In this context, FLARE is the new
proposal for a routing protocol for the lightning network.

3.2. Archetypal Bitcoin Nodes. 0e term “full client” is used
to define peers that perform full validation of transactions
and blocks. In order to perform this full validation, they need
to store either the full blockchain or a pruned version. 0ere
currently exist many implementations of full clients.

0e reference implementation of Bitcoin is known as the
Satoshi client, which is currently used to refer to both the
Bitcoin core and bitcoind. Bitcoin core provides a graphical
interface, whereas bitcoind is intended for RPC use and does
not have a graphical interface. Currently, the Satoshi client is
a thick client that may work either with the full blockchain
(this is currently the default option) or with a pruned
version. It used to have mining functionalities incorporated,
but one of the latest versions [8] removes the internal miner
and leaves just a minimal functionality for testing purposes.
0e Satoshi client performs validation and relaying of blocks
and transactions and provides a basic wallet. It serves as
a reference for the Bitcoin protocol and also incorporates the
Bitcoin mining protocol Getblocktemplate. 0e software
tries to create outgoing connections to the P2P network and
also listens for incoming connections from other peers.

In early 2016, there was a vivid debate about a change in
the consensus rules to increase the block size limit. From that
debate, three different forks of the Satoshi client appeared
(which maintain the original properties but change the
consensus rules regarding the block size limit). Bitcoin classic
increased the block size limit to 2MB. Bitcoin XT changed
the limit to 8MB (with subsequent increases over time).
Bitcoin Unlimited proposed to remove the limit.

Apart from the implementations that appeared from the
disagreements on how to handle block size limitations, other
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forks from the Satoshi client currently exist, for instance,
Bitcoin Knots. 0ere also exists some implementation of full
clients that are not forks of the Satoshi client. For instance,
Bitcore (Javascript), bitcoinj (Java), or btcd (Go).

SPV clients are peers that only have a full copy of the
blockchain headers, which allows them to save on space
requirements. However, they are not able to perform full
validation of transactions and blocks since they lack the
needed information to do so. 0eir main functionality is as
wallets. To that end, apart from the blockchain headers, they
also store cryptographic keys that allow them to spend
bitcoins and the transactions that are related to those keys.
SPV clients use the Bitcoin SPV protocol.

0ere exist many implementations of SPV clients, for
instance, breadwallet, Electrum, Bither, GreenBits, Simple
Bitcoin, Bitcoin Wallet, or MultiBit HD.

SPV clients are said to be lightweight clients because they
minimize the resources needed to accomplish their func-
tionality. However, there exist other lightweight clients that
are not based on SPV. 0e current alternatives are cen-
tralized approaches, where clients connect to a set of pre-
defined servers that relay them the information they need in
order to work as wallets. 0is approach requires to trust the
servers. 0e specific amount of data about the blockchain or
cryptographic keys stored by these clients depends on each
implementation. Some of them publish their source code for
public review, while others do not. 0e protocol is also
specific. Some examples of these kinds of wallets are My-
celium, Coinomi, Coin.Space, or Copay.

Solo miners are peers whose main functionality is
mining. Initially, they had a full copy of the blockchain (or at
least a pruned copy), in order to be able to validate the
transactions they include in blocks, and they communicated
using the Bitcoin protocol.0ey also needed a wallet in order
to manage their mining rewards. However, as mining has
become more and more specialized with the introduction of
dedicated hardware, the paradigm has changed, and cur-
rently, the mining task is split into two: block structure
creation and hashing.0e first task is performed by peers that
do have a copy of the blockchain and validate the transactions
they include in blocks, whereas the second task is performed
in specialized hardware, optimized to speed up hashing.

Moreover, lots of miners group together in order to
reduce the amount of redundant work and to minimize the
variance of the rewards obtained from the mining process.
Groups of miners are known as pools and usually operate as
client-server architectures, with the pool operator providing

a pool mining server to which pool mining clients connect to
in order to retrieve their portion of work. Clients do not need
to have any knowledge about the blockchain nor to perform
any validation on transactions. Clients communicate with
the pool server via specifically designed protocols such as
stratum.

Some well-known software implementations for client
miners are cgminer or BFGMiner. A basic miner server is
included in bitcoind, and some existing complete mining
servers are CoiniumServ, ecoinpool, or Eloipool.

Table 1 summarizes the properties of the aforementioned
archetypal Bitcoin nodes. Regarding blockchain knowledge,
F stands for full blockchain, P for pruned, and H for headers
only. With respect to functionality, W means wallet, M
mining, and V/R validation and relaying. Concerning
connectivity, L means listening, while NL stands for non-
listening. Finally, as regards to the protocol, B stands for
Bitcoin, S for stratum, and SP for specific protocols.

3.3. Network Description. In order to better characterize the
so-called Bitcoin network, let us define three subsets of the
overall network, as represented in Figure 4:

(i) 0e reachable Bitcoin network is composed of all
listening nodes that talk the Bitcoin protocol. 0e
size of the reachable Bitcoin network is estimated to
be in the range of 5,000 to 10,000 nodes [9].

(ii) 0e nonreachable Bitcoin network is made of nodes
that talk the Bitcoin protocol, regardless of whether
they are listening for incoming connections. 0e
size of the nonreachable Bitcoin network is esti-
mated to be 10 times bigger than that of the
reachable Bitcoin network.

(iii) 0e extended network comprises all nodes in the
Bitcoin ecosystem, even those not implementing the
Bitcoin protocol. 0is network includes, for in-
stance, pooled miners communicating with the pool
server using only the stratum protocol. To our best
knowledge, there are no estimations on the number
of nodes that belong to the extended network.

Both the reachable and nonreachable Bitcoin networks
are P2P networks: they are distributed systems built without
mediation of a centralized server or authority, they can adapt
to changes in the network and their participants autono-
mously, and their nodes contribute to storage, computing
power, and bandwidth to the network.

Table 1: Properties of archetypal Bitcoin nodes. 0e properties described in the table refer to the most common nodes of each type, but due
to the vast heterogeneity of Bitcoin nodes, some differences may be found in the real network.

Node Blockchain Functionality Connectivity Protocol
Full client F/P V/R, W L/NL B
SPV client H W NL B
Non-SPV light client — W — S/SP
Solo miner F/P V/R, W, M L/NL B
Pool mining server F/P V/R, W, M L/NL B/S/SP
Pool mining client — W, M — S/SP
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In this section, we have provided a detailed description
of the Bitcoin network by �rst describing the main prop-
erties that de�ne a Bitcoin peer, then identifying the most
common Bitcoin peers, and �nally providing an overview of
the network. Having described the Bitcoin network, the next
section provides its characterization as a P2P network.

4. Network Characterization

In order to characterize the new P2P network paradigm that
cryptocurrency networks represent, we perform an analysis
of the Bitcoin P2P network using the taxonomy de�ned by
Lua et al. [10] for the comparison of di�erent P2P overlay
network proposals. Following the same taxonomy, we will be
able to stress the di�erences of such new networks in
comparison with the existing ones. �e following analysis is
performed aiming only at the Bitcoin reachable network,
following the classi�cation established in Section 3, since it is
the only full P2P part of the Bitcoin network.

4.1. Decentralization. Decentralization assesses to what ex-
tend the analyzed network presents a distributed nature or,
on the contrary, its con�guration shows some centralized
characteristics. In that sense, the Bitcoin network is a non-
structured P2P overlay with some similarities with Gnutella.
With a �at topology of peers, in the Bitcoin network, every
peer is a server or client, and the system does not provide

centralized services nor information about the network
topology.

4.2. Architecture. �e architecture describes the organization
of the overlay system with respect to its operation. As we
already indicated, the Bitcoin network presents a �at archi-
tecture with no layers nor special peers. �e network is formed
by peers joining the network following some determined basic
rules, where randomness is an essential component. Such
a random behavior in the network creation intends to generate
an unpredictable and uniform network topology, unknown to
its users. As we will see in Section 5, such lack of knowledge
about topology is needed for security reasons.

4.3. Lookup Protocol. One of the main problems in P2P
networks, specially those used for content distribution, is the
lookup query protocol adopted by the overlay to �nd the
desired content. However, although the Bitcoin network can
be regarded as a content distribution network (where
content is transactions and blocks), the information �owing
in the network is completely replicated in every node. Hence,
there is no need for such a lookup protocol since in-
formation is always available at one hop peer at most.
However, information propagation has to be performed in
order to synchronize all peers of the network with the same
data. Such a propagation is performed through the con-
trolled �ooding protocol.

Reachable

Nonreachable

Extended

Figure 4: Abstraction of the de�ned network subsets: nodes in the reachable network accept incoming connections; nodes in the
nonreachable network just create outgoing connections; nodes in the extended network do not implement the Bitcoin protocol (for instance,
miner clients using the stratum protocol).
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Mainly, the controlled flooding protocol works on a push
paradigm, propagating the data as they are generated. In-
stead of being directly sent, data availability is announced to
the selected peers, and in case a peer lacks some of the
announced information, he requests it back to the an-
nouncer. Two types of data structures are propagated
through the network in that way: transactions and blocks.

4.3.1. Transaction Propagation. Transactions are the basic
data structure flowing though the Bitcoin network and the
one most usually seen. Every single node can take part in
a transaction by simply using a wallet, no matter of its type.
Transactions flow though the network aiming to reach every
single node to, eventually, be included in a block. 0e av-
erage number of transactions per day during September 2017
was 222,458 moving around 1,808,009 bitcoins between
different accounts (raw data obtained from https://
blockchain.info/charts).

4.3.2. Block Propagation. Blocks are the data structure the
blockchain is built from and include some of the trans-
actions that have been created during the block mining
process. Unlike transactions, blocks require a tremendous
hashrate to be generated, which virtually limits their creation
to mining pools. Moreover, the block generation throughput
is set by design to 6 blocks per hour, periodically adjusting
the block mining difficulty according to the total network
hashrate.

Nonetheless, a pull data synchronization mechanism is
also performed in the network, and while having a quite
specific use, it is fundamental for its proper operation. Its
main purpose is to synchronize the blockchain of outdated
nodes, that have been off-line when data have been prop-
agated. Outdated nodes request an on-demand synchroni-
zation to their peers during the bootstrapping phase,
obtaining all the missing blocks in their local blockchain.
Such a request does not refer to specific block values but to
all blocks above the last block the enquirer is aware of.
Besides blocks, on-demand propagation of other types of
data, such as transactions, is not set by default. Only nodes
that have built a full index of transactions along the
blockchain, like block explorer services, can provide this type
of data since normal nodes only track transactions bounded
to their addresses.

4.4. System Parameters. Different P2P network overlays
require a set of system parameters for the overlay system to
operate. For instance, structured P2P networks require to
store information on the distribution of peers in the network
in order to improve routing performance. However, the
Bitcoin P2P network, in line with other unstructured P2P
overlays, does not require any special system parameters for
the normal behavior of the network. Every single node could
join the network with no prior knowledge of it. Apart from
that, some default parameters are used by nodes, such as the
maximum connection limit set to 125, although such a value

is not a restriction and each node could select the number of
connections it wants to maintain.

4.5. Routing Performance. Differing from traditional P2P
networks (such as Gnutella [11]), Bitcoin does not follow
a multihop routing scheme. As already pointed out before,
peers in the network store a replica of all the information
that has been flowing through the system up to the date,
namely, the blockchain. In that way, no queries are for-
warded between peers since all information is supposed to be
located at one hop peer at most. 0erefore, data are guar-
anteed to be located if the network is synchronized, and no
routing protocol is needed nor used, apart from the syn-
chronization protocol.

Propagation delay is therefore a fundamental factor for
the Bitcoin network in order to achieve synchronization at
any given time. In that way, Decker and Wattenhofer [12]
analyzed the block propagation time for 10,000 blocks and
discovered that it followed an exponential curve, being the
median block propagation time 6.5 seconds while the mean
was located at 12.6 seconds. However, the distribution
showed a long tail, implying that a short percentage of the
nodes (5%) required more than 40 seconds to receive the
blocks. Furthermore, an analysis of how block size influences
on the propagation delay was also performed.0ey reach the
conclusion that, for small amounts of data, that is, less than
1 kB, there is a huge overhead during the propagation since
the protocol involves multiple messages while negotiating
the information that has to be forwarded. 0is applies ba-
sically to transactions, actually to a huge amount of them
(96%), while not to blocks. For data size larger than 20 kB,
the added overhead is negligible (around 80ms).

4.6. Routing State. Despite being a content distribution
network, the routing state of Bitcoin cannot be directly
defined due to the randomness and dynamism of its to-
pology and to the fact that it is not known. Moreover, as we
have pointed out before, no multihop routing is performed
since data could be found at one hop peer at most.

4.7. Peers Join and Leave. How to build the network is
a classic problem P2P networks have to deal with. From
building the network from its roots to how nodes deal with
peer disconnection, P2P networks need to be highly
adaptable to avoid partitioning. In order to deal with this
problem and also provide a fair and secure way to choose the
peers a node is going to be connected to, the Bitcoin network
performs a particular network discovery mechanism.

By default, all peers maintain up to 125 connections with
other peers. Each node will start 8 of those connections with
other peers (namely, outgoing connections) and will accept
up to 117 from potential peers (namely, incoming connec-
tions). Despite the name, all connections are bidirectional. In
order to pick the outgoing connections, every single node
will look for a subset of nodes it stores in a local database.
0is database is formed by two different tables: tried and
new. Tried table contains addresses from peers the node has
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already connected to, and new table contains addresses the
node has only heard about. Additionally, when the node tries
to establish a connection to the network for the first time, it
queries a well-known list of DNS nodes, that will provide
a set of online potential peers (further information about
how peers are stored and selected can be found in [13]).

Nodes try to always maintain their 8 outgoing con-
nections, selecting new peers from the database if any of the
established connections is dropped. Peers are stored and
selected from the database following a pseudorandom
procedure that gives the network high dynamism and keeps
its structure unknown. Peer information can be obtained by
a node following two ways. First of all, a node could request
such data to its neighbors, in order to fill up its database,
through sending a getaddr message, or could receive such
information spontaneously from one of its peers without any
kind of request. In both cases, the information is sent using
a set of addrmessages, containing up to 2,500 peer addresses
both from the neighbor’s tried and new tables. Such ad-
dresses are stored in the local node’s new table. On the other
hand, an addr message containing a single address could be
sent to a node when a node wants to start a connection with
a potential peer. By sending its address, the node notifies the
receiver that it has been picked as a peer, and if the latter has
room for more incoming connections, the communication is
established. Peer addresses received in that way are stored in
tried table. All addresses are stored in the database together
with a timestamp that helps the node to evaluate the
freshness of such an address when selecting a peer.

4.8. Security. Security in P2P networks has always been
a broad topic sincemultiple security threats can be identified in
different P2P implementations. 0e interested reader can refer
to Wallach’s survey [14] for an introduction to the topic of
security in general P2P networks, to Bellovin’s paper [15] for
a description focused on the security issues affecting specific
P2P protocols such as Napster and Gnutella, and to [16] for an
introduction to security problems in P2P SIP communications.

However, in P2P cryptocurrency networks, security
takes a different twist. At first sight, one could believe that
the threats P2P cryptocurrency networks face are a subset of
the threats found in standard P2P networks. However, as we
will see in detail in the next section, most of the threats
encountered in general P2P networks do not apply directly
to P2P cryptocurrency networks due to the cryptographical
mechanisms used by the currencies and the level of security
offered by their protocols.

Additionally, one can also believe that multiple new
threats will also arise in cryptocurrencies due to the sensi-
tivity they have as money transfer networks. However, as we
will see in the next section, this is not also the case.

In the next section (Section 5), we provide a detailed
review of the most common security threats identified for
typical P2P networks and discuss to what extent they affect
the Bitcoin network.

4.9. Reliability and Fault Resiliency. Reliability and fault
resiliency analyze how robust the overlay system is when

subjected to faults. Typically, such robustness measurements
are related to nonintentional failures, for instance, by a massive
disconnection of peers of the network or an increasing volume
of information being transferred through the network, but do
not include intentional attacks that would be categorized inside
the security properties of the network.

Bitcoin implements a distributed consensus protocol
resilient to Byzantine faults. 0at is, the protocol is resistant
to arbitrary faults produced in the participating peers, from
software errors to adversary attacks. 0e main idea behind
this protocol is to use a proof-of-work system to build the
public ledger where transactions are stored. Appending new
information to the public ledger requires a huge amount of
computer power, thus preventing attackers to monopolize
ledger expansion and censuring transactions. In a similar
way, changing the content of the blockchain is also com-
putationally expensive, up to the point that transactions are
considered secure when they have 6 confirmations (i.e., five
blocks have been created on the top of the block that in-
cluded the transaction). Additionally, the blockchain is
replicated on all full blockchain nodes, contributing to the
fault resiliency of the system and providing high availability
of the ledger data.

Assuming that categorization, the Bitcoin P2P network
has been designed with a high level of reliability, thanks to
the redundancy that implies the storage of all the relevant
information of the network in every peer of the network.
With this approach, the high inefficiency level in terms of
storage space is translated into a high resilience of the
network since the availability of a single node in the network
contains the information to keep the system alive. Moreover,
the proof-of-work system allows peers to (eventually) reach
a consensus state, even in the presence of attackers trying to
subvert the system. As a drawback, the consensus protocol is
somehow slow, with transactions needing 9 minutes (me-
dian confirmation time as of October 13, 2016 [17]) to
confirm, and expensive, requiring the consumption of lots of
energy for each mined block.

5. Security Concerns in P2P Networks

Security in P2P networks has been extensively studied in the
literature. In this section, we provide a broad overview of the
main security problems that arise in P2P networks, we re-
view how each of the security problems may affect the
Bitcoin network, and if it is the case, we explain the specific
countermeasures Bitcoin provides in order to defend from
each attack.

0e list of reviewed attacks goes over the most typical
types of attacks and security flaws found in common P2P
networks. It is clear that specific networks and applications
might present specialized attacks, but in most cases, they can
be seen as a specification of the attacks presented here.

So as to provide a clear picture of how common P2P
attacks affect Bitcoin, we first review the three attacks that
have been shown to be clearly applicable to Bitcoin. After
that, we include a list of attacks identified for common P2P
networks, but this does not have such a high impact on
Bitcoin, reviewing why the attacks do not apply to the specific
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Bitcoin network and detailing the particular cases where those
attacks (or some variation) may somehow relate to Bitcoin.

In favor of a clear and concise presentation, we have not
explicitly covered some recent attacks such as [18], which do
not directly affect or involve the Bitcoin network, or
network-related attacks such as [19], which rely on BGP
hijacking and are thus out of the scope of our study.

5.1. DoS Flooding. Denial-of-service (DoS) attacks are
possible in most P2P scenarios and are especially relevant,
for example, in P2P streaming applications [20–22]. Given
their dynamic nature, P2P networks are usually more resilient
against generic DoS attacks than more static networks. Tar-
geted DoS attacks to specific parts of the P2P network (a given
node) or services are usually more important.

0ere exist several potential DoS flooding attacks in
Bitcoin, but the system has countermeasures in place.
Transaction flooding is prevented by not relaying invalid
transactions and imposing fees to valid transactions. On one
hand, transactions are signed by the senders in order to
demonstrate that they are authorized to transfer those bit-
coins. If the signatures of a transaction are not correct, the
transaction is considered invalid and is not relayed to the
network. On the other hand, the default protocol does not
relay transactions without fees (except for a few very specific
cases that would also result in very expensive attacks).
Moreover, transaction’s fees increase for lower input ages
(i.e., for bitcoins that have been moved recently), so an
attacker trying to generate a huge amount of transactions
that move the same bitcoins would have to pay increasing
fees. Block flooding is prevented by only relaying valid blocks,
which must contain a valid proof of work. In order for
a block to contain a valid proof of work, its hash must be
lower than a given target. Obtaining a block with such a hash
is a computationally expensive task, thus performing DoS
attacks with block data unfeasible. Network data flooding is
easier than the previous two cases because it is indeed
possible to create valid network messages without paying
fees nor spending computation cycles. However, Bitcoin has
a banning protocol: peers may ban other peers for one entire
day if their misbehavior score crosses a certain threshold.
0e misbehavior score is increased for sending duplicate
version messages, sending large messages, and sending in-
valid blocks. Given the nature of Bitcoin, cpu usage DoS is
possible by trying to make peers spend lots of time validating
a transaction or a block. In order to prevent this kind of
attacks, Bitcoin tries to catch errors before starting to val-
idate a transaction, limits the number of signature opera-
tions per transaction and per block, and limits the size of the
script. Finally, previous versions of the Bitcoin client were
also susceptible to continuous hard disk read attacks, where
an attacker repeatedly sent double-spend transactions that
passed the initial checks and required to retrieve data from
disk in order to be fully validated. 0is attack is now pre-
vented by checking that the inputs of the transaction that is
being validated are in the UTXO set (i.e., checking whether
the transaction is a double spend) before retrieving any
information from disk.

5.2. Eclipse Attacks. An eclipse attack occurs when an at-
tacker creates (or has control of) a large number of distinct
nodes that populate the whole neighborhood of the victim
node [23]. 0e attacker can then eclipse the view of the
network that has the victim. Common solutions for sybil
attacks are usually insufficient to defend against eclipse
attacks [24].

In a cryptocurrency network, isolating a node from the
rest of the network may enable two other attacks to the
eclipsed peer. First, an eclipsed peer may undergo a cen-
sorship attack because the victim’s transactions must pass
through the attackers’ nodes in order to reach the network.
0erefore, the attacker may decide not to forward these
transactions, thus censoring the victim’s transactions. Sec-
ond, if the eclipsed victim is a miner, the attacker can drop or
delay the propagation of the new blocks found by the rest of
the network. As a consequence, the victim wastes compu-
tation time trying to mine on the top of old blocks.

Bitcoin has many defense mechanisms to prevent eclipse
attacks, some of which were added recently, after a study
pinpointed some of the flaws of the then vigent imple-
mentation [13]: the client restricts the amount of outgoing
connections to addresses in the same network, randomizes
the address selection procedure, and maintains a big list of
peers, among others.

5.3.UserProfiling. In some P2P networks, it is easy to record
all the activities of a giving node allowing attackers to easily
create identifying profiles of users and their activities. 0is is
relevant in anonymous systems, or systems that want to
guarantee a certain degree of anonymity [16, 25].

Bitcoin provides pseudonymity by allowing users to
receive payments to their addresses, which are not initially
linkable to their identities. 0e usage of new addresses for
each transaction in the system is intended to provide
unlinkability between the different actions a single user
performs through Bitcoin. 0erefore, user profiling in Bit-
coin usually consists in attacking the unlinkability between
different addresses a single user has. 0ree different ap-
proaches have been taken to perform address clustering:
using network layer data [26], performing analysis over the
transaction graph [27–29], and analyzing Bloom filters [30].
0e idea of using network layer data to cluster addresses is
straightforward: if an attacker is able to connect to all the
peers of the network, the first node that sends him a given
transaction should be the creator of that transaction.
0erefore, if the attacker first receives two different trans-
actions from the same peer, he can infer that the source
addresses of both transactions belong to the same user.
However, as simple the attack may seem conceptually, it is
not that easy to perform in practice. It is not trivial to
connect to all nodes of the network since most of them do
not accept incoming connections. Moreover, some peers
anonymize their connections using Tor. Finally, collected
data are very noisy, and therefore, it is not easy to make
strong claims when analyzing it. Regarding transaction
graph analysis, there exist mixing services that are able to
effectively break the relationship between an address and its
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past. Additionally, the use of a secure wallet that tries tominimize
the leaked information about addresses clusters helps mitigate the
consequences of this kind of analysis. Finally, concerning the
usage of bloom filters, users must be very careful when choosing
the parameters of the filter and when generating different filters
thatmatch the same set of addresses andpublic keys.Additionally,
new protocols are being designed to allow lightweight clients to
retrieve their transactions of interest while maintaining privacy.

Bitcoin’s scalability problems have triggered the search
for new solutions that would allow to increase the trans-
action throughput of the network. Several proposals provide
mechanisms to create off-chain payment channels, such that
secure transactions between Bitcoin users may be performed
without needing to include all the transactions into the
blockchain. In turn, these solutions may also entail privacy
problems that are yet to be carefully studied [5].

5.4. Other Attacks. After analyzing the three main attacks
that have threatened the Bitcoin network over the last years,
we summarize other common P2P attacks that have a lesser
impact on Bitcoin. We will show how some of those attacks
could be used as a preliminary phase to achieve one of the
three previously introduced ones, while others are not
harmful for the Bitcoin network due to its design.

5.4.1. ID Attacks. Two different subattacks can be identified
in this category:

ID mapping attack: when a node changes its own
identifier with malicious purposes. As an example, in
DHT-based P2P networks, a node can gain control over
given resources by changing its own identifier [31].
0ese kinds of attacks are more difficult in networks
where the identifier is derived from a public key [32].
ID collision attack: similar to previous attacks, here the
attack is considered to happen when there are dupli-
cated identifiers. 0e problem is usually prevented by
ensuring the uniqueness of identifiers [16].

0ere is no clear concept of a peer identifier in Bitcoin.
Two different properties could be considered identifiers in
Bitcoin, depending on the exact entity one wants to identify:
IPs and Bitcoin addresses. IPs allow to identify peers,
whereas addresses are linked to users. A malicious peer may
benefit from a change of IP if it is banned for misbehavior.
Each peer maintains a banscore for each of its neighbors.
0is banscore is increased whenever the peer misbehaves. If
the banscore surpasses a certain threshold, the neighbor is
banned for 24 hours. 0erefore, being able to change the IP
allows a peer to effectively reset its banscore. Regarding the
second kind of identifiers, Bitcoin addresses, the recom-
mended behavior for users is indeed to change them fre-
quently. In fact, the suggestion is to not reuse addresses, that
is, to create a new address for each transaction made in the
system. 0is allows to protect user privacy.

5.4.2. Sybil Attack. A sybil attack is a well-known attack in
P2P networks, where a malicious user creates multiple

identities in order to control the system or parts of the system
[33].0is has been very extensively studied in the literature in
the context of several P2P technologies [34, 35].

Sybil attacks may be a problem in Bitcoin if they are able
to eclipse all the connections from a peer (see Section 5.2 for
details of eclipse attacks). However, besides its extension to
an eclipse attack, a peer with multiple identities cannot harm
the system regarding the main content of the network:
transactions and blocks. Blocks cannot be counterfeit
without the corresponding proof of work, and transaction
generation entails an associated fee (in a similar way that was
described in flooding attacks in Section 5.1). Nevertheless, if
lots of sybil nodes start performing a huge amount of
connections to the existing network, they may monopolize
all available incoming connection slots, and the system
decentralization could be reduced.

5.4.3. Fake Bootstrapping. Network access in P2P envi-
ronments starts by connecting to one or multiple nodes of
the network. 0is first contacted node is known as the
bootstrap node. A malicious bootstrap node can influence
the view of the network for the new user [23]. Several so-
lutions already exist for this problem such as not relaying in
a single bootstrap node, use of cached peers for subsequent
connections, random address probing, using external
mechanisms, using specific bootstrapping services, or using
network layer solutions (e.g., use of a special multicast group
for bootstrapping) [16, 36, 37].

Bitcoin deals with bootstraping issues by defining a local
peer database on every single node, that is queried following
a pseudorandom protocol to obtain a subset of potential
peers (see Section 4.7 for details). In that way, Bitcoin applies
most of the solutions for the fake boostrapping protocol,
such as not relaying in a simple bootstrap node, by estab-
lishing 8 outgoing connections on every bootstrap, use of
cached peers for subsequent connections, by using peers
stored in tried table, random address probing, by using
a pseudorandom protocol to store and retrieve peer ad-
dresses from the database, and using external mechanisms by
quering a list of well-known DNS nodes or even using a list
of hardcoded nodes, if the DNS cannot be reached.

5.4.4. Unauthorized Resource Access. P2P networks often
use some sort of private data that have to be protected from
unauthorized access. Common solutions are those typically
employed for distributed access control [38, 39].

Bitcoin is based on public key cryptography, where
private keys are needed to authorize payments. 0erefore,
private keys must be kept secret, and two methods are
usually employed: encryption and off-line storage. By using
encryption, private keys remain secure even if an attacker is
able to retrieve the key file as long as the encryption key
remains secret. As for off-line storage, different approaches
can be taken with different technical sophistication levels,
from the usage of dedicated hardware devices to paper
wallets. Notice that unlike other uses of public key cryp-
tography where private keys need to be online (for instance,
in the handshake process in TLS), Bitcoin network operation
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does not involve private information since validations are
performed using public information. For that reason, off-
line storage of public keys does not impact the network
performance.

5.4.5. Malicious Resource Management. A malicious node
can deny the existence of a given resource under its re-
sponsibility, or claim to have a resource it does not have.0is
is specially relevant in content distribution applications, and
common solutions are replication of resources [40], or use of
error-correcting codes to reconstruct missing parts of the
resource [41].

Bitcoin network is protected against malicious resource
management by, on one hand, the high amount of data
redundancy information of the network and, on the other
hand, the multiple neighbors a node of the network is
connected to. 0anks to the fact that peers establish con-
nections (by default) to 8 other peers, if a given neighbor
denies the existence of a certain resource, the peer can learn
it from his other neighbors. Moreover, if a neighbor says he
has some resource he actually does not have, peers will
notice when they try to retrieve it (since transactions and
blocks are identified by their hash).

5.4.6. Free Riding. A free-rider user or node in a P2P network
is a node that attempts to benefit from the resources of the
network (provided by other users) without offering their own
resources in exchange [42, 43]. Depending on the application,
this might not be an issue or even might not be considered
a security problem. It is usually described in content distri-
bution applications, and the main solutions proposed rely on
incentive- or penalty-based mechanisms [44].

Bitcoin is sustained by an equilibrium of economic in-
centives. Miners are remunerated for their work by
obtaining a reward for each block they successfully mine.
Additionally, transaction senders (and, although indirectly,
also transaction recipients) may include a fee to their
transactions, which is also collected by theminer of the block
that contains the transaction. As a consequence, miners are
encouraged not only to create blocks but also to include
transactions on those blocks. 0ere is, however, a set of
nodes whose role is important in ensuring the de-
centralization of the network and that do not directly receive
economic incentives for their work: full clients. While these
clients store the blockchain and perform validation and
relaying of transaction and blocks, they do not get a direct
economic reward in return for their work.

5.4.7. Man-in-the Middle (MITM). In the context of P2P
networks, a MITM attack is usually considered a routing
attack, similar to classical network MITM attacks. P2P
networks, which require multihop routing, will need to
include measures similar to onion routing in order to secure
connections between all nodes along the path [45, 46].

MITM attacks in Bitcoin are not a problem for trans-
action and block integrity because transactions are cryp-
tographically signed and blocks must contain a valid proof of

work. Transaction malleability may be a problem (refer to
Section 5.4.10 for a detailed explanation) in very specific
scenarios, but a solution is currently being deployed. Cen-
sorship is neither a problem because a single peer maintains
different connections. An attacker must be in the middle of
all of them to hide information to the peer (thus resorting in
eclipse attacks).

5.4.8. Replay Attack. A replay attack is produced when
a legitimated transmission is delayed or lately replayed with
malicious purposes. 0is is a very common network attack
that can affect P2P networks in several ways but is usually
solved at a protocol level.

Replaying transactions or blocks that have been sent to
the network does not have any effect on the Bitcoin network.
Nevertheless, delaying block propagationmay be a beneficial
strategy for miners [47]. By not immediately propagating
a block the miner has just found, the miner can start working
on top of this newly found block while making other miners
lose time working on the previous block. 0is strategy is
known as selfish mining and reduces the bound on the
percentage of hashing power an attackermust have in order to
successfully control the information appended to the ledger.

5.4.9. Routing Dysfunction. Routing dysfunction can be
presented in different aspects. On one hand, incorrect
routing involves attacks where a node routes messages in-
correctly (or drops them) [23]. 0ese attacks might not be
relevant in P2P networks that do not provide multihop
routing. Due to the flooding mechanism used to propagate
information through the network, the consequences of
a single node dropping messages are negligible.

On the other hand, in a fake routing update, the attacker
tries to corrupt a given route (equivalent to corrupting
a routing table for a given node) [23, 32, 48]. As we have
mentioned previously in Section 4, there are no routing
tables in the Bitcoin network. 0e most similar information
a peer stores is addresses from other peers. Note that no
information about where is this peer in the network nor its
connections are stored by the Bitcoin client, just the address
and a timestamp. 0erefore, the attack that better resembles
fake routing updates in Bitcoin is to send fake addresses.
0ese kinds of attacks are usually performed as a first step in
eclipse attacks, attacks already described in Section 5.2.

5.4.10. Tampering with Message Bodies. When using mul-
tihop routing, intermediate nodes can modify the content of
the relaying packets. End-to-end integrity has to be provided
in order to, at least, detect these types of attacks [16].

Tampering with the content of a block changes its hash
and, with very high probability, invalidates its proof of work.
0erefore, tampering with block data is not a feasible attack
on Bitcoin. On the other hand, transactions are a signed data
structure, with the signature cryptographically protecting its
integrity. 0erefore, an attacker can not tamper with a trans-
action to its will, for instance, by changing the destination
address of the bitcoins transferred on the transaction. 0ere is,
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however, a very specific situation where this kind of attack
would be possible (although the countermeasures that prevent
this attack are already implemented and ready to be deployed).
Because Bitcoin transactions are malleable, it is indeed possible
for an attacker to change some part of the transaction while
keeping the signature valid. 0is happens mainly because not
all parts of the transaction are signed (e.g., the signatures
themselves are not signed). 0e aforementioned situation
where malleability is a problem for Bitcoin happens when
a user is dealing with 0-confirmation transactions, that is,
transactions that have been sent to the network but have not yet
been included in a block. Because transactions are not yet in
a block, an attacker may change some of the unsigned part of
the transaction, creating another valid transaction that spends
the same inputs but has a different identifier (recall that
transactions are identified by their hash). 0en, if this trans-
action is part of a protocol where transactions are identified by
their hash, the attacker may be able to use it at his advantage.

6. Cryptocurrencies as Building Blocks for
Decentralized Applications

Cryptocurrencies are indeed a powerful tool for the de-
velopment of new decentralized applications (currently, the
best well-known application for P2P networks is as a content
distribution technology [49]), thanks to the distributed trust
mechanism in which they are based on. 0ree relevant
properties of cryptocurrencies can be used as a building
block for such applications:

(i) Secure distributed payment mechanism
(ii) Distributed storage with integrity by design
(iii) Secure transfer and distribution of digital assets

0e obvious use case of cryptocurrencies is, of course, to
adopt them as the payment layer in any systemwhere there is
the need to transfer money from a payer to a payee in
a totally distributed (and uncensored) fashion. Multiple
applications could benefit from a flexible payment system,
from P2P distributed storage schemes, where users could
hire local disk space for an economical incentive, to more
sophisticated scenarios, like mobile crowdsensing [50].
Mobile crowdsensing (MCS) is a distributed application
where the power of the crowd, jointly with the sensing
capabilities of smartphones they wear, provides a powerful
tool for data sensing, especially in those scenarios involving
user behavior or those that rely on user mobility, where
standard sensor networks may not be suitable. However,
including human participation in sensing tasks carries, at
least, three critical challenges [51]: user participation, data
sensing quality, and user anonymity. User participation is
extremely important in MCS since the performance and
usefulness of such sensor networks heavily depend on the
crowd sensor’s willingness to participate in the data col-
lection process. 0erefore, incentive mechanisms are of
utmost importance in MCS scenarios to engage as many
crowd sensors and provide the data collection center with
a considerable wealth of data. User participation can be
promoted by providing a pay-per-sense mechanism. However,

standard payment schemes have multiple drawbacks in a pay-
per-sense application. First of all, user enrollment in the
payment system entails a burden step for user participation.
Second, collateral costs of standard payment systems (mainly in
the form of fees) prevent their use in a pay-per-sense scenario.
Finally, standard paymentmechanisms do not provide privacy-
preserving properties, specially relevant when such payments
could identify sensed data from a particular individual whose
identity should not be disclosed. Cryptocurrencies can be
successfully used in mobile crowdsensing scenarios as a re-
wardingmechanism since they allow an affordable pay-per-sense
scheme with relevant privacy-preserving properties, as it has
been proposed in the Paysense system [52].

Distributed storage is also a very interesting property of-
fered by blockchain-based cryptocurrencies, but despite other
distributed proposals, its main advantage is the integrity-by-
design property that makes it so attractive for multiple
applications. For instance, multiple P2P networks need a dis-
tributed IP/name resolution mechanism, and special purpose
cryptocurrencies can solve this problem. An example of such
an idea is the cryptocurrency Namecoin [53]. Namecoin is
a blockchain-based cryptocurrency whose purpose is to pro-
vide network address resolution for network identifiers, nor-
mally human readable. In such a cryptocurrency, transactions
can store data for tying the network address with other
identifiers, and such transactions are stored in the blockchain
inhering its integrity properties. Keys used for creating the
transaction provide an authentication token for the owner who
registered the tie. Namecoins could be used as a DNS re-
placement in a P2P network or even for node authentication
when such authentication needs a tie between identity and keys
(for instance, using standard public key infrastructure, PKI).

Cryptocurrencies were designed to transfer money, but
its use can be extended to transfer other types of digital
assets. By using a cryptocurrency as a transport layer, digital
assets can be associated with cryptographic keys and can be
traded, using the secure information included in the
blockchain to determine the legitimate owner of every asset
at each specific time. Multiple examples of such digital assets
can be found, from shares of a company to DRM where the
property of the media object can be determined [54].
Furthermore, extending a bit the concept of asset, crypto-
currencies can also be used to store reputation, conceptu-
alized as an asset that users can store and transfer. Revisiting
again the example of mobile crowdsensing, we recall the fact
that data-sensing quality was one of the important chal-
lenges of such a scenario. In MCS systems, there is no
control over the crowd sensors, and it cannot be assumed
that all individuals will behave in the exact same manner or
will be equally honest. 0erefore, the overall quality of the
sensor readings can see itself deteriorated if counterfeit data
are received from malicious users. Hence, data validation
techniques should be properly deployed, and a commonly
used approach is to validate the data depending on the trust
level of the crowd sensor that reports it. In this particular
scenario, cryptocurrencies can be used as an annotation
mechanism [52], by which users earn or lose reputation
depending on the correctness of previous actions, accounted
by the amount of rewards that they previously obtained.
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Notice that, in this section, we have pointed out some
possible uses of cryptocurrencies in distributed applications
to show the broad intersection between both fields. How-
ever, an in-depth study on how interaction could be opti-
mally performed between cryptocurrencies and particular
scenarios is left for future work.

7. Conclusions and Further Research

In this paper, we have characterized P2P cryptocurrency
networks by providing a deep analysis of the most relevant
cryptocurrency nowadays: Bitcoin. By characterizing P2P
cryptocurrency networks using well-known taxonomy in the
field of P2P networks, we can conclude that such networks
present a new paradigm due to the main properties that
a cryptocurrency has to provide: reliability and security.

P2P cryptocurrency network reliability stands on top of
a strong redundant mechanism regarding system in-
formation. As a result, every peer of the network stores all
the relevant information of the system. With this approach,
the availability of a single node in the network contains the
information to keep all the systems alive. Notice that this
approach turns out to a high inefficiency level regarding
storage space, so this strategy is not followed by any other
P2P network paradigm. Furthermore, such an approach also
demands new synchronization mechanisms to provide all
nodes with the same correct information.

Information redundancy is also used in the security
plane for network topology protection. As we have seen, the
main attacks to cryptocurrencies are eclipse attacks, where
a victim or part of the network can be isolated. Such attacks
can be performed when an attacker takes advantage of his
position on the network topology. To avoid such possibility,
the network topology has to be protected, and crypto-
currency networks use two different measures for such
protection. On one hand, routing information should not be
disclosed, so cryptocurrency networks are not multihop
networks, and network nodes only are aware of one-hop
neighbors. Using this approach, no routing information has
to be provided to network nodes, and there is no restriction
regarding information availability since, as we have pointed
out above, information is replicated in every network node.
On the other hand, network topology disclosure also has to
be protected when nodes access the network. In such
a phase, cryptocurrency P2P networks use a pseudorandom
approach to determine each node connection to hinder the
topology structure of the network. Notice that this topo-
logical secrecy property of P2P cryptocurrency networks is
not so relevant in other P2P network paradigms, and for that
reason, the mechanisms to achieve it are also particular of
such environments.

Furthermore, somemechanisms specifically designed for
other P2P network paradigms are not needed in crypto-
currency networks due to the characteristics of the in-
formation flowing in such networks. 0is is the case of
multiple secure protections that try to prevent different
attacks. For instance, intrinsic cryptographic properties of
blocks and transactions can directly prevent DoS attacks,
replay attacks, or tampering with message bodies.

As a new paradigm, P2P cryptocurrency networks open
new research opportunities both as a direct field of study and
also as a tool for other applications. For instance, a more
formal analysis should be performed towards the pseudo-
random mechanisms used in this kind of networks for
selecting the nodes to connect to verify that network to-
pology is both unknown and uniform. Furthermore, the
development of a global P2P cryptocurrency network that
could provide service to multiple cryptocurrencies, taking
into account different particularities of each cryptocurrency,
could also be another interesting research line. On the other
hand, analyzing how such a new network paradigm could be
efficiently combined and integrated with other distributed
applications could also be a relevant topic for future work.
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