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Understanding the factors that determine species’ geographical distri-

butions is important for addressing a wide range of biological questions,

including where species will be able to maintain populations following

environmental change. New methods for modelling species distributions

include the effects of biotic interactions alongside more commonly used

abiotic variables such as temperature and precipitation; however, it is

not clear which types of interspecific relationship contribute to shaping

species distributions and should therefore be prioritized in models. Even

if some interactions are known to be influential at local spatial scales,

there is no guarantee they will have similar impacts at macroecological

scales. Here we apply a novel method based on information theory to

determine which types of interspecific relationship drive species distri-

butions. Our results show that negative biotic interactions such as

competition have the greatest effect on model predictions for species

from a California grassland community. This knowledge will help focus

data collection and improve model predictions for identifying at-risk

species. Furthermore, our methodological approach is applicable to any

kind of species distribution model that can be specified with and without

interspecific relationships.
1. Introduction
Species’ distributions are commonly estimated using only abiotic environ-

mental variables, but recent studies have shown that also modelling biotic

interactions can improve range predictions [1]. Because ecological complexity

makes describing all interspecific relationships in a community practically

impossible, it will be useful to know which types of interaction (e.g. facilitation,

competition) are priorities for data collection and modelling. A practical start-

ing point for this effort is identifying which interspecific relationships have

the greatest influence on geographical range predictions in previously

documented communities.

Here we use information theory [2] to measure the effect of interspecific

relationships on the distributions of species from a well-documented

California grassland community [3,4]. The general idea of information

theory is that models compress data, and better models compress data

by larger amounts. In this application, we represent different types and

combinations of interspecific relationships by Bayesian network (BN)

models and measure how much each model compresses data on
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Figure 1. Workflow for generating community distribution matrices. The starting point is a matrix of prior habitat suitability values (HSVs) that reflect only abiotic
conditions for each species (columns) at distinct locations (rows). We then use a Bayesian network to modify prior HSVs to give posterior HSVs that also include the
effects of interspecific relationships on species distributions. For each species and both HSV matrices separately, we specify thresholds to convert prior and posterior
HSVs to binary ranges.
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multiple-species distributions. We find that negative

biotic interactions are the main driver of species distri-

butions. This result suggests prioritizing field studies

involving competition and theories about niche overlap
to inform range predictions. Modelling facilitation and

shared habitat suitability relationships is still valuable,

but may result in less pronounced adjustments to species’

distributions.



Table 1. Model performance with all interspecific relationships (ALL) and subsets of positive and negative biotic interactions (BI) and shared habitat suitability
(SHS); absolute changes, DM, are rescaled such that +1 is the number of bits required to transmit an uncompressed community distribution matrix.

model #positive #negative DM rank D%M rank

maxSens threshold ALL 40 12 20.008 4 22.8% 3

SHS BI 38 9 20.011 6 23.8% 5

SHS BIþ 38 0 20.016 8 25.9% 7

SHS BI2 32 9 20.011 5 23.8% 6

SHS 32 0 20.016 7 26.2% 8

BI 6 9 0.003 2 3.7% 2

BIþ 6 0 20.001 3 23.2% 4

BI2 0 9 0.005 1 9.7% 1

maxSSS threshold ALL 40 12 0.041 1 16.1% 2

SHS BI 38 9 0.037 2 14.7% 4

SHS BIþ 38 0 0.029 4 12.5% 6

SHS BI2 32 9 0.035 3 15.8% 3

SHS 32 0 0.028 5 13.7% 5

BI 6 9 0.008 6 9.6% 7

BIþ 6 0 20.001 8 21.2% 8

BI2 0 9 0.007 7 20.9% 1
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2. Material and methods
(a) Generating community distribution matrices
We refer to a collection of geographical range predictions in the

same region as a ‘community distribution’ and a community dis-

tribution matrix describes binary range predictions for multiple

species (columns) at distinct locations (rows). To be clear, the

matrix does not represent the range of a community as a

whole, but rather the ranges of individual species together as a

meta-community. We consider two versions for analysis: a prior
community distribution matrix based on species distribution

models (SDMs) without interspecific relationships, and a posterior
community distribution matrix based on SDMs with interspecific

relationships (figure 1).

For the prior community distribution matrix, we combined

presence records for 54 species and seven bioclimate variables

to determine favourable habitat conditions for each species fol-

lowing the Maxent method [5], and used Maxent’s logistic

output as a habitat suitability value at each location [6] (see elec-

tronic supplementary material). This environment-only approach

provided good baseline ranges for species from the California

grassland community [1].

For the posterior community distribution matrix, we used the

same Maxent parameter estimates for species’ responses to bio-

climate variables as above but also modelled the effects of 52

interspecific relationships (classified from experiments [3] and

long-term monitoring studies [4]; see electronic supplementary

material for results for two alternative sets of interspecific relation-

ships) on 14 focal species using a method that has been shown to

improve range predictions for these species [1]. This earlier study

used BNs to modify prior habitat suitability values to generate

posterior habitat suitability values (unlike the present study

which uses BNs to assess the strength of similarity or difference

between range predictions for different species), but any SDM

method that includes the effects of interspecific relationships can

be used to generate a posterior community distribution matrix.

For each focal species, we specified a threshold for converting

habitat suitability values to a binary range, with potentially
different thresholds for prior and posterior values. We con-

sidered two rules for determining thresholds: (i) the habitat

suitability value that maximizes classification sensitivity and

therefore results in all presence records for a species being

included in its estimated range (maxSens threshold); and (ii)

the habitat suitability value that maximizes both classification

sensitivity and specificity (maxSSS threshold; [7]).

(b) Comparing the effect of interspecific relationships
on community distributions

We considered a suite of eight compression models to explain

range predictions (table 1). The suite contained a model with

all 52 interspecific relationships (ALL) used to generate the

posterior community distribution matrix, and subsets repre-

senting all combinations of three types of interspecific

relationship: positive biotic interactions (BIþ), negative biotic

interactions (BI2), and shared habitat suitability (SHS;

although not a biotic interaction, environmental co-responses

can be measured and included in models to maximize the

usefulness of empirical data [1]).

Interspecific relationships are represented as conditional

dependencies in a BN model. These conditional dependencies

assume that linked species have non-independent ranges, so

the BN model can be used to assess how well a given set of inter-

specific relationships explains the particular pattern of ranges in

a community distribution matrix. For example, the BN in figure 1

is designed to test if the predicted ranges of species A and B con-

tain meaningful information about the predicted range of species

C. Because BNs are acyclic, the direction of a conditional depen-

dency must be specified even when the effects of an interaction

are symmetric, which places limitations on how well interspecific

interactions can be described using this approach (see electronic

supplementary material).

We used total length to measure the amount of data com-

pression resulting from each model because, as with related

statistical estimators used in model selection such as the

Akaike information criterion, it accounts for both model fit and
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complexity [8]. Total length has a straightforward interpretation

as the number of bits required to describe a data-model combi-

nation, with the most parsimonious model for a given dataset

resulting in the shortest total length [9].

We assessed the effect of including a particular subset of

interspecific relationships in SDMs by comparing differences in

total length between a pair of prior and posterior community dis-

tribution matrices for the same BN model (figure 2). We began

by calculating total lengths for the two matrices and a BN

model representing no interspecific relationships: TLE,prior and

TLE,posterior. Such ‘Empty BN’ models have no conditional depen-

dencies among species and provide a baseline measurement of

the amount of information complexity inherent in a community

distribution matrix. For example, very little information is

required to describe a community distribution matrix in which

all species are present (or absent) at all locations.

Then for each BN model, M, under consideration, we calcu-

lated one total length for the prior community distribution
matrix, TLM,prior, and another for the posterior community distri-

bution matrix, TLM,posterior. We obtained comparable values for

the amount of compression resulting from the model by calculat-

ing the change in total length from the Empty BN for the two

community distribution matrices separately:

dM,prior ¼ TLE,prior –TLM,prior ð2:1Þ

and

dM,posterior ¼ TLE,posterior –TLM,posterior: ð2:2Þ

The effect of including a particular subset of interspecific

relationships in SDMs can be expressed as the absolute change

in data compression associated with model M:

DM ¼ dM,posterior –dM,prior ð2:3Þ
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and as a percentage change:

D%M ¼
DM

dM,prior
: ð2:4Þ

Equations (2.3) and (2.4) ensure we isolate the additional

compression effect of including particular interspecific relation-

ships in SDMs, over and above range similarities (or

differences) due to correlated (or anti-correlated) environmental

responses among species. In general, absolute changes will be

smaller for BN models that contain fewer conditional dependen-

cies because not all species ranges will be compressed. This

means percentage changes are useful for investigating which

types of interspecific relationships provide the most compression

relative to their preponderance.
t.14:20180426
3. Results
When using the maxSens threshold to convert habitat suit-

ability values to binary ranges, only two of the eight

models resulted in positive changes in data compression

(i.e. DM . 0): the model representing nine negative biotic

interactions led to a percentage change in total length of

D%BI2 ¼ 9.7%; and the model representing all 15 positive

and negative biotic interactions led to D%BI ¼ 3.7% (table 1).

With the maxSSS threshold, seven of the eight models

resulted in positive changes in data compression. All absolute

changes in total length, DM, for the same model were larger

than with the maxSens threshold. The ALL model led to

the largest absolute change, and the rank order of models fol-

lowed the number of interspecific relationships represented

in compression models; the single negative change resulted

from the model representing six positive biotic interactions.

The model representing negative biotic interactions led to

the largest percentage change in total length: D%BI – ¼

20.9%; followed by the ALL model with D%ALL ¼ 16.1%.

The third largest percentage change was for the compression

model representing both negative biotic interactions and

shared habitat suitability relationships: D%SHS BI2 ¼ 15.8%.

These results show that negative biotic interactions drive

predicted ranges. There are three notable examples of com-

petitive effects in the grassland system [1,3,4]: direct

competition between annual grasses and winter forbs, indir-

ect competition due to annual grass litter inhibiting the

germination and growth of spring and summer forbs, and

competition among perennial grasses and summer forbs for

limited water resources.
4. Discussion
Our findings suggest that processes like competitive exclu-

sion have the greatest influence on predicted distributions

once abiotic factors have been taken into account. Interest-

ingly, compression models representing shared habitat
suitability relationships performed relatively poorly. So,

although many studies report a predominance of positive

associations among species [10–12], modelling such relation-

ships in SDMs might not have as discernible an effect on

predicted species distributions as negative associations. As

such, we recommend focusing data collection in regions

where the predicted ranges of competing species overlap, to

help further parameterize the effect of competition on species

that would otherwise be expected to co-occur frequently.

It remains an open question under what circumstances

and at which spatial scales species affect one another’s

ranges. Recent work suggests that negative associations

among species are more likely to be observed at small spatial

scales and fine resolutions, whereas positive associations are

expected to dominate at large spatial scales and coarse resol-

utions [13]. Our method offers a novel and tractable way to

test this hypothesis, first, by comparing results for similar

ecological communities at a variety of spatial scales, and

second, by looking for consistent patterns across different

biological systems. A promising extension when joint obser-

vation data (i.e. when two or more species are recorded as

present at a single location) are available involves using

joint SDMs [14] that leverage environmental co-responses

among species to set a higher bar for establishing the

predictive value of biotic interactions.

SDMs are commonly used in extinction risk assessments,

with large range losses under environmental change indicat-

ing at-risk species. As SDMs continue to include more than

just abiotic variables, it will be important to consider not

only which interspecific relationships are worth modelling

now, but also how those relationships will change in the

future. We hope this approach inspired by information

theory will help clarify how biotic interactions shape commu-

nity distributions, and guide efficient strategies for improving

range predictions and extinction risk assessments.
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