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INTRODUCTION 
Colorectal cancer is the third most common cancer 
worldwide and is rising in incidence. Indicators or 
precursors to cancerous tissue development can be 
detected as polyps and removed during colonoscopy. 
However, complete, endoscopic colon investigation is 
still challenging and often regions of the colon are not 
fully examined resulting in high polyp miss rates [1]. 
Improving the endoscopist’s ability to detect abnormal 
tissue through computational or biphotonic techniques 
and also to navigate within the colon and reference the 
position of the camera within the anatomy are significant 
clinical needs. Better navigation within the colon relies 
on the ability to map the 3D environment and localize 
the endoscope within it, but while computer vision 
advances make this possible in many applications, it has 
yet to be achieved reliably in endoscopic examination. 

With recent advances in deep learning, data driven 
approaches are leading the performance tables in vision 
based environment mapping. One problem with applying 
such approaches to endoscopy is that ground truth data is 
not available to train any CNN models. An appealing 
alternative, the use of synthetic data, has recently been 
reported for predicting depth during colonoscopy [2]. 
After training on simulation, a transformer network, that 
learns to generate a synthetic representation of real RGB 
images is used to adapt to real data. Despite promising 
results the ability of the network to handle real images 
can still be improved and needs further investigation.  

In this paper, we take a different approach and learn 
directly from the properties that synthetic and real 
colons have in common, namely, their shape. In 
synthesizing images with different light/material-
configurations, we emphasize the importance of learning 

a shape prior based on depth instead of using hand 
modelled assumptions or regularization, as is often used 
in shape-from-shading, for example. Our experiments 
with different state-of-the-art algorithms [3,4,5] show 
that when lighting conditions change, the prediction 
capability of networks fail and the models lose any 
understanding of tubular shape. We therefore first learn 
from depth maps a statistical model that describes the 
shape of the colon. During training, we then penalize 
predictions of the CNN that, according to the learned 
shape model, have a small probability. 

MATERIALS AND METHODS 
Data Generation:	 Using the game engine Unity, we 
generate simulated endoscopic renderings of a 3D mesh, 
which is based on a CT scan of a human colon. We 
simulate an endoscopic camera with an attached light 
source that follows a trajectory through the colon 
(Figure 1). According to a frames/sec rate RBG images 
and corresponding depth maps, scaled to a depth ∈ [0,1], 
are recorded.  To obtain a larger data set, we randomly 
displace and rotate the camera relative to its initial path 
during render passes.  

We generate RGB images using different materials 
by varying colors and reflection properties (Figure 1). 
We also vary lighting settings, in particular color, 
brightness, and angle of the virtual endoscopic 
illumination. We keep camera parameters constant to 
ensure the geometry of the colon is consistent and our 
simulated camera field of view is 140 degrees, consistent 
with real endoscopes. Our training data consists of nine 
subsets, each of which is a combination of one out of 
three material settings and one out of three lightening 
settings. In total, we generate roughly 11,000 images 
with depth ground truth. 

Shape classification: Distinct from stereo images, 
where geometrical inference can be drawn from the 
relation of the position of a landmark in the image pair, 
estimating depth from a single image is highly ill posed. 
However, we can benefit from knowledge that the colon 
has an approximately tubular shape. 

Therefore, we first estimate the direction of the 
lumen in a single image. We use K-means to cluster the 
depth maps into five groups, which results in for humans 
distinguishable clusters that depend on the curvature 
direction of the lumen (Figure 2). Given the clusters, we 
train a network based on ResNet-50 [6] to classify RGB 
images into one of the five classes with 89% accuracy. 
This allows us to classify new images without known 
depth map and estimate the location of the vanish point. 

 

 
Figure. 1. Colon segment observed within the Unity 
simulation environment (top) with camera trajectory and 
examples of the endoscopic inside view of the virtual colon 
(bottom) with different material and lighting configurations 
generating views from the simulated colon environment. 



 

Depth Estimation: Our architecture is based on two 
components (Figure 3). We predict the depth based on 
ResNet-50 followed by a sequence of upscaling layers 
according to [7] and simultaneously impose a shape that 
adheres to a statistical model describing the distribution 
over the depth maps in the training set. A simple 
approach is using the Maximum Likelihood estimate 
assuming a Gaussian distribution. To this end, we 
compute the mean depth of each cluster. During training, 
we pass the cluster index to the loss function and 
compute the squared difference between the initial depth 
estimation and the mean of the given cluster. The final 
loss function takes into account how close the estimated 
depth is to both, ground truth and expected shape.  

We train our network on six out of the nine subsets 
in our data set, leaving out all sets that were derived 
from one of the three lightening settings. The remaining 
three sets serve as our test set. This allows us to analyze 
the robustness of the learned model towards changes in 
illumination. We train each network for 15,000 iterations 
with a batch size of 32, using Adam optimizer with a 
learning rate of 10-4. While training takes 18h, depth 
prediction during test time takes both networks 0.11 sec 
per image on one NVIDIA TITAN Xp GPU.   

RESULTS 
While training on ResNet-50 yields a mean distance 
between ground truth depth and prediction of 0.112 on 
the test set, our networks yields an error of 0.110, where 
the maximum depth in the training set is rescaled to 1. 
Estimating the scale, this roughly corresponds to a mean 
distance between estimation and ground truth of 9.0 mm 
on ResNet-50 vs. 8.8 mm on our network. Although the 
total error on the test set is similar for both networks, we 
can observe a different source for mistakes. In particular, 
our network performs better on images that are close to 
the mean of the cluster (Figure 4a) but fails on images 
that are outliers (Figure 4b) where the network falsely 
tries to enforce a tubular shape.  

CONCLUSION AND DISCUSSION 
In this paper we present a method that allows us to train 
a Convolutional Neural Network to predict depth from a 
single image without the need of real ground truth data. 
We describe a procedure to create training data in a 
virtual environment and propose a network architecture 
that attempts to limit the drawbacks of using synthetic 
data by enforcing shape consistency. However, our 
underlying shape model is trivial and fails to cover the 
variety of shapes found in the test set, which results in a 
mean distance of several millimeters between ground 
truth and prediction. Our future work will focus on a 
more elaborate statistical model incorporating the joint 
distribution of nearby pixels instead of considering each 
pixel independently.  
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Figure. 4. Comparison results between the output of our 
model and the direct output of ResNet-50. 

 
Figure. 3. Network architecture for depth estimation 
combining the ResNet-50 output to a classifier.  

Figure. 2. Mean depth maps of five clusters with examples 
from the training set. Yellow indicates areas of high depth 
while blue indicates areas of low depth. Real images that 
were assigned to the clusters using our classification 
network, are indicated through a dashed frame. 


