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Abstract

We introduce the Attentive Unsupervised Text (W)riter
(AUTR), which is a word level generative model for natural
language. It uses a recurrent neural network with a dynamic
attention and canvas memory mechanism to iteratively con-
struct sentences. By viewing the state of the memory at inter-
mediate stages and where the model is placing its attention,
we gain insight into how it constructs sentences. We demon-
strate that AUTR learns a meaningful latent representation for
each sentence, and achieves competitive log-likelihood lower
bounds whilst being computationally efficient. It is effective
at generating and reconstructing sentences, as well as imput-
ing missing words.

1 Introduction
Latent variable models have recently enjoyed significant
success when modelling images (Gregor et al. 2015;
Rezende et al. 2016; Gulrajani et al. 2017), as well as
sequential data such as handwriting and speech (Bayer
and Osendorfer 2015; Chung et al. 2015). They specify
a conditional distribution of observed data, given a set
of hidden (latent) variables. The stochastic gradient varia-
tional Bayes (SGVB) algorithm (Kingma and Welling 2014;
Rezende, Mohamed, and Wierstra 2014) has made (approxi-
mate) maximum likelihood learning possible on a large scale
in models where the true posterior distribution of the latent
variables is not tractable. Deep neural networks can be used
to parametrise the generative and variational distributions,
allowing for extremely flexible and powerful model classes.

There has been somewhat less exploration into deep gen-
erative models for natural language. Graves (2014) uses a
stacked RNN architecture at the character level to gener-
ate sentences with long range dependencies. The model se-
quentially emits characters based on the previously gener-
ated ones, however it does not map each sentence to a single
latent representation. This means that even though the gen-
erated sentences are syntactically coherent and may show
local semantic consistency, the model does not encourage
the sentences to have long range semantic consistency. Addi-
tionally, the model cannot generate sentences conditioned on
meaning, style, etc. Bowman et al. (2016) use a word level
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latent variable model with an RNN and train it using SGVB
(we refer to this as Gen-RNN). Samples from the prior pro-
duce well-formed, coherent sentences, and the model is ef-
fective at imputing missing words. However, the authors
find that the KL divergence term of the log-likelihood lower
bound reduces to 0, which implies that the model ignores
the latent representation and collapses to a standard RNN
language model, similar to that of Graves (2014). The au-
thors use word dropout to alleviate this problem, and show
that Gen-RNN generates sentences with more varied vocab-
ulary and is better at imputing missing words than the RNN
language model. Semeniuta, Severyn, and Barth (2017) and
Yang et al. (2017) make use of convolutional layers, which
appear to encourage their models to more strongly rely on
the latent representation without using word dropout.

In the context of computer vision, DRAW (Gregor et al.
2015) showed that using an attention mechanism to ‘paint’
locally on a canvas produced images of remarkable quality.
A natural question therefore is whether a similar approach
could work well for natural language. To this end we in-
troduce the Attentive Unsupervised Text (W)riter (AUTR),
which is a word level generative model for text; AUTR uses
an RNN with a dynamic attention mechanism to iteratively
update a canvas (analogous to an external memory (Gemici
et al. 2017)).

Using an attention mechanism in this way can be very
powerful—it allows the model to use the RNN to focus on
local parts of the sentence at each time step whilst rely-
ing on the latent representation to encode global sentence
features. By viewing the canvas at intermediate stages, and
where the RNN is placing its attention, we gain insight into
how the model constructs a sentence. Additionally, we ver-
ify that AUTR attains competitive lower bounds on the log-
likelihood whilst being computationally efficient. As well
as learning a meaningful latent representation for each sen-
tence, the model generates coherent sentences and success-
fully imputes missing words. A generative model which is
able to, in some sense, ‘understand’ natural language (which
we believe AUTR shows signs of doing) should facilitate
much better performance when used as a module for down-
stream tasks such as translation and question answering.

The remainder of this paper is structured as follows: in
section 2 we define the AUTR architecture and generative
process, in section 3 we review related work, in section 4
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Figure 1: The AUTR generative model. The shaded nodes
signify the observed words and non-shaded nodes signify
latent random variables; a rhombus node is a deterministic
function of its incoming variables. Here z denotes the latent
sentence representation; Ct ∀ t ∈ {1, . . . , T} are the states
of the canvas; CT

l ∀ l ∈ {1, . . . , L} are the slots of the final
canvas corresponding to each word; xl ∀ l ∈ {1, . . . , L} are
the observed words.

we provide experimental results on the Book Corpus dataset
along with examples of generated sentences, and in section
5 we make concluding remarks. Appendix A provides a re-
view of the SGVB algorithm.

2 Model
AUTR is a word level generative recurrent neural network
(RNN) which iteratively updates a canvas that parametrises
the probability distribution over the sentence’s text. Using
L to denote the number of words in the sentence and E to
denote the word embedding size, the canvas C ∈ RL×E is
a 2 dimensional array with L ‘slots’, each of which repre-
sents the model’s estimation of the word embedding for that
position in the sentence.

We use T to denote the number of time steps in the
RNN—at each time step an attention mechanism selects the
canvas’ slots to be updated; Ct denotes the state of the can-
vas at time step t. Note that T is a hyper-parameter of the
model.

Figure 1 shows the graphical model for AUTR and fig-
ure 2 shows examples of how AUTR iteratively constructs
sentences. Like other latent variable models (Bowman et
al. 2016; Semeniuta, Severyn, and Barth 2017; Yang et
al. 2017), AUTR uses a hidden representation z to encode
each sentence, and can construct new sentences by sampling
z from a prior distribution p(z) and passing this sample
through the RNN. A summary of the generative process is
given in algorithm 1 and full details follow in section 2.1.

Algorithm 1: AUTR generative process
1 Sample a latent vector z from a N (0, I) distribution.
2 Initialise both the hidden state and canvas as zeros, i.e.
h0 = 0 and C0 = 0

3 for t = 1, . . . , T do
4 Compute the hidden state: ht = f(z,ht−1,Ct−1)
5 Compute the gate: gtl =

exp[(Wg·ht)l]
(
1−
∑t−1

t′=1
gt
′
l

)
∑L
k=1 exp[(Wg·ht)k](1−

∑t−1

t′=1
gt
′
k )

(
1−

∑t−1
t′=1 g

t′

l

)
for l = 1, . . . , L

6 Update the canvas:
Ct = (1− gt)�Ct−1 + gt � (Wu · ht)

7 end
8 Sample the sentence according to the distribution: x ∼
p(x|z,CT ) = p(x1|z,CT

1 )
∏L
l=2 p(xl|z,CT

l , x1:l−1)

2.1 Generative process
We first sample the latent representation z from a N (0, I)
distribution. Each RNN hidden state is then computed as
a function of this latent representation, as well as the pre-
vious RNN hidden state and the canvas so far: ht =
f(z,ht−1,Ct−1). In our experiments, we use the LSTM
for f(·) (Hochreiter and Schmidhuber 1997). Allowing the
RNN hidden state to see what has been written to the canvas
so far allows the model to maintain the sentence’s long range
semantic coherence because the hidden state can anticipate
the words that will be written at the end of the sentence and
adjust the beginning accordingly, and vice versa.

Each hidden state ht is then used to determine where to
write (or more specifically, how ‘strongly’ to write to each
of the canvas’ slots). We denote the gate as gtl ∈ [0, 1] for
l = 1, . . . , L.

Attention mechanism For the gate (or attention), we use a
modified softmax attention mechanism. A standard softmax
mechanism (Luong, Pham, and Manning 2015) would be:

gtl =
exp [(Wg · ht)l]∑L
k=1 exp [(Wg · ht)k]

(1)

This would ensure that (at each time step) the attention for
each slot is between 0 and 1 and the total attention across all
slots is 1. To encourage the model to write to those slots
where it hasn’t yet written, we multiply the elements of the
softmax by (1 −

∑t−1
t′=1 g

t′

l ). To ensure that the cumulative
attention, over time, applied to any of the slots is no greater
than 1, we multiply the softmax itself by (1 −

∑t−1
t′=1 g

t′

l ).
This results in the following modified attention mechanism:

gtl =
exp [(Wg · ht)l] sl∑L

k=1 [exp [(Wg · ht)k] sk]
· sl (2)

where sl =
(
1−

∑t−1
t′=1 g

t′

l

)
. In our experiments, we found

that this modification performed favourably compared to the
standard softmax mechanism. Note that, once a slot has been
written to with a cumulative attention of 1 (i.e.

∑t−1
t′=1 g

t′

l =
1), it cannot be updated further.



One of the key computational advantages of AUTR is that
it works well with T < L, because it writes to multiple slots
at each RNN time step. This is shown to work well empiri-
cally in section 4.4.

Updating the canvas The content to be written to the can-
vas is a linear function of the hidden state at that time step:
Ut = Wu · ht.

Using � to denote element-wise multiplication, the can-
vas is updated as: Ct = (1− gt)�Ct−1 + gt �Ut.
gtl = 0 means that the lth slot from the previous time step

carries over exactly to the current time step (i.e. no updating
takes place), whereas gtl = 1 means that the previous values
of the lth slot are completely forgotten and new values are
entered in their place.

We tested a fixed mechanism instead of one with attention
to update the canvas, but found that the RNN didn’t use the
T computational steps available - at the final time step it
simply overwrote everything it had previously written.

Text generation Conditioned on the final canvas, we con-
sidered first a model that generated each word indepen-
dently. However, this was ineffective in our experiments
since local consistency between words was lost. Therefore,
we sample the sentence’s text from a Markov model where
the sampled word at position l depends on the lth slot of the
final canvas CT

l and on all of the l− 1 words that have been
sampled so far. We first compute the ‘context’ x̃l, which is a
weighted average of the previously generated words; this is
then used to modify the word probabilities that would have
been assigned by the canvas alone. Specifically:

x̃l =

l−1∑
l′=1

wll′(z)e(xl′) (3)

where e(x) is the embedding of word x and:

wll′(z) =
exp[(Wl · z)l′ ]∑l−1
l′=1 exp[(Wl · z)l′ ]

(4)

Therefore
∑l−1
l′=1 w

l
l′(z) = 1. Then, denoting bl = CT

l +
Wx · x̃l +Wz · z:

p(xl = a|z, x1:l−1,CT
l ) =

exp[e(a) · bl]∑
v∈V exp[e(v) · bl]

(5)

where V is the entire vocabulary.

2.2 Inference
Due to the intractability of the true posterior p(z|x), we per-
form (approximate) maximum likelihood estimation using
SGVB, as described in appendix A. The variational distri-
bution is Gaussian: qφ(z|x) = N (µµµφ(x),diag(σσσ

2
φ(x))); its

mean and variance are parametrised by an RNN which takes
as input each word embedding in order, one at a time (Bow-
man et al. 2016). For the hidden states, we use the LSTM
and the final hidden state is passed through a feedforward
network with two output layers to produce the mean and
variance of the variational distribution.

3 Related Work
The use of stochastic gradient variational Bayes (SGVB)
(Kingma and Welling 2014; Rezende, Mohamed, and Wier-
stra 2014) to train latent variable generative models is
widespread for images (Gregor et al. 2015; Rezende et al.
2016; Gulrajani et al. 2017).

Whilst latent variable generative models for natural lan-
guage have been less common, they have recently increased
in popularity. Bowman et al. (2016) use an LSTM for the
generative model (Gen-RNN), which outputs a single word
at each time step. This is in contrast to AUTR, which up-
dates the distribution for every word in the sentence at each
RNN time step, using an attention mechanism.

More recently, Miao, Grefenstette, and Blunsom (2017)
use an RNN based generative model similar to Gen-RNN
in order to perform topic allocation to documents. Yang et
al. (2017) use dilated convolutions to replace the recurrent
structure in Gen-RNN in order to control the contextual ca-
pacity, leading to better performance.

Our canvas based model with its dynamic attention mech-
anism is largely inspired by DRAW (Gregor et al. 2015),
which iteratively updates the canvas that parametrises the fi-
nal distribution over the observed image. One of the primary
differences between DRAW and AUTR is that conditioned
on the final canvas DRAW treats each pixel independently—
whilst this may not be too constraining in the image do-
main, this was ineffective in our natural language experi-
ments where the sampled word embedding may differ sig-
nificantly from the entry in that slot of the canvas. Therefore
AUTR conditions on all previously generated words in the
sentence when sampling the next word.

4 Experiments
We train our model on the Book Corpus dataset (Zhu et al.
2015), which is composed of sentences from 11,038 unpub-
lished books. We report results on language modelling tasks,
comparing against Gen-RNN.

4.1 Preprocessing
We restrict the vocabulary size to 20,000 words and we use
sentences with a maximum length of 40 words. Of the 53M
sentences that meet these criteria, we use 90% for training,
and 10% for testing.

4.2 Model architectures
Generative model For both AUTR and Gen-RNN, we use
a 50 dimensional latent representation z and the RNN hid-
den states have 500 units each. To compute the hidden states,
we use the LSTM (Hochreiter and Schmidhuber 1997).

Gen-RNN requires T = L = 40, because it outputs one
word at each RNN time step. However, as explained in sec-
tion 2.1, one of the key advantages of AUTR is that it works
well with T < L = 40. Therefore, for AUTR, we compare
results with T ∈ {30, 40}.

Variational distribution As per section 2.2, we optimise
both AUTR and Gen-RNN using SGVB. In both models,
we use the LSTM architecture introduced by Bowman et al.



Figure 2: Visualising the sequential construction of sentences generated from the learned model. We sample z from its prior,
i.e. z ∼ N (0, I) and pass the sample through the RNN, visualising the canvas at several points along the way. The darkness
indicates the cumulative attention that has been placed on that slot so far.

(2016) to parametrise the mean and variance of the Gaus-
sian variational distribution; the hidden states have 500 units
each.

Parameters and speed For both models, we use 300 di-
mensional word embeddings, which are learned jointly with
the generative and variational parameters. AUTR and Gen-
RNN have 10.9M and 10.3M parameters respectively. They
take, on average, 0.19 and 0.17 seconds per training iteration
and 0.06 and 0.05 seconds for sentence generation respec-
tively.1

4.3 Training process
We optimise the ELBO, shown in equation (7), us-
ing stochastic gradient ascent. We train both models for
1,000,000 iterations, using Adam (Kingma and Ba 2015)
with an initial learning rate of 10−4 and mini-batches of
size 200. To ensure training is fast, we use only a single
sample z per data point from the variational distribution at
each iteration. We implement both models in Python, using
the Theano (Theano Development Team 2016) and Lasagne
(Dieleman et al. 2015) libraries.

KL divergence annealing The ELBO can be expressed
as: L(x) = Eqφ(z|x) [log p(x|z)] − DKL [qφ(z|x) || p(z)].
We multiply the KL divergence term by a constant weight,
which we linearly anneal from 0 to 1 over the first 20,000
iterations of training (Bowman et al. 2016; Sønderby et al.
2016).

Word dropout To encourage Gen-RNN to make bet-
ter use of the latent representation, Bowman et al. (2016)
randomly drop out a proportion of the words when train-
ing the generative RNN - without this, they find that their
model collapses to a simple RNN language model which ig-
nores the latent representation. Following this, when training

1These values are for AUTR with T = 40.

Gen-RNN, we randomly drop out 30% of the words. How-
ever, to show that (unlike Gen-RNN) AUTR does not need
the dropout mechanism to avoid the KL divergence term
DKL [qφ(z|x) || p(z)] from collapsing to 0, we train it both
with 30% dropout, and without any dropout.

4.4 Results
We report test set results on the Book Corpus dataset in table
1. We evaluate the ELBO on the test set by drawing 1,000
samples of the latent vector z per data point. We see that
AUTR, both with T = 30 and T = 40, trained with or with-
out dropout, achieves a higher ELBO and lower perplexity
than Gen-RNN. Importantly, AUTR (trained with and with-
out dropout) relies more heavily on the latent representation
than Gen-RNN, as is shown by the larger contribution to the
ELBO from the KL divergence term. Note that if a model
isn’t taking advantage of the latent vector z, the loss function
drives it to set q(z|x) equal to the prior on z (disregarding
x), which yields a KL divergence of zero.

Model ELBO KL PPL

Gen-RNN (30% dropout) -52.3 7.1 41.9

AUTR (no dropout) T = 30 -50.7 8.0 37.4
T = 40 -50.7 7.8 37.4

AUTR (30% dropout) T = 30 -51.6 14.0 39.9
T = 40 -51.5 13.8 39.6

Table 1: Test set results on the Book Corpus dataset. We
report the ELBO, the contribution to the ELBO from the KL
divergence term (DKL [qφ(z|x) || p(z)]), and the perplexity
(PPL) on the test set. For the ELBO, higher is better, and for
the perplexity, lower is better.



4.5 Observing the generation process
Conditioned on a sampled z, we would like to know the
most likely sentence, i.e. argmaxx log pθ(x|z). However,
because each word depends on all of the words generated
before it, this optimisation has a computationally intractable
memory requirement. We therefore perform this maximisa-
tion approximately by considering only the K ‘best’ trajec-
tories for each position in the sentence - this is known as
beam search with beam size K (Wiseman and Rush 2016).

In figure 2, we show examples of how the canvas changes
as the RNN makes updates to it. At each time step we take
the state of the canvas and plot the sequence of words found
using beam search with a beam size of 15. In figure 3, we
plot the cumulative attention that has been placed on each of
the canvas’ slots at each RNN time step.

In figure 3, the model’s attention appears to spend the first
15 time steps to decide how long the sentence will be (19
words in this case), and then spends the remaining 25 time
steps filling in the words from left to right (even though it is
not restricted to do so). It is notable that the model is able
to dynamically adjust the length of the sentences by mov-
ing the end-of-sentence token and either inserting or deleting
words as it sees fit. The model is also able to notice sentence
features such as the open quotation marks at t = 32 in the
second example of figure 2, which it subsequently closes at
t = 40.

Figure 3: Visualising the cumulative attention on each of
the sentence’s slots for the second example of figure 2. The
darker the shade, the more attention has been placed on that
position.

4.6 Sampled sentences
In tables 2 and 3, we show samples of text generated from
the prior and posterior distributions, for both AUTR and
Gen-RNN. Once again, we show the sequence of words
found using beam search with a beam size of 15. In both
models, sampling from the prior often produces syntacti-
cally coherent sentences. However, the AUTR samples ap-
pear to better represent the global semantics of the sen-
tences. This is likely due to the canvas feedback mechanism
when computing the RNN hidden states, and the ability of

the model to place attention on the entire sentence at each
time step.

When attempting to reconstruct a sentence, it appears
that both models’ latent representations capture information
about meaning and length. For example, in the second sen-
tence of table 3, both models are able to recognise that there
is a question. The evidence of the AUTR latent represen-
tation learning meaning better than Gen-RNN is evident in
several of the examples in table 3, and this is quantitatively
verified by the larger contribution to AUTR’s ELBO from
the KL divergence term.

4.7 Imputing missing words
AUTR’s latent sentence representation makes it particularly
effective at imputing missing words. To impute missing
words, we use an iterative procedure inspired by the EM al-
gorithm (Neal and Hinton 1998). We increase a lower bound
on the log-likelihood of the visible and missing data, i.e.
log pθ(xvis,xmiss), by iterating between an E-like and M-
like step, as described in algorithm 2. The M-like step treats
the missing words as model parameters, and hence (approxi-
mately, using beam search) maximises the lower bound with
respect to them.

We drop 30% of the words from each of the test set sen-
tences, and run algorithm 2 with 50 different initialisations
for the missing words, and select the resulting imputation
with the highest bound on the log-likelihood. AUTR suc-
cessfully imputes 34.1% of the missing words, whilst Gen-
RNN achieves 31.9%. Sampled missing word imputations
for AUTR and Gen-RNN are shown in table 4.

Algorithm 2: Missing data imputation
1 Make an initial (random) ‘guess’ for the missing words.
2 while not converged do
3 E-like step: Sample z from its variational

distribution qφ(z|x), where x is the latest setting of
the sentence.

4 M-like step: Choose the missing words in x to
maximise 1

S

∑S
s=1 log pθ(xvis,xmiss, |z(s)). This is

done approximately, using beam search.
5 end

4.8 Exploring the latent space
Finding similar sentences To compare the quality of the
latent representations under each model, we take a sentence
x̃ from the test set and compute the mean of its posterior
distribution, µµµφ(x̃). We then find the ‘best matching’ sen-
tence x∗ in the remainder of the test set, which satisfies:
x∗ = argmaxx6=x̃ log pθ(x|z = µµµφ(x̃)). If the latent rep-
resentation does indeed capture the sentence’s meaning, x∗
ought to appear qualitatively similar to x̃.

We show some examples of the best matching sentences
using AUTR and Gen-RNN in table 5; we see that the AUTR
latent representations are generally successful at capturing
the sentences’ meanings and are able to learn sentence fea-
tures such as tense and gender as well.



AUTR
“do you have any idea how much i love you when i’m with you?”

“if he didn’t want to kill me,” he said , but he was trying to keep
distance.

hundreds of thousands of stars rose above, reflecting the sky above
the horizon.

“that sounds like a good idea,” he said, as his voice trailed off.

Gen-RNN
but i didn’t want to think of any other way to get it.

when i reach the top of the stairs , i feel of sight
of my back into the doors open the door swings .

i had no idea what i was going to do, but i was wrong.

“you’re going to look at least one of course, but i
have been in the most of course,” he said.

Table 2: Sentences sampled from the prior: z is drawn from N (0, I) and passed through the generative model pθ(x|z) to
produce a sentence x.

INPUT (x) RECONSTRUCTION (AUTR) RECONSTRUCTION (Gen-RNN)
unable to stop herself, she briefly, unable to stop herself, she leaned unable to help her , and
gently, touched his hand. forward, and touched his eyes. her back and her into my way.

why didn’t you tell me? why didn’t you tell me? why didn’t you tell me?”

a strange glow of sunlight shines the light of the sun was a tiny light on the door,
down from above, paper white shining through the window, and a few inches from behind
and blinding, with no heat. illuminating the room. him out of the door.

he handed her the slip of paper. he handed her a piece of paper. he took a sip of his drink.

Table 3: Sentences sampled from the posterior: conditioned on a test set input sentence x, z is drawn from its variational
distribution, qφ(z|x), and passed through the generative model pθ(x′|z) to produce a reconstruction x′.

Interpolating between latent representations To further
understand how AUTR uses its latent representation, we ran-
domly sample two latent representations from the prior dis-
tribution, and linearly interpolate between them. That is, we
sample z(1) and z(2) from the N (0, I) prior, and then for
α ∈ {0, 0.25, 0.5, 0.75, 1}, we take:

z(α) = αz(1) + (1− α)z(2) (6)

Then, using beam search with a beam size of 15, we eval-
uate the sentence produced by z(α). Three examples are
shown in table 6; it is clear that in all of these examples,
AUTR maintains the sentence’s syntactic structure through-
out the interpolations. It is also notable that the sentence top-
ics and meanings remain consistent as α increases.

5 Conclusion
We introduce the Attentive Unsupervised Text (W)riter
(AUTR), a latent variable model which uses an external
memory and a dynamically updated attention mechanism to
write natural language sentences. We visualise this external
memory at intermediate stages to understand the sentence
generation process. We find that the model achieves a higher
ELBO on the Book Corpus dataset, and relies more heav-
ily on the latent representation compared to a purely RNN-
based generative model. AUTR is also computationally ef-
ficient, requiring fewer RNN time steps than the sentence
length. In addition, we verify that it is able to generate coher-
ent sentences, as well as impute missing words effectively.

We have shown that the idea of using a canvas-based
mechanism to generate text is very promising and presents

plenty of avenues for future research. We would like to in-
vestigate alternatives to zero-padding and the use of fixed
size canvases, as well as making the number of RNN time
steps dependent on the sentence’s latent representation. It
may also be worthwhile to consider using convolutional lay-
ers, as presented by Semeniuta, Severyn, and Barth (2017)
and Yang et al. (2017). A particularly interesting avenue of
interest is to use an RNN with a similar attention mecha-
nism to parametrise the variational distribution; this would
also facilitate extending the model to other natural language
tasks such as document classification and translation.
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Appendix A SGVB
Stochastic Gradient Variational Bayes (SGVB) (Kingma and
Welling 2014; Rezende, Mohamed, and Wierstra 2014) is a
method for learning generative models with a joint density
factorised as pθ(x, z) = pθ(x|z)p(z), where x is the vector
of observations, z is a latent vector, and θ are the generative
model parameters. The task is to learn the values of the gen-
erative parameters θ that maximise the log-likelihood of the
observed data, i.e. maxθ log pθ(x).

For any density q(z|x), the evidence lower bound (ELBO)
can be formed using Jensen’s inequality:

log pθ(x) ≥ Eq(z|x)
[
log

pθ(z,x)

q(z|x)

]
≡ L(x) (7)



TRUTH IMPUTATION (AUTR) IMPUTATION (Gen-RNN)
“i want to draw you again,” he says. “i want to see you “i want to see you
“i want to you , he . again,” he said. again,” he said.

i believe the lie, and so i survive another day. i believe the lie, and so do believe the lie too and
believe the lie and so survive another . will survive another day. so will survive another day.

he was inside a house made of cheese. he was inside a house made it is inside a house made a
inside a house made cheese of cheese. cheese.

i could have saved more of them if we had realized back then. i would have saved more i should have saved more
i have saved more them we had realized back . of them if we had of them than we had

realized back there. realized back then.

Table 4: Imputing missing words in test set sentences, using the procedure described in algorithm 2. Those words replaced with
underscores ( ) are considered as missing.

x̃ x∗AUTR x∗Gen−RNN

he wasn’t ready to face the he was never going to see her she didn’t want to make any
prospect of losing her when again, and that was the way it promises, no matter how much
he’d only just gotten her back. had to be. she wanted to be with him again.

i can’t help but glare at her. i can’t help but smile at her. i couldn’t help but smile at him.

so i stood in the doorway of as i sat on the bench outside when he reached the bottom
the chapel, watching it happen. the hospital, i looked up. of the hill, he slowed his pace.

dina lets a breath out on the there is a long pause on the he reached into his pocket and
other side of the line. other end of the line. pulled out a piece of paper.

Table 5: Finding the ‘best matching’ sentence using the latent representation.

α Example 1 Example 2 Example 3
0 maybe it wasn’t going to happen. “oh, thank you.” one of them looked at me,

and smiled.

0.25 it would be nice to have to go. “oh, it’s nice to meet you.” the moment i met her eyes,
she smiled at me.

0.5 he wasn’t sure what it was about. “it’s nice to meet you,” he said. the moment i stared at him,
he looked down at me.

0.75 i wasn’t sure whether or not to “i had no idea what happened,” instead, he looked at me,
talk about it. i told him. whilst i stared at the ceiling.

1 i had no idea how much time to he couldn’t believe what i was “finally,” he said, standing
talk about the phone calls. talking about when i told him. up in front of me.

Table 6: Linearly interpolating between latent representations and evaluating the intermediate sentences.

The optimal setting for q(z|x) would be the true poste-
rior p(z|x), however this is usually intractable. SGVB in-
troduces the variational parameters φ which parametrise the
distribution qφ(z|x). Monte Carlo sampling is used to ap-
proximate the expectation, and gradient steps are taken in
the generative parameters θ and the variational parameters φ
in order to optimise the bound.

Under certain mild conditions (Kingma and Welling
2014), the latent vector z ∼ qφ(z|x) can be reparametrised
using a differentiable transformation gφ(εεε,x), for some vari-
able εεε such that z = gφ(εεε,x) where εεε ∼ p(εεε). The deriva-

tives with respect to the parameters are then computed as
follows, where εεε(s) ∼ p(εεε):

∇θ,φL(x) = Ep(εεε)
[
∇θ,φ log

pθ(gφ(εεε,x),x)

qφ(gφ(εεε,x))

]
(8)

' 1

S

S∑
s=1

∇θ,φ log
pθ(gφ(εεε

(s),x),x)

qφ(gφ(εεε(s),x))
(9)
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