
Three dimensional photoacoustic tomography in Bayesian framework
Jenni Tick, Aki Pulkkinen, Felix Lucka, Robert Ellwood, Ben T. Cox, Jari P. Kaipio, Simon R. Arridge, and Tanja
Tarvainen

Citation: The Journal of the Acoustical Society of America 144, 2061 (2018); doi: 10.1121/1.5057109
View online: https://doi.org/10.1121/1.5057109
View Table of Contents: http://asa.scitation.org/toc/jas/144/4
Published by the Acoustical Society of America

Articles you may be interested in
Integral identities for reflection, transmission, and scattering coefficients
The Journal of the Acoustical Society of America 144, 2109 (2018); 10.1121/1.5058681

Composite honeycomb metasurface panel for broadband sound absorption
The Journal of the Acoustical Society of America 144, EL255 (2018); 10.1121/1.5055847

Sustained underwater acoustic communications with environmental-based time-reversal
The Journal of the Acoustical Society of America 144, EL262 (2018); 10.1121/1.5058119

Estimating relative channel impulse responses from ships of opportunity in a shallow water environment
The Journal of the Acoustical Society of America 144, 1231 (2018); 10.1121/1.5052259

Large depth focus-tunable photoacoustic tomography based on clinical ultrasound array transducer
Applied Physics Letters 113, 141102 (2018); 10.1063/1.5040565

Multidimensional stimulus encoding in the auditory nerve of the barn owl
The Journal of the Acoustical Society of America 144, 2116 (2018); 10.1121/1.5056171

http://asa.scitation.org/author/Tick%2C+Jenni
http://asa.scitation.org/author/Pulkkinen%2C+Aki
http://asa.scitation.org/author/Lucka%2C+Felix
http://asa.scitation.org/author/Ellwood%2C+Robert
http://asa.scitation.org/author/Cox%2C+Ben+T
http://asa.scitation.org/author/Kaipio%2C+Jari+P
http://asa.scitation.org/author/Arridge%2C+Simon+R
http://asa.scitation.org/author/Tarvainen%2C+Tanja
http://asa.scitation.org/author/Tarvainen%2C+Tanja
/loi/jas
https://doi.org/10.1121/1.5057109
http://asa.scitation.org/toc/jas/144/4
http://asa.scitation.org/publisher/
http://asa.scitation.org/doi/abs/10.1121/1.5058681
http://asa.scitation.org/doi/abs/10.1121/1.5055847
http://asa.scitation.org/doi/abs/10.1121/1.5058119
http://asa.scitation.org/doi/abs/10.1121/1.5052259
http://asa.scitation.org/doi/abs/10.1063/1.5040565
http://asa.scitation.org/doi/abs/10.1121/1.5056171


Three dimensional photoacoustic tomography in Bayesian
framework

Jenni Tick,1,a) Aki Pulkkinen,1 Felix Lucka,2,b) Robert Ellwood,3 Ben T. Cox,3

Jari P. Kaipio,4,c) Simon R. Arridge,5 and Tanja Tarvainen1,b)

1Department of Applied Physics, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
2Centrum Wiskunde and Informatica, P.O. Box 94079, 1090 GB Amsterdam, Netherlands
3Department of Medical Physics and Biomedical Engineering, University College London, Gower Street,
London, WC1E 6BT, United Kingdom
4Dodd-Walls Centre, Department of Mathematics, University of Auckland, Private Bag 92019,
Auckland Mail Centre, Auckland 1142, New Zealand
5Department of Computer Science, University College London, Gower Street, London, WC1E 6BT,
United Kingdom

(Received 14 March 2018; revised 3 August 2018; accepted 13 September 2018; published online
11 October 2018)

The image reconstruction problem (or inverse problem) in photoacoustic tomography is to resolve

the initial pressure distribution from detected ultrasound waves generated within an object due to

an illumination by a short light pulse. Recently, a Bayesian approach to photoacoustic image recon-

struction with uncertainty quantification was proposed and studied with two dimensional numerical

simulations. In this paper, the approach is extended to three spatial dimensions and, in addition to

numerical simulations, experimental data are considered. The solution of the inverse problem is

obtained by computing point estimates, i.e., maximum a posteriori estimate and posterior covari-

ance. These are computed iteratively in a matrix-free form using a biconjugate gradient stabilized

method utilizing the adjoint of the acoustic forward operator. The results show that the Bayesian

approach can produce accurate estimates of the initial pressure distribution in realistic measurement

geometries and that the reliability of these estimates can be assessed. VC 2018 Author(s). All article
content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY)
license (http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1121/1.5057109

[JFL] Pages: 2061–2071

I. INTRODUCTION

Photoacoustic tomography (PAT) is a hybrid imaging

modality that combines optical excitation with ultrasonic

detection.1–7 This allows for both high contrast and high reso-

lution to be achieved simultaneously. PAT is a non-ionizing

and non-invasive imaging technique, and it can provide struc-

tural, functional, and molecular information.2,3 These features

make PAT an attractive imaging modality, and it has shown

potential in a variety of biomedical applications.3,5–7

In PAT, a short (nanosecond scale) pulse of visible or

near-infrared light is used to illuminate the tissue region of

interest. As light propagates within the object, it is absorbed

leading to localized (weak) increases in pressure and genera-

tion of a pressure wave. The propagated pressure waves are

measured on the surface of the object by ultrasound sensors.

The inverse problem of PAT is widely studied and a

variety of reconstruction methods for the estimation of the

initial pressure distribution have been developed.8 A widely

utilized method for photoacoustic image formation is the

backprojection algorithm.9–12 This algorithm is based on

analytical inversion formulas for an approximate problem. In

the approach, the initial pressure is reconstructed by summing

up the backprojected measured pressure signals with appro-

priate time delays. The eigenfunction expansion method13,14

is another approximate problem based method and it aims to

solve the image reconstruction problem analytically as well.

In this method, the initial pressure is obtained as the series

solution and series coefficients are calculated from measured

pressure signals. However, both of these methods are limited

to specific geometries such as spherical, cylindrical, and pla-

nar acoustic detection surfaces.

On the other hand, time reversal,15–18 penalized least

squares,19–28 and Bayesian approaches29 utilize the numeri-

cal solution of the problem. These approaches are computa-

tionally more intensive, as the wavefield within the entire

domain needs to be computed. On the other hand, they allow

performing image reconstruction in more general imaging

scenarios than the backprojection and eigenfunction expan-

sion algorithms. Furthermore, they can incorporate acoustic

heterogeneities such as variations in speed of sound and

acoustic attenuation.17,18,27,30–32 Time reversal algorithms

perform image reconstruction by simulating the propagation

of the time-reversed measured signals back into the volume.

Approaches based on penalized least squares perform image

reconstruction by minimizing the sum of the misfit between

measured signals and signals simulated by a photoacoustic

forward model and a regularizing penalty functional.
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Recently, a Bayesian approach to PAT was suggested.29

In this approach, all parameters are modeled as random vari-

ables and the formal solution of the inverse problem consists

of a probability density for the initial pressure in each voxel

of the reconstruction domain. It combines the information

obtained through the measurements, the forward model, and

the prior model for unknown parameters. In addition, the

Bayesian approach facilitates representing and taking into

account the uncertainties in parameters, models, and geome-

tries.33–37 In Ref. 29, the Bayesian approach to PAT was

tested with two dimensional (2D) simulations. The results

showed that the Bayesian approach can be used to provide

accurate estimates of the initial pressure distribution as well

as information about the uncertainty of the estimates.

In this paper, photoacoustic image reconstruction with

uncertainty quantification in the Bayesian framework is

extended to three dimensions (three dimensional, 3D). Due

to the large dimension of the problem, the closed form

matrix presentation that was used in the 2D case can no lon-

ger be applied. Therefore, a matrix-free method is used to

compute point estimates of the posterior distribution. The

method utilizes the adjoint of the forward operator27 imple-

mented with the k-space time domain method.38 The point

estimates for the image reconstruction and credibility evalu-

ation are computed iteratively using a biconjugate gradient

stabilized39 method.

The rest of the paper is organized as follows. After a

short introduction to PAT and Bayesian inversion in Sec. II,

the implementation of 3D matrix-free image reconstruction

and uncertainty quantification are described in Sec. III. Then,

the approach is tested with numerical simulations in Sec. IV

and experimental studies in Sec. V. Finally, a discussion of

the results and drawn conclusions are given in Sec. VI.

II. THEORY

A. Photoacoustic model

In a linear and homogeneous medium, the acoustic part

of the photoacoustic signal generation can be described by a

wave equation

@2

@t2
� c2r2

� �
p r; tð Þ ¼ 0;

p r; t ¼ 0ð Þ ¼ p0 rð Þ;
@

@t
p r; t ¼ 0ð Þ ¼ 0; (1)

where c is the speed of sound and p0 is the initial pressure

distribution.1 In photoacoustics, the acoustic pressure wave

p is measured only in some locations rL2 @X, for some

time period t 2 [0,T], with X being a spatial subset of the

modeling domain, and T being the time duration that the

photoacoustic time series is captured for. In practice, the

measured pressure waves are polluted with noise, which is

commonly assumed to be additive. To perform PAT image

reconstruction, we can use the following discrete observa-

tion model:

pt ¼ Kp0 þ e; (2)

where pt 2 Rm is a vector composed of the acoustic pressure

waves sampled at the sensors at a set of discrete time points,

p0 2 Rn is the discrete initial pressure distribution, K
2 Rm�n is the linear operator, which maps the initial pres-

sure distribution to the measurable data by discretizing the

forward model (1), and e 2 Rm denotes the noise.

B. Image reconstruction with uncertainty
quantification

In the inverse problem of PAT, the initial pressure dis-

tribution p0 is estimated from the measured pressure waves

pt based on Eq. (2). Here, a Bayesian approach33,40 is taken.

In the Bayesian approach, the parameters pt, p0, and e of

the observation model [Eq. (2)] are treated as random varia-

bles. The solution of the inverse problem is the posterior

density, which can be written in the form

pðp0jptÞ / pðp0Þpðptjp0Þ; (3)

where p(p0) is the prior probability density and pðptjp0Þ is

the likelihood density. The posterior density reflects the

uncertainty of the unknown initial pressure distribution p0

given the acoustic pressure measurements pt.

Noise and prior distribution are assumed to be mutually

independent and normally distributed, i.e., e � Nðge;CeÞ
and p0 � Nðgp0

;Cp0
Þ where ge and Ce are the mean vector

and covariance matrix of the noise, respectively, and gp0
and

Cp0
are the mean vector and covariance matrix of the prior

model, respectively. These assumptions are typical for many

imaging modalities, including PAT. With these assumptions

and observation model [Eq. (2)], the posterior density [Eq.

(3)] becomes29

p p0jptð Þ / exp � 1

2
kLe pt � Kp0 � geð Þk2

�

� 1

2
kLp0

p0 � gp0ð Þk2

�
; (4)

where LT
e Le ¼ C�1

e and LT
p0

Lp0
¼ C�1

p0
are matrix square roots

such as Cholesky decompositions of the inverse covariance

matrices of the noise and prior, respectively.

In the case of a linear observation model and Gaussian

noise and prior, the posterior density [Eq. (4)] is also a

Gaussian distribution Nðgp0jpt
;Cp0jpt

Þ. The mean gp0jpt
and

covariance Cp0jpt
can formally be written in the form

gp0jpt
¼ A�1b; (5)

Cp0jpt
¼ A�1; (6)

where

A ¼ KTC�1
e K þ C�1

p0
; (7)

b ¼ KTC�1
e ðpt � geÞ þ C�1

p0
gp0
: (8)

Instead of solving the whole posterior distribution

directly using Eqs. (5)–(8) it can be evaluated by computing

point estimates. In this paper, a maximum a posteriori
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(MAP) estimate is considered. In a purely Gaussian case, the

MAP estimate coincides with the (conditional) mean of the

posterior distribution p0;MAP ¼ gp0jpt
. Furthermore, in the

Bayesian approach, also the reliability of the reconstructed

image can be assessed by computing uncertainty measures

of the estimates. Here, the marginal densities of the posterior

distribution in some individual voxel are computed. Since

the joint density is a Gaussian, all marginal densities are

Gaussian

p0;kjpt � Nðgp0jpt;k;Cp0jpt;kkÞ; (9)

where gp0jpt;k is the value of gp0jpt
in the kth voxel and

Cp0jpt;kk is the value of the kth diagonal element of Cp0jpt
.

III. IMPLEMENTATION

A. Numerical method for wave propagation

In this paper, the k-space time domain method imple-

mented in the k-Wave MATLAB Toolbox is used to solve the

initial value problem [Eq. (1)].38,41 In the k-space method,

the spectral calculation of spatial derivatives is combined

with a temporal propagator expressed in the spatial fre-

quency domain or k-space. This allows field gradients to

be calculated efficiently using the fast Fourier transform.

Therefore, the k-space method enables a computationally

efficient way to solve the initial value problem.

B. Matrix-free implementation of the image
reconstruction

In this paper, the reconstructed image is obtained by

computing the MAP estimate, Eq. (5). This is equivalent to

solving a linear system

Cgp0jpt
¼ d; (10)

where

C ¼ Cp0
KTC�1

e K þ I; (11)

d ¼ Cp0
KTC�1

e ðpt � geÞ þ gp0
; (12)

and I is an identity matrix. The advantage of expressing Eq.

(5) in the form of Eq. (10) is that the inversion of the covari-

ance matrix of the prior Cp0
can be avoided, and that efficient

iterative linear equation solvers can be utilized. Due to the

large dimension of the problem, a matrix-free method is

used to solve the linear system.

Here, a biconjugate gradient stabilized (l) method built-

in MATLAB (2015b; The MathWorks, Inc., Natick, MA) is

used for the solution of the system of Eq. (10). During the

conjugate gradient iteration, the matrix-vector product on

the left-hand side of Eq. (10) is computed by evaluation of

sequential linear operators. First, the product Kgp0jpt
is pro-

vided with the k-Wave MATLAB toolbox.41 Second, the multi-

plication with C�1
e is trivial since it is a diagonal matrix (see

Sec. III E). Third, the multiplication by the transpose of the

forward model, KT, can be computed by solving an adjoint

wave equation, which, again, can be implemented using a

k-Wave as described in Ref. 27. Finally, the prior density is

evaluated as described in Sec. III D, and the product with an

identity matrix results in just a vector addition. The vector d
in Eq. (10) is formed similarly.

Here, the biconjugate gradient solver is started with an

initial guess chosen as

gp0jpt;initial ¼ âp0;TR; (13)

where p0,TR is a time reversal solution of the initial pressure

distribution and â is the solution of a minimization problem

â ¼ arg min
a
kpt � aKp0;TRk2

¼ pT
t Kp0;TR

Kp0;TRð ÞTKp0;TR

: (14)

Although the optimality of this initial choice was not studied

in this paper, it was verified with 2D simulations to converge

to the correct minimum in a reasonable time.

C. Matrix-free implementation of the reliability
estimation

The uncertainty of the reconstructed initial pressure is

given by the posterior density. For the individual voxel, this

is given by Eq. (9). Thus, for the kth voxel at rk the value of

the kth diagonal element of Cp0jpt
needs to be determined.

Due to the large dimension of the problem, the posterior

covariance matrix cannot be explicitly constructed, but its

kth column can be computed by solving the linear system

CCp0jpt;k ¼ Cp0
ek; (15)

where C is as in Eq. (11) and ek is a unit vector with value

one at the kth element and zero elsewhere. The linear system

[Eq. (15)] is solved using a biconjugate gradient stabilized

(l) method built-in MATLAB. Again, as in the computation of

the MAP estimate in Sec. III B, the matrix-vector product on

the left-hand side of Eq. (15) is replaced by the evaluation of

sequential linear operators during the biconjugate gradient

iteration. Furthermore, the iterations are started from an ini-

tial guess

Cp0jpt;k;initial ¼
rp0
þ re

2

� �2

Nek; (16)

where rp0
is the standard deviation of the prior, re is the

standard deviation of the noise, N is as in Eq. (18), and ek is

a unit vector. This choice was verified to converge to the cor-

rect minimum using 2D simulations.

D. Prior

In this paper, the prior model for the unknown initial

pressure p0 was chosen to be based on an Ornstein-

Uhlenbeck42 process. The Ornstein-Uhlenbeck prior supports

the correlation between neighborhood voxels promoting dis-

tributions, which can be locally close to homogeneous. This

prior can be assumed to be a good presumption for PAT
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where some spatial correlation in parameter values between

the voxels can be expected and where it is possible that the

target is composed of heterogeneities separated by sharper

edges such as blood vessels. The Ornstein-Uhlenbeck prior is

a Gaussian prior distributed with mean gp0
and covariance

matrix Cp0
, which is defined to be

Cp0
¼ r2

p0
N; (17)

with

Nij ¼ exp �kri � rjk
‘

� �
; (18)

where i and j are the voxel indices, ri and rj are the corre-

sponding voxel locations, respectively, r2
p0

is the variance,

and ‘ is the characteristic length scale, which controls the

spatial range of correlation. Previously, the Ornstein-

Uhlenbeck prior has been used in PAT and quantitative PAT

in Refs. 43–47.

Evaluation of a matrix-vector product set by Eqs. (17)

and (18) in Eqs. (10)–(12) and (15) corresponds to comput-

ing a 3D convolution. On regular grids, such as those used in

this work to discretize the pressure fields, convolutions can

be efficiently evaluated by the fast Fourier transform. To

simulate zero boundary conditions the vector that Cp0
is mul-

tiplied with is transformed into a 3D array and zero-padded

at all ends of the coordinate axes before taking the 3D

Fourier transform. Next, the array is pointwise multiplied by

the corresponding zero-padded discrete Fourier transformed

origin centered covariance function [Eq. (18)], and the

inverse Fourier transform is taken. This allows for efficient

evaluation of a covariance matrix-vector product. The length

of the zero-padding is chosen such that the covariance func-

tion [Eq. (18)] will fall beneath a threshold level (10�6 in

this paper) within the padded distance. In voxels, this can be

computed as

N � � ‘

Dh
ln �; (19)

where N is the padding distance, Dh is the discretization

length of a voxel, and � is the threshold value.

E. Determination of noise statistics

In the Bayesian approach with Gaussian assumptions,

information about the noise statistics can be incorporated

into the solution of the inverse problem in the form of the

mean ge and covariance Ce of the noise term e in Eq. (2).

Typically, measurement setups are such that ge¼ 0 and the

covariance can be approximated as Ce ¼ r2
eI where I is an

identity matrix. This model is also used in this paper.

The noise of the experimental data is characterized in

each sensor by determining the mean and standard deviation

from a time frame of the measured signal that is supposed to

contain only noise. An alternative would be to perform addi-

tional calibration measurements by measuring pressure time

courses on all sensors with the complete experimental setup

in place but without firing the excitation laser. The mean ge,k

and standard deviation re,k for each sensor are estimated as

ge;k ¼
1

Nt

XNt

i¼1

pk;i; (20)

re;k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Nt � 1

XNt

i¼1

pk;i � gkð Þ2
vuut ; (21)

where pk,i is a pressure signal in the kth sensor at the ith time

point and Nt is the number of time points in the time frame

windowed for the noise characterization. Thus, the mean of

the noise is a vector

ge ¼ g1…gns½ �T ; (22)

where ns is the number of sensors, and the covariance matrix

of the noise is a diagonal matrix with the values of variance

r2
k on the diagonal

Ce ¼ diagfr2
1…r2

ns
g: (23)

IV. SIMULATIONS

A. Geometry and discretization

In simulations, a three dimensional cubic domain with

the side length of 10 mm was considered. Discretizations of

the domain in data simulation and image reconstruction are

given in Table I. Different discretizations in data simulation

and image reconstruction were used in order to avoid so-

called inverse crime.

In this paper, a full view sensor geometry and two limited

view sensor geometries were considered. The sensor geome-

tries are illustrated in Fig. 1. In the full view (6-side) sensor

geometry, 62 119 sensors were located on all faces of the cube.

In the first limited view sensor geometry (L-shape), 20 808

sensors were located on 2 adjacent faces (z¼ 5 mm and

x¼ 5 mm) of the cube. In the second limited view setup (1-

side), 10 404 sensors were located only on 1 side (z¼ 5 mm)

of the cube. The sensor pitch was 98 lm. This type of mea-

surement setup simulates a Fabry-P�erot based sensor head;

see, e.g., Refs. 48 and 49.

B. Data simulation

In the data simulation, a non-attenuating medium with a

constant speed of sound c¼ 1500 m/s was considered. The

true simulated initial pressure distribution contained nine

spheres of 1.43 mm radius on a homogenous background.

Eight spheres were located close to the corners of the cube

TABLE I. Grid sizes and voxel side lengths Dh used in data simulation

(Forward) and image reconstruction (Inverse).

Grid size Dh (lm)

Forward 306� 306� 306 32.7

Inverse 204� 204� 204 49.0

2064 J. Acoust. Soc. Am. 144 (4), October 2018 Tick et al.



and one sphere was located in the center. The ambient initial

pressure was set to zero and the initial pressures within inho-

mogeneities were Gaussian functions with a peak value of 5

and a full-width at half-maximum of 0.4 mm. Figure 2 shows

the simulated initial pressure distribution. This kind of posi-

tioning and values of initial pressure distribution could

approximately correspond to a photoacoustic phantom colored

with ink and emerged in water. Due to its symmetric structure,

it can be beneficial, for example, in examining limited-view

artefacts.

The data were simulated using the k-space time domain

method implemented with the k-Wave MATLAB toolbox41 as

described in Sec. III A. The pressure signals were sampled at

60 MHz and discretized into 849 temporal points at each of

the acoustic sensor locations. This corresponds to a recorded

temporal pressure time series duration of 14.1 ls, correspond-

ing to an acoustical propagation distance of 21 mm. Normally

distributed zero-mean noise with a standard deviation equal

to 1% of the peak amplitude of the simulated pressure signal

was added to the data to simulate measurement noise. This

noise statistics correspond to the noise achievable with a

Fabry-P�erot based sensor head used in the experiments.48

C. Image reconstruction and posterior uncertainty

The MAP estimates were computed iteratively as

described in Sec. III B by solving the system of equations

(10)–(12). The initial guess for the iterations was chosen as

in Eq. (13). The measurement noise was considered to be

uncorrelated with the standard deviation set to 1% of the

peak positive amplitude of the noisy simulated data. The

Ornstein-Uhlenbeck prior described in Sec. III D was used as

prior information. The values of the noise and prior parame-

ters used in the reconstructions are given in Table II both for

the simulation result (Sec. IV D) and the two experimental

cases (Sec. V). For comparison, a time reversal solution was

computed.18,41 To make the comparison easier, the time

reversal solution was scaled with factor â in Eq. (14). The

computations were performed on a graphics processing unit

(GPU).

Accuracy of the estimates was evaluated by computing

the relative errors of the reconstructions with respect to the

true initial pressure distribution

Ep0
¼ 100%

kp0 � p̂0k
kp0k

; (24)

where p0 is the simulated initial pressure distribution inter-

polated to the reconstruction space and p̂0 is the estimated

value.

The reliability of the estimates was assessed by calculat-

ing the marginal densities inside the domain using Eq. (9).

Variance Cp0jpt;kk needed for the marginal density was com-

puted iteratively as described in Sec. III C by solving the lin-

ear system [Eq. (15)]. The initial guess for iterations was

chosen as in Eq. (16). The computations were performed on a

GPU.

D. Simulation results

Figure 3 shows reconstructions obtained using the

Bayesian approach, whereas reconstructions using time rever-

sal are shown in Fig. 4. It can be seen that both Bayesian and

time reversal reconstructions obtained using the full view sen-

sor geometry match qualitatively to the true initial pressure

distribution. As the number of the detection surfaces is

reduced, the estimates of the initial pressure become more

distorted in the areas far from any sensor. The distortion of

the estimates increases the further the inclusions are from the

sensors. In addition, quantitative values in these distorted

areas are reduced. This is evident especially in the bottom

rows of Figs. 3 and 4. The relative errors listed in Table III

support these observations. The relative errors of the esti-

mates obtained using the full view sensor geometry have the

smallest values, and the errors increase as the number of

detection surfaces decreases. Based on the reconstructions

and relative errors, it can be seen that the Bayesian approach

tolerates limited view artefacts better than the time reversal.

However, it should be noted that the quality of the reconstruc-

tions obtained using time reversal can be improved by using

an enhanced version of time reversal such as iterative time

reversal.27,50,51

FIG. 1. Sensor geometries used in the simulations. Sensor locations are

marked with gray.

FIG. 2. (Color online) The simulated (true) initial pressure distribution. The

left image shows the locations of the simulated spheres. The three images

on the right represent the maximum intensity projections along the axis

directions x, y, and z. The asterisk indicates the location where the marginal

densities are plotted. The asterisk is located inside one of the spheres.

TABLE II. Values of the noise and prior parameters: mean g, standard devi-

ation r, and characteristic length scale ‘ (mm). The subindex e refers to

noise, whereas the subindex p0 refers to prior. In the case of real data mea-

surements, the two values represent the ranges of the noise parameters at dif-

ferent measurement channels.

Spheres Leaf Mouse

ge 0 [�0.020,0.011] [�0.017,0.020]

re 0.033 [0.005,0.173] [0.004,0.049]

gp0
0 0 0

rp0
2 0.250 0.250

‘ 0.490 0.100 0.100
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In the Bayesian approach, uncertainties of the recon-

structed images can also be assessed. Figure 5 shows the

marginal densities at the point inside of the domain that is

indicated in Fig. 2 with an asterisk. In the full view sensor

geometry, the maximum of the marginal density is located

close to true value. In the limited view sensor geometries,

the maximum of marginal density is further from the true

value. However, the marginal density is wider in the limited

view sensor geometries than in the full view sensor geome-

try. Therefore, true value is also supported by marginal den-

sities when the limited view sensor geometries are used. The

wider marginal density in the case of the limited view sensor

geometry indicates that the uncertainty of the estimate

obtained using the full view sensor geometry is smaller than

the uncertainty of the estimate obtained using the limited

view, as should be expected due to the fact that a lesser num-

ber of limited view sensors carry less information.

V. EXPERIMENTS

A. Measurement setup

The approach was tested with experimental data obtained

from a phantom and a mouse. The phantom was a skeletal

leaf that was submerged in India ink for contrast enhance-

ment. A photograph of the phantom is shown in Fig. 6.

In addition, photoacoustic data from a mouse head were

acquired.

The data were acquired using a photoacoustic measure-

ment system48,49 developed in the Photoacoustic Imaging

Group of University College London. In the phantom mea-

surement, a neodymium-doped yttrium aluminum garnet

(Nd:YAG) laser (8-ns pulse length) operating at 1064 nm

was used to illuminate the imaged object. In the mouse

imaging, the illumination was done by two Nd-YAG

pumped optical parametric oscillators (pulse widths of 8 ns

and 6 ns) that were configured to a wavelength of 755 nm.

The emitted photoacoustic signals were recorded using a pla-

nar Fabry-P�erot sensor (a nominal �3 dB bandwidth of

39 MHz). In addition, the leaf phantom was also imaged

using an orthogonal Fabry-P�erot sensor. In the measure-

ments, an area of approximately 10 mm� 10 mm on the sen-

sors was scanned with a step size of 100 lm. The phantom

and the mouse head were coupled to the sensor using

FIG. 3. (Color online) The reconstructed initial pressure distribution

obtained using the Bayesian approach. From top to bottom: the recon-

structed image obtained using full view sensor geometry (first row), the

reconstructed image obtained using L-shape sensor geometry (second row),

and the reconstructed image obtained using 1-side sensor geometry (third

row). The left image shows the contour surface that indicates the areas

where the parameter has value 1 or more. The three images on the right rep-

resent maximum intensity projections along axis directions x, y, and z.

FIG. 4. (Color online) The reconstructed initial pressure distribution

obtained using the time reversal. From top to bottom: the reconstructed

image obtained using full view sensor geometry (first row), the recon-

structed image obtained using L-shape sensor geometry (second row), and

the reconstructed image obtained using 1-side sensor geometry (third row).

The left image shows the contour surface that indicates the areas where the

parameter has value 1 or more. The three images on the right represent max-

imum intensity projections along axis directions x, y, and z.

TABLE III. The relative errors in percentage of the MAP estimates calcu-

lated using the Bayesian approach and time reversal (TR) in the 6-side, L-

shape, and 1-side sensor geometries.

Bayes TR

6-side 3.8 4.0

L-shape 25.2 61.5

1-side 48.4 79.9
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deionized water. More details on the phantom, experimental

setup, and measurements can be found in Ref. 49.

B. Image reconstruction

Before reconstructions, the measured pressure signals

were filtered using a bandpass filter with cutoff frequencies

between 0.5 and 20 MHz to remove nuisance signal compo-

nents such as a rising trend of the measured pressure signals.

Bandpass filtering was also taken into account in the forward

model. Image reconstruction was performed using the

Bayesian approach as described in Sec. III B by solving the

system of equations (10)–(12). The initial guess for the itera-

tions was chosen as in Eq. (13). The reconstruction domains

were rectangular volumes whose discretizations are listed in

Table IV. In the reconstructions, the sound speed of the

medium was set to 1488 m/s. The noise statistics were deter-

mined from the measured noise signal as described in Sec.

III E using 80 time points. Obtained mean and standard devi-

ation of the noise, as well as the chosen values of the prior

parameters, are listed in Table II. Since the measurement

system was not calibrated to measure absolute pressure val-

ues and quantitative prior information on the phantom was

not available, units of the noise and prior parameters were

considered as arbitrary units. Furthermore, due to these same

reasons only MAP estimates without uncertainty evaluation

were considered. Again, a time reversal solution was com-

puted for comparison.

C. Results

The contour surfaces of the reconstructed images

obtained from the leaf phantom data using the Bayesian and

time reversal approaches are presented in the first row of

Fig. 7 for the planar sensor and in the second row for the

orthogonal sensor. Correspondingly, the maximum intensity

projections of the reconstructions are shown in Figs. 8 and 9.

As it can be seen, only the veins that run parallel to the sen-

sor are recovered well when the planar sensor is used. The

FIG. 5. (Color online) Marginal densities of the posterior distribution

obtained using the 6-side (black dotted line), the L-shape (blue solid line),

and the 1-side sensor geometry (dashed red line). The marginal density is

computed in the location which is indicated in Fig. 2 with an asterisk. The

true initial pressure p0¼ 5 (vertical black line).

FIG. 6. (Color online) A photograph of the leaf phantom. The veins are

clearly visible in this optical image.

TABLE IV. Grid sizes and voxel side lengths Dh used in the image recon-

struction using the experimental data.

Grid size Dh (lm)

Leaf 274� 248� 242 50

Mouse 304� 286� 240 50

FIG. 7. The contour surface of the reconstructed image obtained using the

Bayesian approach (first column) and time reversal (second column). From

top to bottom: leaf phantom using the planar sensor (first row) and leaf

phantom using the orthogonal sensor (second row).
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orthogonal sensor gives a more complete reconstruction of

the vein-like structure of the leaf, since the majority of the

veins running in both orientations are recovered well. In par-

ticular, the veins that are close to the sensor appear sharp

with both sensors. As it can be seen in these visualizations,

the reconstructions look visually equally good for both the

Bayesian approach and time reversal.

The contour surfaces of the reconstructed images obtained

from the mouse head data using the Bayesian and time reversal

approaches are presented in Fig. 10, and the maximum inten-

sity projections of these reconstructions are shown in Fig. 11. It

can be seen that some of the vascular and anatomical structures

can be identified from the reconstructions. When comparing

the reconstruction obtained using the Bayesian approach to the

reconstruction obtained using time reversal, it can be seen that

the main features of the reconstructed images are the same.

VI. DISCUSSION AND CONCLUSIONS

In this paper, the recently proposed Bayesian approach

to PAT was extended to three dimensions and a matrix-free

method for the solution of this approach was described.

Image reconstruction and uncertainty quantification were

performed iteratively using a biconjugate gradient stabilized

method equipped with the adjoint of the acoustic forward

operator. The approach was tested using both simulated and

experimental data with different sensor geometries. The

reconstructions were compared to time reversal solutions.

FIG. 8. (Color online) Photoacoustic

images of the leaf phantom using the

planar sensor. From top to bottom: the

reconstructed image obtained using the

Bayesian approach (first row) and the

reconstructed image obtained using

time reversal (second row). Images

represent maximum intensity projec-

tions along axis directions x, y, and z.

FIG. 9. (Color online) Photoacoustic

images of the leaf phantom using the

orthogonal sensor. From top to bottom:

the reconstructed image obtained using

the Bayesian approach (first row) and

the reconstructed image obtained using

time reversal (second row). Images

represent maximum intensity projec-

tions along axis directions x, y, and z.
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The simulations show that the reconstructed images com-

puted using the proposed approach can provide both qualita-

tive and quantitative information about the targets in terms of

their location, size, shape, and initial pressure values if the

full view sensor geometry is used. In the limited view sensor

geometry, distortion of the target size and shape can be noted.

Furthermore, the quantitative accuracy is reduced. In addition

to the reconstructed images, the uncertainty of these images

can be assessed in the Bayesian approach. The uncertainty of

the estimates obtained using the full view sensor geometry is

small. The uncertainties of the estimates increase as the num-

ber of detection edges decreases.

Image reconstruction was also studied using experimen-

tal data. The reconstructed images represent the features of

the imaged object, and the results compare well with time

reversal reconstructions. It seems that in the case of the leaf

phantom, the Bayesian approach is able to detect structures

deeper than the time reversal. On the other hand, in the case

of the mouse head, some differences between the reconstruc-

tions obtained with the Bayesian approach and time reversal

can be seen. In this case, both reconstructions include stronger

modeling errors since the homogeneous wave equation does

not model wave propagation correctly in the heterogeneous

mouse head. In addition, bones of the mouse head should be

modeled as elastic media. These modeling errors can cause

various artefacts in the reconstructed images. For example,

any reverberations present in the data caused by acoustic het-

erogeneities can be projected deep in the tissue as an incorrect

initial pressure distribution. For more information on sound

propagation, simulation, and photoacoustic imaging in elastic

media, see, e.g., Refs. 52–58. The quantitative values of the

experimental phantom could not be studied since the mea-

surement system was not calibrated to measure absolute pres-

sure values and quantitative prior information on the phantom

was not available.

If compared to time reversal, the Bayesian approach is

computationally more expensive since it requires solving a

large system of equations. In this work, this system of equa-

tion was solved iteratively in a matrix-free form. The com-

putation times for the MAP estimates varied between 1 and

20 h depending on the detector geometry. However, the con-

vergence criteria of the algorithms were set very tight, which

lead to long computation times, and in practice it may be

possible to relax this condition. This would lead to less accu-

rate estimates especially in the areas that are not enclosed by

the sensors and increasing values of the relative errors.

Convergence of the algorithm, when the marginal densities

of the posterior covariance were solved, was slow. In fact,

the residual remained quite large, which we believe is related

to slow convergence of the cross-covariance values. The

standard deviation values, on the other hand, seemed to con-

verge and are reasonable when compared to each other and

the results of 2D simulations. Thus, computational efficiency

of the algorithms still needs to be improved and their con-

verge needs to be studied in more detail. Further, it could be

possible to utilize a model reduction approach, for example,

using Bayesian approximation error modeling,34,35,37,59,60

to decrease the memory requirements and speed up the com-

putations. On the other hand, the computational cost of the

FIG. 10. The contour surface of the reconstructed image obtained from the

mouse head data using the Bayesian approach (first column) and time rever-

sal (second column).

FIG. 11. (Color online) Photoacoustic

images of the mouse head. From top to

bottom: the reconstructed image

obtained using the Bayesian approach

(first row) and the reconstructed image

obtained using time reversal (second

row). Images represent maximum

intensity projections along axis direc-

tions x, y, and z.
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Bayesian approach can be justified with the quantitative

information that can be provided with the approach. That is,

the method can be used to provide a probability distribution

with mean and standard deviation of the parameters of inter-

est, i.e., initial pressure, in each voxel of the domain. In addi-

tion, the Bayesian approach is advantageous when the

uncertainty of the image reconstruction grows, e.g., with less

sensors, more limited-view sensor geometry, more model-

mismatch, since it can take into account uncertainties in

parameters, models, and geometries.
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