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Abstract

Grain surface chemistry and its treatment in gas-grain chemical models is an area of large uncertainty. While
laboratory experiments are making progress, there is still much that is unknown about grain surface chemistry.
Further, the results and parameters produced by experiments are often not easily translated to the rate equation
approach most commonly used in astrochemical modeling. It is possible that statistical methods can reduce the
uncertainty in grain surface chemical networks. In this work, a simple model of grain surface chemistry in a
molecular cloud is developed and a Bayesian inference of the reactions rates is performed through Markov Chain
Monte Carlo sampling. Using observational data of the solid state abundances of major chemical species in
molecular clouds, the posterior distributions for the rates of seven reactions producing CO, CO2, CH3OH, and H2O
are calculated in a form that is suitable for rate equation models. This represents a vital first step in the development
of a method to infer reaction rates from observations of chemical abundances in astrophysical environments.
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1. Introduction

Dust grain chemistry plays an important role in the physical
processes happening deep inside dark molecular clouds during
star formation (Draine 2003; Williams & Cecchi-Pestellini
2015). These dust grains are vital to every part of the star
formation process and ultimately contribute to the basic matter
from which icy planetesimals are formed (van Dishoeck 2004).
It is in fact evident that molecules such as water and methanol
in dust grain ice mantles are primarily formed through solid
state chemistry rather than accreted directly from the gas phase
(Parise et al. 2005; Ceccarelli et al. 2007). In recent years, even
more complex molecules have been observed in both prestellar
cores and star-forming regions (see reviews by Herbst & Van
Dishoeck 2009; Caselli & Ceccarelli 2012), some of which
cannot currently be explained by pure gas phase chemistry.
Therefore, chemical reactions leading to simple as well as
complex molecules must occur on the surface of icy dust
grains.

Experimentally, it has been known since the work of Hagen
et al. (1979) and Pirronello et al. (1982) that grains can be
chemical nanofactories on which surface reactions, UV
photons, and cosmic-ray radiation can synthesize complex
molecules and even prebiotic species, starting from simple
atoms or molecules such as H, C, O, N, CO. Therefore,
understanding the surface chemistry that takes place on dust
grains is key to understanding not only the origins of stars, but
also how rocky and gaseous planets are formed.

Initially, surface reaction networks in chemical models were
based on chemical intuition and gas phase chemistry analogs.
However, over the past two decades, laboratory astrochemists have
been using experimental techniques to test and evaluate surface
reactions. As a result, the efficiencies of reaction routes are
being properly explored and important information on how
molecules form on grain surfaces is being revealed (see Williams
& Cecchi-Pestellini 2015 for a review). The first experimental work
on the dust surfaces studied the formation of molecular hydrogen
(Pirronello et al. 1997). Several more experiments followed
studying either the formation of more complex molecules (e.g.,
Watanabe et al. 2005; Ioppolo et al. 2009; Minissale et al. 2015)

or the ice morphology and ice mantle mechanisms (e.g., Fraser
et al. 2004; Collings & McCoustra 2006). Surface reactions can be
experimentally investigated within a constrained range of labora-
tory conditions. Typically, these conditions include different atomic
fluxes, ice temperatures, ice morphologies, and mixture ratios, as
well different energetic processes. The aims of the experiments
are to investigate surface molecule formation, desorption, and
diffusion. However, experimental data for interstellar ices are
limited, the main reason being that the experimentation process
is neither simple nor fast. In order to make the best use of
experimental resources, the chemical data that models require need
to be prioritized according to what will have the most impact.
Bayesian methods are widely used in astronomy as a means

of deriving posterior probability distributions (PPDs) for model
parameters from observations (e.g., Palau et al. 2014; Schmalzl
et al. 2014; Bevan 2018). It is the de facto standard in the field
of cosmology, but is becoming more and more widely used in
other areas of astronomical research (e.g., Lomax et al. 2016;
Testi et al. 2016). In astrochemistry, Bayesian inference has
been used to derive parameters such as the gas density and
cosmic-ray ionization rates within a dark molecular cloud from
observations of species in the gas and ices using chemical
models (Makrymallis & Viti 2014).
In this work, we investigate the chemistry itself, studying the

rates of reactions on the dust grain surfaces in an attempt to
infer their rates and provide a list of reactions for which an
accurate rate is particularly important. This is the first such
work in an astrochemical context but Bayesian methods have
been used to determine rate coefficients for combustion
chemistry on Earth (Prager et al. 2013). This work represents
a necessary first step in which we determine whether we can
use a reduced chemical model and very simple observational
constraints to learn more about the parameters in a grain
surface chemical model.
The grain chemistry model used in this work is described in

Section 2. The inference process including the choice of
Markov Chain Monte Carlo (MCMC) sampler is presented in
Section 3. The results of our analysis are presented in Section 4
along with an additional discussion in Section 5. Finally, our
conclusions are discussed in Section 6.
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2. The Chemical Model

A simple chemical model was developed that considers only
the solid state chemistry in the ice mantles of dust grains in a
dark molecular cloud. The simplified model is a time-
dependent single-point model that generates a time series of
solid phase molecular abundances as a function of the physical
conditions of the molecular cloud and the chemical parameters
of the defined chemical network. The chemical network
consists of 23 species and 24 surface reactions that are listed in
Tables 1 and 2, respectively.

To model the surface chemistry of a dark cloud the
abundance of each solid species is derived by solving rate
equations for grain surface chemistry. The formation and
destruction mechanisms for a species i are given by the
following kinetic equation:

dn
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where klm
i is the reaction rate of all the reactions between

species l and m that produce i, ni is the concentration of species
i (with the subscript gas indicating the concentration of the
species in the gas phase), kr represents the reaction rates of all
the reactions where species i participates as reactant, while ki

des

and ki
ads are the desorption and adsorption rates, respectively.

The reactions in Table 2 are mainly hydrogenation reactions
of common gas phase species and reactions between species
that are likely to be abundant on the grains. Where possible,
reactions that have been found to be efficient, or even
dominant, routes to forming a species have been chosen. For
example, the hydrogenation of CO to form CH3OH is well
studied (Fuchs et al. 2009; Chuang et al. 2016), and so
reactions 21–24 are the only considered route to form CH3OH.
Similarly, the formation of CO2 via reaction 3 is known to be
efficient (Ioppolo et al. 2011), and other routes suffer from
large energetic barriers. Note that in cases where H or H2 is a
product of a reaction such as in reaction 11, it is ignored and
the total H abundance is not conserved. This is for simplicity
and the lost H represents too small a fraction of the H
abundance to affect the model.

There is no gas phase chemistry in the model, and so the
freezeout of species from the gas phase must be parameterized.
The adsorption rate is assumed to be zero for all but the
following six species: CO, CS, O, H, OH, and S. To derive the
adsorption rate of these species, the gas-grain chemical code
UCLCHEM (Holdship et al. 2017) was utilized. UCLCHEM was
run with a network of 220 species with gas phase reactions
from UMIST12 (McElroy et al. 2013), freezeout of gas phase
species, and the nonthermal desorption of grain surface species.
A single-point model of this full gas-grain chemistry was run in
which the gas increased in density under freefall from10 cm2 3-

to 2 10 cm4 3´ - , which is appropriate for a dark molecular

cloud. The chemistry progresses over 10Myr at 10 K and the
freezeout rates for the six species above were extracted from
this model.
The freezeout rates from UCLCHEM were inserted as source

terms in the ODEs for those species in the simple grain surface
model. The grain surface models starts with an abundance of
zero for all species, representing bare grains. The model then
progresses for 10Myr considering only the 24 reactions in
Table 2, the freezeout rates, and the nonthermal desorption of
each species. In this way, the grain surfaces in a dark molecular
cloud are effectively modeled while the computation time is
low as the gas phase treatment is reduced to the incoming
(freezeout) and outgoing (desorption) flux of molecules. Note
that the cloud age is arbitrary, the model reaches the molecular
cloud density at 6 Myr, and the chemistry is then allowed to
progress until a total age of 10Myr. The exact choice of final
time has only a small affect on the abundances in the model.
Whether one parameterizes the rate of surface reactions in a

similar way to the Kooji–Arrhenius equation used for gas phase
chemistry (Occhiogrosso et al. 2012) or considers the diffusion
and reaction of species across the ice surface (Hasegawa
et al. 1992; Chang et al. 2007), the rate of a reaction is constant
for a given temperature and dust composition. Therefore, k in
this model is treated as a constant rate of reaction in units of
cm3 s−1 as the temperature in the model is constant at 10 K.
This reduces the number of parameters in the model and
reflects the available data, i.e., ice phase abundances in
quiescent, approximately isothermal clouds.
The result of these approximations and modifications is a

model of the grain surface chemistry under the conditions of a
dark molecular cloud at a constant temperature of 10 K. The
freezeout rates and gas density are specific to a dark cloud, and

Table 1
Species Included in the Chemical Model

Species

CH3OH, CO, CO2, CS, CS2, H, H2CO, H2CS,
H2O, H2S,H2 S2, HCO, HCS, HOCS, HS, HSO,

O, OCS, OH, S, SO, SO2

Table 2
Reaction Network Used in the Chemical Model

No. Reactions

1. O + H → OH
2. OH + H → H2O
3. CO + OH → CO2

4. S + H → HS
5. HS + H → H2S
6. H2S + S → H2 S2
7. CS + H → HCS
8. HCS + H → H2CS
9. CO + S → OCS
10. OCS + H → HOCS
11. H2S + CO → OCS
12. H2S + H2S → H2 S2
13. H2 S2 + CO → CS2+O
14. H2S + O → SO2

15. CS2 + O → OCS + S
16. CO + HS → OCS
17. S + O → SO
18. SO + O → SO2

19. SO + H → HSO
20. HSO + H → SO
21. CO + H → HCO
22. HCO + H → H2CO
23. H2CO + H → H3CO
24. H3CO + H → CH3OH

Note.The rates of these reactions are the parameters of interest in this work.
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so the model is not of applicable to arbitrary ices. This model
has a run time that is approximately 1000 times shorter than an
equivalent run of UCLCHEM. This reduction in run time is vital
due to the number of model runs required for an MCMC
inference procedure.

3. Bayesian Inference

3.1. Inference Procedure

The aim of this work is to obtain information about the set of
reaction rates k k k k, , ,1 2 23= ¼( ) of the surface chemical
network, where kj is the reaction rate of reaction j. For a given
set of rates, the model produces simulated molecular
abundances , , ,1 2 22   = ¼( ), where i is the abundance
of species i. These quantities are related through the chemical
code (·) so that k = ( ).

For any set of simulated abundances, the probability of the
corresponding parameter values can be evaluated through the
use of Bayes’s rule:

k d
d k k

d
d k kP

P P

P
P P , 2= µ( ∣ ) ( ∣ ) ( )

( )
( ∣ ) ( ) ( )

where d is the data, representing a set of observational
constraints on  . k dP ( ∣ ) is the PPD of k, which expresses the
level of certainty about the reaction rates after considering the
data and any prior information. The denominator is known as
the Bayesian evidence, but for the purposes of this study can
simply be treated as a normalization factor. The prior
probability distribution ( kP ( )) adopted for the reaction rates
is a logarithmically uniform distribution that is nonzero when
the reaction rates are between 10−5 and 10−30 and zero
elsewhere. The limits of the prior distributions represent a
larger range than that of rates typical of gas phase reactions.
This is a choice to reflect the exploratory nature of the work
and is expected to cover all likely rates regardless of the nature
of surface reactions.

The likelihood function d kP ( ∣ ) must give the likelihood of
having obtained the data given the assumed set of rates. Here,
the likelihood encodes measurement noise and is given as

d kP
d
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1

2
, 3
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where i are the model abundances of each species for which
there are data and σi is the Gaussian uncertainty of each
observed fractional abundance.

3.2. Implementation and Data

In order to constrain the reaction rates, data are required in
the form of species abundances in the ices. The solid state
fractional abundances of species in quiescent gas illuminated
by background stars were taken from a comprehensive recent
review (Boogert et al. 2015, Table 2). Of the species in the grain
surface model, this review gives constraints on the abundance of
H2O, CO, CO2, and CH3OH. The value of the median fractional
abundance is provided for each along with the upper and lower
quartile values. To formulate the likelihood, it is assumed these
values describe a Gaussian distribution for the abundance of each
species. It is also assumed that the uncertainties on the abundances
are independent, which is likely given that the abundances and
statistics presented by Boogert et al. (2015) are combinations of

different data sets for each species. The median value is taken as
the mean and the upper and lower quartile values can then be
assumed to be 0.68σ from that mean. The resulting abundances
and uncertainties are listed in the upper half of Table 3. Due to the
low number of observations, these distributions are not perfect
representations of the data as the quartile values are not precisely
symmetric about the median.
In order to evaluate the posterior distribution function for all

values of k, a sampler must be used. The emcee python
package (Foreman-Mackey et al. 2013) was chosen for this
purpose. This in an implementation of the affine-invariant
Monte Carlo sampler proposed by Goodman & Weare (2010).
Rates were sampled by 128 “walkers,” each producing chains
of ∼106 samples where the frequency of the appearance of a
particular rate value in the chain is proportional to its
likelihood. These walkers start from random positions in rate
space (i.e., all 24 rates have a random value from 10 30- to
10 cm s5 3 1- - ). The sampling took approximately 100 hr using a
single node on the DiRAC CSD3 platform’s Skylake-Peta4
system utilizing emcee’s built-in MPI tools. In the Appendix,
heuristics are presented that demonstrated the chains were
likely to have converged.

3.3. Upper Limits

The abundances of H2O, CO, CO2, and CH3OH are the only
strong constraints on the abundances of the species in this
model. The reaction rates that are acquired as a result of
performing a Bayesian parameter inference procedure with
these abundances are presented and discussed in Section 4.1.
However, weaker constraints do exist for other species.
Boogert et al. (2015) provide upper limits on the abundances
of OCS in dark clouds as well as upper limits on H2CO, SO2,
and H2S in other objects; the upper limits used are given in
Table 3. Therefore, a second parameter inference procedure
was performed that was identical to the first, except that the
likelihood function was modified to take into account the upper
limits. In order to be conservative, when deriving upper limits
on species that have not been detected toward background
stars, the upper limits toward YSOs were increased by an order
of magnitude to allow for larger abundances in molecular
clouds. This is the case for the upper limits on H2CO and SO2.
To account for these upper limits, modifications were made

to Equation (3). When including the upper limits, the likelihood

Table 3
(Upper Section) Adopted Abundances and Uncertainties of Species Observed
in the Ices Used as Data in the Parameter Inference and (Lower Section) Upper
Limits of the Fractional Abundance for Other Species that Are Used to Further

Constrain the Reactions Rates

Species Abundance

H2O (4.0±1.3)×10−5

CO (1.2±0.8)×10−5

CO2 (1.3±0.7)×10−5

CH3OH (5.2±2.4)×10−6

H2S <1.6×10−6

H2CO <3.0×10−5

OCS <1.2×10−7

SO2 <4.0×10−6

Note.All values are adapted from Boogert et al. (2015) as discussed in the text.
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of a model was calculated as
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where δi is 1 for observed species and 0 for species with upper
limits. C is the upper limit of a species’ abundance, and S Ci( ) is
the survival function. This modification to the likelihood is
standard for left-censored data, i.e., ones where a detection
limit provides only an upper limit on a quantity (Klein &
Moeschberger 2003). The survival function for a Gaussian
distribution is used:
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where erf() is the error function. σi is assumed to be one-third
of the value of the upper limit.

Equation (4) is equivalent to Equation (3) for detected
species. However, for upper limits it takes the value of 1−S.
For model abundances much less than the upper limit, this
likelihood is equal to 1, and for model abundances much larger
than the limit, it takes a value of zero. Thus, while model
abundances close to the upper limit are accepted, models with
much larger predicted abundances have a likelihood of zero.

3.4. Testing the Method

In order to ascertain whether this method would be able to
predict reactions rates from measured abundances in the case
that the model was an accurate representation of reality, it was
tested using abundances obtained from the model itself. First,
random rates for all 24 reactions were generated, and the model
was run using those rates. The abundances of the four species
in Table 3 for which observed abundances are available were
then stored. “Noisy” abundances were then generated by
drawing randomly from a Gaussian distribution with a mean
value of the model abundances and a standard deviation set to a
50% error. This produced four “observations” obtained from
the model with known rates. The 50% error was chosen as it is
the approximate fractional error of the real observations. The
MCMC procedure was then performed to see whether the
known reaction rates could be obtained.

It was found that the majority of rates could not be
recovered. However, in tests where the rates for reactions that
produced H2O, CO, CO2, and CH3OH were high enough to
produce observable abundances, the rates of those reactions
were recovered. That is to say that, intrinsically, this method
appears to only be able to give information on the rates of
reactions that form the species for which observational
constraints are available.

4. Results

4.1. Gaussian Abundance Constraints

The results are presented in the form of marginalized PPDs
for the reaction rate coefficients. The density of each margin-
alized PPD reveals the areas where the corresponding reaction
rate is more probable based on the imposed constraints. In
Figure 1, the marginalized PPDs of selected reactions are
plotted. These show a large probability density only for a much
smaller range of values than the prior. As expected from the
tests in Section 3.4, these are generally reactions that form the

constrained species. The PPDs are shown as histograms and
Gaussian kernel density estimates, using the full MCMC chains
from all 128 walkers. It is believed that these chains have
converged and the relevant tests are discussed in the Appendix.
The PPD of reactions 1, 2, 3, and 21 are well constrained and

involve species directly constrained by observation. Reaction 1
provides OH required to form H2O and CO2 through reactions
2 and 3. Those are in turn constrained by the observed
abundances of CO2 and H2O and mutual competition for OH.
Reaction 21 uses up CO, and so it is expected there would be
an upper limit due to the observed abundance of CO and a
lower limit due to competition with reaction 3. Reactions
22–24 form CH3OH from HCO. The competition between
reactions and the correlation between the rates of reactions
21–24 are explored further in Section 5.2.
The other PPDs are broadly similar to the prior distributions,

and the implications of this should be stated. Essentially, the
reactions where the rates have uniform probability distributions
are reactions that do not impact the likelihood of the model. It
should be noted, however, that changes in the abundance of
species not included in the likelihood calculation are possible.
PPDs that are similar to the priors indicate that when modeling
only H2O, CO, CO2, and CH3OH, the rates of those reactions
are unimportant.

4.2. Inclusion of Upper Limits

The PPDs of each reaction are largely unchanged when
upper limits are included, indicating that the upper limits may
in fact be too conservative. The only major change is that the
rate of reaction 10 takes a minimum value of 10 cm s17 3 1- - .
This is required for a models to produce a lower OCS
abundance than the upper limit.
One may expect the upper limit on H2CO to improve the

level of certainty in the reaction series 21–24. However, using
the conservative value in Table 3, no change is seen in the
posteriors. If the value for YSOs is utilized instead, only a
small change is observed. In that case, the peaks that were
apparent in the marginalized posterior of each reaction in
Figure 1 become more pronounced, such that the majority of
the probability density lies within them. Thus, the value of
H2CO would represent an important constraint if an appropriate
value for molecular clouds could be obtained.
The most likely rates for the well-constrained reactions from

this MCMC analysis are presented in Table 4. These most
likely rates are the same whether they are taken from the
MCMC chains produced using observed abundances only or
from the chains that included upper limits. It is clear that the
available upper limits are not sufficiently constraining to
improve the parameter inference.

5. Discussion

5.1. Model Abundances

The results of the MCMC run give the marginalized
posterior distributions of the rates of each reaction. In order
to understand how well these rates reproduce the observed
abundances, the model must be run with rates drawn from the
probability distributions. This will allow the uncertainty in
the model that arises from the uncertain rates to be quantified.
The model was run 1000 times, with the rates of the reactions
randomly sampled from the marginalized posterior distribu-
tions derived from the upper limit MCMC procedure. By

4
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Figure 1. Marginalized posterior probability distributions of the rates of the reactions with posterior distributions that are well constrained. The y-axis scaled such that
the total probability density contained by the histogram is 1. All other reactions have posterior distributions that are approximately flat and similar to the prior.
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plotting the average abundance of each species and the
standard deviation of those abundances, the uncertainty in the
model can be evaluated.

The abundances for selected species from the model runs are
plotted in Figures 2 and 3. It can immediately be seen from
Figure 2 that, for the species with observational constraints, the
uncertainty in the rates does not lead to a large uncertainty in
the model abundances. The model appears to consistently
underproduce CH3OH and overproduce H2O. However, the
difference is small if the errors on the observations are
accounted for. This is a good result for such a simple model. It
may be that if the reduced network was expanded, these results
would be improved. Equally, it may be that the constraints are
broad enough that a poor CH3OH abundance is not affecting
the overall likelihood as much as a poor CO or CO2 abundance
would.

The fractional abundances of the species with upper limits
were not as well constrained, and so it might be expected that
they are much more varied. In Figure 3, it can be seen that this
is not the case, which implies that their abundances are also
strongly tied to the rates of the reactions in Figure 1. However,
the average abundance of OCS is an order of magnitude higher
than the observed upper limit. Examining the full abundance
distribution, it appears there is a fraction of the model runs that
fall outside the 67% confidence interval and give OCS
abundances below the upper limits. This illustrates the problem
inherent in drawing from the marginalized posteriors. Drawing
from each marginalized posterior individually gives sets of
reaction rates that break the upper limit used to infer the
posterior distributions.

5.2. Network Connectivity

The PPDs presented in Figure 1 are marginalized, that is to
say they represent the likelihood of a given reaction rate
averaged over the values of the other rates. However, not all
rates are independent, and it is possible that some areas of the
rate space are only likely for one reaction when a second takes
a particular value. To investigate this, the joint posteriors of
pairs of reactions were examined. These give the likelihood of
pairs of reaction rate values so that it can be seen whether the
two reactions are in some way correlated.

For example, the joint probability distribution of reactions 1
and 2 is shown in Figure 4. It can be seen that either reaction 1
or reaction 2 can take a value much higher than their respective
most likely value, but only when the other is at its most likely
value. This shows that in reality there must be a certain amount
of O converted to H2O in the model, and as long as one step in

that process limits the rate to the correct amount then the other
can freely vary. In order to break this degeneracy, limits on the
OH abundance in the ice are required. Similar joint distribu-
tions are seen for reactions 22–24, as a certain amount of CO
must be converted to CH3OH.
In Figure 5, the joint probability distributions of reactions 3

and 21 are plotted. Both reactions are less well constrained than
reactions 1 or 2. This can be seen from the large area taken up
by the 1σ contour. However, the high probability density areas
are those where at least one reaction takes the most likely value
from their respective marginalized posterior distributions.
There is also a line of increased probability density where
both reactions have approximately equal rates that are higher
than the peak value. It is therefore likely that the reactions
compete for CO and the rate of reaction 3 is poorly constrained
as the availability of CO is the main factor in the amount of
CO2 produced. Tighter observational ranges on the abundances
of CO, CO2, and CH3OH may reduce this degeneracy and
allow the rate of reaction 3 to be more clearly determined.

Table 4
Most Likely Values for the Rates of Well-constrained Reactions

Reaction Rate 65% Probability Range
(cm3 s−1) (cm3 s−1)

1 4.0×10−18 1.0×10−18
–3.2×10−10

2 5.0×10−18 1.5×10−18
–1.5×10−10

3 4.0×10−16 6.8×10−26
–2.2×10−10

21 5.0×10−17 6.6×10−26
–3.2×10−10

22 7.9×10−18 4.6×10−26
–3.2×10−10

23 7.9×10−18 4.6×10−26
–3.2×10−10

24 7.9×10−18 4.6×10−26
–4.6×10−26

Note.The intervals containing 65% of the probability density of the
marginalized posteriors are also noted.

Figure 2. Fractional abundances for the constrained species from 1000 model
runs. The rates of each reaction are randomly sampled from the marginalized
posterior distributions. The average abundances produced by the models at
each time are plotted along with the 67% confidence interval displayed as a
shaded area.

Figure 3. Similar to Figure 2, but for the species with upper limits. The values
of the upper limits are plotted as triangles.
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6. Conclusions

A novel way to tackle uncertainty about surface reactions
and rate coefficients using Bayesian inference is presented. To
prove the efficiency of Bayesian techniques in providing
insight on the chemical parameters of surface reactions, the
algorithm was tested with a proof-of-concept example. A
simple chemical code was created by parameterizing the

freezeout of important species and neglecting all other
adsorption to the grain surface. This left a model where only
grain surface chemistry needed to be accounted for, greatly
reducing the complexity and opening up the possibility of
exploring a large parameter space.
The rates of the reactions in the chemical model were found

through Bayesian inference. Using an MCMC sampling
algorithm, the model was run with varying reaction rates, and
the likelihood of the model was evaluated each time. This
likelihood was calculated by comparing the model to observa-
tions of ices toward background stars, which are reasonable
values for a molecular cloud. It was possible to strongly
constrain the rates of reactions that are involved in the
production or destruction of species for which measurements
exist. These rates are presented in Table 4.
Future improvements should include a more complex

chemical code, including the grain surface reactions directly
in a gas-grain chemical code. This would allow for an
improved treatment of the freezeout and nonthermal desorption
among other effects. However, the added complexity would
make this a vastly more computationally intensive procedure,
initial tests with UCLCHEM taking approximately 1000 times
longer per run. Improved rates could also be achieved by
including more observational data, particularly constraining
species for which there are currently only upper limits. The
parameter space could also be reduced by including the PPDs
from the results of this work as priors in future work.
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Appendix
Convergence

It is important to understand whether an MCMC procedure
has converged to a stationary distribution. The sampling is not
complete if increasing the length of that chains would
considerably alter the posterior distribution of the reaction
rates. It is not possible to be certain that convergence has been
reached, but several heuristics are available and are considered
in this appendix.
Most simply, the chains themselves can be inspected.

Figure 6 shows every 500th step in an example chain for
reaction 1. The walker repeatedly leaves the area of maximum
likelihood and then returns. This cycle repeats a sufficient
number of times for it to be unlikely that there is a
undiscovered mode.
More rigorously, the Geweke diagnostic can be used

(Geweke 1992). In this test, it is considered that if the chain
has converged any two samples of the chain will have the same
mean, within the variance of the samples. This is typically
tested on the first 10% and the final 50% of a chain that is
thought to have converged. In this work, a sample of chains
was tested by breaking each chain into 10 subsamples and
comparing each to the mean of the final 50% of the chain. In
every case, the mean of the subsample was consistent with the
mean of the larger sample. Since the value of the Geweke
diagnostic should be zero, within the variance of the chains,

Figure 4. Joint probability distributions of the rates of reactions 1 and 2; darker
areas represent higher probability densities. The 1σ, 2σ, and 3σ contours are
plotted. These two reactions are tightly coupled, so one must take the value of

5.0 10 cm s18 3 1~ ´ - - and act as the rate limiting step. The other must then
have this value or higher in order for enough H2O to be produced in the model.

Figure 5. Similar to Figure 4, but for reactions 3 and 21. While a large amount
of the probability density is at the location of the peaks in the marginalized
posterior distributions, there is a noticeable correlation when either increases
above the most likely rate. This is likely due to the fact that both reactions
destroy CO and are therefore competing to produce enough CO2 and HCO,
respectively.
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multiple values for converged chains should follow a normal
distribution. In Figure 7, the values of the diagnostic for many
subsamples of the chains from this work are plotted as a
histogram with a normal distribution plotted for comparison.

The autocorrelation time is another diagnostic that can be
calculated, and the tutorial provided in the emcee documenta-
tion1 is used for this. This provides two heuristics. First, once
the chains reach a sufficient length that the autocorrelation time

can be reliably calculated, it is likely that the chain has
converged. Second, one use of the quantity is to calculate the
sampling error in an MCMC chain. An autocorrelation time of
104 steps was calculated from the chains, effectively giving
approximately 100 independent samples per chain. If the mean
value of the chain is considered, then the variance on this mean
is given through the equation

N
fVar , 6

f2s
t

q= [ ( )] ( )

Figure 6. Trace plots showing the sampled rate of reaction 1 for every 500th step in an example chain. The chain repeatedly returns to the optimal rate while fully
exploring the range of possible rates.

Figure 7. Geweke diagnostic for subsamples of the MCMC chains run for this work. The distribution of the values of the diagnostic should follow a normal
distribution if the chains have converged. A normal distribution with the same standard deviation as the Geweke diagnostic samples has been plotted in black for
comparison.

1 https://emcee.readthedocs.io/en/latest/tutorials/autocorr/
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where N is the number of sample and fVar q[ ( )] is the variance
of the chain. In the case of an average chain in this work, the
sampling error on the value of the mean is ∼1%.

Finally, the posterior distribution was also evaluated using
the code pyMultinest (Buchner et al. 2014), and the margin-
alized posteriors were consistent with those found using emcee.
The consistency between these two different methods of
sampling the posterior is good evidence for convergence.
Ultimately, given the above heuristics and the fact that the
initial MCMC runs produced approximately the same results
for chains of 100,000 steps as they do in the ∼106 step chains
used in the final work, it is assumed that the chains have, in
fact, converged.
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