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ABSTRACT: 

 

Popularity and diverse use of 3D city models has increased exponentially in the past few years, providing a more realistic impression 

and understanding of cities. Often, 3D city models are created by elevating the buildings from a detailed 2D topographic base map and 

subsequently used in studies such as solar panel allocation, infrastructure remodelling, antenna installations or even tourist guide 

applications. However, the large amount of resulting data slows down rendering and visualisation of the 3D models, and can also 

impact the performance of any analysis. Generalisation enables a reduction in the amount of data - however the addition of the third 

dimension makes this process more complex, and the loss of detail resulting from the process will inevitably have an impact on the 

result of any subsequent analysis. 

 

While a few 3D generalization algorithms do exist in a research context, these are not available commercially. However, GIS users 

can create the generalised 3D models by simplifying and aggregating the 2D dataset first and then extruding it to the third dimension. 

This approach offers a rapid generalization process to create a dataset to underpin the impact of using generalised data for analysis. 

Specifically, in this study, the line of sight from a tall building and the sun shadow that it creates are calculated and compared, in both 

original and generalised datasets. The results obtained after the generalisation process are significant: both the number of polygons and 

the number of nodes are minimized by around 83% and the volume of 3D buildings is reduced by 14.87 %. As expected, the spatial 

analyses processing times are also reduced. The study demonstrates the impact of generalisation on analytical results – which is 

particularly relevant in situations where detailed data is not available and will help to guide the development of future 3D generalisation 

algorithms. It also highlights some issues with the overall maturity of 3D analysis tools, which could be one factor limiting uptake of 

3D GIS.  

 

 

1. INTRODUCTION 

Popularity of three-dimensional (3D) city models has increased 

massively in recent decades. While the early uses of 3D city 

models were mainly dominated by visualisation (Christen and 

Nebiker, 2015; Glander and Döllner, 2009), e.g. 3D urban 

visualisations for disaster management (Kemec et al., 2010), as 

the technology developed, they have been useful for many 

purposes beyond visualisation  (Biljecki et al., 2015), for example 

solar radiation distribution calculations (Hofierka and Zlocha, 

2012), noise impact studies (Stoter et al., 2008), 3D Cadastre 

(Shojaei et al., 2017; Stoter and Ploeger, 2003), urban 

infrastructure planning (Herbert and Chen, 2015) and so on. 3D 

City Models - showing details of buildings (indoors and 

outdoors), roads, parks, street furniture – are also fundamental to 

enabling Smart Cities. They link information such as traffic 

flows, pollution, tourism, utilities, infrastructure and public 

transport to address real world problems in a wide variety of 

disciplines.  

 

While in theory the same 3D model could be used for these 

multiple applications, in reality for some applications a high level 

of detail is required whereas for others this is not the case.  

Different details are also required for different applications - a 

tourism application might focus on details about landmarks, 

whereas a solar panel application might require detailed roof 

structures. In order to make 3D city modelling efficient and 

reusable to address different user needs, all the information 

should be derived from one detailed source – this is known as 

generalisation. 

 

A number of attempts have been made in the past to develop 

algorithms for the automatic generalisation of 3D buildings (see 

Section 2.2), However transitioning from a detailed three-

dimensional representation to a coarser one maintaining both 

geometric and semantic characteristics is still challenging, 

difficult and time consuming. The process of developing such an 

algorithm would be assisted by having greater clarity about the 

end goals – i.e. what the resulting generalised dataset should look 

like.  As part of this, it is important to understand the impact of 

using generalised data with 3D applications. 

 

To further this understanding, this paper presents an introductory 

study of the impact of the generalisation on the results of two 

algorithms – line of sight and shadow casting from the buildings. 

In the absence of commercially available 3D generalisation 

algorithms, traditional 2D cartographic generalisation operators 

are used, in combination with extrusion to answer the following 

question: 

 

What is the impact of generalisation on the results of 3D line-of-

sight and shadow-casting algorithms? We consider this question 

from the point of view of the variation in analytical results 

obtained as well as by examining the impact on algorithm 

performance, and the results will: 

- Provide insight into the impacts of using a generalised 

dataset for these operations, which is particularly relevant 

for situations where more detailed data is not available. 

- Guide further work into 3D generalisation by providing a 

preliminary insight into the consequences of loss of detail 
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on the algorithms tested.  This in turn will inform decisions 

as to which elements of 3D data can be generalised without 

consequence and which are important to retain. 

- Additionally, as we will be using off-the-shelf tools for this 

task we will gain initial understanding related to the 

maturity of 3D algorithms.  

 

2. LITERATURE REVIEW 

2.1 Complexity of 3D Data 

Several techniques and methodologies are available to create 3D 

models including processing data from photogrammetry, remote 

sensing or laser scanning (Lafarge and Mallet, 2012). When the 

requirements for detail are not very high, elevating the 2D 

footprint data to a given height, known as extrusion, is an 

efficient process to model buildings of a city in 3D (Ledoux and 

Meijers, 2011). However, even using this simple approach, 3D 

models can be complex – e.g. Wong and Ellul (2016) note that 

an LOD1 model of Toronto contains 397,602 buildings and over 

10 million vertices (covering 709 km2) and the 3D model of the 

city of Berlin (LOD2) 537,208 buildings and over 10.5 million 

vertices (for 890 km2).   They also note, the method of capture is 

also highly correlated to the overall geometric complexity and 

size of the model (ibid).  

 

2.2 Generalisation 

Generalisation is a process that categorises features and excludes 

unnecessary detail in order to reduce visual complexity 

(Robinson et al., 1995). In traditional cartography, reducing 

reality to a given map scale while the most important features are 

emphasised makes generalisation necessary: distances, lengths 

and widths are shortened and adjacent objects get merged.  

 

Generalisation can be said to have multiple purposes – firstly, to 

ensure that map information is presented in an understandable 

way for a map user -  i.e. that the correct, relevant details are 

shown but that the map is not overcrowded as the scale changes; 

secondly – to create a dataset that is suitable for various analytical 

tasks – balancing between the computational complexity required 

to analyse very detailed datasets, and the loss of information (and 

hence accuracy of results) if the data is over-generalised (ibid).  

In all cases, generalisation also permits a ‘create once, use many 

times’ approach to data – which maximises the return on 

investment in data capture.  

 

2.2.1  Map Generalisation Steps 
The first operation to be performed is the selection of necessary 

features and attributes, which will depend heavily on the purpose 

for which the new map is being created. Once this process is 

completed, drawing the objects at the given map scale is required 

–this is carried out by generalisation (Robinson et al., 1995) using 

a combination of the following steps: 

- Classification: ordering and grouping features by their type. 

- Aggregation: substituting multiple features into a single one. 

- Simplification: eliminating unwanted detail. 

- Exaggeration: enhancing the important characteristics. 

- Symbolization: replacing features with symbols. 

- Induction: deduction of the relationships among features. 

 

Generalisation must preserve a harmony and balance between the 

retained and omitted data, always dependant to the level of scale 

of the outcome (ibid). 

2.3 3D Generalisation 

2.3.1 Conceptual Approaches – CityGML and LoD 

Many three-dimensional city models are represented and 

exchanged in the open data model CityGML, based on the 

international standard for spatial data agreed by the Open 

Geospatial Consortium (OGC) (Gröger et al., 2012).  The 

standard permits City Model representation not only through 

graphical means but also in relation to semantic characteristics, 

which are also considered for thematic applications.  City models 

are represented using five different levels of detail (LoD0-LoD4). 

Buildings and building parts are represented from LoD1 - a block 

model with a flat roof to - LoD4 - a building with detailed façades 

and interiors with windows and doors. Generalisation operators 

are important when converting the model from certain LoD to a 

lower one. 

 

2.3.2 Previous Implementations of 3D Generalisation 

While 2D generalisation algorithms are available in commercial 

software, 3D generalisation is still in its infancy. Much of the 

implementation work on 3D generalisation algorithms has taken 

place within an academic environment, with relatively little work 

taking place recently.  Implementations vary as to whether they 

take into account the different components of a 3D model – 

geometry, semantics and texture, and whether their outcome is 

aimed towards visualisation or analysis. Table 1 summarises 

some of the key approaches, with further detail of each in the 

subsequent paragraphs, with some key approaches summarised 

below. 
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Kada (2002)       

Sester and Brenner (2005)       

Forberg (2007)       

Fan et al. (2009)       

Fan and Meng (2012)       

Baig and Rahman (2013)       

Table 1.  Objectives of existing approaches. 

Kada (2002) developed an algorithm that first creates a constraint 

building model in where the faces of the model are grouped by 

coplanarity, parallelism and rectangularity constraints 

hierarchically. Afterwards, features such as extrusions are 

detected and their significance over the global look of the model 

is evaluated. The features of least significance are then eliminated 

and the constraint building model altered. Finally, a new location 

for the vertices of the constraint building model is calculated by 

least squares adjustment. In many cases overall complexity fell 

by between 30% and 50% (ibid).  

 

In order to obtain a continuous generalisation for use in a mobile 

device with a small display, Sester and Brenner  (2005) proposed 

elementary generalisation operations (EGO’s) as the key tools for 

the generalisation of building ground plans and a typification of 

buildings. The sets of EGO’s presented are applicable from a 

detailed level to a coarser one and also applicable in the inverse. 

Further reduction of detail is acquired with the operation of the 

amalgamation and operations to remove offsets, extrusions and 

corners. This is followed by a discrete process known as 

typification, which replaces objects with more ‘typical’ 

representations. Using this approach an object is gradually 
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modified rather than being replaced as it moves from one level of 

detail to another.  

 

An experiment on 3D generalisation based on a scale-space 

theory from image analysis is performed by Forberg (2007). 

Different representations at different scales are derived from an 

image by a scale-space and thus this theory is suitable to generate 

different levels of detail for 3D models. Forberg (2007) presents 

results relating to simplification of orthogonal structures and 

suggests squaring as appropriate for roofs and walls having non-

orthogonal structures.  

 

The algorithm presented by Fan et al. (2009) extends Sester and 

Brenner  (2005), taking the semantic information into account in 

order to avoid deleting important features and the aggregation of 

polygons which belong to different objects, as well as applying a 

typification process. As a result, a notable 90% reduction of the 

storage space was obtained substantially from the original 3D 

model to the extracted shell, without losing the overall 

appearance and semantic information of the buildings. 

Fan et al (2009) do not include edges and vertices in their process.  

This omission is addressed by Fan and Meng (2012) who 

describe a three-step process which starts with the exterior shell 

of the 3D building extracted using methods proposed by  Fan et 

al., (2009). Roof structures are generalised separately and they 

take distortions of edges and angles of roof polygons when 

projected onto the ground into account, by simplifying these on 

a plane rather than at ground level. However, this has not yet been 

developed to allow the algorithm handle further extrusions 

beyond the initial extrusion. 

 

More recently, Baig and Rahman (2013) extend the work of 

Sester and Brenner (2004) and Fan et al. (2009). Semantic 

information, height and positional accuracy of the 3D objects are 

considered in order to derive multiple LoDs and the 

simplification methods used -removal of intrusions, extrusions, 

offset and corners and aggregation of footprints- are based on 

neighbouring edges with semantic rules are imposed to avoid 

deleting important objects. The authors highlight the semantic-

based removal of building parts is the strength of their algorithm 

for applications in where maintenance of important parts is the 

main priority. 

 

2.3.3 Testing Performance Impact of 3D Generalisation 

As noted above, one of the main outcomes of a generalisation 

process is to reduce the quantity of data required for analytical 

tasks.  Ellul and Joubran  (2012) use 2D generalisation operators 

-  simplification and aggregation - in order to create a generalised 

3D city model by extrusion of the dataset, focussing on testing 

the impact of generalisation on rendering performance. The 

results show that performance is considerably increased as the 

generalised dataset is loaded 2.8 times faster. Similarly Ellul and 

Altenbuchner (2014) examine the impact of generalisation on 

rendering of 3D city models in mobile devices. Reducing the data 

volume by generalisation operators (aggregation and 

simplification) as well as eliminating duplicate faces by 

topological data structuring significantly increases the 3D model 

rendering performance with results on two mobile devices 

showing 7.06 times and 9.54 times faster performance.  

Biljecki et al. (2016) present an experiment where changes in 

modelling choices have significant different effects when 

1 https://www.ordnancesurvey.co.uk/docs/product-

guides/osmm-topo-layer-bha-product-guide.pdf 
2 https://digimap.edina.ac.uk/os 

employing those models in spatial analyses. They create a range 

of different building models in LoD1 and LoD2 based in different 

geometric references and they investigate three different spatial 

analyses with each model: area of the building envelope, volume 

of the building and shadow casted by a building. They conclude 

that there is no optimal geometric structure suitable for multiple 

analysis processes and that errors and their distribution are 

caused by alterations in the configuration of buildings which 

makes them unique for each geometric reference (ibid). 

 

The above review highlights the fact that, to date, relatively little 

work has been carried out to determine not only the performance 

impact of generalisation but the overall impact on algorithm 

results.  In other words, while performance may be greatly 

improved in terms of time to execute an algorithm, is this at the 

cost of the ‘fitness for purpose’ of the results?  The remainder of 

this paper describes first tests to assess this issue, for 3D 

analytical algorithms of sun shadow volume calculation and line 

of sight. 

3. DATA 

The dataset used for the experiment is the ‘Ordnance Survey 

MasterMap Topography Layer, including  Building Height 

Attribute’1 information supplied by the centre for digital 

expertise of the University of Edinburgh EDINA through their 

web mapping portal Digimap2 (© Crown Copyright and Database 

Right 2018. Ordnance Survey - Digimap Licence). It provides 

height attributes to the buildings within the OS MasterMap 

Topography Layer obtained from the OS Digital Terrain Model3, 

using Ordnance Datum Newlyn as the national height datum 

within the OSGM15 National Geoid Model and British National 

Grid spatial reference system. The heights used in this 

experiment is the difference height value between the absolute 

ground level and the highest part of the roof of a building.  

An absolute accuracy of 0.9 m and a relative accuracy of +/- 1.1 

m is applicable to the horizontal accuracy of the dataset as it is 

based on the 1:1250 OS MasterMap4. In regards of the vertical 

accuracy, this is again dependent to the source of the data used to 

obtain the vertical values, which in this case are the DSM and 

DTM. Because this dataset is still in a BETA state and subject to 

update, confidence levels are provided instead of accuracy 

values. 

 

The study area is a 5 km by 5 km dataset of buildings from 

Greenwich and Canary Wharf in South East London which has 

been selected due to its mix of low level suburban housing and 

taller buildings (Figure 1). 

 

  

Figure 1. 3D Buildings of different heights4 

3 https://ordnancesurvey.co.uk/business-and-

government/products/terrain-50.html 
4  https://www.ordnancesurvey.co.uk/business-and-

government/help-and-support/products/topography-layer.html 
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4. METHODOLOGY 

For this experiment the following off-the-shelf software is used: 

ESRI’s ArcGIS 10.5 (ESRI, 2008), FME 2017.1 (Safe Software, 

2018) and pgAdmin 4 v2 (The PostgreSQL Global Development 

Group, 2018) alternating them in order to satisfy the flaws 

encountered in each software on a PC Intel(R) Core(TM) i7-

7600U CPU 2.80 GHz, 16.0 GB RAM on a Window 10 64-bit. 

 

4.1 Generalisation and extrusion – Full Dataset 

The generalisation process applied to the original data (5 km by 

5 km) is composed by an aggregation of buildings, followed by a 

simplification process. ESRI’s ArcGIS software was used for 

both operators. Extrusion of the results in ArcScene5 is held prior 

to the spatial analyses.  

 

4.1.1 Aggregation 

The first step is the aggregation6 of the raw data with a tolerance 

of 1 m, a minimum size of 25 m2 for every building and an 

internal minimum hole size of 25 m2. When inspecting the 

resulting dataset, a flaw with this tool was detected: while the 

buildings are correctly aggregated, holes smaller than 25 m2 are 

retained. This issue is resolved by repeating the aggregation 

process, as shown on Figure 2. For each aggregated polygon, the 

average height is calculated by summing the height values for 

each building and dividing by the number of buildings. 

 

     

Figure 2. First aggregated buildings (left) and hole fill-up (right) 

Both original and aggregated buildings are translated using 

SafeSoftware’s ‘FME Data Inspector’ to a PostgreSQL database 

using the PostGIS extension in order to calculate the average 

height of the resulting building blocks. 

 

4.1.2 Simplification 

The building polygons obtained from the second round of 

aggregation process are simplified by ESRI’s tool ‘simplification 

of buildings’7 using a minimum building area of 25 m2 and a 

tolerance of 1 m and 5 m (Figure 3).  

 

     

Figure 3. Simplified data (tolerances of 1 m left and 5 m right) 

5 http://desktop.arcgis.com/en/arcmap/10.5/extensions/3d-

analyst/the-arcscene-user-interface.htm 
6 http://desktop.arcgis.com/en/arcmap/10.5/tools/cartography-

toolbox/aggregate-polygons.htm 

4.1.3 Extrusion and visualisation 

Simplification completes the 2D generalisation process. 3D 

visualisation of the original data is obtained by extruding8 the 

building polygons to their height attribute and generalised 

datasets to their average height attribute calculated in steps above 

(Section 4.1.1) using ESRI’s ArcScene software.  

 

4.2 Reducing the Dataset Size 

Once three-dimensional buildings are obtained by extrusion, the 

impact of the generalisation can be investigated in the selected 

use cases. However, in the first trial of the spatial analysis, the 

chosen ESRI’s tool could not deliver any result due to the large 

amount of data (57999 polygons) and the characteristics of the 

computer used. As a solution to the issue, a reduced 1 km by 1 

km area is selected maintaining the same essence as the original 

dataset: a mix of buildings with different heights.  

 

Figure 4 shows a 2D maps of the buildings in the 1 km by 1 km 

reduced dataset in the original situation (a), data aggregated using 

a 1 m tolerance (b), simplified using a 1 m tolerance (c) and 

simplified using a 5 m tolerance (d). 

 

    
 (a) (b) 

   
 (c) (d) 

Figure 4. Original and generalised datasets in a larger scale 

 

The three-dimensional visualisation of the original data is carried 

out as above (Section 4.1.3). 

 

4.3 Accuracy measurements 

In order to determine the accuracy of the information derived 

from the generalised dataset when compared to the original 

model, four measurements are proposed as indicators of change:  

centroid shift, area, perimeter and volume change.  

 

4.3.1 Centroid shift 

The centroid of every polygon is calculated in ArcGIS for the 

original - 𝐶𝑜(𝑋𝑜, 𝑌𝑜) and generalised - 𝐶𝑔(𝑋𝑔, 𝑌𝑔)  dataset and 

translated into a PostgreSQL database using FME. In PostGIS, 

the function ‘ST_Intersects’9 is used to evaluate which original 

polygons have been aggregated into each generalised polygon. 

 

7 http://desktop.arcgis.com/en/arcmap/10.5/tools/coverage-

toolbox/simplify-building.htm 
8 http://desktop.arcgis.com/en/arcmap/latest/extensions/3d-

analyst/about-using-extrusion-as-3d-symbology.htm 
9  http://postgis.net/docs/ST_Intersects.html 
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 (a) (b) 

Figure 5. Centroid change control. 

 

The overall coordinates of the geometric centre of the centroids 

on those original polygons (Figure 5a) are computed with the 

function ‘ST_Centroid’10 averaging the X and Y coordinates of 

the vertices involved: 

𝐶𝑐(𝑋𝑐 , 𝑌𝑐) = (
𝑋𝑂1+ 𝑋𝑂2+⋯+ 𝑋𝑂𝑛

𝑛
,

𝑌𝑂1+ 𝑌𝑂2+⋯+ 𝑌𝑂𝑛 

𝑛
)   (1) 

 

where  CC = calculated geometric centre of original centroids 

 XC, YC = coordinates of calculated geometric centre 

 XO, YO = coordinates of the original centroids 

 𝑛 = number of original centroids involved 

 

The outcomes are translated using FME into a shapefile in order 

to calculate the difference in X and Y coordinates between the 

calculated centroid of the original polygons and that of the 

resulting aggregated polygon (Figure 5b), and therefore, the 

distance between them as: 

 𝐷𝐺
𝐶 = √(∆𝑋𝐺

𝐶)2 + (∆𝑌𝐺
𝐶)2  (2) 

∆𝑋𝐺
𝐶 = 𝑋𝐺 – 𝑋𝐶  

∆𝑌𝐺
𝐶 = 𝑌𝐺 – 𝑌𝐶 

 

where  𝐷𝐺
𝐶 = Distance between centroids  

ΔX = Centroid difference in X axis 

 ΔY = Centroid difference in Y axis 

 XC, YC = coordinates of calculated geometric centre 

XG, YG = coordinates of the centroid on the generalised 

dataset 

 

Overall statistics were then calculated for the values obtained, 

and specific cases showing significantly large shifts explored in 

more detail.  

 

4.3.2 Area, perimeter and node count change 

A similar procedure is carried out to evaluate changes in area, 

perimeter and nodes of the real buildings compared to the 

generalised buildings. The area, perimeter, and node counts are 

obtained as: 

𝐴𝑐 = 𝐴𝑂1 +  𝐴𝑂2 + ⋯ + 𝐴𝑂𝑛                  (3) 

𝑃𝑐 = 𝑃𝑂1 + 𝑃𝑂2 + ⋯ +  𝑃𝑂𝑛 

𝑁𝑐 = 𝑁𝑂1 + 𝑁𝑂2 + ⋯ +  𝑁𝑂𝑛  
 

where  AC, PC, NC = Calculated area, perimeter and number of 

nodes from the original polygons involved. 

 AO, PO, NO = Area, perimeter and number of nodes of 

each polygon on the original dataset 

𝑛 = number of original polygons involved 

 

The differences are obtained as: 

∆𝐴𝐺
𝐶 = 𝐴𝐺 – 𝐴𝐶               (4) 

10   http://postgis.net/docs/ST_Centroid.html 
11 http://desktop.arcgis.com/en/arcmap/10.3/tools/3d-analyst-

toolbox/sun-shadow-volume.htm 
12  http://desktop.arcgis.com/en/arcmap/10.3/tools/3d-analyst-

toolbox/add-z-information.htm 

∆𝑃𝐺
𝐶 = 𝑃𝐺 – 𝑃𝐶 

∆𝑁𝐺
𝐶 = 𝑁𝐺 – 𝑁𝐶 

 

where  AG, PG, NG = Area, perimeter and number of nodes of 

the polygon on the generalised dataset 

ΔA = Area difference 

 ΔP = Perimeter difference 

 ΔN = Number of nodes difference 

 

4.4 Sun Shadow 

The first spatial analysis carried out with the finalised 1 km by 1 

km extension 3D models is the shadow casting of each individual 

building by using the ArcScene tool ’Sun Shadow Volume’11 on 

both raw (Figure 6a) and generalised (Figure 6b) datasets. The 

date and time fixed is 2018-05-15 at 15:30.  

  
 (a) (b) 

Figure 6. Sun shadow casting from obtained 3D models. 

 

Run time of the analysis is recorded in order to evaluate the 

impact of the generalisation. In addition, the volume of each 

building is calculated with the tool ‘Add Z information’12 which 

obtains the total sum of volume of the original and generalised 

3D models. The differences between the two scenarios are 

calculated as: 

∆𝑉𝐺
𝑂 = 𝑉𝐺 – 𝑉𝑂               (5) 

∆𝑡𝑠𝐺
𝑂 = 𝑡𝑠𝐺 – 𝑡𝑠𝑂 

 

where  VO = Total volume of the resulting shadows from the 

original 3D model 

 VG = Total volume of the resulting shadows from the 

generalised 3D model 

 tsO = Analysis duration for the original 3D model 

 tsG = Analysis duration for the generalised 3D model 

 ΔV = Total volume difference 

 Δts = Time/duration difference 

  

4.5 Line of Sight 

The original and generalised 3D models are used for the second 

spatial analysis where a hypothetical mobile antenna mast is 

installed on the roof of a prominent building. The position of the 

antenna in both models is the same: XYZ (537957.000, 

177630.000, 67.100). Sight lines from the antenna are first 

determined by using the ArcScene tool ‘Construct Sight Lines’13 

and the visibility from those is defined by ‘Line Of Sight’14 

(Figure 7). In addition, a point feature class is created with the 

information from where the line of sight has been first obstructed 

against the 3D models. 

 

13 http://desktop.arcgis.com/en/arcmap/10.3/tools/3d-analyst-

toolbox/construct-sight-lines.htm 
14 http://desktop.arcgis.com/en/arcmap/10.3/tools/3d-analyst-

toolbox/line-of-sight.htm 
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Figure 7. Sight lines from the antenna: visible (green) and non-

visible (red). 

The geometry enclosing all those points is generated, in other 

words, a convex hull and its area determines the visible surface 

from the observation point. The interval the software needs to 

explore the spatial analysis is recorded in order to see the 

performance: 

∆𝐴𝑐𝐺
𝑂 = 𝐴𝑐𝐺 – 𝐴𝑐𝑂                (6) 

∆𝑡𝑙𝐺
𝑂 = 𝑡𝑙𝐺 – 𝑡𝑙𝑂 

 

where  AcO = Convex hull area on the original 3D model 

 AcG = Convex hull area on the generalised 3D model 

 tlO = Analysis duration for the original 3D model 

 tlG = Analysis duration for the generalised 3D model 

 ΔAc = Total area difference 

 Δtl = Time/duration difference 

 

5. RESULTS 

5.1 Generalisation results – Full Dataset 

The geographic information of the original 5 km by 5 km dataset 

has been reduced significantly, i.e. 57999 buildings were 

generalised into 9879 buildings. Table 2 summarises the values 

for each new dataset obtained throughout the generalisation 

steps.  

 
Dataset 

(5 km by 5 km) 

No. of 

Polygons 

No. of 

Nodes 

Area 

(m2) 

Volume 

(m3) 

Original (raw) 57999 508009 4513848.959 70230714.429 

Aggregated (1st) 9887 304382 4484212.351 N/A 

Aggregated (2nd) 9883 302812 4486751.712 59122900.093 

Simplified (1 m) 9883 188365 4522861.667 59200040.927 

Simplified (5 m) 9879 83042 4582619.579 59790073.082 

Table 2.  Obtained values throughout the generalisation process 

to the total original 5 km by 5 km dataset. 

The outcome of comparing each generated dataset with the 

original data is presented in percentages in Table 3 in order to 

further examine the impact of the generalisation process. 

Negative values represent a decreases in information while the 

positive values mean an increase, e.g. comparing the total area of 

all buildings within the original dataset with the total area of the 

most generalised dataset results in an increase of 1.52 %, due to 

their replacement with larger polygons after simplification.  

Polygons and node counts are reduced by approximate 83% 

while the total volume (obtained from the sum of volume of every 

single building in 3D) is reduced by around 15% due to the 

change on the height of the buildings on the aggregation step. 

 
Differences 

(5 km by 5 km) 
No. of 

Polygons 
No. of 
Nodes 

Area  
(m2) 

Volume 
(m3) 

Aggregated (2nd) -82.96 % -40.39 % -0.60 % -15.82 % 

Simplified (1 m) -82.96 % -62.92 % 0.20 % -15.71 % 

Simplified (5 m) -82.97 % -83.65 % 1.52 % -14.87 % 

Table 3.  Reduction/addition of data in percentages after 

generalisation to the total original 5 km by 5 km dataset. 

5.2 Generalisation results – Reduced Dataset 

As the 5 km by 5 km dataset is minimized into a 1 km by 1 km 

in order to test the impact of the generalisation when realising 

some spatial analyses, new results from this smaller version of 

raw data were obtained in every generalisation operator (see 

Table 4). 

 
Dataset 

(1 km by 1 km) 
No. of 

Polygons 
No. of 
Nodes 

Area  
(m2) 

Volume 
(m3) 

Original (raw) 2255 22969 236206.223 3669342.439 

Aggregated (1st) 410 13493 235342.000 N/A 

Aggregated (2nd) 410 13440 235406.520 3361866.650 

Simplified (1 m) 410 8155 235400.327 3361548.335 

Simplified (5 m) 410 3878 236953.666 3378923.765 

Table 4. Obtained values throughout the generalisation process 

to the total minimized 1 km by 1 km dataset. 

Taking an identical approach to that used for the whole dataset, 

the results obtained in every step are compared with the new 

reduced dataset and shown as percentages in Table 5. Similarly, 

to the whole 5 km by 5 km dataset, polygons and nodes are 

reduced by circa 82% while there is less impact on area and 

volume.  

 
Differences 

(1 km by 1 km) 

No. of 

Polygons 

No. of 

Nodes 

Area  

(m2) 

Volume 

(m3) 

Aggregated (2nd) -81.82 % -41.26 % -0.37 % -8.38 % 

Simplified (1 m) -81.82 % -64.50 % -0.34 % -8.39 % 

Simplified (5 m) -81.82 % -83.12 % 0.32 % -7.91 % 

Table 5.  Reduction/addition of data in percentages after 

generalisation to the total original 1 km by 1 km dataset. 

 

5.3 Accuracy measurement results 

One of the most interesting factors which determines how much 

the geographic information suffered a change is the distance 

between the geometric centre of the original centroids and the 

centroids on the generalised dataset (for the whole 5 km by 5 km 

study area). The shift of these centroids has been plotted as the 

frequency of the values obtained for both the differences of the 

coordinates in X, ΔX (Figure 8a) and in Y, ΔY (Figure 8b) on a 

logarithmic log-10 scale. 

 

  
  (a) (b) 

Figure 8. Histograms representing the frequency of the 

observations appearance on y axis for ΔX (a) and ΔY (b) shifts 

on x axis, on a log-10 scale. For an easier visual interpretation, 

the frequencies have been split in 35 bins of 1.8 bin width. 

Examining an extreme case, Figure 9 displays the calculated 

geometric centre from the original polygons’ (no. 3012 - left) and 

the generalised polygon and its centroid (no. 5912 - right). 

Visualisation of both together (right) evidences the existence of 

a large centroid shift, the maximum between all in this case. 
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Figure 9. Centroid maximum shift case. 

 

In addition to the centroid shift, statistical results for the 

remaining measures (area, perimeter and number of nodes 

change) are presented in Table 6. 

 

Differences Minimum Maximum Mean 
Standard 
Deviation 

ΔX (m) -42.825 53.571 -0.033 2.758 

ΔY (m) -34.462 43.098 0.024 2.763 

𝐷𝐺
𝐶 (m) 0 53.688 1.704 3.510 

ΔA (m2) -7605.056 572.058 5.402 82.433 

ΔA (%) -78.06 23.07 0.76 4.22 

ΔP (m) -8228.524 6.259 -98.288 184.261 

ΔP (%) -83.23 20.592 -36.206 21.094 

ΔN (points) -2726 0 -41.311 71.334 

ΔN (%) -98.76 0 -69.27 23.84 

Table 6.  Statistical analysis- Measures of Change. 

 

5.4 Sun Shadow results 

At a glance, the generated sun shadow volumes look visually 

correct. However, navigating throughout the three-dimensional 

space a flaw in the tool is detected: shadow casting continues 

underneath terrain (Figure 10). Consequently, the obtained 

volume values are larger than expected as they include the 

volume below ground. As this issue is consistent in all tests, it is 

still relevant to measure overall volume change due to 

generalisation as all the volume measurements will include the 

extra volume. 

 

  

Figure 10. Shadow casting belowground. 

 

Results show that the shadow volume is reduced by 11.58% (ΔV 

= - 4176325.31 m3) from the original (VO = 36060383.30 m3) to 

the generalised 3D model (VG = 31884057.99 m3). Similarly, an 

important 6.32 times (Δts = - 44.99 s) improvement in calculation 

results from the reduction in detail (tsO = 53.44 s, tsG = 8.45 s). 

 

5.5 Line of Sight results 

Using the generalised dataset, the total area where the visibility 

of sight lines is not interrupted is increased by 19.81% (ΔAc = 

32641.47 m2) from the original 3D model (AcO = 164792.26 m2) to 

the generalised one (AcG = 197433.73 m2). The process runs 7.82 

times faster (Δtl = - 10651.29 s) on the generalised model (tlG = 

1560.96 s) than the original model (tlO = 12212.25 s). 

 

6. DISCUSSION 

This paper addresses the question: What is the impact of 

generalisation on the results of 3D line-of-sight and shadow-

casting algorithms? From the results it can be seen that applying 

2D generalisation operators to a dataset prior to extruding it into 

a 3D model involves a loss of detail in terms of the model 

(14.87% less volume) while performance in the spatial analyses 

algorithms is improved significantly: 7.82 times faster for the line 

of sight and 6.32 times faster when casting shadows. The overall 

increase in footprint (area) results in a decrease in shadow 

volume of over 11%, which could be fairly significant when 

estimating, for example, the potential for solar panel energy 

across a city.  Similarly, generalised data resulted in a nearly 20% 

increase in visible areas for line of sight for a hypothetical mobile 

mast.  Given the importance of the accuracy of such calculations 

– in particular with emerging 5G technology – this suggests that 

mobile phone companies should use detailed data where possible, 

even though this comes at greater computational cost and 

potentially at greater purchase cost.  

 

This study reflects previous findings by Ellul and Joubran (2012) 

and highlights the potential of displaying larger 3D datasets and 

using them more efficiently for comprehensive 3D spatial 

analyses. This can be particularly useful in situations where 

detailed representation is not needed or where more detailed data 

is not available. However, whether using generalised or original 

data for each spatial analysis depends on the user case scenario 

and its detail requirements, which confirms findings by Biljecki 

et al. (2016) that one size does not fit all when it comes to 

generalisation. 

 

Issues encountered when using off-the-shelf tools for the spatial 

analyses (specifically problems when running line of sight using 

a large dataset and the casting of shadows belowground) 

demonstrate that further work is still required before such tools 

can be considered fully mature.  This may currently be one factor 

that is limiting the uptake of 3D GIS specially when working with 

larger datasets. The study also highlighted the lack of 

commercially available 3D generalisation tools, and while 2D 

generalisation with extrusion was used as a workaround, the 

results obtained were consequently limited to the LOD1 data – 

i.e. flat roofs.   As this approach also involved an average height 

for a block, local over-and-under estimations in height could be 

significant.    

 

7. CONCLUSION AND FURTHER WORK 

The work carried out above highlights the importance of 3D 

generalisation, in particular as newer 3D analysis algorithms 

come on stream; understanding the impact of detail versus 

generalised – and which components of a model should be kept 

and which could be generalised in each application case is 

important – both for performance and for analysis. 

 

As more extensive and more detailed datasets become available 

– e.g. OS has introduced height information for all buildings in 

GB - the presented exploration of 3D generalisation is 

particularly important when up and coming requirements for 3D 

are considered –specifically smart cities, and the need to locate 

sensors in 3D space and perform analysis based on their location. 

For instance, the impact of line of sight is of special interest for 

5G telephony. 

 

Further work is suggested in order to understand different user 

case needs in depth, and in their respective application domains.  

Technically, 3D generalisation is not a solved problem, and there 

is much room for improvement even within the above approach 

- for example, it may be possible to take the height of individual 

buildings into account when creating the block – and if the height 
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is over a certain percentage above the mean – such as a church 

tower – then keep the original building. 

 

Limitations with the software used suggest need for further work 

in order to generate robust tools that will in turn encourage uptake 

of 3D analysis. 
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