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Hidden charge order of interacting Dirac fermions on the honeycomb lattice

Elliot Christou,1 Bruno Uchoa,2 and Frank Krüger1,3

1London Centre for Nanotechnology, University College London, Gordon St., London, WC1H 0AH, United Kingdom
2Department of Physics and Astronomy, University of Oklahoma, Norman, Oklahoma 73069, USA

3ISIS Facility, Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire OX11 0QX, United Kingdom

(Received 2 May 2018; published 23 October 2018)

We consider the extended half-filled Hubbard model on the honeycomb lattice for second nearest-neighbor
interactions. Using a functional integral approach, we find that collective fluctuations suppress topological
states and instead favor charge ordering, in agreement with previous numerical studies. However, we show
that the critical point is not of the putative semimetal-Mott insulator variety. Due to the frustrated nature of the
interactions, the ground state is described by a novel hidden metallic charge order with semi-Dirac excitations.
We conjecture that this transition is not in the Gross-Neveu universality class.
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I. INTRODUCTION

The extended, half-filled Hubbard model on the honey-
comb lattice exhibits a rich phase diagram, even at mean-field
level. The low-energy excitations in the semimetallic phase
are massless Dirac fermions [1], which couple to the order-
parameter fluctuations and are known to change the universal
critical behavior to that of the Gross-Neveu-Yukawa (GNY)
[2] variety. For the transition from the Dirac semimetal to
the antiferromagnetic Mott insulator, driven by the on-site
Hubbard repulsion U , this has been well understood through
a combination of analytical low-energy theories [3,4] and
sign-free auxiliary-field quantum Monte Carlo [5–7].

Of the many broken-symmetry phases driven by nearest-
neighbor (NN) and next-nearest-neighbor (NNN) repulsions,
topological phases are favored by strong NNN interactions
(V2) [8], which can stabilize the Kane-Mele quantum spin
Hall phase (QSH) in the spinful model [9], or the Haldane
quantum anomalous Hall (QAH) state in the spinless case
[10]. Those states nevertheless compete with unconventional
charge order (see Fig. 1) that extends beyond the honeycomb
unit cell [11]. One would expect quantum fluctuations to play
a crucial role in determining the fate of the topological phases,
in particular the soft fluctuations associated with breaking
of continuous spin rotational symmetry in the QSH phase.
Unfortunately, the sign problem for large V2 prevents the use
of quantum Monte Carlo methods [12]. Extensive numerical
research into spinless [13–18] and spinful [19–22] models
using exact diagonalization, variational Monte Carlo, infinite
density matrix RG, and functional RG have been pivotal to
determine the phase behavior.

In this Rapid Communication, we analytically examine the
role of fluctuations for the phase competition along the V2

axis. We derive an effective low-energy description for the
quantum phase transition into the charge ordered CDW3 state
and analyze the leading instabilities in the presence of the
long-wavelength collective fluctuation fields via a functional
integral approach. Our analytical results are convincingly
consistent with numerical lattice calculations, which suggest

that CDW3 order is favored over topological Mott insulating
phases. However, surprisingly, we find that the onset of CDW3

order does not produce a many-body Mott gap, but rather a
novel hidden metallic order as a result of the frustration of the
V2 interaction on the triangular sublattices. The low-energy
excitations of this state are massless semi-Dirac quasiparticles
[23], which disperse linearly in one direction and paraboli-
cally in the other. We show that this state is robust against
fluctuation effects. We conjecture that the phase transition to
the metallic CDW3 state is not in the GNY universality class.

II. MODEL AND LOW-ENERGY DESCRIPTION

Our starting model is given by the Hamiltonian

H = −t
∑
〈i,j〉

∑
s=↑,↓

(c†iscjs + h.c.) + V2

∑
〈〈i,j〉〉

n̂i n̂j (1)

on the half-filled honeycomb lattice with NN hopping t and
NNN repulsion V2, where cis is an annihilation operator for an
electron with spin s on site i and n̂i = n̂i↑ + n̂i↓ the density
operator. The corresponding spinless model is obtained by
suppressing the spin index s. In the absence of interactions,
the low-energy theory of the semimetallic state describes
massless Dirac fermions at the corners of the Brillouin zone
Kν=± = 4π

3
√

3
(ν, 0),

Ht = vF

∫
|p|��

d-2p �†
ps

0(pxσ
xνz + pyσ

yν0)�p, (2)

where vF is the Fermi velocity, sμ, σμ, νμ (μ = 0, x, y, z)
are the 4-vectors of identity and Pauli matrices acting, respec-
tively, on the spin, sublattice, and valley spaces and

�p = (ψ+↑
pA ,ψ

−↑
pA ,ψ

+↑
pB ,ψ

−↑
pB ,ψ

+↓
pA ,ψ

−↓
pA ,ψ

+↓
pB ,ψ

−↓
pB ) (3)

is an eight component spinor. The measure d-2p = d2pN/A,
with A = 2π�2, conserves the number of states N between
the lattice and effective models, where � is the ultraviolet
cutoff.
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FIG. 1. Schematic phase diagram of the half-filled Hubbard
model on the honeycomb lattice. The on-site and NN repulsions U

and V1 induce antiferromagnetic (AFM) and charge-density wave
(CDW) states, respectively. At large NNN interactions V2, there
is phase competition between a topological Mott insulator and
charge-ordered states with enlarged unit cell (CDW3). The charge
modulation is shown relative to half filling.

Decomposition of Hamiltonian (1) in the bond-order order
channel, χ̂

μ

ij = c
†
i s

μcj , gives the effective description of the
topological Mott insulator states [8]. Enacting the mean-field
decoupling in this channel and imposing a translationally
invariant, sublattice dependent, and purely imaginary ansatz
〈χ̂μ

ij 〉 = iχμσ z, which is known to minimize the free energy
[8], the effective mass terms are

Hχ = 3V2

(
χμχμ +

√
3

2

∫
d-2p �†

pχ
μsμσ zνz�p

)
, (4)

where summation of repeated μ indices is implied. The singlet
(μ = 0) component of χμ describes the order parameter of
the QAH phase, which spontaneously breaks global time-
reversal symmetry, opening a Mott gap at the Dirac points.
Similarly, a nonzero triplet component (μ �= 0) describes the
QSH state, which spontaneously breaks SU(2) spin-rotational
symmetry but preserves time-reversal symmetry. The electron
mean-field dispersion takes the same form in the QAH and

QSH phases, |εsν (p)| =
√

v2
F |p|2 + (3

√
3V2χ

μ/2)2 .
To describe the competing CDW3 phase (Fig. 1), we

decouple the interaction in the density channel and apply
the plaquette ansatz [11] for the charge occupation 〈n̂i〉 =
ρ0 + ρi which describes the deviation of charge occupation
{ρi} = {ρ,−ρ,−(ρ + �),−ρ, ρ, ρ + �} from the half fill-
ing value ρ0 = Ns/2 (where Ns = 1 or 2 is the number of
fermionic spin flavors). In total, there are nine equivalent
configurations of the CDW3 state related by 2π/3 rotations
and translations [13]. The constraints 0 � � � ρ � ρ0 and
ρ + � � ρ0 ensure the filling is devoid of pathology. Such a
phase spontaneously breaks translational symmetry and keeps
only one mirror: C6v → C1v .

px

py

px py

Γ K+K− Λ

ε

FIG. 2. (a) Gray area: folded Brillouin zone in the CDW3 state.
Valleys in the normal state (red and blue dots) fold into the center
of the zone. (b) Low-energy bands of the CDW3 state around the
� point. At half-filling, the system is gapless, with semi-Dirac
quasiparticles.

The CDW3 phase is characterized by an enlarged six-site
unit cell covering an entire honeycomb plaquette (Fig. 1). The
resultant down-folding of the bands increases the number of
energy levels at a given momentum threefold. That gives rise
to six bands with an additional twofold degeneracy in the
spinful model, and maps the Dirac points onto the � point
(p = 0), as shown in Fig. 2(a). Integrating out the high-energy
bands (see Ref. [24]), the interaction part of the Hamiltonian
H̃ = H̃t + H̃δ in the projected space reads

H̃δ =
∫

�̃†
ps

0

{
δ1τ

zτ 0 + δ2

2
[Cnτ

0(Smτx − Cmτy )

− Snτ
z(Cmτx + Smτy )]

}
�̃p + E0, (5)

with δ1 = 2V2(ρ − �), δ2 = 2V2(ρ + �/2), E0 = (4δ2
2 −

δ2
1 )/6V2. Here, Cn = cos(2πn/3), Sn = sin(2πn/3) and

n,m = 1, 2, 3 enumerate the nine possible broken-symmetry
state configurations. Written as a combination of irreducible
representations [25,26], order parameter δ1 couples to the
charge imbalance between the A and B sublattices, whereas
δ2 couples to the broken rotations (n) and translations (m) of
each configuration. The energy dispersion is degenerate up to
a 2π/3 rotation, and hence all configurations have the same
free energy. In the following, we refer to the (n,m) = (3, 1)
pattern in Fig. 1.

In the projected space, H̃t has the same form as in (2)
adopting the substitution 	σ ⊗ 	ν → 	τ ⊗ 	τ to represent the
effective, four-dimensional low-energy theory after down-
folding and projection. The resulting mean-field dispersion is
given by

|ε̃s,±(p)| =
√

v2
F |p|2 + δ2

1 + δ2
2 ± 2δ2

√
v2

F p2
y + δ2

1 . (6)

III. MEAN-FIELD PHASE DIAGRAM

We expand the Ginzburg-Landau free energy density in
terms of the different order parameters. Since there is no
evidence for phase coexistence we analyze the cases of
QAH/QSH order and CDW3 order separately. This is suf-
ficient to identify the leading instability along the V2 axis.
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For the topological Mott insulators, we obtain the free-energy
expansion

fmf(χ ) = αmfχ
2 + βmf|χ |3 (7)

with χ = χ0 and χ = χz in the QAH and QSH phases,
respectively. The mean-field coefficients do not depend on the
channel in which the symmetry is broken, indicating that at
this level, the QAH and QSH phases are degenerate. Note that
the presence of a stabilizing cubic term in the free energy is
generic for Dirac fermions [27]. For the quadratic coefficient,
we obtain αmf = 3V2(1 − 9v2) with v2 = π�V2/vF A, indi-
cating a continuous phase transition between the semimetal
and a topological Mott insulator at a critical coupling (v2)c =
1/9.

The analysis is more involved for the CDW3 state due to
the two-gap structure δ1 and δ2. Using the parametrization
� = xρ for 0 � x � 1, we obtain

fmf(x, ρ) = α̃mf (x)ρ2 + β̃mf (x)|ρ|3, (8)

where α̃mf(x) = 2V2[1 + 2x − 6Nsv2(1 − x + 3
4x2)] and

β̃mf(x) = 8πNsv
2
2V2(2 − 3x + x3), with Ns = 1, 2 the spin

degeneracy [28]. By inspection, the CDW3 state with x = 0
(� = 0) is the leading instability at a critical coupling
(ṽ2)c = 1/(6Ns ). In the ordered phase, the � = 0 state
remains energetically favorable until large values of V2

outside the range of applicability of the model.
To summarize, for the spinless case (Ns = 1), the topolog-

ical QAH Mott insulator is the leading instability at a critical
coupling (v2)c = 1/9. On the other hand, in the spinful model
(Ns = 2), the transition into the CDW3 phase occurs at a
critical value (ṽ2)c = 1/12, pre-empting the transition into the
QSH phase. These findings are in qualitative agreement with
previous mean-field studies on the lattice [11,21,22].

IV. SEMIMETALLIC CHARGE ORDER

In the absence of NN repulsion, the favored charge-ordered
state with ρ > 0 and � = 0 describes a hidden smectic order
with gapless excitations. This broken-symmetry state remains
semimetallic, with one pair of bands opening a gap and
another pair remaining gapless, as shown in Fig. 2(b). The
effective Hamiltonian matrix of the two gapless bands in the
CDW3 phase is

Ĥ(p) = vF pxτ
x + v2

F p2
y/(4V2ρ)τ z, (9)

with energy spectrum |ε±(p)| = vF

√
p2

x + v2
F p4

y/(4V2ρ)2 .
The quasiparticles are semi-Dirac fermions, which disperse
linearly along the x direction and have a parabolic touching
along the y axis. Those touching points sit at the high-
symmetry � points of the folded Brillouin zone (see Fig. 2).

V. FLUCTUATIONS EFFECTS

Fluctuation corrections to the topological Mott order are
best captured by decoupling the interaction in the bond-order
channel by means of a Hubbard-Stratonovich transforma-
tion. The resultant action S ∼ ∫

τ,r ψ̄ (Ĝ−1
0 + iV2s

μχ̂μ)ψ +
V2χ̂

μχ̂μ is quadratic in the fermionic Grassmann fields ψ̄, ψ

at the expense of introducing imaginary collective bosonic
fields iχ̂μ

σ . Both vary in position r and imaginary time τ .

We formulate a self consistent expansion around the
broken-symmetry states. This is equivalent to working
with the renormalized propagator Ĝ−1 = Ĝ−1

0 + �̂, where
Ĝ−1

0 = ∂̂τ − Ĥt is the bare fermionic propagator and �s =
3
√

3
2 V2χsσ

zνz the self-energy due to the zero frequency fields
χs = χ0 or sχz for the QAH and QSH phases, respectively,
with s = ± indexing the spin. Inclusion of the finite frequency
fluctuation fields χ̃μ

σ amounts to the addition of a Yukawa
coupling to the low-energy effective action, S = Sψ + Sχ̃ +
Sψχ̃ , with

Sψχ̃ = 3
√

3

2
V2

∑
νσ

∫
d-3 	p1d

-3 	p2 ψ̄ν
	p1σ

χ̃
μ

	p1− 	p2σ
sμψν

	p2σ
. (10)

Here, 	p = (vF p, ω), d-3 	p = d-2p dω/(2πv2
F ), and ν = ± in-

dexes the valleys.
Integration over the fermionic fields to quadratic or-

der in χ̃ yields the fluctuation action S̃ = Sχ̃ − 1
2 〈S2

ψχ̃ 〉 =∫
	q χ̃

μ

−	qσ
As ′

	qσσ ′ χ̃
μ

	qσ ′ , which decouples into the longitudinal χ̃0,
χ̃ z (s ′ = s) and transverse χ̃ x , χ̃ y (s ′ = −s) sectors. The
matrix elements

As ′
σσ ′ (	q ) = 3

2
V2

(
δσσ ′ + 9

4
γV2

∑
s

�ss ′
σσ ′ (	q )

)
(11)

depend on the fermionic polarization bubbles �ss ′
σσ ′ (	q ) =∑

ν

∫
d-3 	p Gνs

σσ ′ ( 	p + 	q )Gνs ′
σ ′σ ( 	p) for the broken symmetry

states. In matrix form, �ss ′
(	q ) = �ss ′

μ (	q )σμ, where

�ss ′
0 (	q ) ≈ λ

q

(
q2 + θ2 + 4M2 q2 − θ2

q2
+ 8MsMs ′

)
, (12)

�ss ′
x (	q )≈ −λ

q

(
2q2 + v2

F q2 + 4M2 v2
F q2 − 2q2

q2

)
, (13)

up to second order in Ms = 3
√

3/2V2χs , with λ =
π2/(8v2

F A), 	q · 	q = q2 and �ss ′
y (	q ) = �ss ′

z (	q ) = 0 [29].
The constant γ in Eq. (11) is a phenomenological parame-

ter that has been included to account for renormalization of
the vertex V2χ̃ ψ̄ψ from (i) coarse-graining the lattice in a
Wilsonian sense; (ii) higher-order χ̃ terms; and (iii) the Fermi
velocity renormalization as � ∝ 1/vF . Both the theoretical
and experimental evidence for graphene [30–32] suggests
γ < 1. In addition, γ has the added benefit of smoothly in-
terpolating between mean field (γ = 0) and the bare coupling
with fluctuations (γ = 1).

The Gaussian integrals over the fluctuation fields lead to
the free-energy corrections δfs ′ = Tr ln As ′

, from which we
obtain the fluctuation contributions to the quadratic coeffi-
cients of the Landau expansion,

δα
μ

s ′ = 1

2

∫
d-3 	q Tr

γV2
∑

s ∂2
χμ�ss ′

(	q )

σ 0 + γV2
∑

s �ss ′(	q )

∣∣∣∣∣
χμ=0

. (14)

Remarkably, it is possible to evaluate the expressions analyti-
cally. For the QSH order parameter we obtain

δαz
L = 24V2

γπ2

(
arccot2� − 1

2
ln

�2 + 3

�2 + 1

)
, (15)

δαz
T = −54v2

π
V2(1 − � arccot�), (16)

for the contributions from longitudinal and transverse fluctua-
tions, where � = √

8/(9πγ v2) − 1. For the QAH order we
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FIG. 3. Lines of critical instability along the v2 = π�

vF A
V2 axis in

the presence of fluctuations, renormalized by the phenomenological
parameter γ . The mean-field instabilities are at γ = 0, the cut γ = 1
indicates the phase behavior without vertex renormalization. While
the critical interaction strengths depend on the momentum cutoff
�, the order of instabilities does not. In the regime where the
NN interactions are zero (V1 = 0), the CDW3 phases are gapless
(� = 0).

obtain δα0
L = δα0

T = δαz
L. The calculation breaks down for

v2 � 8/9πγ .
In the case of the CDW3 state, the interaction is decom-

posed in the charge channel by introducing six auxiliary fields
ρ̂i (i = 1, . . . , 6), one for each site in the extended unit cell,

∑
〈〈i,j〉〉

n̂i n̂j =
∫

	q

∑
i,j

n̂−	qiU
ij
q n̂	qj →

∫
	q

∑
i,j

ρ−	qi

(
U−1

q

)ij
ρ	qj

+ 2
∫

	k	q

∑
i

ψ̄	k+	qis
0ψ	kiρ	qi . (17)

After projecting into the low-energy fermionic subspace, the
calculation proceeds as before. First, we expand around the
mean-field solutions, ρi → 〈n̂i〉 + ρ̃i , which dress the fermion
propagator. We then integrate over the fermionic fields to
obtain the Gaussian action S̃ = ∫

	q
∑

ij ρ̃−	qiÃ
ij

	q ρ̃	qj for the

finite-frequency charge fluctuations, where Ã
ij

	q = (U−1
	q )ij +

2γV2Ns�̃
ij

	q , with �̃
ij

	q the charge polarization tensor in the
CDW3 phase. Integration over the fluctuation fields gives
the leading free energy corrections δf̃ = Tr ln Ã in terms
of the order parameters ρ and �. In general, the coefficients of
the expansion can be evaluated numerically. Approximating
Uq ≈ Uq=0, the quadratic coefficient δα̃(x) (x = �/ρ) can be
obtained in analytic form [24]. The resulting phase boundaries
are almost identical to the ones obtained from numerical
integration. We find that fluctuations do not change the nature
of the charge order: the CDW3 state remains metallic with
� = 0 (x = 0).

VI. PHASE DIAGRAM AND DISCUSSION

Our main results are summarized in Fig. 3. For the spinless
model the leading instability at mean field (γ = 0) is to the
topological QAH Mott insulator. Fluctuations favor CDW3

order over the QAH state and are strong enough to cause a
continuous phase transition from the Dirac semimetal to the

CDW3 phase for γ � 0.62. This is precisely the nature of
the transitions found within numerical approaches [14,16–18].
Similar fluctuation-driven changes of the ground state have
been recently discussed in terms of a fermionic quantum
order-by-disorder mechanism [33–36]. In the spinful model,
the transverse fluctuations in the QSH phase stabilize the
order, lifting the mean-field degeneracy of the QSH and QAH
phases, δαz

T < 0 < δαz
L = δα0

T/L. The transverse fluctuations
are not strong enough, however, to suppress the CDW3 phase,
which is the leading instability at mean-field.

The transition to the gapless CDW3 state (ρ > 0, � = 0) is
highly unconventional since the ground state remains metallic
with semi-Dirac quasiparticles. It does not belong to the class
of putative Dirac semimetal-to-insulator transitions. Instead,
the fermion residue remains finite across the transition. This
hidden charge order eluded previous numerical studies [13–
22] that identified phase transitions through the opening of a
Mott gap. The onset of semi-Dirac behavior may be resolved
in large-scale DMRG simulations on infinite cylinders, which
are now capable of extracting the momentum-dependent exci-
tation spectra of Dirac materials [37]. Finally, with the recent
advent of “designer Hamiltonian” methods [7,38] in quantum
Monte Carlo it seems possible to engineer the unconventional
self-energy terms of the CDW3 state.

By modifying the renormalization-group studies of GNY
models [4,39–41], it will be possible to unravel the nature
of the quantum critical point and its stability against other
couplings. As we demonstrated, the hidden CDW3 order is
stable against Gaussian fluctuations. We believe that this
stability holds under the RG since the NNN coupling V2 does
not generate interactions between the sublattices that would
lift the degeneracy underlying the quadratic touching.

A small NN repulsion V1 leads to the opening of a Mott
gap. Closer inspection shows that the semi-Dirac mode splits
into two massive Dirac cones along the quadratic touching
direction. While in this case the transition is likely to belong
to the chiral Ising GNY universality class, we expect to see
a characteristic crossover in the critical fluctuations due the
proximity to the unusual critical point at V1 = 0. It has been
suggested [22] that the regime of dominant V2 could become
experimentally accessible by using silicon adatoms or cold
atoms in double-layers of triangular optical lattices.

In materials with a quadratic band touching, such as
bilayer graphene [42], interactions are marginally relevant
[43]. Linear terms in the dispersion are generated under the
RG, pushing the critical interaction strength back to a finite
value and leading to GNY universality [44]. In our case, the
bare electron dispersion is already linear. Only because of
the matrix structure of the Yukawa coupling for V1 = 0, the
symmetry breaking does not lead to the opening of a gap but
instead to a quadratic touching along the CDW3 order.
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