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Including the effects of excited electrons in classical simulations, at the level of the two-temperature model,
involves the coupling of a grid-based finite-difference solver for a heat diffusion equation and classical
molecular dynamics simulations with an inhomogeneous thermostat. Simulation of large systems requires
domain decomposition of both particle-based and grid-based techniques. Starting with the CCP5 flagship
code dl poly 4 as the domain-decomposed molecular dynamics code, we devised a method to divide up
temperature grids among processor cores in a similar fashion, including the appropriate communications
between cores to deal with boundaries between grid divisions. This article outlines how the domain
decomposition of the temperature grids was achieved and gives some example applications of the two-
temperature model implementation in dl poly 4.
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1. Introduction

The effect of radiation damage on initially well-ordered materials has frequently been studied using
cascade simulations (e.g. [1, 2]). Such simulations account for the elastic interactions between the
atoms of a material but they often neglect the effects of inelastic scattering where the atoms lose
energy by exciting the electrons, commonly referred to as electronic stopping. Electronic stopping
can be included in cascade simulations by introducing a friction term in the equation of motion for
atoms with energies higher than a specified cutoff; however, this methodology does not account for
the energy storage and redistribution of electrons, nor the resulting effects on atomistic dynamics
[3, 4]. The redistribution can be achieved by applying a stochastic force [5] with a mean value
related to the local electronic temperature. The coupled two-temperature model (TTM)/molecular
dynamics (MD) methodology [6, 7] (known as 2T-MD) uses the heat diffusion equation solved
on a regular grid of voxels using e.g. the finite difference method (FDM) to evolve the electronic
temperature. The energy loss due to electronic stopping and the energy gain due to electron-phonon
coupling are added as source and sink terms to the heat diffusion equation during each molecular
dynamics step.

Higher energy impacts and depositions require the simulation of structured materials with larger
numbers of atoms. Domain decomposition is an appropriate parallelisation strategy for such calcu-
lations [8] and several classical molecular dynamics codes make use of it, including dl poly 4, the
successor to dl poly 3 [9, 10] and the code used in this work. Preservation of the high scalability
of dl poly 4 implies that a parallel implementation of the two-temperature model should also be
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based on domain decomposition by dividing up the electronic temperature grid among processor
cores and locally applying the heat diffusion equation to those sections of the grid. The alternative
of replicated data – in this case, holding the same temperature grid data on all processor cores
– has previously been implemented in lammps [11], but this strategy requires significant MPI
communication to gather together and broadcast temperature grid data as well as carrying out
FDM calculations over the entire grid on all processor cores. By dividing out the grid over the
processor cores and using core-to-core communications, the time spent on evolving the electronic
temperature grid will be reduced significantly for larger systems running on thousands of processor
cores.

The objective of this work was to implement two-temperature models in dl poly 4 for large-
scale simulations associated with highly excited electrons – radiation damage cascades and irra-
diation depositions from lasers and swift heavy ions – with the intention of including this feature
in future releases of the code. This article discusses the implications of domain decomposition of
grid-based FDM calculations in conjunction with a domain-decomposed MD code, including the
necessary strategies for division of temperature grids among cores and inter-core communications
for grid boundary voxels. Some applications making use of this new functionality will also be
highlighted.

2. Theoretical background and computational challenges

2.1. Two-temperature model

The system consists of heavy atoms exchanging energy with a sea of light electrons. The molecular
dynamic equation of motion takes the form of a Langevin equation:

mi
∂~vi
∂t

= ~Fi(t)− χimi~vi + F̃ (t) (1)

with mi and ~vi as the mass and velocity of atom i, ~Fi(t) the force acting on atom i at time t
due to interactions with surrounding atoms. Energy loss is included as a friction term with an
inhomogeneous coefficient χi, whose value for a particular atom depends upon its speed relative to
an electronic stopping threshold value v0 and provides contributions for electron-phonon (χp) and
electron stopping (χs) effects:

χi =

{
χp + χs |vi| > v0

χp |vi| ≤ v0.
(2)

Energy gains from electron-ion interactions can be represented as a stochastic force term F̃ (t) with
random magnitude and direction, satisfying the following properties:〈

F̃ (t)
〉

= 0〈
F̃ (t′) · F̃ (t)

〉
= 2kBTemiχpδ(t

′ − t) (3)

where kB is the Boltzmann constant and Te is the electronic temperature. The magnitude of the
random force should use the electronic temperature for the grid voxel in which each individual
atom is positioned.

The temperature of an electron gas is assumed to evolve by means of a continuum heat diffusion
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equation:

Ce
∂Te
∂t

= ∇ (κe∇Te)− gp (Te − Ta) + gsT
′
a (4)

where Ce and κe are respectively the electronic volumetric heat and conductivity, Ta is the local
atomic temperature and T ′a is a similar parameter to Ta but only includes atoms with speeds
greater than v0. Both Ta and T ′a are determined for each electronic grid voxel from the average
kinetic energy of the atoms contained therein, using peculiar particle velocities to remove any local
centre-of-mass drift due to flow effects, i.e. for cell J :

~vp,J =

∑
i∈J mi~vi∑
i∈J mi

(5)

Ta,J =

∑
i∈J mi (vi − vp,J)2

3kBNJ
(6)

T ′a,J =

∑
i′∈J mi (vi − vp,J)2

3kBN ′J
(7)

The second term in Equation (4) represents energy exchange by means of electron-ion interactions
with the relevant coupling coefficient equal to

gp =
3NJkBχp

∆V
(8)

where ∆V and NJ are respectively the voxel volume (assumed constant) and the number of atoms
inside voxel J . The third term in the heat diffusion equation accounts for energy exchange by
electronic stopping and its coupling coefficient is equal to

gs =
3N ′JkBχs

∆V
(9)

where N ′J is the number of atoms in voxel J subject to electronic stopping (i.e. where vi > v0).
Equation (4) can be solved numerically using the finite-difference method (FDM), taking the

centre of each voxel as its grid point. For this particular application, Euler’s method to solve the
partial differential equation explicitly is applied, using a forward-difference time derivative and
central-difference spatial derivatives based on grid spacings (∆x, ∆y, ∆z) and timestep (δt). This
scheme is illustrated for a one dimension (x) in Figure 1: the temperature at voxel i and timestep
n+ 1 (Tn+1

i ) depends on the same voxel’s value for the previous timestep n as well as its nearest
neighbours (voxels i− 1 and i+ 1).

To ensure the explicit form of FDM gives numerically stable solutions, the condition 0 <
κeδt

Ce(∆x)2
≤ 1

2 would need to be satisfied for a one-dimensional system [12]. Expanding to three

dimensions, the following condition would need to be satisfied to obtain stable solutions:

0 <
κeδt

Ce (min (∆x,∆y,∆z))2 ≤
1
6 .

This can be obtained by splitting the MD timestep (∆t) into an integer number of divisions, i.e.
∆t = Ntδt.

The electronic temperature grid can extend beyond the size of the MD simulation cell to ensure
electronic energy is transported away from the atomistic system using appropriate boundary con-
ditions [7]. It is therefore convenient to define a separate ionic temperature grid with a total volume
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Figure 1.: One-dimensional finite-difference schematic: algorithm is constrained to forward-in-time
movement but varies in both spatial directions, with dark vertical lines at the edges indicating
boundary nodes.

equal to that of the MD cell; this consists of voxels of equal volume (∆V ) to those in the electronic
temperature grid, which are placed in the same locations as electronic temperature voxels within
the MD cell volume. The heat diffusion equation for electronic temperature grid points outside of
the MD cell is evaluated without the two source terms.

Various simulations are available that involve the two-temperature model with MD (2T-MD).
Three particular setups include those for radiation cascades and irradiation caused by lasers and
swift heavy ions. Cascades make use of electronic temperature grids that extend beyond the MD
cell, often using boundary conditions at the edges that remove at least some of the electronic
energy from the system: rather than depositing energy into the electronic system at the start of the
simulation, one particular atom is assigned a high velocity to inject energy into the entire system.
Laser irradiated systems frequently employ pulsed energy depositions that are homogeneous in two
dimensions and electronic temperature grids of a similar size to ionic grids with heat conducting
boundaries to account for heat and pressure transmission into the bulk film. Swift heavy ion
irradiated systems apply energy depositions that vary radially in two-dimensions from a central
point and decay exponentially in time: the electronic temperature grid in these systems typically
extends far from the MD cell in these two dimensions with energy-removing boundaries as well
as closed or periodic boundaries in the third dimension. A fuller description of the use of 2T-MD
(molecular dynamics with TTM) is given in [13].

2.2. Computational issues to address

Implementing TTM outlined above into the domain-decomposed MD code dl poly 4 involves a
number of computational challenges:

(1) Divisions of the electronic and ionic temperature grids among processor cores;
(2) Matching up electronic and ionic temperature grids within the MD cell;
(3) Communication of electronic temperatures to neighbouring processor cores to generate

boundary halos;
(4) Communication of data to construct ionic temperature grids and calculate source terms.
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Since the MD simulation cell is domain decomposed, a similar strategy can be applied for the
temperature grids. There is, however, the need to ensure that the ionic and electronic temperatures
for a particular voxel can both be found in the same processor core for heat diffusion calculations.
Since the evolution of electronic heat diffusion is calculated on a regular grid, any communications
between values on a grid should be as efficient as possible to minimise the impact on parallel
scalability of the MD code.

3. Implementation

3.1. Division of ionic temperature grid

Given that the MD simulation cell is domain decomposed according to its volume, the ionic tem-
perature grid should be divided among processor cores in a similar fashion. To deal with any voxel
divided among neighbouring cores, the core with the lowest number in a particular dimension
will hold it for the purposes of heat diffusion calculations; e.g. 9 cells would be divided among
two cores in the x-dimension by giving the first core 5 cells and the second 4. Additional vox-
els are also included for each core in all three dimensions to act as a single-voxel boundary halo
around the assigned ionic temperature grid cells. The ionic temperature grids are represented
in dl poly 4 as one-dimensional arrays with the single array index used to identify the Carte-
sian coordinate of a voxel. Setting Nx, Ny and Nz as the numbers of voxels in each dimension
for the given processor core (excluding the boundary halo), the voxel index can be calculated as
Ni,j,k = 1 + i+ (Nx + 2)(j + (Ny + 2)k) for 0 ≤ i ≤ Nx + 1, 0 ≤ j ≤ Ny + 1 and 0 ≤ k ≤ Nz + 1.

3.2. Division of electronic temperature grid and matching up with ionic
temperature grid

It is assumed that the ionic temperature grid is placed exactly in the centre of the electronic
temperature grid with the same number of grid voxels on both sides of the MD cell for each
dimension. To match up the electronic and ionic temperature grids inside the MD simulation cell,
the electronic temperature grid can be considered as multiples of the entire ionic temperature grid.
An equal number of ‘unit grids’ are assigned on either side of the ionic temperature grid for each
dimension. The centre unit grid for electronic temperature is located in the same place as the ionic
temperature grid and the two temperature grids are thus matched up precisely.

All unit grids for electronic temperature are divided among processor cores in an identical manner
to the ionic temperature grid, including boundary halo voxels. An illustration of the assignment
of electronic temperature grid voxels to processor cores can be found in Figure 2. If the number of
unit grids required on each side of the central unit grid is not an integer, the next highest integer
is selected; provided the boundaries of the entire electronic temperature grid are correctly located
and applied in the furthest unit cells, the FDM heat diffusion calculations can be carried out on
superfluous electronic temperature voxels without affecting the results. The arrays for electronic
temperature grids are represented in dl poly 4 as four-dimensional arrays: the first dimension
gives the location in each unit grid (in a similar fashion to the ionic temperature grid) while the
last three identify the unit grid relative to the centre.

3.3. Grid temperature communications

The use of regular grids for electronic and ionic temperatures makes it possible to predict the
amount and selection of data to send between processor cores. MPI derived data types can be
created to automatically select the grid values to send and receive for each dimension, allowing the
use of a single set of MPI send and receive calls (either blocked or unblocked) to send grid values
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Figure 2.: Illustration of domain decomposition of temperature grids: ionic temperature grid 5× 5
voxels, electronic temperature grid 15 × 15 voxels, four processor cores. Assignment of voxels to
processor cores indicated by colour, solid red lines indicate extent of ionic temperature grid and
MD cell, dashed red lines indicate boundaries between cores for MD domain decomposition.

for each direction (±x, ±y, ±z). This is the same communication technique used in dl meso for
its Lattice Boltzmann Equation code [14] and has been shown to give near-perfect parallel scaling
to thousands of cores.

Two sets of derived data types are constructed. One set of data types is made up of double-
precision reals for sending electronic temperature values, indicators for active ionic temperature
cells (to indicate which cells to ignore when they are devoid of atoms), sums of masses, momenta
and kinetic energies for calculations of ionic temperatures and heat diffusion source terms. The
other set is made up of integers for atom counters required for ionic temperature calculations. The
datatypes are constructed with appropriate choices of blocklength and slide for boundary halos to
ensure voxels at sub-grid edges and corners are dealt with correctly when electronic temperatures
are sent in the order +x, −x, +y, −y, +z and −z. These communications are required both within
and between the electronic temperature unit grids, the latter of which are dealt with by processor
cores at the edges of the MD cell for each dimension. Since the temperature voxels are preferentially
given to lower numbered processor cores in each dimension, communications needed to calculate
ion temperatures and source terms correctly only need to sent in −z, −y and −x directions to
reach all ion temperature voxels undergoing FDM calculations.

3.4. TTM functionalities applied in dl poly 4

While the above describes the essential implementation of the two-temperature model in
dl poly 4, several options have been included to allow for a wide range of 2T-MD simulations to
be carried out.

The inhomogeneous Langevin thermostat with dual friction terms can be activated without mak-
ing use of the ionic and electronic temperature grids, using the user-specified system temperature
instead of the local electronic temperature in Equation (3) for stochastic forces. The removal of
electronic stopping energy from atoms still takes place in this case, but this energy is neither stored
in electrons nor can it be transferred back to the atomistic system. As such, the inhomogeneous
Langevin thermostat alone can be used in cascade simulations to give extremes in initial radiation
damage.

When the full TTM is applied along with the inhomogeneous Langevin thermostat, by default
the latter is only applied to the thermal component of particle velocities, i.e. the total particle
velocities minus the local voxel’s peculiar value as determined by Equation (5). Options have been
included to apply the Langevin thermostat to total particle velocities, either in all three dimensions

6



April 11, 2018 Molecular Simulation main

or to x- and y-components (using the z-component of thermal particle velocities in the latter case).
The volumetric heat capacity used in Equation (4) can be specified in one of four ways: (1)

a constant value independent of electronic temperature, (2) a linear function of temperature up
to the Fermi temperature and a constant (maximum) value beyond it, (3) a hyperbolic tangent
function of temperature, or (4) a tabulated function of electronic temperature in a file supplied
by the user. In cases 1, 2 and 3, the user can supply parameters for the specific heat capacity:
the product of specific heat capacity with atomic density gives the volumetric value. The atomic
density is assumed to be constant throughout the system and can either be calculated based on
the initial configuration, specified by the user or calculated dynamically based on the number of
active ionic temperature voxels.

For metallic systems, the thermal conductivity also needs to be supplied and this can be chosen
to be one of four options: (1) infinitely large (i.e. instantaneous heat transfer across the system),
(2) a constant value independent of electronic temperature, (3) a linear function of temperature
compared to a datum value based on the Drude model, or (4) a tabulated function of electronic
temperature in a user-supplied file. Non-metallic systems normally make use of thermal diffusivities
(ratios of thermal conductivity to volumetric heat capacity) and these can be specified in one of
three ways: (1) a constant value independent of electronic temperature, (2) a reciprocal function
of temperature up to the Fermi temperature and a constant (minimum) value beyond it, or (3) a
tabulated function of electronic temperature in a user-supplied file.

The electron-phonon coupling friction term χp can either be held as a constant value or be
dynamically varied according to electronic temperature, using values of gp given as a tabulated
function supplied by the user and Equation (8). When gp is supplied as a tabulated function, it
can either be applied homogeneously across the entire system using a mean electronic temperature
or calculated for each voxel using the local electronic temperature.

Various boundary conditions can be applied to the outer edges of the electronic temperature
grid: these are not directly connected to any boundary conditions applied for the atomistic (MD)
system. The various categories of available boundary conditions include:

• Periodic;
• Dirichlet (infinite flux);
• Neumann (zero flux);
• Robin (partial/variable flux).

Dirichlet boundary conditions fix the temperature at the edges of the electronic grid to a constant
value, in this case the target (system) temperature T0. Neumann boundary conditions set the
temperature gradient at the electronic grid edges to zero (i.e. dT

dx = 0) by setting the temperature
in those voxels to the values of their nearest neighbours. Robin boundary conditions are a hybrid
of Dirichlet and Neumann conditions, which set the temperature of the boundary voxels to a fixed
proportion between T0 and the neighbouring voxel’s temperature, giving the temperature gradient
as dT

dx = −k(T − T0) where k is the ‘target’ proportion. All four types of boundary condition can
be applied to all six boundaries (±x, ±y, ±z), or Neumann boundaries in the z-direction can be
combined with Dirichlet or Robin boundaries in the x- and y-directions.

For laser excitation and swift heavy ion systems, energy can be deposited to the electronic
temperature grid at its centre. The energy deposition can be expressed as a product of spatial and
temporal functions. The spatial deposition function can be a constant (homogeneous) value in all
three directions, a Gaussian distribution in x- and y- directions (constant in the z-direction), or
a homogeneous value in x- and y-directions with exponential decay in the z-direction from the
system centre (as used for lasers). The temporal deposition function can be a Dirac delta function
(approximated by applying all the energy in a single diffusion timestep δt), a square pulse, Gaussian
or exponential functions in time. The user can specify the electron stopping power of a projectile
entering the electronic system or the absorbed fluence and penetration depth of a laser, as well
as spatial and/or temporal distribution coefficients. In all cases, since the product of the voxel
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volume and the integral of the volumetric heat capacity Ce between two temperatures represents
a change in electronic energy, the effect of energy deposition can be realised by increasing the
electronic temperature of a voxel. That temperature can either be found analytically – if the heat
capacity is constant or a known function of temperature – or determined iteratively if tabulated
heat capacities are supplied.

A minimum number of atoms are required in each temperature voxel to ensure the ionic tem-
perature is calculated correctly from atom velocities. The absolute minimum number is naturally
1, but the user can specify the minimum number of atoms required in each ionic temperature voxel
to consider it active and used in thermal diffusion calculations. If a given ionic temperature voxel
becomes inactive, an option exists to transfer the energy from the associated electronic temperature
cell to its active neighbours and thus ensure system-wide conservation.

Two options can also be invoked to help initialise systems requiring TTM. One option is to
delay the start of an energy deposition (usually applied at the start of a 2T-MD simulation) by a
user-specified time, providing time for the atomistic system to settle and equilibrate. The other is
to apply electron-phonon coupling in a single direction (from the electronic system to the atomistic
system) in Equation (4), i.e. applying the term with gp only when Te > Ta.

All of the above features have been implemented in the next version of dl poly 4 (4.09), which is
due for imminent release at the time of writing (February 2018). A further additional functionality
to be added later will be atomistic interaction potentials that depend upon electronic temperature.
Proposed forms of Te-dependent potentials include analytical functions with virial terms expanding
on electronic temperature [15] and sets of potentials (described either by parameters or in tabulated
form) at various electronic temperatures, using interpolation to obtain the potential for a given
voxel’s temperature [16].

4. Performance of parallelised TTM

As a guide to how well the two-temperature model implementation works in dl poly 4, strong
scalability tests based on radiation damage cascades [17] have been carried out on Phase 2 of the
UK’s national supercomputer ARCHER (www.archer.ac.uk). A system consisting of 1 458 000
α-iron atoms in a cubic box with sides of 249.14Å interacting with a tabulated embedded atom
model (M07 in [18]) was simulated using between 12 and 1536 processor cores of ARCHER. Two
sets of calculations on varying numbers of processor cores were carried out, one using TTM and
the other solely using the inhomogeneous Langevin thermostat. The simulations with TTM were
carried out on ionic temperature grids of 18×18×18 voxels (averaging 250 atoms per voxel) inside
electronic temperature grids of 54× 54× 54 voxels with Robin boundary conditions at the edges,
using thermal conductivities given as a linear (Drude-like) function of temperature and tabulated
specific heat capacities. In both sets of simulations, the electron-phonon and electronic stopping
friction terms for the Langevin thermostat are set as constant values (independent of electronic
temperature). The MD timestep size was allowed to vary during the simulations in response to the
dynamics of the atomistic system.

An impact of 10 keV was applied to one of the iron atoms to initiate a radiation damage cascade.
No energy depositions were made directly to the electronic system in the simulations with TTM,
which meant that the electronic heat diffusion calculations (Equation (4)) did not have to be finely
subdivided per MD timestep at the start of the calculations. Between two and four electronic
temperature evolutions per MD timestep were required for 2T-MD simulations, depending on the
timestep size.

The timings of the calculations are shown in Table 1 and illustrated in Figure 3. A small amount
of additional time per MD timestep – averaging around 8 ms – was required to carry out the
required calculations for the two-temperature model, i.e. calculations of ionic temperatures from
atomic velocities and evolution of electronic temperatures. The effect that these additional calcu-
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Table 1.: Results of strong scalability study for dl poly 4with and without the two-temperature
model on Phase 2 of ARCHER.

Number of cores Time per MD timestep/ms
TTM No TTM

12 1075.1 1058.5
24 546.89 554.43
48 294.99 288.85
96 163.41 154.45
192 91.95 88.16
384 72.28 59.84
768 58.62 47.65
1536 51.23 40.80
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Figure 3.: Strong scaling of dl poly 4 with and without the two-temperature model on Phase 2
of ARCHER.

lations have on the parallel scalability is small, making the TTM calculations slightly less scalable
when larger numbers of processor cores are used but not affecting the general trends. In both cases,
the increase in computational speed with number of cores starts to level off at larger core counts,
matching up well with expected behaviour for a domain-decomposed parallel MD code. The chosen
strategy of dividing the temperature grids among the processor cores, using core-to-core commu-
nication between them, does not appear to significantly affect the overall parallel scalability or
performance of dl poly 4 and is thus suited for larger scale simulations.
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5. Applications of TTM with dl poly

A number of simulations have been carried out with modified versions of dl poly 3 and dl poly 4
that have incorporated the above-mentioned TTM functionalities [13]. These can be divided be-
tween radiation damage cascades, laser irradiation and swift heavy ion (SHI) irradiation.

5.1. Cascades

The original TTM developments for dl poly were intended for radiation damage simulations
modelled using cascades. Domain-decomposed versions of dl poly (dl poly 3 and dl poly 4)
include the capability to produce specialised output files recording defects (interstitials and vacan-
cies) compared to a given initial structure at user-defined intervals [10], reducing the amounts of
data written to a file for cascade simulations compared with full trajectory data.

The first 2T-MD studies with dl poly [6, 7] applied modifications to dl poly 3, making use of
a replicated-data strategy for populating and evolving the ionic and electronic temperature grids.
The simplicity of this method is countered by its requirements for global communications among
all processor cores to populate the grids and for all cores to apply FDM calculations over the entire
electronic temperature grid, restricting the parallel scalability of the TTM calculations. System
sizes were consequently limited to around 250 000 atoms and energies of tens of kiloelectronvolts,
but these first studies demonstrated the usefulness of 2T-MD in determining realistic extents of
damage for materials with enhanced electron-phonon coupling.

The changes made to dl poly 3 were later included with dl poly 4 [19] and subsequently re-
engineered as detailed above to parallelise the temperature grids in a similar fashion to the main
body of the MD code. The first cascade-based applications making use of dl poly 4 with domain-
decomposed TTM examined radiation damage cascades of 100–500 keV in up to 150 million atoms
of α-iron [17], zirconia [20] and tungsten [21]. The simulations modelling these cascades were carried
out on the UK national supercomputer at the time, HECToR Phase 3, using up to 65 536 cores
(nearly three-quarters) of this machine.

An example of the radiation damage observed during these simulations can be found in Figure
4. Comparisons were made of α-iron calculations using the inhomogeneous Langevin thermostat
for electronic stopping only [22] against those with the full TTM implementation: these demon-
strated that including energy transfers between atomistic and electronic systems resulted in fewer
displacements and defects at the peak level of damage and subsequently more rapid recovery.

Further cascade studies based on 2T-MD using dl poly 4 have been carried out for nickel-
based systems [23, 24], including alloys of nickel with iron or palladium [25–27], using up to 20
million atoms and energy impacts of up to 150 keV. The inclusion of electron-phonon and electronic
stopping effects in these simulations produces more realistic extents of damage than other modelling
methods, as well as demonstrating that, for a given impact, the alloys are damaged less than pure
nickel.

5.2. Laser irradiation

The first 2T-MD simulations of laser irradiation with dl poly 4 examined systems with gold
nanofilms [28, 29], using spatially Gaussian and temporally exponential energy depositions to the
electronic temperature grid to represent the excitation fluences. While corresponding DFT calcula-
tions indicate that the atomistic potential changes at higher electronic temperatures (above 9000K),
the ground-state potential is still sufficient to accurately reproduce e.g. Bragg peak evolution and
melting processes for lower energy fluences.

Further laser irradiation simulations using dl poly 4’s 2T-MD implementation have been car-
ried out for thin films of tungsten [16, 30], albeit making modifications to the code to incorporate
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(a) (b) (c)

Figure 4.: A representative 200 keV cascade in 100 million atoms of α-iron modelled using
dl poly 4 with TTM, showing defect atoms from the original structure with vacancies (inter-
stitials) shown in purple (green): the processes resulting from the cascade include (a) fracturing,
(b) annealing and (c) healing of the metallic structure. (Images based on work carried out in [17],
courtesy of Eva Zarkadoula.)

embedded atom model (EAM) potentials that depend on local electronic temperature. The latter
were needed for higher energy fluences (up to 80 mJ cm−2), as maximum electronic temperatures
of approximately 22 000K were reached. The simulations were able to examine the dynamics of
ultrafast solid-solid phase transformations, as well as demonstrate the expansion of thin films due
to electronic excitation.

5.3. Swift heavy ion irradiation

Simulations examining the response of germanium to swift heavy ion (SHI) radiation [31] were
the first calculations of this kind to be carried out using dl poly 4 with the additional TTM
functionality. In this case, the TTM was extended by including an additional conservation equation
for the electron density [32], which is also evolved using a finite-difference method and used as a
parameter in place of the electronic specific heat (Ce) in Equation (4). Using an atomistic system of
200 000 germanium atoms and an electronic temperature grid expanded outwards orthogonally to
the direction of energy deposition, the effect of electronic stopping power on amorphised latent track
radii could be determined. These simulations were able to realistically account for non-equilibrium
carrier dynamics in an irradiated band gap material, providing good agreement with experimental
data on track radii.

Simulations of SHI radiation on silicon with 2T-MD [33] further demonstrated the usefulness of
this method in studying band gap materials (insulators and semiconductors). As an alternative to
evolving electron densities, this work included determination of the electronic specific heat of silicon
as a function of electronic temperature using DFT calculations. Determination of specific heats
allowed proper parameterisation of the two-temperature model’s heat diffusion part and tabulated
values could be included as an input for dl poly 4. Similar calculations for body-centred (iron and
tungsten) and face-centred (copper and nickel) cubic metals, modelling around 2.4 million atoms
of each, also made use of DFT calculations to determine electron-phonon coupling coefficients
(gp) as functions of electronic temperature [34]. These simulations demonstrated the sensitivity of
electron-phonon coupling to the extent and type of damage: the body-centred cubic metals were
more resistant, while elongated dislocation loops in the direction of the ion path were formed in
face-centred metals.
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6. Summary and outlook

The implementation of the two-temperature model in dl poly 4 significantly widens the range
of simulations possible with this molecular dynamics code to include systems where excitation of
electrons plays an important role. Applying domain decomposition to the temperature grids in a
similar manner to the atomistic system ensures the parallel scalability of TTM-based calculations
alongside atomistic MD, allowing systems with many millions of atoms to be modelled efficiently
with radiation damage cascades, laser depositions and swift heavy ion irradiation. Several 2T-MD
(TTM/MD-coupled) systems have already been simulated using dl poly 4, providing greater in-
sight into the effects of radiation damage and irradiation on various solid structures and indications
of future TTM-related development (e.g. Te-dependent atomistic potentials) in this code.

The next release of dl poly 4 (version 4.09) will make TTM available to all code users along
with several ancillary features to enable simulations of a wide range of materials with explicit
electronic stopping and electron-phonon coupling. The user manual will be updated to include
details of the TTM implementation in dl poly 4, and three new demonstration simulations –
representing systems with cascades, laser depositions and swift heavy ion irradiation – will be
included in the code’s test suite. The code will be made available from the dl poly 4 website
(www.ccp5.ac.uk/DL POLY).
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