
Genetic Boosting Classification
for Malware Detection

Alejandro Martı́n
Departamento de Ingenierı́a Informática

Universidad Autónoma
de Madrid, Spain

Email: alejandro.martin@uam.es

Héctor D. Menéndez
Computer Science Department

University College London,
United Kingdom

Email: h.menendez@ucl.ac.uk

David Camacho
Departamento de Ingenierı́a Informática

Universidad Autónoma
de Madrid, Spain

Email: david.camacho@uam.es

Abstract—In the last few years, virus writers have made use of
new obfuscation techniques with the ultimate aim of hindering
malware from being detected and making the detection more
complicated. Strategies to reverse this trend involve executing
potentially malicious programs and monitor the actions they
perform in runtime, what is known as dynamic analysis.

I. INTRODUCTION

Malware detection can be considered as a very complex task
of great importance to determine whether a program has mali-
cious or benign intentions. To discern the nature of a program,
it is needed to analyse different data which can be extracted
from it. There are two main approaches to obtain these data
[10]: to follow a Static Analysis where the Malware detection
process is performed based on the information contained in the
executable or a Dynamic Analysis, consisting on executing the
program and monitor the actions it performs [5].

This research is focused on Static Analysis, whose com-
plexity has been magnified in the last few years because of
the emergence of new concealment strategies such as packing,
polymorphism or metamorphism [24]. These strategies aim
to hide the malicious code inside the software. Combining
this fact with the impossibility of manually classify all the
programs that are generated daily by a security expert, pow-
erful systems are required to automatize this task, but also
providing a higher accuracy than a human. Due to the wide
range of forms that Malware can adopt and the difficulties to
differentiate it from Benign-ware, it is extremely complicated
to arise accuracy rates close to 100%.

The model we present is based on a Static Analysis of API
calls. Inside an executable, it is indicated a list of system calls
needed. When the program is executed, the Operating System
reads these data to allow it to use these API calls. We have
designed a method that combines a Clustering algorithm with
a Boosting Genetic algorithm composed of several classifiers
in order to improve the detection. This idea is motivated by the
different Malware families that currently exist and the different
behaviours that they have. Malware from similar families will
be closer in the “behavioural space” defined by the static
API calls data. Therefore, the clustering algorithm will easily
identify regions where these similarities are remarkable. Due
to Malware aims to imitate benign-ware as a concealment
strategy, we use the Genetic Boosting Algorithm to take

advantage of both: a multiple learners approach (boosting
system with several different classifiers), and the genetic
optimization which estimates the relevance of the classifiers
inside the regions through a voting system, using a multi-
objective approach that also aims to reduce the false positive
rate. To test the model proposed, we have used a benchmark
database with information about the use of API calls by an
important number of Malware and Benign-ware programs.

The remainder of the present publication is structured in
several sections, starting with a study of the related work in
the next section, followed by the description of the model
proposed, which allows to detail the experimental setup and
the experimentation in the next two sections and close with
some conclusions.

II. RELATED WORK

Malware detection has focused a broad research for more
than a decade. Its growing complexity, the many different
forms and intentions in can adopt, and also the development of
new concealment strategies to hide or distort its true purposes
necessitate the field to be constantly updated. On one side,
Malware designers develop new techniques to obfuscate and
complicate both a static and dynamic analysis. On the other
side, new techniques are being developed to detect when a
program has malicious intentions, even when this concealment
strategies are used to hide its real purposes.

A. Malware obfuscation techniques

Obfuscation techniques are numerous and have been used
in the last years creating different categories [24], each more
complex than the last. The considered first category is Malware
encryption, which is based on dividing executables into two
parts, the decryptor loop and an encrypted main body [14].
The malign code is inside the main body, therefore only when
the program is executed the malign code is decrypted, making
it difficult to know its existence before. However, signature
detection is a technique capable of detecting when a program
contains malicious code, since that program will always have
the same data (although part is encrypted).

Oligomorphic Malware tried to tackle this problem produc-
ing changes in its own decryptor loop, but signature detection
was still able to detect this type with high precision, generating

a signature per decriptor loop. The next step was represented
by polymorphic malware. In essence, polymorphism is based
on mutating the binary code to generate a big number of
different decyptor loops (around billions), whose signatures
overcome the databases [13]. The most feasible form of de-
tecting a polymorphic malware requires its execution (dynamic
analysis). For these reasons, controlled environments called
Sandboxes were developed to monitor Malware execution in
a safe system. The following action to improve polymorphism
was metamorphism, where the whole code changes modifying
the program flow but keeping its semantic. The specific
techniques beyond these types of Malware include Dead-Code
Insertion to insert instructions that are not used, Register
Reassignment, a technique that changes registers to change
the code in appearance only, among many others [2], [19].

B. Malware detection using Machine Learning

There are two approaches to analyse and detect if a program
is Malware: anomaly-based detection and signature-based de-
tection [10], [22]. Anomaly-based detection techniques make
a decision based on information about what a benign program
should do. In contrast, signature-based detection techniques
use information about programs already considered as Mal-
ware to classify new samples. In both approaches two tech-
niques can be used: Static Analysis and Dynamic Analysis
[17].

The former is based on the analysis of the executable
without executing the program (thus preventing any damage),
analysing the information included in the executable and
its structure. In Dynamic Analysis, the information used to
discern whether a program is malicious is extracted during
its execution, for example the actions performed in the file
system or the system calls performed. Both types of analysis
have their pros and cons. Static Analysis is faster, since there
is not need to execute the program and wait until an event
occurs. Furthermore, its data can be accessed directly, although
it can be modified by the developer in order to hide its
true intentions. Dynamic Analysis is a more complicated and
time-consuming process as it must execute the program as
well as analyse it. Furthermore, some malicious programs
are able to detect when they are inside a virtual machine
and, hence, they behave as benign-ware hiding themselves. In
these cases, Machine Learning has proven to be successful at
designing Malware detection tools even when the most modern
obfuscation techniques are used [16], [7], [15].

There are two main Machine Learning perspectives for
Malware detection which are related to two classical Machine
Learning approaches: Clustering, with the aim of finding
groups with common characteristics blindly, and Classifica-
tion, training a system with datasets where each instance is
already labelled in order to discriminate new samples in the
future. Both methods have also been combined to improve
the accuracy [16]. This research follows this research line,
combining these two approaches to compose a complex model
able to achieve high accuracy levels using Static Analysis.

Within the scope of Static Analysis, it can be addressed
using different methods which are related to the specific data
extracted from the executables [12], [20]. For example, byte
sequences or Opcodes can be used to find patters or also the
information contained in the header. Inside this part of an
executable, it is written a list of API calls, needed to load
the program by the Operating System, information that we
use in the model presented.

An example of the use of static API calls combined with
Machine Learning algorithms can be found in [18], where
authors use a RandomForest classifier to improve the detection
accuracy. We have used this benchmark dataset as a starting
point to improve these results using Genetic Boosting. Other
methods which use API calls to detect whether a program is
Malware or not involve the extraction of N grams [21] or the
generation of API calls groups [8].

C. Evolutionary Computation and Genetic Algorithms

Within the scope of Artificial Intelligence, there is a specific
field called Evolutionary Computation, focused on giving so-
lutions to optimization problems using a metaheuristic search
and based on the Darwin’s rules. The type of algorithms which
are beyond its scope form the so-called Evolutionary Algo-
rithms. In addition, these algorithms can be subdivided in dif-
ferent approaches: Genetic Algorithms (GA), Multi-Objective
Optimization (MOGA), Co-Evolutionary Algorithms (COEA)
and Evolutionary Strategies (ES), among others [1]. This
research focuses on using a Genetic Algorithm (which are
inspired from the natural selection) for Multi-Objective Opti-
mization to lead the Boosting process, following the SPEA2
algorithm [26].

D. Genetic Boosting

The origins of Boosting date back to the late eighties [25];
AdaBoost is considered the most important implementation.
The main idea is to combine multiple learners to specialize
the learning process [4]. While existing evidence show the
difficulty of achieve high accuracy rates on Malware classi-
fication, it is justified the use of more complex classification
models, as a Boosting algorithm, to overcome these rates. In
this work, we apply Genetic Algorithms (GA) as a method
for Boosting optimization. As the literature shows, they can
be used to adjust the confidence factors of the classifiers and
also the number of weak classifiers [3], [6], improving the
accuracy but also decreasing the classification time. Further,
Boosting has been applied to Malware classification [11].

III. GENETIC BOOSTING CLASSIFICATION MODEL FOR
MULTIPLE REGIONS

The model we propose consists of different steps, as it
can be seen in Fig. 1 and Algorithm 1, which contain a
general scheme of the architecture and the step by step process.
Each sample of the input data states a list of static API
calls performed by a Malware or Benign-ware executable
according to the header in their binary files. This makes it
possible to create a n-dimensional space where each coordinate

Clustering
Algorithm

Data
preprocessed

Confidence
factors

adjustment

Genetic algorithm

Evaluation

Regions
selection

Final
output

Region 0

Region n

.

.

.

Classifiers
Training

Fig. 1. General diagram of the model.

defines the number of invocations of a specific API call or a
group of them. This space is divided in regions, in order to
create groups of similar samples, separating them from others
with a completely different behaviour. This division allows to
create independent and specific classification models in each
region, taking particular behaviours into consideration, aiming
to improve the final accuracy of the model in contrast with
solutions that consider the space as a whole.

A clustering algorithm takes the Training dataset to divide
the space and returns a list of centroids, one per region, which
allows to allocate the samples corresponding to the Validation
and Test dataset to the closest region. In order to create an
accurate model in each region, a set of classifiers is trained,
which are later combined with a Boosting process leaded by
a Genetic Algorithm. The final output is generated according
to a parameter called Accuracy Threshold, which allows to
ensure a minimum accuracy when an output is produced.

Algorithm 1 Local Genetic Boosting Classification Algorithm
1: procedure MAIN(nReg, threshold)
2: regsTrain, centroids← KMEANS(Train, nReg)
3: regsV al← ALLOCATE(V al, centroids)
4: regsTest← ALLOCATE(Test, centroids)
5: classifiers← TRAIN(regsV al)
6: Generate solution per each classifier and region:
7: predictions← EVALUATE(regsV al)
8: P ← GENBOOSTING(predictions)
9: ind← SELECTINDIVIDUAL(P)

10: regsSelected← SELECTREGS(threshold)
11: EVALUATESOLUTION(ind, regsSelected)
12: end procedure

A. Data Partition

Given a dataset composed of instances whose attributes
determine the number of uses of a specific API call, it
is divided into three different datasets to perform different
tasks in the algorithm. These parts are the Training dataset,
the Validation dataset and the Test dataset. The reasons for
creating a Validation dataset rely on the necessity of evaluating
the classification models of each region with new examples
and adjust accordingly their weights in the Boosting process.
The Test dataset is used at the end of the execution to evaluate
the whole classification model.

B. Clustering algorithm

As it has been described earlier, the model takes advantage
from the use of different regions to create different specialised
classification models and thus improving the final accuracy. In
order to create these regions, it uses the K-means algorithm,
where the Euclidean distance serves as a metric to calculate
distances between points. To ensure that the regions generated
have enough samples for the training process, all of them must
be composed of at least 3 samples. If this condition is not
satisfied when the process is over, the clustering algorithm is
executed again with a new random initialisation until a valid
solution is found.

C. Classifiers Training

Once the clustering algorithm finishes, a set of classifiers is
trained in each region. The combination of multiple learners
allows to ensure a high accuracy in each region, without the
constraints of a single model with a global approach. The
execution of the classification algorithms was performed with
the Weka library [9], which is written in Java. The reasons for
choosing this library lie in the variety and number of classifiers
provided. In each region, 17 different classifiers were trained,
involving decision trees like RandomForest or RandomTree,
Bayesian algorithms like NaiveBayesMultinomial, regression
models like the Logistic algorithms or meta-classifiers like
RandomCommittee.

D. Genetic Boosting approach

This combination of classifiers can be addressed with a
Boosting process, where all the classifiers work together
to complement their outputs and provide a more accurate
solution.

In a Boosting approach, each classifier is associated with a
confidence factor, which is related with its Accuracy level. To
explain how it operates, we focus on a classical boosting algo-
rithm: AdaBoost, where these factors are decided evaluating
a set of samples sequentially with each classifier, increasing
its confidence factor if the sample is correctly classified or
decreasing it otherwise. The final output for each instance is
calculated evaluating it with all the classifiers and applying
their factors to their outputs, i.e., each possible label will have
a value associated as the sum of the confidence factors of the
classifiers that returned that label. At the end, the label with
the higher cumulative value is defined as the output for the
particular instance. In contrast, the Boosting process of our
model is addressed by a Genetic Algorithm. This decision is

due to the optimization power of Genetic Algorithms and also
to their capacity to generate varied solutions.

E. Genetic Boosting

The previous step divided the space in regions and set
the classifiers inside the regions. In this step we need to
combine the information of the classifiers in a sensible way,
in order to make it complementary. For this reason, we have
designed the Genetic Boosting Algorithm, which performs
this task taking advantage of GAs optimization abilities. We
use a GA to define a confidence factor for each classifier.
In the GA each individual represents a possible assignment
of weights (or confidence factors) to classifiers. Algorithm 2
shows the pseudo-code of how it operates. The first individuals
are randomly initialised and, over the generations of the GA,
they evolve by applying them the classical Genetic Algorithms
operations: Selection, Reproduction, Crossover and Mutation.
In this evolution, there are two objectives to pursue: to
maximize the accuracy and to minimise the number of false
positives. The evaluation function, detailed in Algorithm 3
describes how these two values are calculated. The predictions
are compared with the real labels in the validation dataset to
calculate the accuracy and the number of false positives. The
prediction procedure is explained below.

At the end, it is expected to arise solutions where the classi-
fiers are successfully combined to achieve high accuracy rates.
The GA has been implemented with the ECJ library written
in Java. Specifically, the multi-objective SPEA2 algorithm was
selected to evolve the population.

Algorithm 2 Genetic Boosting
1: procedure GENBOOSTING(predictions)
2: P ← RANDOMPOPULATION(size,N ∗R)
3: for i← 0, Generations do
4: for each p ∈ P do
5: obj1, obj2← CALCFITNESS(p, predictions)
6: end for
7: Apply crossover, mutation and selection on P
8: end for
9: return P

10: end procedure

1) Encoding: The individuals (Figure 2) have n·k positions
(the number of regions and the number of classifiers respec-
tively), which represent the confidence factors of the classifiers
for all the regions. Each region Ri is represented sequentially
in the individual and it is composed of a list of values defining
the confidence factor RiWj for each of the k classifiers of that
region. Each allele, which represents the confidence factor of
a specific classifier, is a decimal number in the range of 0 to
1.

2) Operations: The operations performed by the Genetic
algorithm are four:

• Selection: We have performed an Elitism selection where
the l best individuals of a population are passed to the
next generation.

Algorithm 3 Calculate Fitness
1: procedure CALCFITNESS(indv, predictions, centroids)
2: sumCorrect, falsePositives← 0
3: for i← 0, numSamples do
4: prediction← CLASSIFY(indv, val[s], centroids)
5: if prediction == val[s] then
6: sumCorrect++
7: if val[s] == 0 and prediction == 1 then
8: falsePositives++
9: end for

10: acc← sumCorrect/S
11: return acc, falsePositives
12: end procedure

• Reproduction: The chromosomes which are chosen for
the reproduction are elected using a Tournament operator.

• Crossover: The crossover applied is a uniform crossover,
where each gene is crossed with a defined probability.

• Mutation: A random based mutation where any allele is
randomly assigned to a different decimal value.

Algorithm 4 Classify sample
1: procedure CLASSIFY(factors, sample, centroids)
2: region← GETREGION(sample, centroids)
3: predictions← PREDICT(sample, region)
4: malware← factors[region] ∗ predictions
5: benign← factors[region] ∗ SWAP01(predictions)
6: prediction← MAX(malware, benign)
7: return prediction
8: end procedure

3) Fitness Function and Evaluation : While the classifiers
are trained with the Training dataset, its evaluation is per-
formed with the Validation dataset. This is due to the necessity
of using new data to evaluate each classifier, but also because
the accuracy reached by the classifiers in the training dataset
is close to 100%, avoiding to find differences between them
and obtain different confidence factors.

The dual Fitness Function tries to maximize on one hand
the validation accuracy and also to minimise the number of
False Positives. The last one is a very important parameter in
evaluating a Malware detection system, which means to avoid
misclassification of benign-ware as Malware. This factor is
related with the feasibility of the model to be used in a real
environment.

These two Fitness values are calculated comparing the
prediction produced by the model for each sample in the
Validation dataset and the real labels. The prediction procedure
for one instance is shown in Figure 2 and its pseudo-code
is written in Algorithm 4. First, it is needed to access the
region Ri where the sample is placed and evaluate the instance
with each classifier Cj of that region. On the other hand, the
weights of the classifiers of Ri are extracted from the indi-
vidual, located in WRi (which consists of different positions,
one for each classifier). Then, for each label is calculated a

Regions R0 R1 · · · Rn

Classifiers Ri C0 C1 · · · Ck

S0Prediction Ri
S1 Sk

W0·￢S0 + W1·￢S1+

... + Wk· ￢Sk

W0·S0 + W1·S1+ ...

+ Wk· Sk

Weights Ri W0 W1 · · · Wk

Individual WR0 WR1 · · · WRn

Benign-ware Malware

Final prediction

Max.

Example

Fig. 2. Label prediction procedure

sum of weights Wj of the classifiers that predicted that label.
For example, in order to calculate the total weight gained by
the Malware label, the output of each classifier (which will
be “1” for Malware samples) is multiplied by its weight. The
sum of these values is equals to the sum of the weights of the
classifiers that resulted in “1”. Calculating the weight gained
by the Benign-ware label requires changing zeros to ones and
ones to zeros in the outputs to only take into account those
which are equals to “0.” The label with the maximum sum is
the final prediction of the algorithm.

4) Solution selection: A multi-objective Genetic Algorithm
produces several solutions. Those ones that are not dominated
by any other form the Pareto frontier. We choose only one
solution to finally test the model, taking into account primarily
the accuracy, which allows to compare with other algorithms
which are also focused on maximizing this objective.

5) Regions selection: The creation of regions will produce
different classifications models with different accuracy levels.
If the performance of each region is quantified, it is possible
to know if the output for a new sample is reliable depending
on the region where it is placed. To achieve this, each
region is evaluated with the instances of the Validation dataset
belonging to that region, and the accuracy reached can be used
to measure its reliability. Then, it is possible to only take into
account those regions that exceed a specific threshold, thereby
discarding those that are expected to produce poor results.

When classifying a new instance, first it will placed in the
region concerned. If the accuracy in the Validation dataset
for this region was above the threshold, it is classified with
its classification model. If that region does not reach the
threshold, no output is produced. This procedure will reduce
inevitably the number of instances which are given a label,
but the accuracy will increase for those that are classified.

If no output is delivered, the instance in question cannot be
classified reliably and a more detailed analysis (for example a
Dynamic Analysis) is needed to produce an output accurately.

IV. EXPERIMENTAL SETUP

This section describes the dataset used, the preprocessing
techniques which have been applied over the data and also the
parametrization of the Genetic Algorithm and the classifiers.

All of this will allow to explain the experimentation and the
results obtained in the next section.

A. Datasets

This work is focused on a Static Analysis of Windows
binaries. We have used a public dataset [18] with information
of 31,869 already detected as malicious programs and 2,951
checked as benign. These data are basically extracted from
tables (included in the binary file) that inform the DLLs it
needs, and also the specific calls which will be invoked in the
execution.

The dataset comprises 44,605 attributes, each one related
with a particular API call. The binary value of the attributes
indicate if the executable imports each API call. This infor-
mation needs a preprocessing step before being used to train a
classification model. The authors of the dataset generated three
different set applying different preprocessing techniques: DLL,
Cat+ and Close datasets.

DLL dataset reduces the number of attributes grouping them
by the DLL they belong to. Close dataset uses the Clospan
algorithm [23] to find close API calls that can be combined to
decrease the number of dimensions. Finally, the Cat+ dataset
creates a new form to represent each sample. The 95 first
attributes are related with a taxonomy defined by Microsoft
where each column is a category representing a subset of
the API calls. The next 955 attributes are a list of the top
discriminative API calls, obtained using the Fischer score. The
number of samples of this dataset is reduced to 11,987.

Cat+ dataset is the most suited to train a classification model
because it provides more information that the Close and DLL
datasets. The authors of the dataset assert that they achieve
a 98% Accuracy using a Random Forest classifier with a
parameter of 100 trees. However, this high percentage is biased
due to two factors. First the dataset is unbalanced, only 24%
of the samples are benign, so allocating the same label to
the whole dataset will provide high, but fictitious, accuracy
values. Second, we found that the 45% of the samples was
duplicated. Although this can be attributed to the fact that
different samples have a very similar behaviour, the existence
of the same sample in the training and test datasets leads to
inconclusive results. In the next section it will be described
the data processing performed to address these two problems.

B. Data Preprocessing

As it has been described in the Datasets Section, the Cat+
dataset is the most appropriated to train a classification model,
since it provides further information about each samples,
leading to the best results.

First, all the duplicated samples were removed. This de-
creased the amount of samples to 6,647. In a second step,
a resample filter was applied over the examples pursuing a
uniform distribution of the labels, obtaining a new balanced
dataset with around 2100 samples of each label.

C. Genetic Algorithm Parametrization

The execution of a Genetic Algorithm involves choosing a
set of parameters. After a Grid Search, we decided to create
an initial population of 120 individuals, which allows to have
enough diversity to cover a large part of the search space.
These population evolves through 40 generations, which is a
number that enables the algorithm to always converge. The
crossover and mutation probabilities were fixed to 20% and
10% respectively, and the elitism was defined to take the best
10 individuals in each generation.

D. Classifiers

All the classifiers used, implemented in the Weka library,
take their default parameters, but the seed (in those algorithms
that applies) was changed every time that the algorithm was
invoked.

V. EXPERIMENTATION

This section addresses a series of experiments in order to
test the proposed model. At the same time, it will be analysed
how Windows executables behave when they are separated
according to the use of system API calls they perform and if
the approach taken allows to improve the results compared to
other research.

A. Correlation between Validation and Test dataset

Having several regions containing different samples im-
plies the emergence of different behaviours. Therefore, each
classification model will behave in a different form in each
region of the space, generating different accuracy levels. A
previous assessment of each region with the results obtained
from the boosting algorithm in the validation dataset, allows
to reject those that are below a threshold. For this purpose, it
is necessary that the accuracy in the validation dataset relates
this value for the test dataset, in order to anticipate how the
model will behave with unseen examples.

Figure 3 shows how the accuracy evolve in both datasets
in four executions with 7, 13, 20 and 26 regions. If a very
small number of elements is placed in an specific region, the
accuracy reached here will not ascertain a similar performance
in test samples; therefore, a minimum threshold of 20 elements
in each region has been established, omitting these regions. In
almost all regions for all the executions, both values are on
a similar trend, where all the points are very close between

TABLE I
RESULTS IN VALIDATION AND TEST DATASET DEPENDING ON THE

THRESHOLD USED

Validation dataset Test dataset

ACC
thold

Regions
over
thold

Acc in
regions
selected

Acc in
regions
selected

Instances in
selected
regions

False
Positives

90% 7 93.03% 92.85% 74.88% 1.14%
91% 4 95.87% 96.83% 35.49% 0.3%
92% 4 95.87% 96.83% 35.49% 0.3%
93% 2 97.48% 97.66% 25.38% 0.1%
94% 2 97.48% 97.66% 25.38% 0.1%
95% 1 100.00% 100.00% 15.27% 0%
96% 1 100.00% 100.00% 15.27% 0%
97% 1 100.00% 100.00% 15.27% 0%
98% 1 100.00% 100.00% 15.27% 0%
99% 1 100.00% 100.00% 15.27% 0%

100% 1 100.00% 100.00% 15.27% 0%

themselves. Increasing the number of regions reduces the
number of regions that exceeds the threshold.

These results prove that the accuracy reached in the Val-
idation dataset is a reliable factor to predict the accuracy in
samples belonging the test dataset, enabling to discard those
regions which are expected to lead to poor results.

B. Model evaluation

As previously stated, the model proposed filters the regions
according to the accuracy reached in the Boosting process,
discarding those with no promising results. To put this into
practice, different accuracy thresholds have been established
and the regions producing results below this value are flagged.
The main idea of this process is to increase the accuracy
but decreasing in the other hand the number of instances
which are classified. Figure 4 shows how the number of
instances classified decreases when the accuracy threshold
raises in an execution with 12 regions. In order to classify
the whole set of instances, a low threshold must be selected.
In contrast, if it is required the maximum achievable accuracy,
the threshold should be fixed close to 95% or 100%, which
implies classifying 15% of instances.

Another important parameter that affects the percentage of
instances classified or, in other words, the amount of instances
that are classified over a minimum threshold is the number
of regions. Figure 5 illustrates this, where different thresholds
above 93% and the results from executions with 2 to 30 regions
are presented (which is shown by the colour of the bars).
Again, the percentage of instances classified decreases with
a higher threshold. However, the number of regions affects
significantly to the results. With a high threshold, a high
number of regions must be selected, while when the threshold
falls, a low number of regions produce better results.

A second very important aspect shown in the plot is the
existence of bars with a drastic change compared to their
neighbours. This is due to the clustering algorithm, because
of its random initialisation, but also because the samples
distribution in the space. An increment of just 1 cluster can
cause a completely different division of the space, thereby

●

●

●

●

●

●

●

●

●
●

●

●

0.7

0.8

0.9

1.0

2 4 6

a) 7 Regions

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

0.7

0.8

0.9

1.0

0 3 6 9 12

b) 13 Regions

●

●

●

●
●

●

●
●

●
●●

●

●

●
●

●

●

● ●

●

0.7

0.8

0.9

1.0

0 5 10 15

c) 20 Regions

●
●

●

● ●

●

●
●

●

●

●

●

●

●
●

●

●

● ●
●

●

●

●

●

●

●

●
●

0.7

0.8

0.9

1.0

0 5 10 15 20 25

d) 26 Regions

●●

●●

Test

Validation

Region

A
cc

ur
ac

y

Fig. 3. Correlation between Validation and Test dataset with different number of regions

0.25

0.50

0.75

1.00

75 80 85 90 95 100
Threshold validation dataset

P
er

ce
nt

ag
e

 te
st

 in
st

an
ce

s

Fig. 4. Percentage test instances classified depending on the threshold used

affecting the final results. In this respect, the number of regions
will be subjected to the output of the clustering algorithm.

The final results in the test dataset depending on the
threshold used are shown in Table I. As it can be seen in
the table, the method presented reaches a 100% accuracy over
the 15% of the test instances.

Regarding the number of False Positives, the only region
that was selected with a threshold above 95% did not produced
any False Positive since the accuracy was 100%. With a
threshold fixed 90%, only a 1.14% of the benign samples was
labelled as Malware.

C. Discussion

As mentioned in the previous paragraphs, a local approach
focusing on the specific characteristics of each region of the
space helps to improve the accuracy if it is compared with
a global approach. At the same time, creating a different
classification model depending on the region of the space
entails the existence of completely different accuracy levels.
We consider that if one of these regions is expected to produce
poor results, it is better to not deliver any output, since a
deeper analysis is needed to classify the instances with enough
confidence. The decision of what is considered as enough
confidence lies in many factors, our models allows to modify
this value and produce therefore different results.

The number of regions is also a key parameter in the algo-
rithm because it defines the degree of granularity. A high value
will generate more specialised regions and classifiers, while a
lower value will be associated with a greater generalisation
level. When the number of clusters increases, regions with
very high accuracy level arises, allowing to classify instances
with high reliability, as it was shown in Figure 5.

VI. CONCLUSION

The new obfuscation techniques developed recently make
it necessary to develop new complex techniques able to reach
high accuracy rates. The model we present takes a multi-region
approach to create specialised classification models focused on
particular types of Malware. In each region, a strong classifier
is built combining several classifiers with a Boosting process
guided by a Genetic Algorithm. In a second step each region is
evaluated and those that are predicted to have a low accuracy
level are discarded. With this technique, it can be adjusted an
accuracy threshold in order to only deliver an output if it is
reliable. The results of the experiments demonstrate that the
model is able to achieve a 100% accuracy in a subset of the
input data. Our future work involves increasing the percentage
of instances classified, by combining the method presented
with a Dynamic Analysis to be used with those instances that
could not be classified.

ACKNOWLEDGMENT

This work has been supported by the next research
projects: TIN2014-56494-C4-4-P, CIBERDINE S2013/ICE-
3095, SeMaMatch EP/K032623/1 and Airbus Defence &
Space (FUAM-076914 and FUAM-076915).

REFERENCES

[1] Thomas Bäck. Evolutionary algorithms in theory and practice: evolu-
tion strategies, evolutionary programming, genetic algorithms. Oxford
university press, 1996.

[2] Jean-Marie Borello and Ludovic Mé. Code obfuscation techniques for
metamorphic viruses. Journal in Computer Virology, 4(3):211–220,
2008.

[3] Zhang Dezhen and Yang Kai. Genetic algorithm based optimization
for adaboost. In Computer Science and Software Engineering, 2008
International Conference on, volume 1, pages 1044–1047. IEEE, 2008.

[4] Pedro Domingos. A few useful things to know about machine learning.
Communications of the ACM, 55(10):78–87, 2012.

[5] Manuel Egele, Theodoor Scholte, Engin Kirda, and Christopher Kruegel.
A survey on automated dynamic malware-analysis techniques and tools.
ACM Computing Surveys (CSUR), 44(2):6, 2012.

[6] AhmedSharaf ElDen, MA Mustafa, Hany M Harb, and AbdelH Emara.
Adaboost ensemble with simple genetic algorithm for student prediction
model. International Journal of Computer Science & Information
Technology, 5(2):73–85, 2013.

[7] Ivan Firdausi, Charles Lim, Alva Erwin, and Anto Satriyo Nugroho.
Analysis of machine learning techniques used in behavior-based mal-
ware detection. In Advances in Computing, Control and Telecommuni-
cation Technologies (ACT), 2010 Second International Conference on,
pages 201–203. IEEE, 2010.

0.00

0.25

0.50

0.75

1.00

0.900 0.925 0.950 0.975 1.000
ACC Threshold

%
 o

f t
es

t i
ns

ta
nc

es
 c

la
ss

ifi
ed

10

20

30

Number
of regions

Fig. 5. Percentage instances classified with a minimum accuracy in different execution for different number of regions

[8] A. Fujino, J. Murakami, and T. Mori. Discovering similar malware
samples using api call topics. In Consumer Communications and
Networking Conference (CCNC), 2015 12th Annual IEEE, pages 140–
147, Jan 2015.

[9] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter
Reutemann, and Ian H Witten. The weka data mining software: an
update. ACM SIGKDD explorations newsletter, 11(1):10–18, 2009.

[10] N Idika and A P Mathur. A survey of malware detection techniques.
Purdue University, 2007.

[11] Pratiksha Natani and Deepti Vidyarthi. Malware detection using api
function frequency with ensemble based classifier. In Security in
Computing and Communications, pages 378–388. Springer, 2013.

[12] Hiran V Nath and Babu M Mehtre. Static malware analysis using
machine learning methods. In Recent Trends in Computer Networks
and Distributed Systems Security, pages 440–450. Springer, 2014.

[13] Philip O’Kane, Sakir Sezer, and Keiran McLaughlin. Obfuscation: The
hidden malware. Security & Privacy, IEEE, 9(5):41–47, 2011.

[14] Babak Bashari Rad, Maslin Masrom, and Suhaimi Ibrahim. Camouflage
in malware: from encryption to metamorphism. International Journal
of Computer Science and Network Security, 12(8):74–83, 2012.

[15] Konrad Rieck, Thorsten Holz, Carsten Willems, Patrick Düssel, and
Pavel Laskov. Learning and classification of malware behavior. In
Detection of Intrusions and Malware, and Vulnerability Assessment,
pages 108–125. Springer, 2008.

[16] Konrad Rieck, Philipp Trinius, Carsten Willems, and Thorsten Holz. Au-
tomatic analysis of malware behavior using machine learning. Journal
of Computer Security, 19(4):639–668, 2011.

[17] Imtithal A Saeed, Ali Selamat, Ali MA Abuagoub, and Salman Bin
Abdulaziz. A survey on malware and malware detection systems.
analysis, 3(10):13–17, 2013.

[18] Ashkan Sami, Babak Yadegari, Naser Peiravian, Sattar Hashemi, and Ali
Hamze. Malware detection based on mining API calls. In Proceedings
of the 2010 ACM Symposium on Applied Computing - SAC ’10, page
1020, New York, New York, USA, March 2010. ACM Press.

[19] Sebastian Schrittwieser and Stefan Katzenbeisser. Code obfuscation
against static and dynamic reverse engineering. In Information Hiding,
pages 270–284. Springer, 2011.

[20] Asaf Shabtai, Robert Moskovitch, Yuval Elovici, and Chanan Glezer.
Detection of malicious code by applying machine learning classifiers on
static features: A state-of-the-art survey. Information Security Technical
Report, 14(1):16–29, 2009.

[21] Dolly Uppal, Roopak Sinha, Vishakha Mehra, and Vinesh Jain. Malware
detection and classification based on extraction of api sequences. In
Advances in Computing, Communications and Informatics (ICACCI,
2014 International Conference on, pages 2337–2342. IEEE, 2014.

[22] P Vinod, R Jaipur, V Laxmi, and M Gaur. Survey on malware detection
methods. In Proceedings of the 3rd Hackers Workshop on Computer
and Internet Security (IITKHACK09), pages 74–79, 2009.

[23] Xifeng Yan, Jiawei Han, and Ramin Afshar. Clospan: Mining closed
sequential patterns in large datasets. In In SDM, pages 166–177, 2003.

[24] Ilsun You and Kangbin Yim. Malware obfuscation techniques: A
brief survey. In 2010 International conference on broadband, wireless
computing, communication and applications, pages 297–300. IEEE,
2010.

[25] Zhi-Hua Zhou. Ensemble methods: foundations and algorithms. CRC
Press, 2012.

[26] Eckart Zitzler, Marco Laumanns, Lothar Thiele, Eckart Zitzler, Eckart
Zitzler, Lothar Thiele, and Lothar Thiele. Spea2: Improving the strength
pareto evolutionary algorithm, 2001.

