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Abstract: Catalytic surface reaction networks exhibit nonlinear dissipative phenomena, such as
bistability. Macroscopic rate law descriptions predict that the reaction system resides on one of the
two steady-state branches of the bistable region for an indefinite period of time. However, the smaller
the catalytic surface, the greater the influence of coverage fluctuations, given that their amplitude
normally scales as the square root of the system size. Thus, one can observe fluctuation-induced
transitions between the steady-states. In this work, a model for the bistable catalytic CO oxidation on
small surfaces is studied. After a brief introduction of the average stochastic modelling framework
and its corresponding deterministic limit, we discuss the non-equilibrium conditions necessary for
bistability. The entropy production rate, an important thermodynamic quantity measuring dissipation
in a system, is compared across the two approaches. We conclude that, in our catalytic model, the most
favorable non-equilibrium steady state is not necessary the state with the maximum or minimum
entropy production rate.

Keywords: fluctuations; chemical master equation; bistability; entropy production rate; non-equilibrium
steady state

1. Introduction

The study of dissipative systems has been an active research topic during many years, and a
plethora of interesting studies have been published [1]. Nowadays, the notion of dissipative structures
appears in a wide range of fields from physics to the economics and social sciences [2]. These dissipative
structures, which are characterised by the existence of non-equilibrium steady states, are created by
irreversible processes that dissipate energy and generate entropy [1,2]. However, a question of current
interest is whether the entropy production rate reaches an extremum (maximum/minimum) or not
at the non-equilibrium steady state (NESS) [3–14]. In this work, we explore this problem from the
viewpoint of bistable catalytic reaction networks.

The idea that universal extremal principles determine many of the phenomena that occur in nature
has been around for many years. The point is that, independent of the form of the specific system,
among all possible trajectories that may link an initial state from the final one, the trajectory that will
be actually followed, under the laws governing the system, extremizes a certain quantity. One of the
most famous extremal principle is the principle of least action for conservative systems, which is used
to derive many physical theories, like for example Maxwell’s equations, Newton’s laws, and quantum
mechanics [15]. The extend to which this type of principles can be expected in systems operating
far from the state of thermodynamic equilibrium (dissipative systems) has attracted interest during
many decades. However, no general principles of this kind have been rigorously proven, and many
conflicting results exist [3–14]. A well known extremal principle is the so-called Prigogine’s minimum
entropy production principle (MinEPP) which states that, through appropriate constraints and close
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to equilibrium where the fluxes can be expressed as a linear function of the thermodynamic forces,
the NESS of a system is that state in which the entropy production rate has the minimum value [1].
According to this MinEPP, a fluctuation from the NESS can only increase the entropy production
rate above the stationary value. Then, irreversible processes drive back the entropy production to
its minimum value at the NESS. In this sense, MinEPP compares steady states with transients or
non-steady states. Another interesting extremal principle that has also emerged is the maximum
entropy production principle (MaxEPP) of Paltridge and others [9,12,16–19]. This MaxEPP states that,
for systems far from equilibrium that admit multiple non-equilibrium steady states, the system is
most likely to be found in the NESS with the greatest entropy production [3,4,13,16]. In this sense,
the MaxEPP compares non-equilibrium steady states to other non-equilibrium steady states. It is also
important to mention that the state of thermodynamic equilibrium can be characterised either by the
principle of maximum entropy or the principle of the minimum (in this case equal to zero) entropy
production [1]. It is this latter principle that naturally extends to the linear regime, close to equilibrium.
However, far from thermodynamic equilibrium the situation is more complex and conclusive answers
regarding universal extremal principles do not exist.

Catalytic surface reactions are typical examples of chemical systems operating far-from-equilibrium
which develop dissipative structures, exhibiting for instance bistability [20,21]. In these systems,
a planar crystalline surface is exposed to a gas mixture of reactants and the distance from equilibrium
is controlled by the ratio of reactant-to-product partial pressures. At the macroscale, the phenomenon
of bistability has been studied both theoretically and experimentally [22,23]. Based on knowledge
about the individual steps forming the reaction mechanisms, this phenomenon has been successfully
modelled by the solution of sets of ordinary differential equations (ODEs) for the variables describing
the surface concentrations of the species involved. These ODEs predict that, once the system
reaches the NESS exhibited by the governing equations, it will remain there for an indefinite
period of time. However, at the mesoscale, molecular fluctuations become important and randomly
affect the reaction kinetics of the catalytic system [24–26]. This is the case for the catalytic CO
oxidation on Pt field-emitter-tips and on oxide-supported Pd nanoparticles, where the phenomenon
of fluctuation-induced transitions between the two NESS branches of the bistable region has been
observed experimentally [25,26]. The experimental observations have been rationalised by the theory
of stochastic process [27,28]. These findings make the bistable CO oxidation on surfaces (an important
step in automotive exhaust catalysis [29]) a suitable and interesting framework to study entropy
production rate in systems with multiple non-equilibrium steady states.

In this work, with an interest in the deterministic and stochastic behaviour of catalytic surface
reaction networks, we focus on a minimalistic model for the bistable catalytic CO oxidation on
well-defined crystal surfaces and investigate trends in the entropy production rate (the basic
thermodynamic quantity measuring dissipation) when the catalytic system is at a NESS. We address
this question from the deterministic and stochastic viewpoint. Our simulation results suggest that,
for our bistable catalytic system, the tendency to minimise or maximise dissipation does not reflect a
universal trend but is, rather, control parameter and initial condition specific.

The paper is organised as follows. In Section 2, we introduce the bistable catalytic reaction model.
Then, in Section 3 we introduce the stochastic and deterministic expression for the entropy production
rate to be implemented in this work. We continue with the presentation and discussion of the results
in Section 4. The summary and conclusions are presented in Section 6.

2. The Bistable Catalytic Reaction Model

The elementary steps of CO oxidation on metal surfaces are determined by the so-called
Langmuir-Hinshelwood (LH) mechanism consisting of the following steps

CO(gas) + ∗ CO(ads), (1)
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O2(gas) + 2 ∗ 2O(ads), (2)

CO2(gas) + 2 ∗ CO(ads) + O(ads). (3)

with ∗ and ads denoting a vacant site on the surface and adsorbed atoms or molecules, respectively [30].
For thermodynamic consistency, each forward reaction is accompanied by the corresponding reverse
reaction. On surfaces with high adsorbate motility, the catalytic system is well mixed and the
phenomenon of bistability is one of its most prominent non-equilibrium features. Thus, two different
stable non-equilibrium steady states coexist for the same control parameter values (we refer to Table 1
for a description of the control parameters of the model). The less active NESS where, a high
CO coverage inhibits the dissociative O2 adsorption, and the active NESS, where the surface is
predominantly oxygen covered. The active (less active) NESS is characterised by a high (low) CO2
production rate. [22,23].

In the so-called mean-field approach, where spatial correlations are ignored, the bistable catalytic
system is mathematically described with ODEs for the coverage of chemical species involved.
This approach predicts that, depending on the initial conditions, the system will reside on one of
the two non-equilibrium steady states for an indefinite period of time [23]. However, this prediction
breaks down when the surface area is of meso or nanoscale dimensions. By decreasing the area of
the catalytic surface, random coverage fluctuations become important and transitions, between the
two non-equilibrium steady states, occur [25–28]. Thus, in order to take into account these random
aspects, a stochastic mean-field description is needed. Such a stochastic approach and its macroscopic
deterministic limit are discussed in the following sections.

3. Theoretical Framework

In this section, we present the chemical master equation (CME) of the catalytic reaction model,
valid in the limit of very fast diffusion and Markovian dynamics [31,32]. We also introduce the average
stochastic expression for the entropy production rate. From the stochastic description, we derive a
set of ODEs for the CO and oxygen coverages on the surface. The associated macroscopic entropy
production rate is also presented. In the next section, we explore whether the entropy production is
maximised, minimised, or achieves no extremum in the non-equilibrium steady states.

3.1. Mean-Field Stochastic Description

We assume that the catalytic system is described by a continuous-time Markov process defined
on a discrete space of states given by the vector Z = {NCO, NO}, where NCO is the number of
adsorbed CO species on the surface, and NO is the number of adsorbed oxygen atoms. According
to Equations (1)–(3), we have three forward reactions (σ = +1, +2, +3) and three reverse reactions
(σ = −1, −2, −3). The stoichiometric vectors for forward reactions are ω+1 = {1, 0} (for CO(gas)
adsorption), ω+2 = {0, 2} (for O2(gas) dissociative adsorption), and ω+3 = {1, 1} (for CO2(gas)
dissociative adsorption). The corresponding vectors for the reverse reactions are ω−1 = −ω+1

(for CO(ads) desorption), ω−2 = −ω+2 (for associative O(ads) desorption), and ω−3 = −ω+3 (for
CO(ads) + O(ads) reaction). The maximum allowed number of particles on the surface is NL. Because
a reverse reaction is associated with each forward reaction, an elementary event of the reaction
σ ∈ {±1,±2,±3} induces the random jump

Z σ Z + ωσ (4)

with the transition rate Wσ(Z → Z + ωσ). Similarly, an elementary event of the reverse reaction -σ
induces the random jump

Z -σ Z + ω−σ, (5)

with the transition rate W−σ(Z→ Z + ω−σ).
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The random jumps and waiting times are normally obtained using the so-called Gillespie
algorithm [24,33]. When the system is in state Z, the next reaction σ to occur is a random variable with
probability given by

Pσ =
Wσ(Z→ Z + ωσ)

∑
σ
′
W

σ
′ (Z→ Z + ω

σ
′ )

, (6)

while the waiting time τ is also a new random variable which is exponentially distributed with the
probability density.

p(τ) = k exp(−k τ), (7)

where
k = ∑

σ
′

W
σ
′ (Z→ Z + ω

σ
′ ). (8)

Please note that the successive jumps are statistically independent. In Equations (6) and (8), the sum
over the reactions runs over both the forward and reverse reactions σ

′
= ±1,±2,±3.

The vector Z follows as stochastic trajectory, and therefore, it is characterised by the probability
P(Z; t) of having a number Z of particles on the surface at time t. The temporal evolution of this
probability distribution is given by the following CME

d
dt

P(Z; t) = ∑
σ

[Wσ(Z−ωσ → Z)P(Z−ωσ; t)−W−σ(Z→ Z + ω−σ)P(Z; t)], (9)

where the sum runs over both the forward and reverse reactions (for this notation see [34,35]). The terms
Wσ stand for the transition rates for the forward and reverse reactions (see Table 1 and Appendix).
The validity of the Markovian approximation is based on the idea that there exists a clear separation of
time scales between the dynamics of the stochastic observables and that of the faster (microscopic)
degrees of freedom that are not included in the stochastic description. Because of this time scale
separation, the microscopic degrees of freedom follow an equilibrium distribution all along the
stochastic trajectories.

Table 1. Processes, population changes, and transition rates for our well-mixed CME treatment of the
dynamics of Z = {NCO, NO} for a surface with NL available sites. Parameters kads

co and kdes
co represent the

rate constants for CO(gas) adsorption and CO(ads) desorption, respectively. kads
o2

and kdes
o are the rate

constants for O2(gas) dissociative adsorption and O(ads) associative desorption. The parameter kco2 is
the rate constant for CO2(gas) dissociative adsorption, and kr is the rate constant for CO(ads) + O(ads)
reaction. ζ is the coordination number or the number of nearest neighbours of a site. In a 2D regular
lattice ζ can take one of the following values: 3 for honeycomb-type lattice, 4 for a square lattice,
and 6 for a hexagonal lattice [31,32]. Please note that the number of free sites on the surface is
N∗ = NL − NCO − NO. In Appendix A, we demonstrate the consistency of these transition rates.

Process Population Change Transition Rate

CO(gas) adsorption (NCO, NO)→ (NCO + 1, NO) W+1 = kads
co (NL − NCO − NO)

CO(ads) desorption (NCO, NO)→ (NCO − 1, NO) W−1 = kdes
co NCO

O2(gas) dissociative adsorption (NCO, NO)→ (NCO, NO + 2) W+2 =
ζkads

o2
2(NL−1) N∗ (N∗ − 1)

O(ads) associative desorption (NCO, NO)→ (NCO, NO − 2) W−2 = ζkdes
o

2(NL−1) NO (NO − 1)

CO2(gas) dissociative adsorption (NCO, NO)→ (NCO + 1, NO + 1) W+3 =
ζkco2

2(NL−1) N∗ (N∗ − 1)

CO(ads) + O(ads) reaction (NCO, NO)→ (NCO − 1, NO − 1) W−3 = ζkr
NL−1 NCO NO
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The probability distribution relaxes toward a stationary state value, P(Z; t) = Pst(Z), characterised
by a NESS or the state of thermodynamic equilibrium. If the stationary state becomes the equilibrium
one (Pst(Z) = Peq(Z)), the detailed balance (for all the reactions σ ∈ {±1,±2,±3})

Wσ(Z−ωσ → Z)Peq(Z−ωσ) = W−σ(Z→ Z + ω−σ)Peq(Z), (10)

applies. In equilibrium, the solution of Equation (9) is a multinomial distribution (see Appendix A).
For a NESS, detailed balance does not hold and an analytical expression for Pst(Z; t) is not available.
However, in the following, the steady state probability distribution will be obtained after averaging
over individual trajectories generated by the Gillespie stochastic simulation algorithm. In the next
section, we introduce the corresponding stochastic entropy production rate.

Stochastic Entropy Production Rate

The most important thermodynamic quantity measuring dissipation is the so-called entropy
production rate. The entropy of the Markov process described by the probability distribution P(Z; t) is
given by

S(t) = −∑
Z

P(Z; t) ln P(Z; t) =
〈
− ln P(Z; t)

〉
, (11)

in units where the Boltzmann constant is equal to one, kB = 1 [34,36–38]. Equation (11) is simply a
contribution to entropy due to the probability distribution of the number of CO molecules and oxygen
atoms on the surface. It is assumed to be valid in equilibrium and as well as in non-equilibrium
situations [34,36–38]. The sum over the vector Z means a double sum over NCO and NO.

The time evolution of Equation (11) can be written as [34,36–38]

dS
dt

=
1
2 ∑

Z,σ
Jσ(Z; t) ln

P(Z−ωσ; t)
P(Z; t)

, (12)

where we define the net reaction rates or mesoscopic thermodynamic fluxes from state Z−ωσ to Z as

Jσ(Z; t) = Wσ(Z−ωσ → Z)P(Z−ωσ; t)−W−σ(Z→ Z + ω−σ)P(Z; t). (13)

As above, in Equation (12), the sum over the reactions runs over both the forward and reversed
reactions σ = ±1,±2,±3.

Equation (12) represents the total variation of entropy, which is also obtained from

dSi
dt

=
dS
dt
− dSe

dt
, (14)

where dSi
dt is the entropy production rate due to internal processes and dSe

dt is the net entropy flow rate,
which can be positive or negative [1]. This net entropy flow rate is calculated from the exchange fluxes
of entropy into and out of the system. The entropy production should meet two conditions: it should
be non-negative and vanish in equilibrium. An expression that satisfies these requirements is provided
by Schnakenberg [39], which relates the entropy production rate to the transition rates of the master
equation as

dSi
dt

=
1
2 ∑

Z,σ
Jσ(Z; t)Aσ(Z; t), (15)

where

Aσ(Z; t) = ln
Wσ(Z−ωσ → Z)P(Z−ωσ; t)

W−σ(Z→ Z + ω−σ)P(Z; t)
, (16)

are the so-called affinities or mesoscopic thermodynamic forces associated with the reactions
σ = ±1,±2,±3. Because the inequality (Rσ − R−σ) ln Rσ/R−σ ≥ 0, the entropy production rate
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is always positive in agreement with the second law of thermodynamics [34,36–38]. Please note that
(Rσ − R−σ) > 0 implies ln Rσ/R−σ > 0 and (Rσ − R−σ) < 0 implies ln Rσ/R−σ < 0.

The entropy flow is obtained by replacing Equation (12) and Equation (15) into Equation (14).
The result is

dSe

dt
= −1

2 ∑
Z,σ

Jσ(Z; t) ln
Wσ(Z−ωσ → Z)

W−σ(Z→ Z + ω−σ)
(17)

The equations presented above define the ensemble stochastic thermodynamics of our catalytic
system for equilibrium and non-equilibrium conditions [40]. In a NESS, dS/dt = 0, implying

dSe

dt
= −dSi

dt
, (18)

which means that the net entropy exchanged with the environment must be negative. Please note that
the entropy flow is easier to calculate and can be used in place of the stochastic entropy production
rate, when dealing with non-equilibrium steady states. As expected, at thermodynamic equilibrium,
the entropy flow and entropy production are zero.

After having presented the stochastic framework to be implemented in this work, we proceed in
the following section to discuss the deterministic limit of it.

3.2. Deterministic Mean-Field Description

In the macroscopic limit, the dynamics of the CO coverage (u) and the oxygen coverage (ν) are
described by the following two coupled first-order nonlinear ODEs

du
dt

= w+1 − w−1 + w+3 − w−3, (19)

dν

dt
= w+2 − w−2 + w+3 − w−3, (20)

which are obtained from the so-called chemical Fokker-Planck equation (CFPE) approximation of the
CME, in the limit of NL → ∞. This CFPE is obtained after truncating the Kramers-Moyal expansion
of the CME (Equation (9)) [27,41,42]. The forward and reverse reaction rates or fluxes are given
in Table 2. At steady state, where du/dt = dν/dt = 0, there can be one, two or three non-negative
steady state solutions of the system of equations. A solution corresponds to certain coverage of CO
and oxygen on the surface. The macroscopic thermodynamic equilibrium condition, where each
forward reaction rate is equated to its corresponding reverse reaction (wσ = w−σ, for all the reactions
σ ∈ {±1,±2,±3}), is characterised by one single solution (the equilibrium one). This macroscopic
thermodynamic equilibrium condition leads to [7](

Kads
co

Kdes
co

)(
Kads

o2

Kdes
o

)1/2(
Kr

Kco2

)
= 1, (21)

as expected. However, far from equilibrium up to three non-negative steady state solutions can exist.
Here, we are interested in the bistable case where two non-equilibrium steady states are separated by
an unstable one. However, first, let us introduce the associated macroscopic entropy production rate of
the catalytic system.
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Table 2. Reaction rates or fluxes pertaining to Equations (19) and (20). Please note that the macroscopic
rate constants are Kads

co = kads
co , Kdes

co = kdes
co , Kads

o2
= ζkads

o2
/2, Kdes

o = ζkdes
o /2, Kco2 = ζkco2 /2, and

Kr = ζkr.

Process Reaction Rates or Fluxes

CO(gas) adsorption w+1 = Kads
co (1− u− ν)

CO(ads) desorption w−1 = Kdes
co u

O2(gas) dissociative adsorption w+2 = 2Kads
o2

(1− u− ν)2

O(ads) associative desorption w−2 = 2Kdes
o ν2

CO2(gas) dissociative adsorption w+3 = Kco2 (1− u− ν)2

CO(ads) + O(ads) reaction w−3 = Kruν

3.3. Macroscopic Entropy Production Rate

In the macroscopic limit (i.e., NL → ∞), the entropy production rate to maintain the NESS is
obtained from Equations (17) and (18). It is given by the following sum

EP =
1
2 ∑

σ

(w+σ − w−σ) ln
w+σ

w−σ
≥ 0, (22)

in units in which kB = 1 [34]. We refer to [1,40] for a derivation of this expression. However,
note that Equation (22) should be evaluated at the corresponding steady state value. The sum
over the reactions runs over both the forward and reverse reactions σ = ±1,±2,±3. Each term
is the product of the net reaction rate or macroscopic thermodynamic flux (w+σ − w−σ) and the
macroscopic thermodynamic force or affinity (ln w+σ

w−σ
) [34]. At thermodynamic equilibrium, there is

no net entropy production rate because the thermodynamic fluxes and forces vanish. Because of the
inequality (w+σ − w−σ) ln w+σ/w−σ ≥ 0, the macroscopic entropy production rate is always positive
in agreement with the second law of thermodynamics. It is also important to mention that, in the limit
NL → ∞, EP = N−1

L dSi/dt [43]. Please note that this last statement follows from Equation (18).

4. Results and Discussion

Let us start with the deterministic analysis of the catalytic system. Then, we continue with the
corresponding stochastic framework. It is known from experiments that, in the range where bistability
exists, the oxygen coverage is small [23]. Therefore, for all cases, kads

o2
= 0.2, kdes

o = 20, kco2 = 0.5,
kr = 50, and ζ = 4 (square lattice). The system of ODEs is solved by using the so-called Euler method
and the probability distribution for the stochastic description is constructed from stochastic trajectories
generated by Gillespie’s algorithm together with the transition rates presented in Table 1.

4.1. Deterministic Analysis

In the macroscopic regime, where the deterministic approach is valid, the condition of
thermodynamic equilibrium leads to the following equilibrium relations

νeq =
1− ueq

1 +
√

kdes
o /kads

o2

, (23)

(
1− ueq − νeq

)2
−

2krueqνeq

kco2

= 0, (24)

and

kads
co =

(
ueq

1− ueq − νeq

)
kdes

co , (25)

as expected.
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This allows us to determine the equilibrium or thermodynamic branch in the parameter space
(kads

co , kdes
co ). Note also that, from Equation (21), one gets

kads
co =

 kco2

2kr

(
kdes

o
kads

o2

)1/2
 kdes

co . (26)

In Figure 1, we plot in red dashed line the equilibrium line given by Equation (25), with ueq

and νeq obtained from Equations (23) and (24) (or Equation (26)). For parameter values along this
line, the system always relaxes to the equilibrium steady state, (ueq ≈ 0.044, νeq ≈ 0.087). The figure
also shows the far-from-equilibrium bistable region obtained when du/dt = dν/dt = 0 (black zone).
The boundaries of this region are given by two saddle node (sn) lines meeting each other in a cusp.
Inside this region, the system of ODEs admits two stable solutions and one unstable one, for the same
control parameters. Each of these solutions is characterised by a certain amount of CO molecules and
oxygen atoms on the surface. However, the unstable one is never observed in simulations.

For clarity, Figure 2a and b show separately the steady state behaviour of u and ν as a function
of kads

co , for kdes
co = 0.15. Figure 2a shows a branch along which the CO coverage is small (denoted

as u−) and a branch along which the CO coverage is high (denoted as u+). Figure 2b shows the
corresponding bifurcation diagram for the oxygen coverage, in which we can also observe a lower
branch denoted as ν− and an upper branch denoted as ν+. The figures also show the existence of a
region inside which the two NESS branches coexist with a middle one (red dots), which is always
unstable (denoted as usaddle in the case of CO coverage and νsaddle in the case of oxygen coverage).
The boundaries of these bistable regions are characterised by the annihilation of the corresponding
stable NESS branches with the saddle or unstable one (a saddle node bifurcation occurs at the snl and
snh points) [23]. This unstable branch is not observed in simulations. The bistable region constitutes a
so-called hysteresis loop. When kads

co increases from zero, the system leads simultaneously along u−
and ν+ until they disappear simultaneously in a saddle node bifurcation at the snh point, then switches
to u+ and ν−, respectively. As kads

co decreases from above, the system remains along u+ and ν− until it
turns around the low snl point and jumps to u− and ν+, respectively. Thus, the bistable region consists
of the stable branches (u−, ν+) and (u+, ν−) coexisting with the unstable one given by (usaddle, νsaddle).

The stability of the branches under weak perturbations is normally analysed in terms of the
Jacobian matrix of Equations (19) and (20) evaluated at each of the steady state points along the
branches [44]. The points along the branches (u−, ν+) and (u+, ν−) are stable, while the points along
the saddle branch (usaddle, νsaddle) are unstable. However, as Figure 3 shows, the selection between the
two stable NESS branches depends on the initial condition of the simulation. As an example, the figure
shows that starting from (uo = 0.25, νo = 0.02) leads to a point along the branch (u−, ν+), while starting
from (uo = 0.5, νo = 0.004) leds to a point along the branch (u+, ν−). Outside the bistable region only
one of the branches dominates no matter what the initial condition is.

We turn now to the properties of the macroscopic entropy production rate or dissipation.
In Figure 4a the macroscopic entropy production rate, EP (Equation (22)), is plotted as a function
of kads

co . We can observe the monostable and bistable behaviours associated with the branches presented
in Figure 2. The entropy production vanishes at the thermodynamic equilibrium. As Figure 4 show,
in the entire bistable interval, the dissipation along the points defined by the branch (u−, ν+) is always
larger than its value along the points associated with the branch (u+, ν−). Thus, the state eventually
selected for a given set of initial conditions is not necessarily the state where the system dissipates the
most (which in the bistable region is the branch (u−, ν+), for all values of kads

co ).

4.2. Stochastic Analysis

The results presented above suggest that the macroscopic entropy production rate is not
necessarily at its minimum or maximum value when the catalytic system is in a NESS. Depending
on the initial conditions, the system can end up in a NESS with high or low entropy production rate.
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In this subsection, we explore whether this conclusion is still valid when the dynamics of the catalytic
system are under the influence of the coverage fluctuations.

0 0.1 0.2 0.3 0.4 0.5

k
des

co

0

0.2

0.4

0.6

0.8

k
ad

s

co

Thermodynamic equilibrium

sn
h

sn
l

cusp

Figure 1. Steady state bifurcation diagram in the parameter space (kads
co , kdes

co ) from Equations (19) and
(20). Inside black region the system exhibits the bistable phenomenon. Its boundaries are given by
the upper saddle node (snh) line and the lower saddle node (snl) line meeting each other in a cusp.
Along the dashed-red line (kads

co ≈ 0.05kdes
co ), the system relaxes to thermodynamic equilibrium. Other

parameters are kads
o2

= 0.2, kdes
o = 20, kco2 = 0.5, kr = 50, and ζ = 4 (square lattice).
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Figure 2. (a) and (b) Steady state bifurcation diagrams of the CO and oxygen coverages as a function
of kads

co , for kdes
co = 0.15. The figures clearly show a bistable region in which two NESS stable branches

(blue lines) coexist with an unstable or saddle one (red dots). In all cases, the boundaries of the bistable
region are characterised by saddle node bifurcations at the snl and snh points. Other parameters are
kads

o2
= 0.2, kdes

o = 20, kco2 = 0.5, kr = 50, and ζ = 4 (square lattice)

When decreasing the catalytic surface area, the predictions of the CME (Equation (9)) simulated
by the Gillespie algorithm deviate from the predictions of the deterministic approach. One of the
most prominent features is the phenomenon of fluctuations-induced transitions between the two
non-equilibrium steady states of the bistable region [45]. As an example, Figure 5 shows time
series pertaining to CO coverage inside the bistable region as obtained from both approaches, the
deterministic and stochastic one. Blue dashed lines are the two non-equilibrium steady states predicted
by the deterministic approach. As expected, depending on the initial condition, the catalytic system
relaxes towards a NESS with a large amount of CO molecules on the surface or a NESS with a small
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number of CO molecules. In relation to the stochastic predictions, Figure 5a shows that, if the area of
the surface is large enough, the stochastic time series follow on average the deterministic trajectories.
However, Figure 5b shows that random transitions between the two non-equilibrium steady states
may occur when the surface area is small enough.
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)

Figure 3. Time evolution of the system inside the bistable region and on the plane (u, ν), for two
different initial conditions. In this case, kads

co = 0.57 and kdes
co = 0.15. Depending on the initial condition,

the system converges to one of the two NESS branches of the bistable region. Other parameters are
kads

o2
= 0.2, kdes

o = 20, kco2 = 0.5, kr = 50, and ζ = 4 (square lattice)
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Figure 4. (a) Macroscopic entropy production rate, EP (Equation (22)), corresponding to the steady-state
solutions of Equations (19) and (20) as a function of kads

co , for kdes
co = 0.15. (b) The same EP but only for

values of kads
co around the bistable region. Full blue lines are the EP associated with the (u−, ν+) and

(u+, ν−) stable branches and dotted line to the one of the unstable or saddle branch or (usaddle, νsaddle).
Other parameters are kads

o2
= 0.2, kdes

o = 20, kco2 = 0.5, kr = 50, and ζ = 4 (square lattice).

In a stochastic system, a useful quantity to study bistability is the normalised steady state
probability distribution, Pst(Z; t), of finding a population vector Z = {NCO, NO} [27]. Throughout this
work, P(Z; t), is obtained by using the so-called Gillespie algorithm together with the transition rates
presented in Table 1. Figure 6 shows the behaviour of Pst(Z; t) projected on the plane (NCO, NO), for
three different values of kads

co , and kdes
co = 0.15. Pst(Z; t) exhibits bimodal distribution in all three cases,

but one of the peaks is usually much more dominant.
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Figure 5. Time series of CO coverage from the deterministic and stochastic approaches. Blue dashed
lines correspond to the deterministic prediction and full black lines to the stochastic one. (a) Stochastic
simulations for a surface area of NL = 1500. Note as the stochastic trajectories follow on average the
trajectories predicted by the deterministic approach; (b) Stochastic simulations with a surface area of
NL = 100. Note the phenomenon of fluctuation-induced transitions. Other parameters are kads

co = 0.57,
kdes

co = 0.15, kads
o2

= 0.2, kdes
o = 20, kco2 = 0.5, kr = 50, and ζ = 4 (square lattice).
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Figure 6. Normalised steady state probability distribution, Pst(Z), of finding a population vector
Z = {NCO, NO}, for NL = 200. (a) kads

co = 0.55; (b) kads
co = 0.56; (c) kads

co = 0.57. Other parameters are
kdes

co = 0.15, kads
o2

= 0.2, kdes
o = 20, kco2 = 0.5, kr = 50, and ζ = 4 (square lattice). The steady state

probability distribution was obtained after averaging over an ensemble (20 independent realisations
sampled at a fixed time).
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The stationary probability distribution allows us to calculate the steady state average quantities

〈u〉 = ∑
Z

uPst(Z), (27)

and
〈ν〉 = ∑

Z
νPst(Z), (28)

where u = NCO/NL and u = NO/NL. Figure 7 shows 〈u〉, and 〈ν〉 versus kads
co for different system sizes.

The figure shows that the average oxygen coverage and CO coverage exhibit single-valued rather
than the S-shaped multivalued behaviour of the deterministic approach. As in the case of equilibrium
first-order phase transition, a transition from the steady state of low CO coverage and high oxygen
coverage to the steady state of high CO coverage and low oxygen coverage occurs at a critical point,
and it becomes sharper as NL increases. Hence, the state with low CO coverage and high oxygen
coverage is selected below the critical point, while above this point the state with high CO coverage
and low oxygen coverage is selected. Such kinetic phase transitions were first observed in the 80’s for a
CO oxidation model that did not, however, obey microscopic reversibility (as it contained irreversible
reactions) [46].

In Figure 8 we show the corresponding stochastic entropy production rate (Equation (15))
as a function of kads

co . As expected, the stochastic entropy production rate also vanishes at the
thermodynamic equilibrium. Note also that, outside the bistable region, the stochastic entropy
production rate follows the trend of the macroscopic entropy production rate, in particular close
to equilibrium (for a comparison see Figure 4 and corresponding discussions). It also shows that,
in contrast to the macroscopic entropy production rate, this quantity always follows a monostable
behaviour along the bistable region (see Figure 4a,b for a comparison with the deterministic entropy
production, EP). However, there is a critical point around which a transition from a state with high
entropy production (associated with the branch with low CO and high oxygen coverage) to a state
with low entropy production (associated with the branch with high CO and low oxygen coverage)
occurs. Thus, a state of high (low) entropy production is selected below (above) the critical point.
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Figure 7. (a) and (b) Steady state bifurcation diagrams of the average CO and oxygen coverages as
a function of kads

co , for kdes
co = 0.15. Other parameters are kads

o2
= 0.2, kdes

o = 20, kco2 = 0.5, kr = 50, and
ζ = 4 (square lattice). The steady state probability distribution was obtained after averaging over an
ensemble (20 independent realisations sampled at a fixed time). This figure should be compared with
Figure 2.
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Figure 8. (a) Stochastic entropy production rate measured as N−1
L dSi/dt versus kads

co for three different
system sizes, and kdes

co = 0.15; (b) The same as in (a) but only for values of kads
co around the bistable

region. Other parameters are kads
o2

= 0.2, kdes
o = 20, kco2 = 0.5, kr = 50, and ζ = 4 (square lattice).

To calculate this entropy production rate, the steady state probability distribution was obtained after
averaging over an ensemble (20 independent realisations sampled at a fixed time). This figure should
be compared with Figure 4.

5. Overall CO2 Production Rate

Finally, it is interesting to compare the overall CO production rate as calculated from the
deterministic and stochastic approaches. For our deterministic mean-field description, with ζ = 4, the
deterministic overall reaction rate is given by (see Figure 9a)

rCO2 = w−3 − w+3 = kruν− 2kco2 (1− u− ν)2 . (29)

As Equation (29) shows, this expression can be zero, positive, or negative. When it is negative the
CO2(gas) dissociative adsorption dominates, while when it is positive the CO(ads) + O(ads) reaction
dominates. It is to equal zero only when the system is at thermodynamic equilibrium (in Figure 9a this
occurs at kads

co ≈ 0.0075). When the parameter kads
co is varied, the two steady states define two separate

stable branches that we call upper rate (UR) and lower rate (LR). The UR correspond to the points
along the (u−, ν+) branch, while the LR correspond to the points along the (u+, ν−) branch. When kads

co
increases from zero, the reaction rate leads along the UR until it disappears in a saddle node bifurcation
at the snh point, then switches to LR. As kads

co decreases from above, the reaction rate remains along
LR until the branch turn around the snl point and the reaction rate jumps to the UR (a hysteresis loop
occurs). From Figures 2 and 4, it is clear that, all along the bistable region, the UR has a higher entropy
production rate.

The stochastic overall CO production rate is calculated using the Gillespie’s algorithm. We
generate a reaction rate time series where each reading of the reaction rate is R(tk) = (r−3 −
r+3)/(NL∆t), with ∆t = tk − tk−1 = 0.1. The terms r−3 and r+3 are the numbers of elementary
events of reaction CO(ads) + O(ads) and CO2(gas) dissociative adsorption, that occur during the time
∆t, respectively. Then, to obtain 〈rCO2〉, we take the average over the number of readings. Instead of
the hysteresis behaviour presented in Figure 9a, Figure 9b shows that, around a critical point, 〈rCO2〉
exhibits a monotonic transition from the UR to LR, which becomes sharper as the system size NL
increases. Below the critical point the UR is selected, while above that point the LR is the one selected.
These correspond respectively to the high and low entropy production rates calculated in Figure 8.
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Figure 9. (a) Deterministic overall CO2 production rate; (b) Stochastic overall CO2 production rate
at stationary state. In both cases, kads

co was variated and kdes
co was fixed at 0.15. Other parameters are

kads
o2

= 0.2, kdes
o = 20, kco2 = 0.5, kr = 50, and ζ = 4 (square lattice).

6. Summary and Conclusions

In this work, we explored the non-equilibrium thermodynamics and non-linear dynamics of a
model for a catalytic surface reaction with emphasis on the question whether the entropy production
rate is maximised, minimised, or does not achieve any extremum at a NESS. We considered a
minimalistic model for the bistable catalytic CO oxidation reaction on single crystal surfaces, and
explored the deterministic and stochastic aspects of it. From the deterministic approach, we derived the
region of the control-parameter space where bistability is observed and we identified the equilibrium
branch of the system. This phase diagram allows us to identify, inside the bistable region, a hysteresis
loop in which a NESS characterised by a high CO2 production rate (reactive state) coexists with a NESS
with a low CO2 production rate (less reactive state). We identified the characteristic S-shaped behaviour
of bistability. The deterministic approach also predicts that, depending on the initial conditions, the
system will reside in one of the two stable non-equilibrium states for an indefinite period of time.

The corresponding stochastic model exhibits, due to coverage fluctuations, random transitions
between those non-equillibrium states. These transitions were analysed using the whole probability
distribution of the catalytic system. We used this probability distribution to calculate the CO coverage
and the oxygen coverage inside and outside the bistable region. We found that, instead of the
deterministic S-shaped behaviour observed when kads

co is varied, the stochastic framework predicts
monotononic variations of these quantities. This indicates a first-order phase transition at a critical
value of kads

co = k which becomes sharper as the size of the system, NL, increases. Hence, for kads
co < k

the high reactive state with a low CO coverage is selected, while for kads
co > k the less reactive state with

a high CO coverage is selected.
To analyse the non-equilibrium thermodynamic behaviour of the system, we calculated the

macroscopic (deterministic) entropy production rate as well as its corresponding stochastic version.
The macroscopic entropy production predicts that inside the bistable region, there are three entropy
production rates, one for each steady state. Depending on the control parameters and initial conditions,
the system can reach a stable state of low or high entropy production rate. Inside this bistable region,
the state with a high entropy production rate corresponds to a NESS with a high CO2 production rate,
while the state of low entropy production rate corresponds to a NEES characterised by a low CO2
production rate. In the stochastic description, there is a unique entropy production rate. Inside the
bistable region, the stochastic entropy production rate exhibits a first-order phase transition at a critical
point, which becomes sharper as NL increases. For kads

co below the critical point (for kads
co above the

critical point), a state with high (low) entropy production is selected. These observations suggest that,
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in our model, the entropy production rate is neither maximised nor minimised for all non-equilibrium
states.

It is important to emphasise that the results presented in this work only correspond to
deterministic and average stochastic interpretations of entropy production. A more formal study will
require an interpretation in terms of trajectory stochastic thermodynamics, information theory, and
the recently established notion of stochastic least-action principle for dissipative systems [3,8,37,47].
This is an important and interesting extension of our work that will be explored in the near future. For
example, one can wonder about the relation, as far as entropy production is concerned, between the
deterministic trajectory and the set of trajectories around it associated with the presence of coverage
fluctuations. In the present stochastic approach, these stochastic trajectories are averaged out. It should
be also very convenient to extend this study to other type of dissipative structures observed in catalytic
surface reaction systems, like for example oscillatory and excitable dynamics [48,49].

As a final note on the future extensions of this work, we would like to emphasise that, when
dealing with non-equilibrium mesoscopic systems, we need to make a proper distinction between
the predictions of the stochastic approach and those of the ODEs based on the traditional law of
mass action kinetics. For example, it has been recognised that the size of the system, which does not
appear in the ODEs, is an important bifurcation parameter [50,51]. In the context of catalytic surface
reactions, a work along these lines was presented in [52]. Using an irreversible minimalistic model for
the catalytic CO oxidation, a shift of the bistable region was predicted as a function of the size of the
catalytic surface.
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Abbreviations

The following abbreviations are used in this manuscript:

NESS Non-equilibrium steady state
ODEs Ordinary differential equations
CO Carbon monoxide
CO2 Carbon dioxide
O2 Oxygen
LH Langmuir-Hinshelwood
CME Chemical master equations
2D two dimensional
EP Macroscopic entropy production rate
sn Saddle node
UR Upper rate
LR Lower rate
MinEPP Minimium entropy production principle
MaxEPP Maximium entropy production principle

Appendix A. Transition Rates and Detailed Balance

Here, we show that the transition rates, Wσ, satisfy the following constraint [49]

W−σ(Z)
Wσ(Z−ωσ)

=
Peq(Z−ωσ)

Peq(Z)
, (A1)
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with
Peq(Z) =

NL!
NCO!NO!N∗!

uNCO
eq ν

NO
eq (1− ueq − νeq)

N∗ , (A2)

where N∗ = NL − NCO − NO. It is easy to show that 〈NCO〉eq = NLueq, 〈NO〉eq = NLνeq, and

〈N∗〉eq =
(

NL − 〈NCO〉eq − 〈NO〉eq

)
= NL(1− ueq − νeq). For simplicity, we omitted the arrow used in

Equation (10). As before, in Z = {NCO, NO}, NCO is the number of adsorbed CO species on the surface
and NO is the number of adsorbed oxygen atoms. The stoichiometric vectors for forward reactions are
ω+1 = {1, 0}, ω+2 = {0, 2}, and ω+3 = {1, 1}, and the once for the reversed reactions ω−1 = −ω+1,
ω−2 = −ω+2, and ω−3 = −ω+3.

Appendix A.1. CO(gas) Adsorption and CO(ads) Desorption.

For adsorption (forward step) ω+1 = {1, 0} and for desorption (reverse step) ω−1 = {−1, 0}.
Then, the constraint leads to

W−1(NCO, NO)

W+1(NCO − 1, NO)
=

Peq(NCO − 1, NO)

Peq(NCO, NO)
. (A3)

After replacing Peq(NCO, NO), one gets

W−1(NCO, NO)

W+1(NCO − 1, NO)
=

1− ueq − νeq

ueq

NCO
N∗ + 1

, (A4)

where N∗ = NL − NCO − NO. At equilibrium, w+1 = w−1 (see Table 2), and

(1− ueq − νeq)

ueq
=

Kdes
co

Kads
co

. (A5)

Then
W−1(NCO, NO)

W+1(NCO − 1, NO)
=

Kdes
co

Kads
co

NCO
N∗ + 1

= Kco
eq

NCO
N∗ + 1

, (A6)

where Kco
eq is the equilibrium contant. Finally, we conclude that

W+1(NCO, NO) = kads
co (NL − NCO − NO) = kads

co N∗, (A7)

and
W−1(NCO, NO) = kdes

co NCO. (A8)

satisfy Equation (A6), where Kco
eq = Kdes

co /Kads
co , Kdes

co = kdes
co , and Kads

co = kads
co

Appendix A.2. Dissociative O2(gas) Adsorption and Associative O(ads) Desorption.

For adsorption (forward step) ω+2 = {0, 2} and for desorption (reverse step) ω−2 = {0,−2}.
Then, the constraint is

W−2(NCO, NO)

W+2(NCO, NO − 2)
=

Peq(NCO, NO − 2)
Peq(NCO, NO)

. (A9)

After replacing Peq(NCO, NO), one gets

W−2(NCO, NO)

W+2(NCO, NO − 2)
=

(1− ueq − νeq)2

ν2
eq

NO(NO − 1)
(N∗ + 2)(N∗ + 1)

, (A10)
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where N∗ = NL − NCO − NO. At equilibrium, w+2 = w−2 (see Table 2), and

(1− ueq − νeq)2

ν2
eq

=
Kdes

o
Kads

o2

. (A11)

Then
W−2(NCO, NO)

W+2(NCO, NO − 2)
=

Kdes
o

Kads
o2

NO(NO − 1)
(N∗ + 2)(N∗ + 1)

= Ko
eq

NO(NO − 1)
(N∗ + 2)(N∗ + 1)

, (A12)

where Ko
eq is the equilibrium contant. Finally, we conclude that

W+2(NCO, NO) =
ζkads

o2

2(NL − 1)
N∗ (N∗ − 1) , (A13)

and

W−2(NCO, NO) =
ζkdes

o
2(NL − 1)

NO (NO − 1) . (A14)

satisfy Equation (A12), where Ko
eq = Kdes

o /Kads
o2

, Kads
o2

= zkads
o2

/2, and Kdes
o = zkdes

o /2.

Appendix A.3. CO(ads)+O(ads) Reaction and CO2(gas) Dissociative Adsorption

For adsorption (forward step) ω+3 = {+1,+1} and for desorption after reaction (reverse step)
ω−3 = {−1,−1}. Then, the constraint is

W−3(NCO, NO)

W+3(NCO − 1, NO − 1)
=

Peq(NCO − 1, NO − 1)
Peq(NCO, NO)

. (A15)

After replacing Peq(NCO, NO), one gets

W−3(NCO, NO)

W+3(NCO − 1, NO − 1)
=

(1− ueq − νeq)2

ueqνeq

NCONO
(N∗ + 2)(N∗ + 1)

, (A16)

where N∗ = NL − NCO − NO. At equilibrium, w+3 = w−3 (see Table 2), and

(1− ueq − νeq)2

ueqνeq
=

Kr

Kco2

. (A17)

Then
W−3(NCO, NO)

W+3(NCO − 1, NO − 1)
=

Kr

Kco2

NCONO
(N∗ + 2)(N∗ + 1)

= Kr
eq

NCONO
(N∗ + 2)(N∗ + 1)

, (A18)

where Kr
eq is the equilibrium contant. Finally, it is easy to check that

W+3(NCO, NO) =
ζkco2

2(NL − 1)
N∗ (N∗ − 1) , (A19)

and
W−3(NCO, NO) =

ζkr

NL − 1
NCONO. (A20)

satisfy Equation (A18), where Kr
eq = Kr/Kco2 , Kco2 = zkco2 /2, and Kr = zkr.

Finally, note that chemical equilibrium implies

Kco
eq

(
Ko

eq

)1/2

Kr
eq

= 1. (A21)
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