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Abstract 

Clostridium difficile continues to be a leading cause of healthcare-associated 

infections in the developed world. Increased detection of C. difficile infection (CDI) 

and development of typing schemes to differentiate between strains is primarily due 

to the recognition of global outbreaks of a single strain, BI/NAP1/027 which is 

characterised by three common typing techniques; restriction endonuclease analysis 

(REA), pulsed-field gel electrophoresis (PFGE) and PCR ribotyping. 

 

Phylogenetic analysis using multilocus sequence typing (MLST) divides C. difficile 

into five phylogenetic lineages which align the well-known PCR ribotypes; 027, 023, 

017, 078 and a lineage containing diverse PCR ribotypes. MLST data in this thesis 

confirmed the five phylogenetic lineages were maintained after testing a larger 

collection of isolates from varied sources with further micro-diversity within the 

individual lineages. MLST investigation did not identify a lineage exclusive to non-

human strains or any correlation between sequence type and geographical location. 

Data in this thesis also supports the notion that PCR ribotyping and REA do not 

correspond as well as previously considered. This may result in phylogenetically 

similar strains being designated as a different type or variant. 

 

The toxin A-B+ PCR ribotype 017 strain that forms a predominant lineage is little 

investigated. Through whole genome sequencing (WGS) and single nucleotide 

polymorphism (SNP) analysis, a historical clone of PCR ribotype 017 was identified 

from a London hospital ward. Although no phenotype exclusive to the clonal strain 
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was characterised, this is the first report in the UK investigating the phylohistory of 

isolates from hospitalised patients with CDI due to PCR ribotype 017.  

 

Further investigation of PCR ribotype 017 with a larger and global collection of 

strains revealed two distinct sub-lineages containing multiple independent clonal 

expansions, antimicrobial resistant SNP determinants, deletions and insertions which 

were well distributed geographically and temporally. The data suggests transmission 

between humans and animals and findings support a USA origin with multiple, 

global transmission events. 

 

The key findings of this thesis are that C. difficile as a species is continually evolving 

with the appearance of divergent sub-lineages. WGS is superior to routine typing 

methodologies for tracking this evolution and will have significant impacts for 

outbreak investigation, understanding the phylohistory and phylogeography of C. 

difficile and other pathogens that are a threat to human health. 
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Impact Statement 

The Gram positive bacterium Clostridium difficile causes gastrointestinal disease in 

humans and animals and continues to be a leading cause of healthcare-associated 

infections in the developed world. Prior to 2003, there were few reports of C. difficile 

infection (CDI) yet in 2003 multiple outbreaks of CDI were reported in Europe, 

United States of America (USA) and Canada affecting humans. Typing schemes 

were introduced to differentiate between strains for investigation of outbreaks; 

restriction endonuclease analysis (REA), pulsed-field gel electrophoresis (PFGE) and 

PCR ribotyping and a clonal strain of C. difficile was identified (BI/NAP1/027). 

Multilocus sequence typing (MLST) is a different typing technique useful for 

studying the population and evolutionary genetics of bacteria by exploiting the 

nucleotide sequences of housekeeping gene fragments. By testing a larger collection 

of isolates from varied sources using MLST, this thesis confirms the findings of 

previous studies; C. difficile is made up of five phylogenetic lineages of which four 

align with the well-known PCR ribotypes; 027, 023, 017, 078 and a fifth lineage 

containing diverse PCR ribotypes. Further micro-diversity within the individual 

lineages was also revealed suggesting continued evolution of this species. MLST 

investigation did not identify a lineage exclusive to non-human strains or any 

correlation between sequence type and geographical location suggesting transmission 

of strains between humans and animals and lack of global spread of a clonal strain 

according to sequence type. Furthermore, data in this thesis shows that PCR 

ribotyping and REA do not correspond as well as previously considered. This 

inconsistency may result in phylogenetically similar strains being designated as a 

different type or variant which has significant implications to infection control and 
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management of outbreaks. This thesis further investigated toxin A-B+ PCR ribotype 

017 strains in greater detail. Through whole genome sequencing (WGS) and single 

nucleotide polymorphism (SNP) analysis, a historical clone of PCR ribotype 017 was 

identified from a London hospital ward. Although no phenotype exclusive to the 

clonal strain was characterised, this is the first report in the UK investigating the 

phylohistory of isolates from hospitalised patients with CDI due to the PCR ribotype 

017. This contributes to our understanding of an interesting strain which is toxin A 

negative and reported to be prevalent in Asia. Further investigation of PCR ribotype 

017 by testing a larger and global collection of strains using WGS revealed two 

distinct sub-lineages containing multiple independent clonal expansions, 

antimicrobial resistant SNP determinants, deletions and insertions which were well 

distributed geographically and temporally. The data suggests transmission between 

humans and animals and findings support a USA origin with multiple, global 

transmission events. 

 

The three studies described above are published as papers (available in the public 

domain) and either presented as posters or presented as an oral presentation at an 

international conference. The findings are significant to academia worldwide 

whereby the continual monitoring of the expansion of C. difficile improves our 

understanding of the evolution of this species. This in turn has implications to the 

non-academic world where the data is translational to healthcare and its patients; this 

is imperative. WGS allows us to predict and/or detect a more virulent and/or clonal 

strain early enabling improved diagnostics and prompt outbreak interventions. This 

can only result in improvements to patient morbidity, mortality and associated costs. 
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1 Introduction 

The Gram positive bacterium Clostridium difficile causes gastrointestinal disease in 

humans and animals. Prior to 2003, there were few reports of C. difficile infection 

(CDI) yet in 2003, multiple outbreaks of CDI were reported in Europe, United States 

of America (USA) and Canada (Loo et al., 2005, McDonald et al., 2005, Warny et 

al., 2005, Labbe et al., 2008, Healthcare Commission, 2007). Outbreaks are primarily 

a result of patients with CDI excreting spores; these are highly infectious and allow 

for transmission and spread of infection (Riggs et al., 2007, Buggy et al., 1983, Sorg 

and Sonenshein, 2008, Fimlaid et al., 2013). Since the outbreaks between 2003 and 

2007, the incidence of CDI has increased or decreased dependent upon geographical 

location. Europe has seen a decrease in incidence where counts in the UK have 

dropped from ~17,000 in 2007 to ~3,000 in 2017 (Public Health England, 2017). 

Canada and the USA have seen a steady rise and CDI has now been reported globally 

(Hawkey et al., 2013, Freeman et al., 2010, Public Health England, 2016, Rupnik et 

al., 2009, European Centre for Disease Prevention and Control, 2013).  

 

The main risk factors associated with the development of CDI are consumption of 

broad-spectrum antibiotics, age ≥ 65 years and duration of stay within healthcare 

facilities (Bartlett, 2002, Kelly and LaMont, 2008). CDI is routinely treated with 

either metronidazole or vancomycin which are generally effective but other therapies 

such as faecal transplantation have also shown to be successful (Shahinas et al., 

2012, Kassam et al., 2012, Kassam et al., 2013, van Nood et al., 2013, Kelly et al., 

2014, Aroniadis et al., 2016). The development of infection and onward transmission 
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is prevented by antimicrobial stewardship and infection control practices (Gerding et 

al., 2008a, McNulty et al., 1997, Dingle et al., 2017). 

1.1 The organism Clostridium difficile 

The genus Clostridium is a member of the bacterial family Peptostreptococcaceae 

(formally Clostridiaceae). The type strain for the genus Clostridium is Clostridium 

butyricum (Yutin and Galperin, 2013, Lawson and Rainey, 2015) and due to 

differences recently observed on 16S rRNA sequence analysis between C. difficile 

and C. butyricum, Clostridium perfringens and Clostridium tetani, it has been 

proposed that C. difficile be re-named Clostridioides difficile (Lawson et al., 2016). 

Currently, Clostridium difficile remains the widely used terminology and is therefore 

used in this thesis. 

 

The prokaryotic genus Clostridium are anaerobic, Gram-positive, rod-shaped 

bacteria and has achieved its status as a consequence of five species that are 

pathogenic to humans and animals; C. botulinum (botulism), C. perfringens (gas 

gangrene), C. tetani (tetanus), Clostridium sordellii (multi-organ disease) and 

C. difficile (gastrointestinal infection). The capability of C. difficile to form spores 

enables its survival in multiple environmental niches such as soil and water (al Saif 

and Brazier, 1996, Janezic et al., 2016). C. difficile has been found in different water 

sources such as the sea, rivers, lakes, inland drainage and swimming pools (al Saif 

and Brazier, 1996, Zidaric et al., 2010, Pasquale et al., 2011, Romano et al., 2012). 

C. difficile was initially named Bacillus difficilis and first described in 1935 as part of 

the neonatal microflora (Hall and O’Toole, 1935) and further characterised by 

Snyder in 1937 (Snyder, 1937). There were no other documented reports of B. 
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difficilis until 1960, when the renamed organism, C. difficile was cultured from the 

intestinal contents of a seal  (McBee, 1960).  

1.2 C. difficile infection 

C. difficile was first suggested as a human pathogen when it was isolated from bodily 

samples of patients (Smith and King, 1962). In 1978 the first confirmed case of CDI 

was reported (Larson et al., 1978)  and in 1999, the use of clindamycin, which was a 

commonly used antibiotic at the time, was associated with the occurrence of CDI 

(Johnson et al., 1999). Typical clinical features of CDI include; watery diarrhoea, 

abdominal pain and cramps, lower quadrant tenderness, fever, leucocytosis and 

hypoalbuminaemia (Mylonakis et al., 2001). CDI is highly variable, ranging from 

uncomplicated mild diarrhoea to life threatening toxic megacolon and 

pseudomembranous colitis (PMC) requiring surgical intervention or leading to death. 

CDI is the most frequent cause of healthcare-acquired infectious diarrhoea in 

developed countries and one of the major problems with CDI is reoccurrence of 

disease which is common with a rate of 15% to 35% (Garey et al., 2008, Johnson, 

2009). These contribute to the significant morbidity and financial burden associated 

with CDI.  

1.3 Risk factors for C. difficile infection 

The surface area of a healthy human gastrointestinal tract is colonised with bacterial 

species: the gut microbiota. The dense gut microbiota has a symbiotic relationship 

with the host providing protection against exposure to dietary antigens, viable 

pathogens and bacterial products (Kato et al., 2001, Ozaki et al., 2004, Miyajima et 

al., 2011). Changes to the microbiota that have a negative effect on the host is termed 
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‘dysbiosis’ (Hawrelak and Myers, 2004). C. difficile is considered a member of the 

normal gut microbiota in less than 5% of healthy adults (Viscidi et al., 1981) and is 

recognised as a gut coloniser in domestic animals and livestock (Songer, 2004, 

Arroyo et al., 2005, Rodriguez-Palacios et al., 2009). In states of dysbiosis, 

C. difficile is able to flourish and invade the mucosal cells allowing toxins produced 

by C. difficile to cause similar infection in both humans and animals (Limaye et al., 

2000). The two major risk factors for gut dysbiosis permitting CDI are the 

consumption of broad-spectrum antibiotics and age ≥ 65 years (Bignardi, 1998). The 

most frequently implicated antibiotics; clindamycin, penicillins, cephalosporin and 

the fluoroquinolones disrupt the microbiota of the gut and advancing age is thought 

to result in immune system failure known as ‘senescence’ of the immune response, 

resulting from a combination of comorbidities, immune related changes in the faecal 

flora and normal age related changes (Ginaldi et al., 2001).  

1.4 Virulence factors 

Strains of C. difficile implicated in CDI have been demonstrated to possess a 

multitude of virulence factors, these include toxins, surface associated proteins, 

sporulation and germination. 

1.4.1 Toxins A and B 

The pathogenesis of C. difficile in cases of CDI is hypothesised to primarily result 

from the production of two glucosylating enterotoxins, TcdA and TcdB which both 

cause damage to epithelial cells (Voth and Ballard, 2005, Chumbler et al., 2016) and 

are considered a major virulence factor in CDI. Their genes tcdA and tcdB are 

chromosomally located along with three accessory genes forming the 19.6 kb 
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Pathogenicity locus (PaLoc [Figure 1.1 A]). This is made up of: tdcR which encodes 

an alternative ribonucleic acid (RNA) polymerase sigma factor, a positive regulator 

of toxin production (Mani and Dupuy, 2001), tcdC, a negative regulator of toxin 

production which interferes with the RNA polymerase formed with tcdR 

(Matamouros et al., 2007), and tcdE, a gene thought to encode an holin like protein 

(Dupuy et al., 2008).  

 

Strains of C. difficile do not always possess tcdA and tcdB genes and therefore may 

demonstrate variation in toxin production. This variation was exploited and a 

toxinotyping scheme was developed in 1998 (Rupnik et al., 1998) which was 

performed against ‘VPI 10463’, the first strain of C. difficile to have its toxin genes 

sequenced (von Eichel-Streiber et al., 1992). Toxinotyping is a PCR restriction 

fragment length poloymorphism based typing method assigning strains as 

toxinotypes. The reference strain VPI 10463 is designated as toxinotype 0 and strains 

similar are defined as ‘nonvariant’ strains of toxinotype 0. All other strains with 

changes in genes tcdA and/or tcdB are defined as ‘variant strains’.  Changes in the 

PaLoc range from minimal deletions limited to only tcdA and a few point mutations 

in tcdB to significant changes in tcdB and large deletions leaving only a residue of 

the PaLoc. Currently, there are 34 known toxinotypes which individually are 

designated with roman numerals (I to XXXIV). The genomic organisation of the 

PaLoc region of C. difficile and different toxinotypes are depicted in Figure 1.1. 

 

 

 

 



36 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1: Genomic organisation of the PaLoc region of C. difficile 

A figure adapted from a publication by Rupnik and Janezic which depicts the genetic variation in toxin types of C. difficile (Rupnik and Janezic, 

2016). The genomic organisation of A) the PaLoc of toxinotype 0 B) Minor toxinotypes and C) Major toxinotypes. Changes in variant 

toxinotypes can be single SNPs (seen as RFLPs), deletions, or insertions. RFLPs (vertical stripes) are more common in the tcdB gene, while 

deletions and insertions (shown with diagonal stripes or graphical symbols) are more common in the tcdA gene. 
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Toxinotype XII 

Toxinotypes; I, II, XIII, XVII, XIX, XX, XXVI, XXVII, XXIX 
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The PaLoc is absent from non-toxigenic strains and in strains lacking this locus, the 

region is replaced by non-coding deoxyribonucleic acid (DNA) (Braun et al., 1996). 

Experiments by Brouwer et al., have demonstrated that the PaLoc is mobile and is 

able to transfer from a toxigenic strain to a non-toxigenic strain (Brouwer et al., 

2013). Strains that do not produce either toxin are non-pathogenic (Kuehne et al., 

2010) and although the majority of pathogenic strains produce both toxins (A+B+), 

clinically relevant toxin A negative toxin B positive (A-B+) strains have been 

frequently described (Alfa et al., 2000) and are discussed further in Section 1.13. 

1.4.2 Other toxins 

Approximately 20% of strains of C. difficile have been observed to produce an actin 

modifying ADP-ribosylating binary toxin (Gerding et al., 2014), C. difficile 

transferase (CDT) (Schwan et al., 2009).  It has been suggested that CDT has a role 

in adherence and colonisation of C. difficile to gut epithelial cells by stimulating 

microtubule-based protrusions from host cells (Schwan et al., 2009).  

1.4.3 Sporulation and germination 

C. difficile has the capacity to form spores; a dormant state that allows the bacterium 

to survive in conditions otherwise detrimental to their vegetative cell existence 

(Lawley et al., 2009, Paredes et al., 2005). Spores of C. difficile are highly resistant 

to adverse chemical and physical stress and can persist and contaminate an 

environment for up to several months (Setlow, 2007). The spore structure is made up 

of multiple layers including an exosporium, coat, cortex, membrane and a DNA core 

(Lawley et al., 2009). C. difficile spores are excreted with faeces from colonised and 

infected patients and can be ingested by a susceptible host (Deakin et al., 2012). The 
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spore is initially protected from the acids and enzymes in the stomach by their 

multiple layer structure until it reaches the intestinal tract where it is exposed to 

germinants such as bile salts (Giel et al., 2010). Here, the spore commences 

germination losing its spore-specific properties resulting in the upregulation of 

several genes and the reversal to a vegetative state.  

 

In Bacillus subtilis, the gene Spo0A is a key transcriptional regulator that is required 

in the early stages of sporulation (Molle et al., 2003). C. difficile possesses a 

homolog of this gene and its role in CDI has been studied in a murine model of 

disease. These studies demonstrated that C. difficile Spo0A mutant derivatives can 

cause intestinal disease but are unable to persist within and effectively transmit 

between mice indicating that the C. difficile Spo0A gene plays a key role in persistent 

infection and host-to-host transmission (Deakin et al., 2012). 

1.4.4 Surface associated proteins 

Cell surface proteins are essential to the bacterial cells interaction within its 

environment. They may be responsible for motility, adhesion and invasion of host 

cells as well as defending against host responses (Lin et al., 2002, Niemann et al., 

2004). C. difficile expresses numerous cell surface associated molecules including 

surface layer proteins (SLPs) (Spigaglia et al., 2013), pili (Maldarelli et al., 2014) 

and flagella (Dingle et al., 2011b, Aubry et al., 2012, Baban et al., 2013, Barketi-Klai 

et al., 2014).  

 

The bacterial surface layer (S-layer) of C. difficile is proteinaceous, two-dimensional 

and coats the entire outer surface of the vegetative cell (Fagan and Fairweather, 
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2014). The S-layer is composed of the high molecular weight SLP and low molecular 

weight SLP. SLPs have been demonstrated to facilitate the initial colonisation of the 

gut by C. difficile (Sambol et al., 2000, Johnson et al., 2001) and low molecular 

weight SLPs play an antigenic role in immune evasion (Bianco et al., 2011, Ryan et 

al., 2011). The two SLPs are generated by post-translational cleavage of a pre-protein 

(SlpA) by the cell wall cysteine protease, Cwp84. SlpA is the most abundant protein 

of the S-layer and may act as an important colonisation factor (Ni Eidhin et al., 2008, 

Ryan et al., 2011, Sambol et al., 2000). 

 

Pili (Latin for hair) are filamentous surface appendage structures initially identified 

in Gram-negative organisms (Anderson, 1949). Pili are associated with bacterial 

adhesion to host cells (Kline et al., 2009) and have been implicated in urinary, genital 

and gastrointestinal infections (Mulvey et al., 1998, Swanson, 1973, Boudeau et al., 

2001). In Gram-positive bacteria, pili were first observed in Corynebacterium renale 

in 1968 (Yanagawa et al., 1968) and more recently have been observed in members 

of the Clostridia Class (Piepenbrink et al., 2015, Purcell et al., 2015). Pili in 

C. difficile have been associated with phenotypic variation and biofilm formation 

(Maldarelli et al., 2016) potentially contributing to the species virulence. 

 

Flagella are whip-like protein appendages on a bacterial cell surface that drive 

motility of many bacterial species (Berg, 2003). Flagella have been shown to enable 

bacteria to colonise host cells in Campylobacter jejuni and Vibrio chloerae 

(Nachamkin et al., 1993, Richardson, 1991) and play a role in adherence in V. 

chloerae (Postnova et al., 1996). 
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Strains of C. difficile that exhibit peritrichous flagella are implicated in host cell 

colonisation (Tasteyre et al., 2001) and more recently, a direct link between flagella 

regulation and toxin production has been made (Dingle et al., 2011b, Aubry et al., 

2012, Barketi-Klai et al., 2014). C. difficile flagella are genetically encoded by three 

distinct operons; F1, F2 and F3 (Stabler et al., 2009). Through the mutagenesis and 

complementation assays, Valiente et al., investigated the function of the flagella 

associated genes and demonstrated their importance in motility, cell aggregation, 

biofilm formation, epithelial cell adhesion and recognition by the human immune 

system protein, toll-like receptor 5 (Valiente et al., 2016). 

1.5 Diagnosis of C. difficile infection 

The gold standard for the laboratory diagnosis of CDI is the direct detection of C. 

difficile toxin in faeces and the most recent guidance from the Department of Health 

states that a combination of two tests should be used  (HPA, December 2008). These 

should be a Polymerase Chain Reaction (PCR) assay for the detection of tcdB or a 

glutamate dehydrogenase enzyme immunoassay followed by a sensitive enzyme 

immunoassay test for the detection of toxin in a stool sample. The laboratory 

diagnosis of CDI is often inconclusive due to the fact that the symptoms of CDI are 

similar to other intestinal disease and use of laxatives and side effects of some 

antimicrobials often result in diarrhoea. Generally, CDI is diagnosed clinically and 

the laboratory test results help confirm or rule out CDI. 

1.6 Clinical management and therapeutic options 

Once a patient has been diagnosed as suffering CDI, current antimicrobial therapy 

should be discontinued or altered. First line treatment is limited to only a few agents; 
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oral metronidazole and vancomycin with the latter being used for severe or recurrent 

cases of CDI and doses of vancomycin can be tapered or pulsed as a way of 

improving response and recovery (Gerding et al., 2008b). A more recently licensed 

antimicrobial, fidaxomicin is the first of a new class of narrow spectrum macrocyclic 

antibiotic drugs (Louie et al., 2011, Golan and Epstein, 2012). Fidaxomicin is 

bactericidal, has a prolonged post-antibiotic effect allowing for reduced dosing and 

has fewer side effects and a lower rate of reoccurrence when compared with 

metronidazole and vancomycin (Babakhani et al., 2011). 

 

Therapies other than the use of antimicrobial drugs are available as last resort or are 

in development. The concept of ‘faecal microbiota transplantation’, also known as 

‘faecal biotherapy’ and ‘bacteriotherapy’, was first described as a treatment of food 

poisoning and severe diarrhoea in Chinese literature from the 4
th

 to the 16
th

 century 

(Zhang et al., 2012) and referred to as ‘yellow soup’. Faecal transplantation is 

practiced with the aim of restoring normal faecal microbiota where it has re-emerged 

as a treatment option for severe and recurrent CDI and many trials have investigated 

its efficacy with promising results (Kassam et al., 2013, Shahinas et al., 2012, van 

Nood et al., 2013, Kelly et al., 2014, Aroniadis et al., 2016). Studies investigating the 

optimal combination of gut bacteria as a treatment of severe or recurrent CDI are 

aiming to produce a customised microbiota pill to replace the faecal bacteria which 

potentially contain pathogens with normal healthy bacterial flora (Reeves et al., 

2011, Reeves et al., 2012, Lawley et al., 2012, Petrof et al., 2013).  

 

Bile salt analogues such as cholate metabenzene sulfonic acid that targets the 

interaction between C. difficile spores and taurocholate inhibiting germination have 
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been investigated as a potential therapeutic option (Howerton et al., 2013). Toxin 

binding agents such as Cholestyramine, a bile salt ion-exchange resin which has been 

shown to form a complex with C. difficile toxins and Tolevamer, a non-antibiotic 

polymer binds to C. difficile toxins have been examined in clinical studies, however, 

neither has been as efficacious as antimicrobial therapy (Weisman et al., 2015). 

 

Immunotherapy such as vaccination brings sight of improving the current treatment 

options especially for recurrent CDI. A toxoid vaccine candidate produced by Sanofi 

Pasteur is currently being tested in phase III clinical trials and a recombinant vaccine 

consisting of two truncated toxins A and B by Valneva is in pre-clinical stages of 

development (Anosova et al., 2015, Greenberg et al., 2012, Foglia et al., 2012, 

Karczewski et al., 2014). Toxin-specific monoclonal antibody therapy as a treatment 

option is under investigation by Merck, and Sanofi Pasteur are developing a pair of 

monoclonal antibodies against toxins A and B (Lowy et al., 2010, Babcock et al., 

2006, Anosova et al., 2015). 

1.7 Management of outbreaks and infection control 

Spores excreted with faeces from colonised and infected patients are easily 

transmitted via persons, fomites and air and are thought to be the main factors of 

environmental persistence and host transmission (Deakin et al., 2012). Spores of C. 

difficile demonstrate capacity to survive, persist and spread in hostile environments 

and cause outbreaks of CDI amongst susceptible hosts in wards, hospitals and other 

healthcare facilities (Kim et al., 1981). Infection control measures are required to 

limit the spread of C. difficile between patients and patients suspected of having CDI 

should be isolated to limit the spread of spores to other patients. Daily cleaning of the 
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environment and equipment that has been in contact with a patient with CDI with a 

chlorine agent is required, as is good hand hygiene by patients and staff, most 

notable with soap and water since alcohol gels are ineffective against C. difficile 

spores and can induce sporulation (Jabbar et al., 2010).  

 

The consumption of antibiotics is a risk factor for the development of CDI, it has 

been demonstrated that by prescribing narrow-spectrum antibiotics as opposed to 

broad-spectrum antibiotics (where appropriate) can reduce the incidence of CDI. 

Antimicrobial stewardship, the monitoring and controlled use of antimicrobials has 

shown to reduce the burden of CDI (Fowler et al., 2007, Muto et al., 2007, Dingle et 

al., 2017, Pear et al., 1994).  

 

All National Health Service trusts are required to participate in the Department of 

Health’s mandatory CDI monitoring system whereby all cases of CDI in patients 

over the age of two years must be reported. Each acute care provider in the United 

Kingdom (UK) has a target number of CDI cases that they must not breach per 

financial year. Each CDI case should be assessed by performing a root cause analysis 

to determine if it was related to a lapse in the quality of care provided to patients. As 

part of a root cause analysis, samples and isolates maybe referred to their local Public 

Health England (PHE) C. difficile Ribotyping Network (CDRN) laboratory. The 

seven CDRN laboratories in the UK offer C. difficile PCR ribotyping (Section 1.8.1); 

these results are valuable for inferring and excluding transmission of C. difficile. 



44 

 

1.8 Genotyping schemes and routine surveillance  

Typing methodologies enable bacterial isolates of the same species to be categorised 

as either related or distinct (Sabat et al., 2013) which has utility for the management 

of outbreaks by infection control teams. Identifying similarities or differences 

between strains of the same species and combining this with time and place of 

infection enables clinicians and epidemiologists to identify cross-transmission and/or 

outbreaks of infection. This is valuable for local, national and global surveillance 

whereby the number of infections and pathogen evolution can be monitored for 

changing prevalence’s and/or pathogen virulence respectively. 

 

Historically, typing methodologies have been based on exploiting phenotypic 

variations but molecular methods are now routinely used (Sabat et al., 2013). 

 

Molecular typing approaches have been developed to study C. difficile and 

transmission including; multilocus sequence typing (MLST), multilocus variable-

number tandem-repeat analysis (MLVA), Amplified fragment length polymorphism 

(AFLP), Pulsed-field gel electrophoresis (PFGE), Restriction endonuclease analysis 

(REA) and PCR ribotyping (Table 1.1). They vary in their discriminatory power 

(ability to differentiate between two unrelated strains) and therefore their application. 

Whole genome sequencing (WGS) is increasingly used to investigate outbreaks and 

epidemiology with finer resolution though this technique is not yet part of routine 

investigation of outbreaks of CDI in the UK (WGS is further discussed in Section 

1.16, Page 58).  
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All typing methods apart from MLST are applied to the investigation of cross-

transmission and/or outbreaks of infection (MLST is discussed further in Section 

1.12, Page 53). PCR ribotyping is the most widely adopted scheme in Europe for 

genotyping strains of C. difficile with the Lead CDRN laboratory in Leeds, UK 

holding the collection of strains and assigning new PCR ribotypes (Public Health 

England., 2016); 877 PCR ribotypes have been identified (Dr Warren Fawley, 

personal communication 12/04/2018). In contrast, PFGE is the method of genotyping 

C. difficile in the USA. PCR ribotyping and PFGE are used for identifying cross-

transmission, outbreaks of CDI in healthcare facilities and surveillance of the 

species. 

 

 

 

Table 1.1: Molecular typing methods used for C. difficile 

 

 

 

 

 

 

 

 

AFLP - Amplified fragment length polymorphism 

REA - Restriction endonuclease analysis 

PFGE - Pulsed-field gel electrophoresis 

PCR Ribotyping - Polymerase chain reaction Ribotyping 

MLVA - Multilocus variable-number tandem-repeat analysis 

MLST - Multilocus sequence typing 

 

Application Methodology Reference 

 

Outbreaks 

AFLP (Bowman et al., 1991) 

REA (Clabots et al., 1993) 

PFGE (Kato et al., 1999) 

PCR Ribotyping (Stubbs et al., 1999) 

MLVA (Marsh et al., 2010) 

 

Evolutionary 

Studies & Surveillance 

 

MLST (Lemee et al., 2004) 
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1.8.1 PCR ribotyping 

PCR ribotyping was initially described in 1986 (Kuijper et al., 2006) and has since 

been applied to multiple bacterial genera (Eldar et al., 1997, Chesneau et al., 2000, 

Joung and Cote, 2002, Miteva et al., 2001, Yurlova et al., 1996, Salmenlinna and 

Vuopio-Varkila, 2001). The original method utilised for C. difficile was published in 

1999 (Stubbs et al., 1999) and involves PCR amplification of the 16S to 23S 

intergenic spacer region of DNA using conserved primers (Figure 1.2). This region 

of DNA is both variable in length in base pairs (bp) and copy number between PCR 

ribotypes of the same species. It is this variation that following PCR amplification 

generates multiple PCR products which vary in size. While the ribosomal genes are 

quite conserved, the intergenic spacer regions vary considerably between C. difficile 

strains. Electrophoretic resolution of these DNA fragments generates profiles which 

are interpreted as a fingerprint, unique to that PCR ribotype, and can be used to 

distinguish C. difficile strains belonging to different PCR ribotypes (Figure 1.3). 
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PCR ribotype 027 

 

 

 

 

 

 

 

Figure 1.2: PCR ribotyping amplification of C. difficile 

 

This figure illustrates the region of the C. difficile genome that is amplified during 

PCR ribotyping. 

 

 

 

 

 

 

 

 

 

  

 

 

Figure 1.3: PCR ribotyping agarose gel electrophoresis of C. difficile 

 

A figure of a typical PCR ribotyping agarose gel electrophoresis image of C. difficile. 

Lanes 1, 7, 13 and 20 are a 100 bp reference ladder, lanes 2 to 6, 8 to 12 and 14 to 17 

are ribotyping profiles for different isolates and lanes 18 and 19 are negative extract 

and negative PCR controls respectively. Lanes 2, 14, 15 and 17 are also labelled to 

indicate a particular PCR ribotype; 027. The number of bands per lane indicates the 

copy number of the intergenic spacer region for that isolate and the size of the band 

indicates the length of the intergenic spacer region. 

100 bp 

1   2     3     4    5     6    7    8     9  10   11  12  13  14  15  16  17   18   19  20 

Region amplified 

during PCR 

Intergenic spacer region 

C. difficile has multiple copies varying 

in size of between ~250 – 600 bp  
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1.9 Global emergence of PCR ribotype 027  

Increased recognition of CDI and the development of a PCR ribotyping scheme to 

differentiate between C. difficile strains was primarily due to the recognition of 

global outbreaks of a particular PCR ribotype; 027.  

 

The earliest record of PCR ribotype 027 was in 1985 when the strain CD196 was 

isolated from a patient with CDI in a Parisian hospital (Popoff et al., 1988). PCR 

ribotype 027 was again isolated from a patient with CDI in a Minneapolis hospital in 

1988 and designated BI-1 according to REA typing (Razaq et al., 2007). In 2003-

2004, outbreaks in hospitals with patients experiencing notably severe CDIs were 

reported in Canada (Loo et al., 2005, McDonald et al., 2005) and between August 

2004 and July 2007, more than 20,000 nosocomial cases of BI-1 were reported in the 

Quebec region (Labbe et al., 2008). Concurrently, BI-1 had also been isolated in 

several states in the USA (Warny et al., 2005) and in March 2004 a report was made 

by the Stoke Mandeville Hospital, UK describing a major outbreak including 334 

CDI cases and 38 deaths (Healthcare Commission, 2007). Outbreak strains from the 

UK, USA and Canada were found to be due to the dissemination of a strain identified 

as BI by REA, NAP1 by PFGE and PCR ribotype 027 by PCR ribotyping and 

referred to as BI/NAP1/027 (Killgore et al., 2008). This was so named an ‘epidemic’ 

strain due to its propensity to cause outbreaks and the subsequent global spread is 

depicted in Figure 1.4. Reasons for the global emergence and spread of the epidemic 

PCR ribotype 027 strain of C. difficile are discussed in Section 1.10, Page 50. 
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Figure 1.4: Map of isolation dates and global geographical spread of C. difficile 

PCR ribotype 027 

 

 

Figure produced by M. Cairns and adapted from a publication by Valiente et al., 

which depicts the dates and global spread of the epidemic C. difficile PCR ribotype 

027 strain (Valiente et al., 2014). 
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1.10 Virulence and transmissibility of PCR ribotype 027  

The establishment of PCR ribotype 027 and its apparent propensity to cause more 

severe diarrhoea, higher mortality and more re-occurrences of symptoms (Loo et al., 

2005, Warny et al., 2005, Vohra and Poxton, 2011, Redelings et al., 2007) gave rise 

to this strain being described as ‘hypervirulent’ as well as epidemic when compared 

to other PCR ribotypes. A variety of phenotypic characteristics have been postulated 

to contribute to this ability to cause outbreaks and more severe CDI such as; 

increased toxin production (Warny et al., 2005, Curry et al., 2007, Freeman et al., 

2007), presence of an 18 bp deletion and a frameshift mutation due to a single bp 

deletion in the tcdC gene affecting toxin expression (Dupuy et al., 2008, MacCannell 

et al., 2006). Some PCR ribotypes including PCR ribotype 027 produce a binary 

toxin (Stubbs et al., 2000, Sundriyal et al., 2010) encoded by two genes, cdtA and 

cdtB (Carter et al., 2007) which has been linked with increased severity of disease 

(Barbut et al., 2005, McEllistrem et al., 2005). Isolates of PCR ribotype 027 are also 

reported to sporulate earlier in the bacterial growth cycle and produce more spores in 

total compared to non-PCR ribotype 027 isolates and this was postulated to increase 

the rate of transmission (Merrigan et al., 2010, Fawley et al., 2007). Germination 

rates for isolates of PCR ribotype 027 have been shown to be higher (Burns et al., 

2010a) and exhibit higher germination efficiencies compared to other PCR ribotypes 

in the presence of 0.1 % (w/v) sodium taurocholate (Moore et al., 2013).  

 

However, these observations remain contentious due to other evidence not 

supporting these suggestions (Dupuy et al., 2008, Burns et al., 2011)  nor that these 

characteristic are PCR ribotype specific (Burns et al., 2010b). C. difficile spore 

germination in response to sodium taurocholate varied significantly even amongst 
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isolates of PCR ribotype 027 (Heeg et al., 2012). Therefore, no definitive virulence 

factors have convincingly been attributed to isolates of PCR ribotype 027. 

1.11 Distribution of C. difficile PCR ribotypes 

Since the emergence and explosion of outbreaks of CDI associated with PCR 

ribotype 027, there have been significant changes to the diversity of C. difficile. In 

the UK, rates of CDI, most notably PCR ribotype 027 have declined as depicted in 

Figure 1.5. This has occurred simultaneously with an increase in a variety of other 

PCR ribotypes, and in general, the pattern of PCR ribotypes in the UK has become 

more heterogeneous (Public Health England., 2016). This is likely due to multiple 

factors including; increased testing and PCR ribotyping, changing antibiotic usage 

patterns and emergence of new strains. Europe has also seen an increase in PCR 

ribotype diversity. Previously, 65 different PCR ribotypes were identified across 26 

countries with PCR ribotype 027 the most commonly isolated (18.4%) (Bauer et al., 

2011). More recently, a European-wide study found 125 PCR ribotypes with no 

dominant PCR ribotype (Davies et al., 2016). Recent data from the USA suggests a 

different PCR ribotype diversity compared to Europe; although diversity has 

increased, PCR ribotype 027 remains the leading cause of CDI in the USA (Rusk, 

2011). Although CDI is a major problem in Europe, Canada and USA, less is known 

about its epidemiology for other continents. The few studies that have been 

performed in other geographical locations, for example Asia, demonstrate that CDI is 

a significant cause of nosocomial disease (Hawkey et al., 2013). There is a pressing 

need to understand the sources and routes of transmission of C. difficile beyond PCR 

ribotyping. 
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Figure 1.5: Prevalence and diversity of C. difficile PCR ribotypes in England by quarter (April 2008 to March 2015) 

 

Courtesy of the 2016 CDRN report (Public Health England., 2016). 
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1.12 Phylogenetic studies  

Multilocus sequence typing (MLST) is a useful approach for studying population and 

evolutionary genetics and the epidemiology of bacteria. It is a molecular 

epidemiological typing technique that permits microbial isolate characterisation by 

exploiting the nucleotide sequences of housekeeping gene fragments. The method 

utilises the DNA sequences of multiple (usually seven) housekeeping genes 

(approximately 450-500 bp). Each housekeeping gene is defined as distinct 

sequences (alleles), and for each isolate, the combination of sequences define the 

allelic profile or sequence type (Griffiths et al., 2010). The rationale is that a single 

genetic event resulting in a new allele can occur by point mutation (altering only a 

single nucleotide site), or by a recombinational replacement (will often change 

multiple sites).  

 

MLST was first developed by Brian Spratt’s research group for Neisseria 

meningitides (Spratt, 1999) and has since successfully been used to study the 

population genetics of other organisms including; Streptococcus pneumoniae 

(Rayner et al., 2015), Staphylococci species, Streptococcus pyogenes (Enright et al., 

2001), Haemophilus influenzae (Meats et al., 2003), Campylobacter jejuni (Dingle et 

al., 2011a), Enterococcus faecium (Homan et al., 2002, Burgos et al., 2014, de Been 

et al., 2015) among others.  

 

There are many terms used to describe and classify the phylogenetic relatedness 

between bacterial strains; Table 1.2 describes some of the common terms used in the 

literature and in this thesis. 
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Table 1.2: Phylogenetic relatedness terminology 

 

Terminology Definition 

Lineage 
A single, temporal phylogenetic division of a continual line 

of ancestral decent 

Sub-lineage A sub-ordinate descent of a lineage 

Clade 
A phylogenetic division where strains share a common 

ancestor (not necessarily linear in terms of ancestral decent) 

Clone Strains that are indistinguishable in genotype 

 

In this thesis and associated publications where I am first author, I refer to lineage 

and sub-lineage and not clade. 

 

MLST studies on diverse collections of C. difficile strains suggest that the species 

can be divided into five ancestral lineages. These five MLST lineages of C. difficile 

can be divided by PCR ribotype; 027, 017, 023, 078 and a large group including the 

rest of the PCR ribotypes with PCR ribotype 078 representing an interestingly highly 

divergent lineage (Lemee et al., 2004, Lemee et al., 2005, Griffiths et al., 2010, 

Dingle et al., 2011a). These lineages are depicted in Figure 1.6. 

 

The rapid spread of PCR ribotype 027 has detracted attention from other virulent 

PCR ribotypes of C. difficile (PCR ribotype 017 [Section 1.13, Page 56], PCR 

ribotype 078 [Section 1.14, Page 57] and PCR ribotype 023 [Section 1.15, Page 58]) 

and coupled with the identification of PCR ribotype specific lineages other than PCR 

ribotype 027, the study of other PCR ribotypes and lineages has come to prominence. 
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Figure 1.6: The five phylogenetic lineages of C. difficile by MLST analysis 

 

A figure adapted from a publication by Dingle et al., illustrates the phylogenetic relationships among 78 sequence types comprising the five 

lineages (Dingle et al., 2011a). Branch colouring; black = lineage 1 (mixed PCR ribotypes), red = lineage 2 (PCR ribotype 027), blue = lineage 3 

(PCR ribotype 023), orange = lineage 4 (PCR ribotype 017), and green = lineage 5 (PCR ribotype 078). The numerical figures depicted within 

the encircled lineages are designated sequence types.  



 

1.13 The emergence of toxin A-B+ strains and PCR ribotype 017 

The first documentation of a toxin A-B+ strain of C. difficile was by Haslam et al., in 

1986 who identified a clinical isolate (8864) of C. difficile that did not produce toxin 

A using an enzyme-linked immunoabsorbent assay (Haslam et al., 1986). This was 

confirmed using either an enzyme-linked immunoabsorbent assay or probes specific 

to toxin A in 1991 (Torres, 1991), 1992 (Borriello et al., 1992, Lyerly et al., 1992) 

and 1993 (Depitre et al., 1993). It was later shown that the toxin A negative samples 

did possess the toxin A gene using PCR (Pituch et al., 1998) and that the loss of 

toxin A expression was due to a nonsense point mutation (von Eichel-Streiber et al., 

1999). 

 

The earliest reports of outbreaks of CDI due to toxin A-B+ C. difficile strains 

originated in Canada in 1998 (Alfa et al., 2000) and the Netherlands between 1997 

and 1998 (Kuijper et al., 2001). This was followed with further isolation in both 

Japan (Komatsu et al., 2003, Kato et al., 1999), the UK, Belgium and USA (Johnson 

et al., 2003) and Ireland (Drudy et al., 2007b). Outbreak strains of toxin A-B+ were 

compared using three typing methodologies and 20/23 isolates were found to be PCR 

ribotype 017 (others being PCR ribotypes; 110, 036 and 047) (Johnson et al., 2003).  

 

PCR ribotype 017 is toxinotype VIII and it has since been reported in Poland (Pituch 

et al., 2001, Pituch et al., 2006), Israel (Samra et al., 2002), China (Huang et al., 

2010), Korea (Kim et al., 2010a, Kim et al., 2010b, Shin et al., 2008) (where PCR 

ribotype 017 was the predominant PCR ribotype), Argentina (Goorhuis et al., 2009), 

Israel (Samra et al., 2002), Australia (Elliott et al., 2011) and Thailand 

(Ngamskulrungroj et al., 2015). Given that some diagnostic laboratories rely on 
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detecting toxin A only, the incidence of toxin A-B+ PCR ribotype 017 is likely to be 

significantly under reported.  

1.14 The emergence of PCR ribotype 078 

PCR ribotype 078 is the predominant PCR ribotype isolated from animal species 

with CDI, most notably pigs, calves and horses (Keel et al., 2007, Jhung et al., 2008, 

Goorhuis et al., 2008, Rupnik et al., 2008). C. difficile has also been found in 

contaminated food for human consumption with PCR ribotype 078 being the most 

frequently implicated (Rodriguez-Palacios et al., 2009, Broda et al., 1996, Songer et 

al., 2009, Simango and Mwakurudza, 2008). It was found in 4.8% (5/119) of seafood 

and fish samples from a grocery store; all toxin positive isolates were found to be 

PCR ribotype 078 (Metcalf et al., 2011). 

 

Although CDI is primarily associated with exposure to a healthcare associated 

environment, patients from the community can develop CDI; these numbers also 

appear to be on the rise. With the increased recognition of C. difficile from food 

products for human consumption, there are concerns regarding transmission between 

animals and humans (or possibly humans to animals). Although C. difficile is not a 

proven food-borne pathogen, there is evidence that the same strain can cause 

symptomatic disease in both pigs and humans (Debast et al., 2009) and studies from 

several countries have found certain strains to be indistinguishable between human, 

animal and food origin (Jhung et al., 2008, Goorhuis et al., 2008, Debast et al., 2009, 

Gould and Limbago, 2010).  
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1.15 The potential emergence of other PCR ribotypes 

MLST analyses revealed a distinct lineage of C. difficile that predominantly contains 

strains of PCR ribotype 023 (Figure 1.6). Although this PCR ribotype is not well 

described like PCR ribotypes 027, 078 and 017, two studies have reported its 

prevalence in Europe (Bauer et al., 2011, Barbut et al., 2007) and retrospective 

analysis in the UK associated PCR ribotype 023 with severe CDI (Wren et al., 2009).  

 

MLST analyses more recently identified a novel 6
th

 lineage that formed a well-

separated branch in the phylogenetic tree and contained sequence type 122 and PCR 

ribotype 131 (Knetsch et al., 2012). Other common PCR ribotypes including 001, 

002, 014, 015 and 106, do not form distinct lineages by MLST analysis like seen 

with PCR ribotypes 027, 078, 017 and 023, but instead, occur within the same 

heterogeneous group (Figure 1.6).  

1.16 Genome-based analysis 

Application of both PCR ribotyping and MLST techniques has demonstrated the 

utility of these methods in describing the epidemiology and population structure of 

C. difficile. Typing methods lack the sensitivity to precisely discriminate between 

isolates so as to infer or exclude transmission events. Genotyping methodologies also 

only detect variation in specific regions of a genome. In order to address this it is 

necessary to describe the whole genome of a strain under investigation.  

 

WGS methodologies enable the genomic DNA sequence of an organism or 

population to be determined (Heather and Chain, 2016).  In comparison to other 

typing methods which target specific and limited regions of the genome, WGS 
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techniques provide greater resolution than conventional typing methodologies with 

the ability to distinguish strains that differ at only a single nucleotide per genome 

(Roetzer et al., 2013). The capacity of WGS to describe genome content means that it 

can readily identify DNA acquisition and loss events (Xu et al., 2016); current typing 

methodologies may or may not reveal the horizontal transfer of genes amongst 

strains.  

 

WGS has been demonstrated to be superior to conventional genotyping for 

phylogenetic, evolutionary and outbreak analyses, the methodology has become the 

‘gold-standard’ for the description of bacterial phylogenetic relatedness of multiple 

species of bacterial pathogens (examples are provided in Table 1.3). Since the advent 

of ‘first generation’ DNA sequencing technologies in 1977 with Sanger’s ‘chain-

termination’ technique (Sanger et al., 1977), sequencing technology has significantly 

evolved. The expansion of ‘next-generation’ high throughput sequencing 

technologies have the advantages of; a requirement for less input DNA, increased 

turn-around-time of data, reduced cost and improved accuracy. The common next-

generation technologies are; Illumina (Solexa) sequencing, Roche 454 sequencing, 

Ion Torrent sequencing and SOLiD sequencing. This has been followed by ‘third-

generation’ sequencing technologies which emerged in 2010 (McCarthy, 2010). 

These include Pacific BioSciences (PacBio) and Oxford Nanopore Technologies and 

generate significantly increased read lengths. Table 1.4 summarises a comparison of 

sequencing technologies. 
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Table 1.3: Selected studies using WGS for pathogens 

 

Pathogen 
Number of 

isolates 
Focus of study Reference 

Mycobacterium 

tuberculosis 

86 Outbreak related transmission (Roetzer et al., 2013) 

2,099 Drug resistance (Walker et al., 2015) 

24 WGS direct from clinical samples (Brown et al., 2015) 

13 
Comparison of genetic variation to 

phenotypic characteristics 
(Satta et al., 2016) 

Vibrio cholerae 5 
Identification of geographic source 

of outbreak 
(Chin et al., 2011) 

Staphylococcus aureus 

63 

Micro-evolution, geographical 

clustering, intercontinental spread 

and transmission events 

(Harris et al., 2010) 

181 

Transmission between residents of 

healthcare facilities and 

environmental contamination 

(Harrison et al., 2016) 

1,013 
Macro-epidemiology of Meticillin 

resistant S. aureus (MRSA) 
(Reuter et al., 2016) 

308 Identification of high-risk clones (Aanensen et al., 2016) 

Vancomycin Resistant 

Enterococci 
45 

Evidence for genetic relatedness 

between long term carriage and 

bloodstream infections 

(Brodrick et al., 2016) 

Measles virus 27 Outbreak related transmission (Gardy et al., 2015) 

Salmonella spp. 

6,887 
Comparison with conventional 

typing methodology 
(Ashton et al., 2016) 

29 
Comparison with conventional 

typing methodology 
(Bale et al., 2016) 

Campylobacter spp. 1,713 
Evaluation of  molecular diagnostic 

assays 
(Jansen van Rensburg et al., 2016) 

Candida auris 41 
Identification of  clonal populations 

on three continents 
(Lockhart et al., 2017) 

 



 

Table 1.4: WGS technologies 

Generation Technology (Company) Reference Chemistry Read length Strengths Weaknesses 

First 

Sanger Sequencing  

(Applied Biosystems Inc, 

California, USA) 

(Fleischmann et al., 1995) 
Chain 

termination 
Up to 900 bp 

Improved on the mainstay 

approach of multiple PCRs 
Low throughput 

Second 

(next) 

Illumina  

(Illumina Ltd,  

Cambridge, UK) 

(Bentley et al., 2008) Synthesis Up to 600 bp 
Versatile for a variety of 

applications 

High cost compared 

with other 

technologies 

Roche 454  

(Roche Diagnostics Ltd, Basel, 

Switzerland) 

(Margulies et al., 2005) Synthesis Up to 1 kb Long reads 

High cost compared 

with other 

technologies 

Ion Torrent  

(Ion Torrent Systems Inc, 

Gilford, USA) 

(Rusk, 2010) Synthesis Up to 400 bp 

Short run time and low cost 

compared with other 

technologies 

Low throughput and 

short read length 

SOLiD sequencing 
(ThermoFisher Scientific Inc, 

Massachusetts, USA) 

(Shendure et al., 2005) Ligation Up to 100 bp 
High throughput and high 

accuracy 
Short read length 

Third 

PacBio 

(Pacific Biosciences Inc, 

California, USA) 

(Chin et al., 2011) 

Single-

molecule,  

real-time 

long reads 

Up to 20,000 bp 

Long reads, short run time and 

ability to sequence regions of 

high G/C content 

Poor accuracy 

MinION  

(Oxford Nanopore 

Technologies, Ltd, Oxford, UK) 

(Madoui et al., 2015) Nanopore 

Theoretically, no 

instrument restriction 

on read length  

Long reads, sequencing in 

real-time and portable 

platform 

Poor accuracy 
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1.17 Genome sequencing of C. difficile 

Following on from the identification of PCR ribotype specific lineages through 

MLST analysis and the heightened interest associated with PCR ribotype 027, using 

DNA sequencing and phenotypic assays Stabler et al., performed a three-way, 

whole-genome comparison between the original PCR ribotype 027 Paris strain 

(CD196), the index PCR ribotype 027 strain from the Stoke Mandeville outbreak in 

the UK (R20291) and the first published sequence strain of C. difficile, strain 630, 

PCR ribotype 012 which was isolated from a patient with severe PMC and caused an 

outbreak of diarrheal disease in a Swiss hospital (Sebaihia et al., 2006, Wust et al., 

1982, Stabler et al., 2009). Phenotypic differences were observed with motility, 

antibiotic resistance and toxicity, lineage specific genes were present in the two PCR 

ribotype 027 genomes and the modern epidemic PCR ribotype 027 strains had five 

unique genetic regions absent from both the non-epidemic PCR ribotype 027 and the 

PCR ribotype 012 strains. Subsequently, a SNP based study of 21 PCR ribotype 027 

strains of C. difficile revealed chronological microevolution and confirmed PCR 

ribotypes; 017, 027 and 078 strains to form individual lineages with the latter 

appearing to be highly divergent (He et al., 2010).  

 

Using illumina WGS technology  to sequence the genomes of a global collection 

(n=151) of C. difficile BI/NAP1/027 isolates primarily from hospital patients 

between 1985 and 2010, He et al., identified 3,686 SNPs which inferred the presence 

of two phylogenetic sub-lineages; fluoroquinolone resistance (FQR) 1 and FQR2 (He 

et al., 2013). The authors suggest both FQR1 and FQR2 evolved independently and 

acquired an identical mutation in the DNA gyrase gene leading to high level 

fluoroquinolone resistance. FQR1 and FQR2 are depicted in Figure 1.7. 
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The authors imply that the FQR1 sub-lineage originated in Pennsylvania, USA in 

2001 whereas the FQR2 sub-lineage emerged in USA with the first documented 

isolate from Montreal in 2003. The FQR2 sub-lineage was shown to disseminate 

across the Atlantic with multiple introductions into the UK causing hospital 

outbreaks between 2004 and 2006. Isolates from the base of the phylogeny and 

outside of both epidemic sub-lineages are from various geographical locations and 

are not thought to be associated with major hospital outbreaks suggesting that these 

represent pre-epidemic isolates from which the two epidemic sub-lineages emerged. 

Additionally, fluoroquinolone antibiotics were one of the most commonly prescribed 

antibiotic classes in the late 1990s and early 2000 in the USA  (Linder et al., 2005) so 

it is plausible to suggest that during this time, this created a selective pressure for the 

acquisition and maintenance of fluoroquinolone resistance and provided the 

environment for the emergence of both sub-lineages.  

 

Only two and seven SNPs defined the branches leading to the two epidemic sub-

lineages respectively. However, besides the DNA gyrase gene mutation there were 

no SNPs that were shared by both sub-lineages and little evidence that a substantial 

change in phenotype could result from any of the SNPs that define the two epidemic 

sub-lineages.  
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Figure 1.7: Global phylogeny of C. difficile PCR ribotype 027 

 

A figure adapted from a publication by He et al., that depicts the global phylogeny of 

151 C. difficile 027/BI/NAP1 isolates based on core genome SNPs (He et al., 2013). 

Coloured nodes indicate the geographic source of the isolates. The position of the 

inferred root is indicated by a dashed line, and dashed outlines enclose the isolates 

with the mutation associated with fluoroquinolone resistance. 
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1.18 Aims of thesis 

Given the poor understanding of the phylohistory and phylogeography of C. difficile, 

the focus of this thesis is to enhance the understanding of the phylogeny of this 

species with an overarching aim to investigate and understand the changing evolution 

of C. difficile by: 

 

 Investigating the population structure of a collection of C. difficile strains 

isolated from diverse human, animal and food sources, continents using 

different typing methodologies and comparing the correlation of typing 

methodologies used for inter-laboratory comparison (chapter 3, Page 93). 

 

 Investigating the genetic relatedness of a collection of C. difficile PCR 

ribotype 017 strains isolated from London hospitals using WGS and 

phenotypic assays (chapter 4, Page 135). 

 

 Investigating the global population structure of C. difficile PCR ribotype 017 

using WGS and antimicrobial susceptibility assays (chapter 5, Page 177). 
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Chapter 2 

Materials and Methods
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2 Materials and Methods 

2.1 Materials 

Unless otherwise indicated, chemicals and biochemicals were supplied by Sigma-

Aldrich, Gillingham, UK and bacterial growth media and commercially prepared 

agar plates were supplied by Oxoid, Basingstoke, UK. 

2.1.1 Bacterial study isolates 

All bacterial isolates used in this thesis are shown in Appendix 1, Page 229, Table 

4.1, Page 143 and Appendix 2, Page 249 for Chapters 3, 4 and 5 respectively and 

their sources are described on Page 27. Isolates were received from collaborators on 

agar plates, swabs or in broth suspensions and were recovered by inoculating to 

blood agar (Section 2.2.2, Page 70).The maximum passage number for the isolates 

provided by the London CDRN Laboratory was three.  

2.1.2 Bacterial control isolates 

The C. difficile PCR ribotype 017 reference strain M68 and its reference genome; 

GenBank accession number FN668375 (He et al., 2010) were used as controls for 

assays, sequencing and analysis. This strain was selected as the control since it is the 

fully sequenced annotated PCR ribotype 017 strain and is widely used and well 

described. The C. difficile PCR ribotype 027 reference strain R20291 was also used 

as a control for PCR ribotyping assays since this was part of the standard operating 

procedure for PCR ribotyping at the CDRN regional London laboratory. 
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2.1.3 Data collection 

Meta data for isolates (source, origin, sample date and geographical location) were 

collated by contacting the source (Page 27) and by examination of patient request 

forms for isolates provided by the CDRN regional London laboratory. 

2.2 Microbiological methods 

2.2.1 Sterilisation 

All reagents (where indicated), media and solutions were sterilised by autoclaving at 

121 degree Celcius (°C) for 20 minutes in a wet autoclave (LTE Scientific, Oldham, 

UK) or dry steam sterilisation was performed at 134 °C for 15 minutes in an AAJ 

autoclave (Astell Scientific, Sidcup, UK). Filter sterilisation was performed using a 

10 ml syringe (BD Plastipak, Oxford, UK) and a 0.2 μm (32 mm) Acrodisc
®
 syringe 

filter with Stupor
®
 membrane (Pall Life Sciences, UK). 

2.2.2 Bacterial growth media 

Isolates were routinely grown on blood agar which was either prepared in-house or 

commercially purchased. In-house blood agar plates were prepared by dissolving 16 

g of Columbia blood agar base in 500 ml Milli-Q grade water (Millipore, Billerica, 

USA) in a 500 ml bottle. The suspension was inverted to mix and then autoclaved at 

121 °C for 20 minutes and allowed to cool. Once cooled to handheld temperature, 7 

% (vol/vol) defribrinated horse blood (Scientific Laboratory Supplies, UK) was 

added, the bottle gently inverted to mix and the suspension then poured to petri 

dishes (Thermo Scientific, USA) to make 20 ml plates. All other growth media made 

in-house are described in Table 2.1. 
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2.2.3 Bacterial growth conditions 

Agar plates were routinely incubated at 37 °C under anaerobic conditions using a 

Don Whitley A85 anaerobic workstation filled with a mixture of 80 % nitrogen, 10 

% hydrogen and 10 % carbon dioxide (Don Whitley Scientific, West Yorkshire, 

United Kingdom).  

 

Table 2.1: Details of growth media made in-house 

 

Media Acronym Composition Supplemented 

Brain heart 

infusion (BHI) 

broth 

BHIS 

18.5 g Brain heart infusion 

2.5 g Yeast extract 

500 ml Milli-Q grade water 

*C. difficile supplement 

25 % L-cysteine 

Yeast peptone 

sporulation 

medium 

SM 

8 g Peptone 

4 g Yeast extract 

2.5 g NaCL 

500 ml Milli-Q grade water 

*C. difficile supplement 

1 ml Tween 80  

(0.2 % vol/vol) 

Blood agar with 

sodium 

taurocholate  

BA_ST 

100 µl 0.1 % filter sterilised 

sodium taurocholate spread over 

plate and allowed to air dry 

around a flame 

Nil 

 

*contains the antibiotics D-cycloserine and Cefoxitin to inhibit the growth of other 

bacterial organisms (OXOID). 

 

2.2.4 Storage of isolates 

All C. difficile isolates were stored at -80 °C in duplicate. Using a loop, biomass 

from 72 hour growth on blood agar was swept and inoculated into 1.5 cryovials 

containing 20 % glycerol, 20 % SM medium and 60 % molecular grade water. These 

were stored at -80 °C (New Brunswick Scientific, St Albans, UK). 
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2.2.5 Hospital ward environmental screen 

The infection control nurses at University Hospital Lewisham (UHL) performed an 

environmental screen by dampening Amies swabs (Medical Wire, UK) with sterile 

water prior to swabbing the following environmental surfaces; nurses station 

keyboard and telephone, mobile computer, patient bay door handle, sink tap, table 

ledge, window ledge, toilet arm rest, housekeeping room door handle, dirty utility 

rooms slipper-pan, wash bowl, apron holder, door handle, store room hoist, drugs 

trolley, medical notes trolley, pantry door handle, side-room door handle, side-room 

bed frame, side-room window ledge, side-room patient locker, side-room floor and 

side-room toilet. 

 

All swabs were referred to the CDRN regional London laboratory. To recover 

C. difficile, swabs were inoculated directly onto Brazier agar medium and incubated 

anaerobically for 48 hours. Brazier agar medium contains cholic acid to promote 

spore germination, and cycloserine and cefoxitin to inhibit the growth of other 

bacterial organisms. Growth from Brazier agar medium was subbed to blood agar 

and incubated anaerobically for 48 hours. Pure growth was subjected to PCR 

ribotyping (Section 2.3.1, Page 77). 

 

To enhance the recovery of C. difficile that maybe in small numbers, swabs were also 

inoculated into Robertson’s cooked meat medium (RCM) and incubated for five days 

at room temperature (RCM aids the recovery of bacterial organisms as it contains 

glucose for rapid, heavy growth of anaerobic bacteria). Following incubation, RCM 

broths were sub-cultured to Brazier agar medium and incubated anaerobically for 48 
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hours. This was followed by subbing to blood agar and PCR ribotyping (Section 

2.3.1, Page 77). 

 

To again enhance recovery of C. difficile by killing all vegetative cells from other 

genera and species that are likely to also be present on the swab samples, alcohol 

shock was performed on the RCM broths. Briefly, 1.5 ml RCM broth was added to a 

bijoux containing 0.5 ml saline. Equal volume, 2 ml of Industrialised Methylated 

Spirit (IMS) [VWR, USA]) was added to the bijoux which was vortexed and left to 

stand at room temperature for 45 – 60 minutes. After incubation, three drops from 

the lower layer of the bijoux was subbed to Brazier agar medium. This was followed 

by sub-culture to blood agar and subjected to PCR ribotyping (Section 2.3.1, Page 

77). 

2.2.6 Growth kinetic assays 

To measure the growth rates of C. difficile, 10 ml pre-equilibrated BHIS broth were 

inoculated with three colonies of blood agar culture and incubated at 37 °C 

anaerobically on a shaking platform (Orbital Shaker SSL1, Stuart
TM

 Staffordshire, 

UK) at 60 rpm for 24 hours. New cultures were made by inoculating fresh, pre-

equilibrated BHIS broths with 1/100 of the initial 24 hour culture. Every hour for the 

first 9 hours and then again at 24 hours, 1 ml aliquots of each new culture were 

removed and their optical density (OD) at λ590 (OD600) was measured in a 

spectrophotometer (WPA CO8000, Biochrom, UK).  

2.2.7 MIC assays 

Minimum Inhibitory Concentrations (MICs) of a panel of antibiotics were 

determined using the broth dilution method as previously described (Andrews, 
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2001). Briefly, isolates were grown on blood agar anaerobically for 48 hours. Ten ml 

aliquots of BHI broth with C. difficile supplement and cysteine were made in 20 ml 

universal containers (VWR, USA) and placed in the anaerobic cabinet and allowed to 

equilibrate anaerobically overnight. 

 

Antibiotics were reconstituted according to manufacturer’s guidelines. Stock 

antibiotic solutions were made by making 20 ml of 10 mg/ml stock in sterile water 

(0.2 g in 20 ml). A 1/10 dilution of the 10 mg/ml stock (1 ml / 9 ml sterile water) was 

then made. Ten antibiotic concentrations were made in a universal of 25 ml BHI 

broth; 256 µg/ml, 128 µg/ml, 64 µg/ml, 32 µg/ml, 16 µg/ml, 8 µg/ml, 4 µg/ml, 2 

µg/ml, 1 µg/ml and negative antibiotic control (broth only). Using a 24-well plate, 

990 µl of the antibiotic dilutions were aliquoted to appropriate wells and incubated 

anaerobically at 37 °C for 3 to 4 hours (including a well for the broth without 

antibiotic as a negative organism control). The 10 ml broths in the cabinet were 

inoculated with three colonies and incubated anaerobically (including an un-

inoculated broth as a negative control) on a shaking platform (Orbital Shaker SSL1, 

Stuart
TM

 Staffordshire, UK) at 60 rpm for 3 to 4 hours. Once an OD600 = 0.3 was 

reached, 10 µl of the 10 ml broth was aliquoted to the appropriate wells (including 

the un-inoculated broth). The plate was incubated anaerobically at 37 °C on a 

shaking platform at 60 rpm for 16 hours. Following this, the OD600 of each well were 

measured in a micro titre reader (Gen 5, BioTek, Vermont, USA) to ascertain the 

MIC. 

 

The following antimicrobials were tested for the range 1 to 256 µg/ml 1) chapter 4: 

metronidazole, vancomycin, erythromycin, lincomycin, fuscidic acid, naladixic acid, 
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rifampicin and rifaximin and 2) chapter 5: chloramphenicol, rifampicin, tetracycline, 

erythromycin, naladixic acid, gentamicin, teicoplanin and ampicillin. Breakpoints 

described by the European Committee on Antimicrobial Susceptibility Testing 

(EUCAST) and the Clinical and Laboratory Standards Institute (CLSI) were used to 

determine MICs (The European Committee on Antimicrobial Susceptibility Testing., 

2017, Clinical and Laboratory Standards Institute., 2013, Clinical and Laboratory 

Standards Institute., 2012). A well of broth with no organism or antibiotic was used 

as a negative control and the C. difficile PCR ribotype 017 reference strain M68 was 

used as a positive control (Section 2.1.2, Page 69).  

2.2.8 Vegetative cell and spore count assays 

Cultures were made by inoculating 10 ml pre-equilibrated BHIS broths with three 

colonies of 48 hours blood agar culture. These were incubated anaerobically at 37 °C 

on a shaking platform (Orbital Shaker SSL1, Stuart
TM

 Staffordshire, UK) at 60 rpm 

for 24 hours. New cultures were made by inoculating fresh, pre-equilibrated SM 

broths with a 1/20 dilution of the initial 24 hour culture. The ODs were measured 

until each new culture reached OD600 = 0.5. Fresh SM broths were inoculated with 

1/20 of the new culture and incubated at 37 °C anaerobically on a shaking platform 

at 60 rpm. After 24, 72 and 144 hours, for vegetative cell counts; 500 µl of culture 

were aliquoted to 1.5 ml microcentrifuge tubes, serially diluted in sterile 1 x 

phosphate buffered saline (PBS) and plated onto BA_ST. For spore counts, 500 µl of 

culture were aliquoted to 1.5 ml microcentrifuge tubes, incubated at 65 °C for 30 

minutes to heat inactivate the vegetative cells. The aliquots were serially diluted in 

sterile 1 x sterile PBS and plated onto BA_ST. All plates were incubated at 37 °C 

anaerobically. After 24 hours, colony counts were enumerated on plates and 

calculations performed to give colony forming units (cfu)/ml. 
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2.2.9 Disinfectant assays 

Cultures of pre-equilibrated, 10 ml, SM broths plus 0.2 % (vol/vol) Tween 80 were 

inoculated with three colonies of 48 hours blood agar culture.  These were incubated 

at 37 °C anaerobically on a shaking platform at 60 rpm for 16 hours. New cultures 

were made by inoculating fresh, pre-equilibrated SM broths plus 0.2 % (vol/vol) 

Tween 80 with 1/20 of the initial 16 hour culture and incubated at 37 °C 

anaerobically on a shaking platform at 60 rpm. After 24 hours, for each new culture, 

two 1 ml aliquots were removed to 1.5 ml microcentrifuge tubes; one was treated 

with 1 ml Achtichlor Plus disinfectant (EcoLab, UK) for 30 minutes and the other 

with 1 ml 1 x sterile PBS for 30 minutes. Each aliquot was centrifuged at 8,000 x g 

for 5 minutes, washed with 1 ml 1 x sterile PBS and centrifuged at 8,000 x g for 5 

minutes. The supernatant was removed and the pellet re-suspended in 1 ml sterile 1 x 

PBS. Each aliquot was serially diluted 1/10 in sterile 1 x PBS and 10 µl were 

inoculated onto BA_SD and incubated at 37 °C anaerobically. After 24 hours, colony 

counts were enumerated on plates and calculations performed to give cfu/ml. 

2.2.10  Phenotypic data analysis 

All statistical analyses of phenotypic data were carried out in GraphPad Prism 

software (California, USA), using One-Way and Two-Way analysis of variance 

(ANOVA) for individual comparisons and Tukey’s for multiple comparisons. A p 

value of less than 0.05 was reported as statistically significant (* p < 0.05; ** p < 

0.01; *** p < 0.001). 
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2.3 Molecular methods 

2.3.1 PCR ribotyping  

For DNA extraction, biomass from 48 hour blood agar growth were swept and re-

suspended into a 1.5 ml microcentrifuge tube containing 5 % (wt/vol) solution of 

Chelex-100 resin (BIO-RAD, USA) and heated to 100 ºC for 20 minutes. An un-

inoculated aliquot of Chelex-100 resin solution was also used as a negative 

extraction control. The suspension was separated by centrifugation at 13,000 x g for 

12 minutes and the supernatant aliquoted to a fresh 1.5 ml microcentrifuge tube. 

 

For PCR, 5 µl of the DNA extract was added to a 45 µl PCR mixture containing 25 

mM of each primer (Table 2.2), 2.5 U HotStar Taq DNA polymerase (Qiagen, UK), 

0.4 mM dNTPs (Fisher Scientific, UK) and 3.75 mM MgCl2 (Qiagen, UK) per 

reaction.  

 

Table 2.2: Primers used for PCR ribotyping 

 

Locus 
Primer 

Name 
Primer Sequence (5’-3’) 

Amplicon 

Size 

16S gene P3 CTGGGGTGAAGTCGTAACAAGG 
564 bps 

23S gene P5 GCGCCCTTTGTAGCTTGACC 

Purchased from Sigma Aldrich, UK. 

 

 

The reaction mixture was subjected to a PCR using a GeneAmp 9600 thermal cycler 

(Perkin-Elmer, Beaconsfield, UK). The PCR thermocycling conditions were 30 

cycles at 95 ºC for 1 minute, 92 ºC for 1 minute, 55 ºC for 1 minute and 72 ºC for 1.5 

minutes. This was followed by hold steps of 95 ºC for 1 minute, 55 ºC for 45 seconds 
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and 72 ºC for 5 minutes. The PCR ribotyping products were concentrated to 20 µl by 

heating at 75 ºC for 40 minutes. The PCR ribotyping products were separated by 

agarose gel electrophoresis using Ready Agarose precast 0.5 % Tris-acetate-

Ethylenediaminetetraacetic acid (TAE) agarose gels containing ethidium bromide 

(BIO-RAD, USA). This was performed in 3 % TAE buffer (BIO-RAD, USA) at 100 

mA for 3.5 hours alongside a 100 bp ladder (Invitrogen, UK). Banding patterns were 

analysed using GelCompar software (Applied Maths, Belgium). 

2.3.2 Multilocus sequence typing 

Genomic DNA (gDNA) was extracted either by cell lysis, phenol chloroform and 

ethanol precipitation or Tris-EDTA (TE) boilate methodology. 

 

Phenol chloroform methodology 

For cell lysis, overnight growth in BHIS was centrifuged at 4,000 x g for 5-10 

minutes at 4 ºC. The supernatant was discarded and the pellet lysed by resuspending 

in 3 ml ETDA. To make a lysate, 750 µl lysozyme (20 mg/ml 100 µl mutanolysin 

(10 KU/ml), 100 µl lysostaphin (5 mg/ml) and 20 µl RNase (100 mg/ml [Invitrogen, 

UK]) were added to the cell suspension and the lysate was incubated at 37 ºC for 1 

hour. This was followed by adding 90 µl Proteinase K (25 mg/ml) and 90 µl of 20 % 

Sodium Dodecyl Sulphate (SDS) to the lysate and this was incubated at 50 ºC for 1 

hour. 

 

Genomic DNA (gDNA) was extracted from the lysate by performing 

phenol:chloroform:isoamyl alcohol (25:24:1) and chloroform (24:1) washes in 15 ml 

phase lock gel light (PLG) tubes (5 PRIME, Scientific Laboratory Supplies, UK). All 
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PLG tubes were centrifuged prior to use at 4,000 x g for 2 minutes to prepare the gel 

in the tube as advised in the manufacturer’s instructions. 

 

The lysate was mixed with 3 ml of phenol:chloroform:Isoamyl Alcohol (25:24:1) in 

a PLG tube and vortexed for 10 seconds. The PLG was centrifuged at 4,000 x g for 5 

minutes at 4 ºC to separate the phases and the upper-phase supernatant from above 

the gel was transferred to a fresh PLG tube with 3 ml of phenol:chloroform:Isoamyl 

Alcohol (25:24:1) and the above step was repeated. The upper-phase lysate was 

transferred to a fresh PLG tube with 3 ml of chloroform, vortexed for 10 seconds and 

centrifuged at 4,000 x g for 5 minutes at 4 ºC and the above step repeated. The 

upper-phase supernatant was transferred to a 15 ml solvent safe tube containing 8 ml 

of chilled 100 % ethanol and incubated overnight at -20 °C. 

 

The gDNA from the phenol:chloroform:Isoamyl Alcohol (25:24:1) extraction was 

precipitated by centrifuged at 4,000 x g for 15 minutes at 4 ºC. The supernatant was 

discarded and the gDNA purified by adding 1 ml of 70 % ethanol and centrifuged at 

4,000 x g for 15 minutes at 4 ºC. The supernatant was again discarded and the pellet 

was washed by adding another 1 ml of 70 % ethanol and centrifuged at 4,000 x g for 

15 minutes at 4 ºC. The supernatant was discarded and the solvent safe tube was 

pulse-centrifuged and left to air-dry for 5 minutes. The DNA pellet was resuspended 

in 50-100 µl 1x TE buffer and left overnight at 4 °C. 

 

Tris-EDTA (TE) boilate 

Biomass from 48 hour blood agar culture were swept and re-suspended into a 1.5 ml 

microcentrifuge tube containing 1.5 ml TE and heated at 100 °C for 10 minutes. The 
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suspension was separated by centrifugation at 13,000 x g for 2 minutes and the 

supernatant aliquoted to a fresh 1.5 ml microcentrifuge tube. 

 

The quality of the gDNA was confirmed using agarose gel electrophoresis; products 

were visualised on a 1 % (wt/vol) TAE agarose gel resolved at 100 mV for 1 hour 

and stained with 1.5 µl of 0.5 µg/µl ethidium bromide solution (Promega, UK) in 

TAE buffer alongside a 100 bp ladder (Invitrogen, UK). 

 

MLST was performed using the scheme described by Griffiths et al., (Griffiths et al., 

2010). The primers used to detect seven housekeeping genes (adk, atpA, dxr, glyA, 

recA, sodA and tpi) are shown in Table 2.3. 

 

For each of the seven MLST loci, 50 µl PCR reactions were performed in 96-well 

plates. The PCR mixture contained 39.75 µl of molecular grade water, 5 µl of 10 x 

PCR buffer (Qiagen, UK), 1 µl of a 10 µM concentration of each forward and 

reverse primer, 1 µl of 10 mM deoxynucleoside triphosphate (dNTP) mix 

(Invitrogen, UK), 0.25 µl of HotStart Taq DNA polymerase (Qiagen, UK) and 2 µl 

of C. difficile gDNA. The MLST PCR was performed using a GeneAmp 9600 

thermocycler (Perkin-Elmer, UK) and thermocycling conditions were; 35 cycles at 

94 ºC for 15 seconds, 50 ºC for 1 minute, 72 ºC for 1 minute. This was followed by a 

hold step of 72 ºC for 7 minutes. 
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Table 2.3: Primers used for MLST 

 

Locus 
Primer 

Name 
Primer Sequence (5’-3’) 

Amplicon 

Size 

adk 
adk1F TTACTTGGACCTCCAGGTGC 

635 bps 
adk1R TTTCCACTTCCTAAGGCTGC 

atpA 
atpA1F TGATGATTTAAGTAAACAAGCTG 

674 bps 
atpA1R AATCATGAGTGAAGTCTTCTCC 

dxr 
dxr3F GCTACTTTCCATTCTATCTG 

525 bps 
dxr3R CCAACTCTTTGTGCTATAAA 

glyA 
glyA1F ATAGCTGATGAGGTTGGAGC 

625 bps 
glyA1R TTCTAGCCTTAGATTCTTCATC 

recA 
recA2F CAGTAATGAAATTGGGAGAAGC 

705 bps 
recA2R ATTCAGCTTGCTTAAATGGTG 

sodA 
sodA5F CCAGTTGTCAATGTATTCATTTC 

585 bps 
sodA5R ATAACTTCATTTGCTTTTACACC 

tpi 
tpi2F ATGAGAAAACCTATAATTGCAG 

640 bps 
tpi2R TTGAAGGTTTAACACTTCCACC 

Purchased from Invitrogen, UK. 

 

 

MLST PCR products were confirmed using agarose gel electrophoresis; these were 

visualised on a 1 % (wt/vol) agarose gel resolved at 100 mV for 1 hour and stained 

with 1.5 µl of 0.5 µg/µl ethidium bromide solution (Promega, UK). 

 

Once confirmed, the PCR products were purified by precipitation with 20 % 

polyethylene glycol (molecular weight, 8,000) and 2.5 M NaCl. The nucleotide 

sequences were determined for each DNA strand using the amplification primers in 

Table 2.3 and BigDye Ready Reaction Mix (Applied Biosystems, UK) as follows: 

each 10 µl sequencing reaction mixture comprised 2 µl of PCR amplicon, 4 µl of a 

1:15 dilution of either forward or reverse PCR primer (0.66 µM), 0.25 µl of BigDye 

Ready Reaction Mix, 1.875 µl of 5 x sequencing buffer (20 ml of stock solution 
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comprised 200 µl of 1 M MgCl2, 8 ml of 1 M Tris-HCl, pH 9 and 11.8 ml of 

molecular grade water and 1.875 µl of 5 x sequencing buffer (20 ml of stock solution 

comprised 200 µl of 1 M MgCl2, 8 ml of 1 M Tris-HCl, pH 9, and 11.8 ml of 

molecular biology-grade water) and 1.875 µl of molecular grade water.  

 

The reaction conditions were 30 cycles of 96 ºC for 10 seconds, 50 ºC for 5 seconds 

and 60 ºC for 2 minutes. Unincorporated dye terminators were removed by 

precipitation of the termination products with two volumes of ethanol and 0.1 

volume of sodium acetate (pH 5.2 [3M]) followed by vortexing and incubation at 

room temperature for 1 hour. The plate was centrifuged at 2,750 x g for 10 minutes, 

the resulting pellet was washed with 150 µl of 70 % ethanol and the plate was 

centrifuged at 2,750 x g for 10 minutes. The supernatant was carefully pipetted away 

and the pellet was allowed to air dry for 5 minutes. The pellets were resuspended 

with 10 µl Hi-Di Formamide (Thermo Scientific, USA). 

 

The precipitated PCR products were analysed on a ABI 3730 DNA analyser 

(Applied Biosystems, USA) and nucleotide sequences were extracted using Chromas 

v1.61 (Queensland, Australia). Allele designations were obtained by parsing forward 

and reverse sequencing reads through the C. difficile pubMLST batch profile query 

page which contains a database of all C. difficile MLST profiles 

(http://pubmlst.org/cdifficile/). Novel sequence types (n=18) and existing C. difficile 

pubMLST database sequence types (n=123) [82 previously published and 41 

unpublished and used with submitters permission]) were analysed using Multiple 

Alignment using Fast Fourier Transform (MAFFT) 

(http://mafft.cbrc.jp/alignment/software/) and Archeopteryx 
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(www.phylosoft.org/archeopteryx). Phylogenies were calculated by MAFFT and 

MrBayes (Ronquist and Huelsenbeck, 2003, Huelsenbeck and Ronquist, 2001). 

MAFFT used the neighbour-joining method (Saitou and Nei, 1987) using all 

ungapped sites with 1000 boot strap resamplings.  

 

2.3.3 Whole genome sequencing 

2.3.3.1 Genomic DNA extraction  

The gDNA extraction performed for WGS was a modification of the 

phenol:chloroform:Isoamyl Alcohol (25:24:1) methodology described in section 

2.3.2 for MLST. Ten millilitre BHIS broths were inoculated with three colonies from 

48 hour blood agar culture. An un-inoculated broth was also used as a negative 

extraction control. Broths were incubated anaerobically for 18 hours. The biomass 

was harvested by centrifugation of the broths at 4,000 x g for 10 minutes and the 

pellet was re-suspended in 10 ml sterile 1 x PBS. Centrifugation was repeated and 

the pellet was stored overnight at -20 ºC. The pellet was re-suspended in 800 µl fresh 

25 % sucrose in TE buffer and 100 µl of 20 mg/ml Lysozyme; this suspension was 

incubated at 37 ºC for 45 minutes. Forty microliters of 20 mg/ml Proteinase K, 1.2 µl 

of 100 mg/ml RNase A, 160 µl of 0.5 M EDTA pH8.0 (Na salt) and 100 µl of fresh 

10 % Sarkosyl (10 mg/ml) were added to the suspension which was left on ice for 1 

to 2 hours and then incubated in a 50 ºC water bath overnight. The lysate was made 

to 2 ml with TE buffer. In a fume hood, the 2 ml lysate was mixed with 2.5 ml 

phenol:chloroform:Isoamyl Alcohol (25:24:1) in a PLG tube and vortexed for 10 

seconds. The PLG tube was centrifuged at 4,000 x g for 15 minutes at 4 °C to 

separate the phases and the upper-phase supernatant from above the gel was 



84 

 

transferred a fresh PLG tube with 2.5 ml phenol:chloroform:Isoamyl Alcohol 

(25:24:1) and the above step repeated but with centrifugation for 10 minutes.  

 

The upper-phase supernatant was transferred to a fresh PLG tube containing equal 

volume of chloroform, vortexed for 10 seconds and centrifuged at 4,000 rpm for 5 

minutes. This step was repeated and the upper-phase supernatant was transferred to a 

15 ml solvent safe tube containing 2.5 volume of chilled ethanol and incubated at 

-20 ºC for 15 minutes to precipitate the DNA. The precipitate was centrifuged at 

4,000 x g for 10 minutes, supernatant gently pipetted away and the pellet washed 

with 1 ml chilled 70 % ethanol and centrifuged at 4,000 x g for 15 minutes again. 

The supernatant was gently pipetted away and the solvent safe tube allowed to air 

dry for 5 minutes. The pellets were re-suspended in 120-300 µl of 1 x TE buffer and 

allowed to re-suspend at 4 ºC overnight. gDNA was confirmed using agarose gel 

electrophoresis; the presence of a thick, smeary high molecular weight band was 

visualised on 0.5 % (w/v) agarose gel resolved at 110 V for 50 minutes and stained 

with 1.5 µl of 0.5 µg/µl ethidium bromide solution.  

2.3.3.2 DNA quantification using the Qubit Fluorometer System 

To obtain an accurate quantification of the gDNA, the Qubit Fluorometer System 

(Invitrogen, UK) was used according to manufacturer’s instructions. gDNA samples 

were quantified using the Qubit dsDNA broad range and high sensitivity assay kits 

(Invitrogen, UK) as required. Two standards were used for each batch of samples 

tested and for each DNA sample or standard, a total volume of 200 l was prepared 

by diluting the sample or provided standard in Qubit working solution. Qubit 

working solution was made for each standard and gDNA sample by diluting the 

Qubit reagent 1:200 in Qubit buffer. The assay tubes were then prepared by adding 
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10 l of standard or 2 l gDNA sample 190 μl or 198 l of working solution 

respectively. These were vortexed for 2-3 seconds and incubated at room 

temperature for 2 minutes. Assay tubes were loaded onto the Qubit Fluorometer, 

their absorbance was read and gDNA concentration in the original suspension was 

calculated. 

2.3.3.3 Library construction and sequencing 

Library construction and sequencing was performed using an Illumina HiSeq 2000 

Sequencing System (Illumina, California, USA) by the Pathogen Genomics 

Sequencing Team at the Wellcome Trust Sanger Institute (Cambridge, UK) and by 

M. Cairns using a Illumina MiSeq Sequencing System (Illumina, California, USA) at 

the London School of Hygiene and Tropical Medicine (LSHTM). To ensure the data 

from both platforms and different runs was consistent, the control strain M68 was 

processed with each and every sequencing run. Libraries were created as previously 

described (Harris et al., 2010) or using the Nextera XT kit (Illumina, California, 

USA) according to the manufacturer’s instructions. The Nextera XT DNA library 

preparation consisted of five main stages. The main stages are described and 

illustrated in Figures 2.1 and 2.2. In order to check the final size and concentration of 

DNA libraries made after clean-up, the libraries were analysed using the Agilent 

2100 Bioanalyzer (Agilent Technologies, UK [Section 2.3.3.4, Page 88]). 
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Figure 2.1: Flowchart of the Nextera XT assay for WGS  

 

Courtesy of illumina (IIIumina ®. 2016). 

Tagmentation of gDNA (Figure 2.2) 
Uses an engineered transposome to simultaneously 

fragment and tag (“tagment”) the gDNA with 

adapter sequences 

PCR Amplification (Figure 2.2) 
The tagmented DNA is amplified using a limited-

cycle PCR program. The PCR step adds Index 

adapters and sequences required for cluster 

formation 

PCR Clean-Up 

The amplified library is cleaned-up using AMPure 

XB beads (Beckman Coulter, UK) to purify the 

library DNA and provide a size selection step that 

removes short library fragments 

Library Normalisation 

Normalises the quantity of each library to ensure 

more equal library representation in your pooled 

sample 

Library Pooling 

The libraries were pooled to combine equal 

volumes of normalized libraries in a single tube 

Load onto MiSeq 

The library pool was diluted and heat-denatured 

before loading libraries onto the sequencing run 

Agilent 2100 

Bioanalyzer 

Check the final size 

and concentration of 

DNA libraries 
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A = Nextera XT transposome with adapters combined with template DNA 

B = Tagmentation to fragment and add adapters  

C = Limited cycle PCR to add sequencing primer sequences and indices 

 

 

 

 

Figure 2.2: Illustration of the Nextera XT assay tagmentation and PCR 

amplification steps 

 

A figure that provides an illustration of the Nextera XT assay tagmentation and PCR 

amplification steps for WGS. Courtesy of illumina (IIIumina ®. 2016). 
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2.3.3.4 Validation of libraries using the Agilent Bioanalyzer 2100 

The Agilent 2100 Bioanalyzer (Agilent Technologies, UK) and Agilent High 

Sensitivity Kit (Agilent Technologies, UK) were used according to the 

manufacturer’s instructions. Briefly, gel-dye mix was prepared by equilibrating DNA 

dye and DNA gel matrix to room temperature for 30 minutes, vortexing for 10 

seconds and pulse centrifugation. Twenty-five microliters of DNA dye concentrate 

was added to the DNA gel matrix vial and vortexed for 10 seconds. The solution was 

applied to a fresh spin filter and centrifuged at 2,240 x g for 15 minutes. Following 

centrifugation, the spin filter was discarded and 9 l of gel-dye mix was added to the 

appropriate well of a DNA chip which was placed on the chip priming station. The 

syringe was set to 1 ml and then pressure was slowly applied to the syringe to 

distribute the gel around the chip. Following priming, DNA marker, DNA ladder and 

sample/s were added to the appropriate wells. The chip was vortexed for 60 seconds 

at 2,400 rpm, loaded onto and analysed using the Bioanalyzer. This illustrated traces 

of successfully sequenced libraries whereby a typical library would show a broad 

size distribution of between ~250 and 1000 bps. Libraries were then normalised, 

pooled and loaded onto the MiSeq according to the manufacturer’s instructions 

(Figure 2.1). 

2.3.3.5 Whole genome sequence data mapping and assembly 

A variety of freely available software packages were used to process the sequence 

data, these are either referenced or a Uniform Resource Locator (URL) is provided 

for reference (Table 2.4). 
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Table 2.4: Software packages used in this thesis for processing WGS data 

 

Software Function URL or Reference 

Trimmomatic Trims and crops sequences http://www.usadellab.org/cms/index.php?page=trimmomatic 

BWA MEM Maps reads (Li et al., 2009) 

SAMtools Reading/writing/editing/indexing/viewing SAM/BAM/CRAM format http://www.htslib.org/ 

VCFtools Identifies SNPs http://vcftools.sourceforge.net/downloads.html 

Velvet Assembles short reads (Zerbino, 2010) 

Velvet Optimiser Multi-threaded Perl script http://bioinformatics.net.au/software.velvetoptimiser.shtml 

BLAST Search for sequence and amino acid similarity http://www.ncbi.nlm.nih.gov 

MAFFT Multiple sequence alignment http://mafft.cbrc.jp/alignment/software/ 

Perl Programming language https://www.perl.org/get.html 

R Statistical computing and graphics R development core team, https://www.r-project.org/ 

ABACAS Contiguation of assembled sequences (Assefa et al., 2009) 

Prokka Annotation of prokaryotic genomes (Seemann, 2014) 

RaXML Maximum-likelihood based phylogenetic inference (Stamatakis, 2014) 

BEAST Bayesian analysis of molecular sequences (Drummond et al., 2012) 

mclust Cluster analysis (Fraley et al., 2012) 

Artemis Displays sequence features and results of analysis http://www.sanger.ac.uk/science/tools/ 

ACT Displays pairwise comparisons between two or more sequences http://www.sanger.ac.uk/science/tools/ 

 

ABACAS - Algorithm Based Automatic Contiguation of Assembled Sequences 

ACT - Artemis Comparison Tool 

BEAST - Bayesian Evolutionary Analysis Sampling Tree 

BLAST - Basic Local Alignment Search Tool 

BWA MEM - Burrow-Wheeler Aligner 

MAFFT - Multiple Alignment using Fast Fourier Transform 

mclust - Normal Mixture Modeling for Model-Based Clustering, Classification, and Density Estimation  

RaXML - Randomised Accelerated Maximum Likelihood 
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The sequence data were processed and quality controlled according to a standard 

pipeline as previously described (Preston et al., 2014). Briefly, FASTQ-formatted 

sequencing reads were quality controlled with a minimum-quality Phred score of 30 

(as a rolling average over 4 bases) using Trimmomatic; a fast, multithreaded 

command line tool that can trim and crop FASTQ data. The resulting reads were 

mapped, using BWA-MEM, a software package for mapping sequences against a 

reference genome, in this case, against the control strain M68 reference genome. 

SNP mutations in the samples that had read depths of 60 and had 70 % of reads 

identified with the same allele (99.8 % of SNPs were supported by ~90 % of 

contributing reads) and a minimum quality score of 30 were identified using 

Sequence Alignment Map (SAM) tools and VCFtools software. 

 

The methodology used in this thesis for SNP detection applies a core-genome 

methodology; the core-genome refers to genes common to all strains in a species. 

SNPs in ‘core genes’ were determined by aligning sequences against the reference 

control genome; GenBank accession number FN668375 (He et al., 2010). If there 

were regions of sequence/s present in the genome of the ‘test’ strain/s but absent in 

the reference control genome, then these regions were not analysed for SNPs. The 

methodology used in this thesis for SNP detection also does not read regions of 

repetitive DNA (sequence patterns that occur in multiple copies throughout the 

genome). Therefore, any SNPs in repetitive regions are not detected.  

 

Velvet and Velvet Optimiser were used to de novo assemble the trimmed reads into 

contiguous pieces of DNA sequence. A multi-threaded Perl script was used for the 
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optimisation of Velvet. Perl is a programming language that facilitates analysis, 

manipulation and graphical presentation of experimental data. 

2.3.3.6 BLAST 

Searches for sequence and amino acid similarity were routinely performed using 

BLAST, specifically the blastn and blastp algorithms. 

2.3.3.7 Sequence alignment 

Sequence alignments were performed using the multiple sequence alignment 

program ‘Multiple alignment program for amino acid of nucleotide sequences’ 

(MAFFT). 

2.3.3.8 Nucleotide sequence accession numbers 

All Illumina sequence data from this thesis were submitted to the European 

Nucleotide Archive under accession numbers ERP009770 and PRJEB11868. 

2.3.3.9 Phylogenetic analysis 

Pipeline, post-analyses, genetic, phylogenetic and phylogeographic analysis were 

carried out using Perl and R. Algorithm Based Automatic Contiguation of 

Assembled Sequences (ABACAS) software was used to contiguate assembled 

contigs, and based on the control strain M68 reference sequence, Prokka, a software 

tool was used for rapid genome annotation. 

 

Maximum-likelihood phylogenetic trees were generated using Randomised 

Accelerated Maximum Likelihood (RaXML) and BEAST software to produce a SNP 

phylogeny from the SNPs as well as geographical and temporal data combined in 

phylogeographic analysis and mclust software for maximum likelihood cluster 
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analysis. A minor allele frequency (MAF) of less than 1 % were used to remove any 

SNPs that may be associated with recombination and which would mask the true 

phylogeny, and SNPs within 1 bp distance of an insertion or deletion (absent from 

the reference strain M68) site were excluded from further analysis.  

2.3.3.10 Identification of genomic deletions and insertions 

To investigate genomes for indication of horizontal gene transfer, a key mechanism 

driving C. difficile evolution, programmatic and visual inspection of the comparisons 

was performed using the Artemis Comparison Tool (ACT), a JAVA application that 

displays pairwise comparisons between two or more DNA sequences which can be 

used to analyse regions of similarity and differences between genomes. Artemis 

software was also used to browse genomes and visualise sequence features. 

Insertions were regions of DNA that were present in a test strain but absent from the 

reference control M68 whereas deletions were regions of DNA that were present in 

the control strain M68 but absent from a test strain. 
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Chapter 3 

Characterisation of C. difficile strains isolated 

from diverse sources and geographical 

locations using MLST and PCR ribotyping 
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3 Characterisation of C. difficile strains isolated from 

diverse sources and geographical locations using MLST and 

PCR ribotyping 

3.1 Statement of contribution 

Genomic DNA extraction and PCR ribotyping was performed by M. Cairns, MLST 

PCR assays and MLST designations were performed by Professor Wren’s 

Laboratory Research Group at the LSHTM collectively (five individuals) including 

M. Cairns (20%) and collation of data was performed by M. Cairns.  

 

3.2 Introduction 

PCR ribotyping, PFGE, REA and MLVA are valuable molecular tools for outbreak 

investigation where rapid genotyping of C. difficile strains is necessary for infection 

control purposes. However, the genome targets used in these methods are too 

discriminatory to resolve the phylogenetics that would facilitate tracing the origins of 

C. difficile. For example, with PCR ribotyping, recombination of repeats present in 

the intergenic spacer region between the 16S and 23S rRNA might lead to the 

formation of a novel PCR ribotype without a clear phylogenetic link to the PCR 

ribotype prior to recombination. However, recombination in a MLST housekeeping 

gene target would change the allelic profile on a single locus only; a novel sequence 

type would still be closely related to the original sequence type maintaining the 

phylogenetic link making MLST useful for phylogenetic studies. 

 



96 

 

Few studies have investigated C. difficile using MLST. Lemee, et al., developed the 

first MLST scheme for C. difficile and investigated a collection of 72 isolates from 

various hosts, geographic sources and toxigenic types (Lemee et al., 2004). They 

demonstrated that C. difficile had a predominantly clonal population structure 

consisting of stable subpopulations that are globally disseminated. They found no 

correlation between sequence type and geographic origin nor were they able to 

characterise any host specificity but they did find toxin A-B+ isolates shared the 

same sequence type. The Lemee group further utilised MLST and examined a 

collection of 29 isolates selected as representative of the main clusters defined by 

MLST in their previous study (Lemee et al., 2005) and confirmed the finding from 

their previous study that toxin A-B+ strains form an individual lineage. Another 

MLST investigation by Griffiths, et al., confirmed toxin A-B+ strains to form an 

individual lineage and additionally identified a further four different phylogenetic 

lineages of C. difficile that contained common PCR ribotypes; 027, 078, 023 and a 

lineage containing multiple mixed PCR ribotypes (Griffiths et al., 2010). A larger 

study tested a collection of 1290 isolates from humans with CDI between September 

2006 and December 2009 (both hospital and community) and confirmed the clonal 

population structure and presence of five phylogenetic lineages (Dingle et al., 2011a) 

depicted in Figure 1.6, Page 55. 

 

During this time, comparative phylogeny using whole genome microarray analysis 

also identified four clonal lineages made up of PCR ribotypes; 017, 027 and 078 and 

a heterogeneous grouping of mixed PCR ribotypes (Stabler et al., 2006). A WGS 

study based on SNPs in conserved core genes also confirmed the existence of these 

four phylogenetic lineages (He et al., 2010) and all three studies found PCR ribotype 
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078 to be highly divergent from all other PCR ribotypes (Griffiths et al., 2010, 

Stabler et al., 2006, He et al., 2010). MLST, whole genome microarray analysis and 

WGS SNP analysis, although different molecular approaches, concur that there are at 

least four phylogenetic lineages of C. difficile. 

 

PCR ribotype 078 which forms a highly divergent lineage through MLST analysis 

has been associated with strains isolated from non-human sources including animals 

and food for human consumption (Jhung et al., 2008, Gould and Limbago, 2010, 

Songer et al., 2009). However, only few studies have shown that strains of PCR 

ribotype 078 isolated from human and animal sources are similar in genotype using 

typing methodologies other than PCR ribotyping; strains from humans and animals 

have been found related by MLVA (Goorhuis et al., 2008) and MLST (Debast et al., 

2009).  There are no reports detailing the relatedness of strains of PCR ribotype 078 

from food sources using typing methodologies other than PCR ribotyping.  

 

Outbreak strains from the UK, USA and Canada were found to be due to the 

dissemination of a strain of PCR ribotype 027, sequence type 1 (Killgore et al., 2008) 

and a global collection of PCR ribotype 027 strains were found to be clonal (He et 

al., 2013). However, little is known about the phylogeny of other PCR ribotypes and 

sequence types when comparing strains from different geographical locations. 

 

Inter-laboratory comparisons between sequence types, PCR ribotypes, NAP types 

and REA types would be useful however the adequacy of their correlation is 

unknown. Recent to our study Tenover et al., showed that that there is poor 

correlation, with only 84/92 PCR ribotype 027 isolates were NAP1 by PFGE and BI 
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by REA (Tenover et al., 2011). MLST studies have found correlation between 

individual lineages, PCR ribotypes and sequence types (i.e. lineage 2, PCR ribotype 

027 and sequence type 1). However, similarities in PCR ribotyping banding patterns 

have been reported between PCR ribotypes 126 and 078 (Spigaglia et al., 2010) and 

078 with 033, 066 and 045 (Rupnik et al., 2001). It is unknown if these PCR 

ribotypes are similar in their ancestry and share the same MLST sequence type which 

would suggest the occurrence of micro-diversity in the individual lineages. 

 
 

3.3 Hypotheses of the research described in this chapter 

Prior to this investigation, MLST studies on C. difficile had focused on isolates from 

either; various hosts and geographic sources, or hospital and community and various 

PCR ribotypes. No MLST study had yet tested a collection of isolates encompassing 

all of these variables nor had a study compared the C. difficile sequence types of 

strains isolated between human, animal and food or varying geographical origins. By 

testing a larger and more varied collection of strains would provide robust evidence 

to support the number of phylogenetic lineages of C. difficile previously identified. 

By performing MLST on strains of C. difficile isolated from animals and relating to 

strains isolated from humans and food sources will enable more in-depth associations 

to be made and may concur with PCR ribotyping data that has shown strains isolated 

from humans, animals and food sources to be related. This has significant 

implications with regards to transmission and zoonosis. Performing MLST and PCR 

ribotyping on strains isolated from various geographical locations will help identify 

clonal clusters associated with global spread which may infer how the species is 

evolving and if selective pressure has played a role. Finally, by examining the 

relatedness of PCR ribotypes, MLST sequence types and REA types will 
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demonstrate how well these typing techniques correlate which will have implications 

for inter-laboratory comparisons globally. This study was designed to test the 

following hypotheses: 

 

Chapter 3: hypothesis 1 

Application of MLST to a large collection of C. difficile isolates from diverse 

sources, geographical origin and PCR ribotype will retain the five distinct 

phylogenetic lineages observed in previous studies (Lemee et al., 2004, Lemee et al., 

2005, Dingle et al., 2011a). 

 

Chapter 3: hypothesis 2 

C. difficile strains isolated from human, animal and food origin are not 

phylogenetically distinct by MLST.  

 

Chapter 3: hypothesis 3 

C. difficile strains isolated from different geographical origin are phylogenetically 

distinct by MLST.  

 

Chapter 3: hypothesis 4 

Molecular characterisation of C. difficile using MLST, PCR ribotyping and REA 

provides adequate correlation for inter-laboratory comparison. 
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3.4 Results 

A total of 385 C. difficile isolates were collated from collaborators (Page 27) and 

breakdowns of the isolates are illustrated in the following sections with details of 

alleles, provider, source, geographical location and isolation date shown in Appendix 

1, Page 229.  All isolates were propagated on appropriate culture media (Sections 

2.2.2, Page 70 and 2.2.3, Page 71) from which genomic DNA was extracted using 

methods described for PCR ribotyping and MLST (Sections 2.3.1, Page 77 and 2.3.2, 

Page 78 respectively). PCR ribotyping was performed by PCR amplification and 

agarose gel electrophoresis (Section 2.3.1, Page 77) and MLST was performed by 

PCR amplification, agarose gel electrophoresis and sequencing (Section 2.3.2, Page 

78). Sequence types were constructed from this data and used to elucidate the 

phylogenetic relatedness of the strain panel and answer the hypotheses under 

analysis. 

3.4.1 Analysis of C. difficile isolated from various sources, geographical 

origin using PCR ribotyping 

PCR ribotyping and agarose gel electrophoresis was performed on all 385 isolates 

with reference strains R20291 (PCR ribotype 027) and M68 (PCR ribotype 017) used 

as controls. PCR analysis identified 68 different PCR ribotypes (319/385) and found 

66 isolates (66/385) to be non-typeable (Table 3.1).  

 

 

 

 . 
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Table 3.1: Number and proportion of isolates by PCR ribotype 

 
PCR ribotype Number of isolates Percentage of isolates 

078 107 27.8% 

027 53 13.8% 

001 16 4.2% 

002 16 4.2% 

106 10 2.6% 

126 10 2.6% 

017 9 2.3% 

015 7 1.8% 

014 5 1.3% 

023 5 1.3% 

050 4 1.0% 

237 4 1.0% 

005 3 0.8% 

010 3 0.8% 

012 3 0.8% 

087 3 0.8% 

127 3 0.8% 

262 3 0.8% 

020 2 0.5% 

054 2 0.5% 

081 2 0.5% 

094 2 0.5% 

176 2 0.5% 

*Other 45 11.7% 

Nontypeable 66 17.1% 

TOTAL 385 100% 

 

*Forty-five isolates were of other PCR ribotypes with only one isolate; 003, 009, 

011, 013, 018, 021, 022, 026, 029, 030, 031, 033, 036, 042, 046, 052, 053, 059, 062, 

064, 070, 085, 097, 107, 111, 116, 118, 135, 139, 140, 186, 196, 212, 216, 239, 243, 

259, 264, 268, 271, 274, 280, 281, 282 and 291. 
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3.4.2 Analysis of C. difficile isolated from various sources, geographical 

origin using MLST 

MLST was performed on all 385 isolates with reference strains R20291 (PCR 

ribotype 027) and M68 (PCR ribotype 017) used as controls. MLST analysis 

identified 48 known sequence types (365/385) and found 18 sequence types (20/385) 

to be novel (Table 3.2).  
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Table 3.2: Number and proportion of isolates by sequence type 

 
Sequence type Number of isolates Percentage of isolates 

11 155 40.3% 

1  61 15.8% 

3 25 6.5% 

8 12 3.1% 

42 10 2.6% 

37 9 2.3% 

35 6 1.6% 

2 6 1.6% 

5 6 1.6% 

6 5 1.3% 

44 5 1.3% 

10 4 1.0% 

15 4 1.0% 

55 4 1.0% 

63 4 1.0% 

48 3 0.8% 

54 3 0.8% 

61 3 0.8% 

12 2 0.5% 

13 2 0.5% 

17 2 0.5% 

18 2 0.5% 

26 2 0.5% 

33 2 0.5% 

41 2 0.5% 

43 2 0.5% 

46 2 0.5% 

67 2 0.5% 

*Other 20 5.2% 

**Novel 20 5.2% 

TOTAL 385 100% 

 

*Twenty isolates were of other sequence types with only one isolate; 7, 79, 716, 721, 

722, 729, 732, 734, 739, 745, 749, 751, 752, 753, 756, 757, 762, 64, 66 and 86. 

 

**Eighteen isolates were novel sequence types with one isolate; 131, 132, 133, 134, 

135, 136, 137, 138, 140, 141, 142, 143, 144, 145, 146, 147, 148 and 139 with three 

isolates. 
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3.4.3 Analysis of PCR ribotype and MLST sequence type associations 

To confirm known associations between sequence type and PCR ribotype profiles 

already reported and to identify novel associations, PCR ribotyping and MLST 

analysis data were collated and compared. Of those isolates with a PCR ribotype 

designated (319/385), 39 PCR ribotype/sequence type associations previously 

reported were found (Table 3.3) and 46 novel PCR ribotype/sequence type 

associations were revealed (Table 3.4). 
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Table 3.3: PCR riboype and sequence type associations previously identified 

 
PCR ribotype Sequence type Number of isolates 

078 11 106 

027 1 53 

001 3 15 

002 8 10 

106 42 9 

017 37 8 

015 44 4 

023 5 4 

010 15 3 

012 54 3 

015 10 3 

005 6 2 

014 2 2 

020 2 2 

050 18 2 

054 43 2 

262 3 2 

003 57 1 

009 3 1 

013 45 1 

014 49 1 

018 17 1 

021 56 1 

022 66 1 

023 22 1 

026 7 1 

046 35 1 

050 16 1 

053 63 1 

064 33 1 

070 55 1 

081 9 1 

085 39 1 

097 21 1 

118 42 1 

139 52 1 

140 26 1 

186 51 1 

216 33 1 
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Table 3.4: Novel PCR riboype and sequence type associations 

 
PCR ribotype Sequence type Number of isolates 

126 11 10 

237 11 5 

002 35 4 

127 11 3 

087 46 2 

094 12 2 

176 1 2 

002 2 1 

002 48 1 

002 146 (novel) 1 

005 131 (novel) 1 

011 138 (novel) 1 

014 13 1 

014 132 (novel) 1 

017 86 1 

029 137 (novel) 1 

030 48 1 

031 29 1 

033 11 1 

036 62 1 

042 6 1 

050 6 1 

052 136 (novel) 1 

059 53 1 

062 44 1 

081 139 (novel) 1 

087 145 (novel) 1 

106 135 (novel) 1 

107 139 (novel) 1 

111 140 (novel) 1 

116 10 1 

135 41 1 

196 144 (novel) 1 

212 5 1 

239 147 (novel) 1 

243 139 (novel) 1 

259 141 (novel) 1 

262 143 (novel) 1 

264 142 (novel) 1 

268 3 1 

271 6 1 

274 133 (novel) 1 

280 11 1 

281 11 1 

283 134 (novel) 1 

291 148 (novel) 1 
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Some PCR ribotypes were associated with multiple sequence types and some 

sequence types were associated with multiple PCR ribotypes. These are listed in 

Tables 3.5 and 3.6 respectively. 

 

 

 

Table 3.5: PCR riboype and associated sequence type/s 

 
PCR ribotype Associated sequence types 

001 3 

002 2, 8, 35, 48, 146  

003 12, 57 

005 6, 72, 89, 90, 131 

009 3 

010 15 

011 36, 77, 138  

012 54 

013 45, 71, 78 

014 2, 13, 14, 49, 50, 132 

015 10, 44 

017 37, 86 

018 17 

019 67 

020 2, 28, 68 

021 56, 70 

022 66 

023 5, 22, 25 

026 7 

027 1 

029 137 

030 48 

031 29 

033 11 

035 40 

036 1, 62 

038 48 

039 26 

042 6 

046 35 

050 6, 16, 18 

052 136 

053 63 

054 43 

056 34, 58 

059 53 

060 38 

062 44, 75 

063 5 

064 33 

066 11 
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PCR ribotype Associated sequence types 

067 27 

070 15, 55 

072 3, 69 

076 2 

078 11 

081 9, 139 

085 39 

087 46, 145 

094 12 

097 21 

103 53, 73, 76 

104 48 

106 41, 42, 135  

107 139 

110 10 

111 140 

115 3 

116 10 

118 42 

126 11 

127 11 

129 13 

135 41 

137 4 

138 23 

139 52 

140 26 

153 32 

159 8 

174 42 

176 1 

186 51 

191 46 

194 41 

196 144 

202 20, 24 

212 5 

216 33 

220 2 

224 65 

225 12 

228 92 

237 11 

239 147 

243 139 

259 51, 141 

262 3, 143 

264 142 

268 3 

271 6 

274 133 

280 11 

281 11 
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PCR ribotype Associated sequence types 

283 134 

291 148 

305 3 

316 59 

319 74 

320 46 

321 41 

323 31 

326 91 

336 60 

 

 

Those underlined are novel PCR ribotype/sequence type associations and those in 

bold are novel sequence types found in our study. 
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Table 3.6: Sequence types and associated PCR ribotype/s 

 
Sequence type Associated PCR ribotypes 

1 027, 176 

2 002, 014, 020 

3 001, 009, 262, 268 

5 023, 212 

6 005, 042, 050, 271 

7 026 

8 002 

9 081 

10 015, 116 

11 066, 078, 126, 127, 237, 280, 281 

12 094 

13 014 

15 010 

16 050 

17 018 

18 050 

21 097 

22 023 

26 140 

29 031 

33 064, 216 

35 002, 046 

37 017 

39 085 

41 135 

42 106, 118 

43 054 

44 015, 062 

45 013 

46 087 

48 002, 030 

49 014 

51 186 

52 139 

53 059 

54 012 

55 070 

56 021 

57 003 

62 036 

63 053 

66 022 

86 017 

131 005 

132 014 

133 274 

134 283 

135 106 

136 052 

137 029 

138 011 
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Sequence type Associated PCR ribotypes 

139 081, 107, 243 

140 111 

141 259 

142 264 

143 262 

144 196 

145 087 

146 002 

147 239 

148 291 

 

Those underlined are novel PCR ribotype/sequence type associations and those in 

bold are novel sequence types found in our study. 
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3.4.4 Phylogeny of C. difficile isolated from various sources, 

geographical origin, PCR ribotype and MLST sequence type 

Previous MLST studies identified five distinct phylogenetic lineages of C. difficile 

that contained common PCR ribotypes; 027, 078, 017, 023 and a lineage containing 

multiple mixed PCR ribotypes (Lemee et al., 2004, Lemee et al., 2005, Griffiths et 

al., 2010, Dingle et al., 2011a). To determine if the five distinct phylogenetic 

lineages observed in previous studies would be maintained when applying MLST to 

a large, diverse collection of C. difficile isolates, phylogenetic analysis was 

performed using the pubMLST database (http://pubmlst.org/cdifficile/) and 

calculating phylogenies using MAFFT and MrBayes. Analysis comprised of; 82 

previously published sequence types, 41 unpublished sequence types (used with the 

submitter’s permission), and the 18 novel sequence types found in our study (Table 

3.7). Phylogenetic analysis using the sequence types listed in Table 3.7 was used to 

investigate the relative evolutionary relatedness of sequence types and the resultant 

phylogeny is depicted in Figures 3.1 and 3.2. 

 

 

 

Table 3.7: Sequence types used for MLST analysis 

 

Sequence types learnt from: Sequence Type 

Sequence types already in the 

MLST database 

 

1,  2,  3,  4,  5,  6,  7,  8,  9,  10,  11,  12,  13,  14,  15,  16,  17,  18,  

19,  20,  21,  22,  23,  24,  25,  26,  27,  28,  30,  31,  32,  33,  34,  35,  

36,  37,  38,  39,  40,  41,  42,  43,  44,  45,  46,  48,  49,  50,  51,  52,  

53,  54,  55,  56,  57,  58,  59,  60,  63,  65,  66,  67,  68,  69,  70,  71,  

72,  73,  74,  75,  76,  77,  78,   89,  90,  91,  92,  102,  103,  104,  105 

and  106 

 

Sequence types used with 

submitters permission 

 

29,  47,  61,  62,  64,  79,  80,  81,  82,  83,  84,  85,  86,  87,  88,  93,  

94,  95,  96,  97,  98,  99,  100,  101,  107,  108,  109,  110,  111,  

112,  113,  114,  115,  116,  117,  118,  119,  120,  121,  122 and  123 

 

Sequence types novel to this 

study 

 

131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 

145, 146, 147 and 148 

 

http://pubmlst.org/cdifficile/
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(A) 
(B) 
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Figure 3.1: Relative evolutionary relatedness of the five main lineages of C. 

difficile based on MLST analyses 

 

Data for figure collated by M. Cairns, figure produced by Dr R. Stabler (LSHTM) 

and adapted from a publication by Stabler et al., (Stabler et al., 2012).  

 

(A) Overview of phylogeny and (B) details of lineage 5. 

 

Branch colouring; black = lineage 1 (mixed PCR ribotypes & sequence types), red = 

lineage 2 (sequence type 1/PCR ribotype 027), blue = lineage 3 (sequence type 

22/PCR ribotype 023), orange = lineage 4 (sequence type 37/PCR ribotype 017) and 

green = lineage 5 (sequence type 11/PCR ribotype 078). The key sequence types for 

each lineage are in bold. 
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Figure 3.2: Overview of phylogeny of C. difficile based on MLST analyses  

 

An overview of the relative evolutionary relatedness of the five main lineages of C. 

difficile based on MLST analysis. Data for figure collated by M. Cairns, figure 

produced by Dr R. Stabler (LSHTM) and adapted from a publication by Stabler et 

al., (Stabler et al., 2012). The figure includes significant genotypic and/or phenotypic 

characteristics for the key PCR ribotypes for the given lineage where known. 

 

Sequence type 1/PCR ribotype 027 

Toxin A+B+ 

Associated with global, clonal outbreaks 

and severe CDI 

Sequence type 11/PCR ribotype 078 

Toxin A+B+ 

Associated with infection in animals and 

contamination of food for human consumption 

Sequence type 22/PCR ribotype 023 

Toxin A+B+ 

Associated with severe CDI  

Sequence type 37/PCR ribotype 017 

Toxin A-B+ 

A predominant cause of CDI in Asia 

Mixed sequence types & PCR ribotypes 

Toxin A+B+ 
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Our data indicate that the five distinct phylogenetic lineages of C. difficile observed 

in previous studies are maintained when applying MLST to a larger collection of 

isolates from diverse sources, geographical origin and PCR ribotype (Figures 3.1 and 

3.2). 

 

Lineage 1 (139/365) consisted of 51 sequence types which were heterogeneous in 

terms of PCR ribotypes. Lineage 2 consisted of 14 sequence types which can be sub-

divided into two sublineages; a sequence type 1 sublineage (2i) and a sequence type 

32 sublineage (2ii). Sublineage 2i contained sequence type 1/PCR ribotype 027, 

sequence type 67/PCR ribotype 019 and sequence type 41 (PCR ribotypes 

106/164/321). Sublineage 2i also contained sequence type 62/PCR ribotype 036 and 

sequence type 140/PCR ribotype 111 which is a novel combination to our study. 

Sublineage 2ii contained six sequence types (32, 47, 61, 95, 97 and 123). Lineage 3 

included sequence type 22/PCR ribotype 023, with three additional sequence types; 

5, 25 and 96. Lineage 4 included sequence type 37/PCR ribotype 017 and an 

additional 12 sequence types. Lineage 4 can be subdivided into two sublineages; a 

sequence type 37 sublineage (4i) and a sequence type 23 sublineage (4ii). Sublineage 

4i contains four sequence types, including both PCR ribotype 017 sequence types (37 

and 86) as well as sequence type 39/PCR ribotype 085. Sublineage 4ii contains eight 

sequence types including sequence type 142/PCR ribotype 264 and sequence type 

23/PCR ribotype 138. Sublineage 4ii has significant divergence from sublineage 4i 

and may represent a sixth lineage. Lineage 5 included sequence type 11/PCR 

ribotype 078 and an additional two sequence types which were both novel; 132 and 

147.  
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3.4.5 MLST of C. difficile isolates by source  

To determine if C. difficile strains isolated from human, animal and food origins are 

phylogenetically distinct by MLST, the sequence type profiles of the collection of 

isolates from a variety of sources were compared. Table 3.8 lists the number and 

percentage of isolates in this study by source. Table 3.9 lists the human isolates by 

lineage and sequence type. Table 3.10 lists in individual sub-tables, the animal, food 

and household isolates by lineage and sequence type. Human isolates were of 

multiple sequence types and fell into either lineage 1, 2, 3, 4 or 5 (Table 3.9). 

Although the number of animal and food source isolates in this study is small, our 

data does show a range of sequence types and lineages associated with strains 

isolated from animals and food (Table 3.10). Our study identified the following 

sequence types to be associated with strains isolated from animals and food; 1, 2, 3, 

8, 11, 35, 48, 61 and 132. Most of the animal isolates (85.2% [92/108]) were 

sequence type 11. All sequence types for the animal isolates were of sequence types 

associated with human isolates (excluding ST132 which was novel to our study). 

These data indicate that strains isolated from humans, animals and food origins are 

not phylogenetically distinct by MLST. 
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Table 3.8: Number and percentage of isolates by source 

 

Source Number of isolates Percentage of isolates 

Human 211 54.8% 

Bovine 80 20.8% 

Porcine  17 4.4% 

Food 16 4.1% 

Murine  5 1.3% 

Equine 4 1% 

Canine 1 0.3% 

Kangaroo 1 0.3% 

Household  1 0.3% 

Unknown 49 12.7% 

TOTAL 385 100% 
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Table 3.9: Phylogeny of isolates of human origin 

 

Lineage 
Number 

of isolates 

Sequence 

type 

Number 

of isolates  
 Lineage 

Number 

of isolates 

Sequence 

type 

Number 

of isolates  

1 103 

*novel 13  

2 50 

140 (novel) 1 

139 (novel) 2  1 42 

2 4  67 2 

3 11  62 1 

6 4  32 1 

8 9  41 1 

9 1  41 1 

010 4  61 1 

12 2  
3 5 

5 4 

13 1  22 1 

15 4  

4 11 

142 (novel) 8 

16 1  37 1 

17 2  039 1 

18 1  86 1 

21 1  

5 42 

11 40 

26 2  147 (novel) 1 

29 1  148 (novel) 1 

33 2  Total number of isolates 211 

34 1      

35 1      

42 9      

43 2      

44 4      

45 1      

46 2      

48 1      

49 1      
51 1      
52 1      
53 1      
54 3      
55 4      
56 1      
57 1      
63 3      
66 1      

 

*Thirteen isolates were novel sequence types with only one isolate in lineage 1; 

sequence types; 131, 133, 134, 135, 136, 137, 138, 141, 143, 144, 145 and 146. 
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Table 3.10: Phylogeny of isolates of animal, food and household origin 

 

 

Bovine  
Lineage Number of isolates  Sequence type Number of isolates 

1 1 3 1 

2 6 1 6 

5 73 11 73 

Total number of isolates 80 

 

 

Canine 
Lineage Number of isolates  Sequence type Number of isolates 

1 1 2 1 

Total number of isolates 1 

 

 

Equine  
Lineage Number of isolates  Sequence type Number of isolates 

1 2 
3 1 

8 1 

2 1 1 1 

5 1 11 1 

Total number of isolates 4 

 

 

Murine 
Lineage Number of isolates  Sequence type Number of isolates 

1 5 35 5 

Total number of isolates 5 

 

 

Porcine  
Lineage Number of isolates  Sequence type Number of isolates 

1 4 

ST8 1 

ST48 2 

ST132 (novel) 1 

5 14 *ST11 14 

Total number of isolates 18 

*One isolate was from a Kangaroo. 

 

 

Food and household 
Lineage Number of isolates  Sequence type Number of isolates 

2 9 
*ST1 7 

ST61 2 

5 8 ST11 8 

Total number of isolates 17 

*One isolate was from a household. 
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3.4.6 MLST of C. difficile isolates by geographical origin 

The study by Lemee et al., investigated 72 strains of C. difficile isolated from various 

global locations and found no correlation between sequence type and geographical 

location (Lemee et al., 2004). This study aimed to determine if C. difficile strains 

isolated from different geographical origins are phylogenetically distinct by MLST 

using a larger collection of strains from various geographical locations. Table 3.11 

lists the number and percentage of isolates in this study by geographical origin 

(where provided). The majority of isolates were from the USA and UK and so these 

have been broken down further; Tables 3.12 and 3.13 list the number and percentage 

of isolates by sequence type for the USA and UK respectively. Our data shows that 

multiple lineages are associated with different geographical locations and multiple 

sequence types are associated with isolates from the UK and USA. 
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Table 3.11: Number and percentage of isolates by geographical origin and 

lineage 

 
Geographical 

Location 

Number of 

isolates 

Percentage of 

isolates 
Lineage/s 

USA 168 43.6% 1, 2 and 5 

UK 120 31.2% 1, 2, 3, 4 and 5 

Australia 36 9.4% 1,4 and 5 

Belgium 2 0.5% 4 

Canada 2 0.5% 2 

Ireland 2 0.5% 4 and 5 

Italy 2 0.5% 5 

Spain 2 0.5% 5 

Switzerland 2 0.5% 1 and 5 

France 1 0.3% 2 

Germany 1 0.3% 1 

Unknown 47 12.2% 1, 2, 3, 4 and 5 

TOTAL 385 100% 1, 2, 3, 4 and 5 

 

 

 

 

 

Table 3.12: Number and percentage of isolates from the USA by sequence type 

 

Sequence type Number of isolates Percentage of isolates 

11 108 64.3% 

1 36 21.4% 

3 6 3.6% 

35 5 3.0% 

61 3 1.8% 

8 2 1.2% 

48 2 1.2% 

67 2 1.2% 

*Other 4 2.4% 

TOTAL 168 100% 

 

* Four isolates were of other sequence types with only one isolate; sequence types 2, 

32, 41 and 46. 
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Table 3.13: Number and percentage of isolates from the UK by sequence type 

 

Sequence type Number of isolates Percentage of isolates 

1 19 15.8% 

3 10 8.3% 

42 8 6.7% 

11 7 5.8% 

8 6 5.0% 

37 5 4.2% 

10 4 3.3% 

44 4 3.3% 

6 3 2.5% 

2 3 2.5% 

33 2 1.7% 

5 2 1.7% 

12 2 1.7% 

17 2 1.7% 

55 2 1.7% 

63 2 1.7% 

*Other 23 19.2% 

**Novel 16 13.3% 

TOTAL 120 100% 

 

*Twenty-three isolates were of other sequence types with only one isolate, sequence 

types; 13, 15, 16, 18, 21, 22, 26, 35, 39, 41, 43, 45, 46, 48, 49, 51, 52, 53, 54, 56, 57, 

62 and 66. 

 

**Sixteen isolates were novel sequence types; 131, 133, 134, 135, 136, 137, 138, 

140, 141, 143, 144, 146 and 139 for three isolates. 
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3.4.7 Molecular characterisation of C. difficile using the different 

typing techniques; MLST, PCR ribotyping and REA 

Outbreak strains are often referred to as PCR ribotype 027/NAP1/BI, suggesting that 

the three typing methods correlate however the adequacy of inter-laboratory 

correlation between PCR ribotypes, PFGE types and REA types is unknown. To 

investigate the notion that not all REA type BI strains are PCR ribotype 027 by PCR 

ribotyping, 16 assumed PCR ribotype 027 strains identified as type BI by REA in the 

USA were PCR ribotyped (Table 3.14). 

 

Table 3.14: PCR ribotyping profiles of REA type BI strains 

 

 

 

 

 

 

 

 

 

 

 

We found 3 (3/16) strains were not PCR ribotype 027 but instead were 176, 198 and 

244 (Table 3.14). Although different PCR ribotypes, it was observed that the PCR 

ribotyping banding patterns for 176 and 198 are extremely similar to that of 027 

(plus or minus one band [Figure 3.3]). PCR ribotype 244 was observed to be two 

bands different so not as similar.  

Strain PCR ribotype 

BI-1 027 

BI-2 027 

BI-3 027 

BI-4 027 

BI-5 027 

BI-6 176 

BI-6p 027 

BI-6p2 027 

BI-7 027 

BI-8 027 

BI-10 027 

BI-11 198 

BI-12 027 

BI-13 027 

BI-14 244 

BI-15 027 
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Lane 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3: PCR ribotyping agarose gel electrophoresis of strains BI-6 (PCR 

ribotype 176), R20291 (PCR ribotype 027) and BI-11 (PCR ribotype 198) 

 

 

DNA extraction, PCR ribotyping and agarose gel electrophoresis performed by M. 

Cairns, figure produced by M. Cairns and adapted from a publication by Valiente et 

al., (Valiente et al., 2012). PCR ribotyping amplicon banding patterns as observed by 

agarose gel electrophoresis.  

 

Lane 1= BI-11 (PCR ribotype 198/sequence type 1) 

Lane 2 = R20291 (PCR ribotype 027/sequence type 1 [positive control]) 

Lane 3 = BI-6 (PCR ribotype 176/sequence type 1) 

Lane 4 = Negative extract control 

Lane 5 = Negative PCR control 

Lane 6 = 100 bp ladder 

 

This figure depicts the plus/minus band similarity between PCR ribotyping patterns 

(locations of missing bands are encircled in blue).   

 

 

 

 

 

     1       2        3         4        5          6        
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The MLST lineage 2 most often contains PCR ribotype 027/sequence type 1. To 

investigate the diversity of strains found in MLST lineage 2, the sequence types and 

PCR ribotypes of 71 isolates found in MLST lineage 2 were compared. Results are 

listed in Table 3.15. 

 

Table 3.15: MLST lineage 2 isolates 

 

Lineage Sequence type PCR ribotype Number of isolates 

 
1 

027 53 

 Nontypeable 6 

 176 2 

 61 Nontypeable 3 

2 67 262 2 

 32 Nontypeable 1 

 62 036 1 

 
41 

Nontypeable 1 

 135 1 

 

 

MLST lineage 2 contained sequence types other than 1 and PCR ribotypes other than 

027 (Table 3.15). With our larger collection of strains, our data has found further 

sequence types, 61 and 62 associated with lineage 2.  
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3.5 Discussion 

To date, MLST studies on C. difficile have focused on human isolates from limited 

geographical regions. In our study MLST profiles of 385 C. difficile isolates were 

investigated, including previously undocumented PCR ribotypes taken from human, 

animal and food sources and from multiple geographical locations. Despite the 

diverse origins of the isolates in our study, the five phylogenetic lineages of 

C. difficile previously reported (Griffiths et al., 2010, Dingle et al., 2011a, Stabler et 

al., 2006, He et al., 2010) were confirmed (Figure 3.1). 

 

PCR analysis identified 68 different PCR ribotypes (319/385) and found 66 isolates 

(66/385) to be non-typeable (Table 3.1). This is an increase in diversity of PCR 

ribotypes compared to previous studies; n=62 (Lemee et al., 2004), n=49 (Griffiths et 

al., 2010) and n=61 (Dingle et al., 2011a) strengthening our ability to investigate the 

pylohistory of C. difficile. Unsurprisingly the majority of isolates in our study were 

PCR ribotype 078 (27.8%) and PCR ribotype 027 (13.8%) as listed in Table 3.1; 

these were the commonest cause of CDI in animals (Keel et al., 2007, Jhung et al., 

2008, Goorhuis et al., 2008, Rupnik et al., 2008) and humans respectively (Loo et al., 

2005, Warny et al., 2005, Redelings et al., 2007). 

 

MLST analysis identified 48 known sequence types (365/385) and found 18 

sequence types (20/385) to be novel (Table 3.2). This is an increase in diversity of 

sequence types compared to the Lemee et al., (Lemee et al., 2004) and Griffiths et 

al., (Griffiths et al., 2010) studies with n=34 and n=40 sequence types respectively 

but less than the Dingle et al., study with n=69 sequence types (Dingle et al., 2011a). 

The study by Dingle et al., was based on 1290 isolates, our study was significantly 
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less with 385 isolates, however, our study included isolates of more diverse PCR 

ribotypes; 14 of the 20 novel sequence types in our study were of PCR ribotypes not 

included in the study by Dingle et al.,. This likely explains why our study identified a 

further 18 novel sequence types compared with the previous study by Dingle et al., 

(Appendix 1, Page 229). 

 

Previous studies have investigated 45 (Griffiths et al., 2010) and 29 (Dingle et al., 

2011a) PCR ribotypes and reported 74 PCR ribotype/sequence type associations i.e. 

PCR ribotype 027 isolates are sequence type 1 and vice versa. Using a larger 

collection of PCR ribotypes (n=67), we identified 39 previously described and 46 

novel PCR ribotype/sequence type associations (including 20 novel sequence types 

[Table 3.4]). The finding of 20 novel sequence types indicates further micro-diversity 

with sub-lineages within lineages which suggests the continued evolution of C. 

difficile strains and the potential emergence of hypervirulent strains.  

 

In the current study, it was found that lineage 1 (139/365) consisted of 51 sequence 

types which were heterogeneous in terms of PCR ribotypes. This is consistent with 

that found by previous MLST studies on C. difficile (Griffiths et al., 2010, Dingle et 

al., 2011a). 

 

Lineage 2 consisted of 14 sequence types which can be sub-divided into two 

sublineages; a sequence type 1 sublineage (2i) and a sequence type 32 sublineage 

(2ii). Sublineage 2i contained sequence type 1/PCR ribotype 027, sequence type 

67/PCR ribotype 019 which concurs with the study by Griffiths et al., (Griffiths et 

al., 2010) and sequence type 41 (PCR ribotypes 106/164/321) which is consistent 
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with the study by Dingle et al., (Dingle et al., 2011a). Sublineage 2i also contained 

sequence type 62/PCR ribotype 036 and sequence type 140/PCR ribotype 111 which 

is a novel combination to our study. Sublineage 2ii contained six sequence types (32, 

47, 61, 95, 97 and 123) with only sequence type 32/PCR ribotype 153 known 

previously (Griffiths et al., 2010). We found lineage 3 included sequence type 

22/PCR ribotype 023, with three additional sequence types; 5 and 25 as previously 

reported (Griffiths et al., 2010, Dingle et al., 2011a) plus sequence type 96 which has 

not been reported before in this lineage. We found lineage 4 included sequence type 

37/PCR ribotype 017 which was previously reported (Lemee et al., 2004, Griffiths et 

al., 2010, Dingle et al., 2011a) and an additional 12 sequence types. Lineage 4 can be 

subdivided into two sublineages; a sequence type 37 sublineage (4i) and a sequence 

type 23 sublineage (4ii). Sublineage 4i contains four sequence types, including both 

PCR ribotype 017 sequence types (37 and 86) as well as sequence type 39/PCR 

ribotype 085. Sublineage 4ii contains eight sequence types including sequence type 

142/PCR ribotype 264 and sequence type 23/PCR ribotype 138. Sublineage 4ii has 

significant divergence from sublineage 4i and may represent a sixth lineage. Lineage 

5 included sequence type 11/PCR ribotype 078 as previously reported (Griffiths et 

al., 2010, Dingle et al., 2011a) and an additional two sequence types which were both 

novel; 132 and 147. This all suggests continued evolution of C. difficile species. 

 

Strains isolated from humans, animals and food origins were not phylogenetically 

distinct by MLST (Tables 3.8, 3.9 and 3.10). As previously shown (Griffiths et al., 

2010, Dingle et al., 2011a), human isolates are of multiple sequence types and can 

fall into either lineage 1, 2, 3, 4 or 5 (Table 3.9).  
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Although the number of animal and food source isolates in this study is small, our 

data does show a range of sequence types and lineages associated with strains 

isolated from animals and food (Table 3.10). Our study identified the following 

sequence types to be associated with strains isolated from animals and food; 1, 2, 3, 

8, 11, 35, 48, 61 and 132. Some of these were previously identified by Lemee et al., 

(sequence types; 1, 3, 8) (Lemee et al., 2004). Strains of C. difficile isolated from 

animals have been shown to be sequence type 11 (Griffiths et al., 2010) as is found 

in this study with 85.2% (92/108) of strains isolated from animals being sequence 

type 11. Non-human isolates were found in lineages 1, 2 and 5 amongst strains 

isolated from humans. All sequence types for the animal isolates were also associated 

with human isolates (excluding sequence type 132). Sequence type 132 was novel; 

whether it is a sequence type exclusively associated with animals cannot be 

determined in this study due to only one isolate of this sequence type. Our data did 

not find a lineage exclusive to non-human strains indicating that the strains in our 

study were able to colonise or infect non-human sources equal to humans. 

 

No correlation between sequence type and geographical location using MLST was 

found (Table 3.11). This lack of geographical association indicates that there has not 

been a rapid spread of a particular strain. A limitation to this study is that the 

majority of isolates were from the UK and USA; however, representative strains 

from other geographical locations were included (Australia, Belgium, Canada, 

France, Germany, Ireland, Italy, Spain and Switzerland).  

 

Our data indicate that the molecular characterisation of C. difficile using MLST, PCR 

ribotyping and REA does not provide adequate correlation for inter-laboratory 
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comparison. Sixteen assumed sequence type 1/PCR ribotype 027 strains identified as 

BI by REA in USA were PCR ribotyped in this study and three were found not to be 

PCR ribotype 027 but instead, 176, 198 and 244. This is similar to data shown 

elsewhere which have found that not all PCR ribotype 027 strains are type BI by 

REA (Tenover et al., 2011). The close phylogeny of PCR ribotype 027/sequence type 

1, PCR ribotype 176/sequence type 1 and PCR ribotype 198/sequence type 1 is 

supported by data from a previous study where comparative genomic hybridisation 

and Bayesian phylogeny was performed and suggested these strains may share a 

common ancestor (Stabler et al., 2006). Our data also found the PCR ribotyping 

banding patterns to be highly similar for PCR ribotypes 027, 176 and 198 (Figure 

3.3).  

 

Reported elsewhere, a strain of PCR ribotype 176 was responsible for two outbreaks 

in 2008 and 2009 in Poland (Nyc et al., 2011) and a study in the Czech Republic 

analysed 624 C. difficile strains from eleven hospitals in 2013 and found 40% of 

isolates were PCR ribotype 176. Interestingly, other studies have found PCR ribotype 

176 to be incorrectly identified as PCR ribotype 027 using the Xpert
®
 C. difficile 

assay (Krutova et al., 2014). The Xpert
®

 C. difficile assay detects the presence of C. 

difficile (and also specifically PCR ribotype 027) in stool samples using PCR (Sloan 

et al., 2008). It is a multiplex PCR for three targets present in the toxigenic C. 

difficile genome: the tcdB gene for toxin B production, the cdtB gene for binary toxin 

production and the single nucleotide deletion at position 117 in the regulatory tcdC 

gene. Similar to the study by Krutova et al., twelve strains of PCR ribotype 244 were 

misidentified as PCR ribotype 027 using the Xpert
®
 C. difficile assay in Australia 

(Lim et al., 2014). Like PCR ribotype 027, they found PCR ribotype 244 was 
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associated with more severe disease and a higher mortality rate. Their WGS SNP 

analysis also found PCR ribotype 244 and 027 to be distinct but closely related. 

Previous to this, it was recognised in New Zealand that ten patients with CDI due to 

PCR ribotype 244 had severe infection, 50% of which were community acquired (De 

Almeida et al., 2013). A further study in Australia identified a clonal outbreak due to 

PCR ribotype 244; again these patients had severe infection, the majority were 

community acquired and patients were younger in age (Eyre et al., 2015). C. difficile 

PCR ribotype 176 and 244 strains produce binary toxin and possess the single 

nucleotide deletion in the tcdC gene at position 117 like that of PCR ribotype 027 

(Krutova et al., 2017, Lim et al., 2014) which explains why they were detected by the 

the Xpert
®

 C. difficile assay in the reports just mentioned. This means that these 

targets are not specific to PCR ribotype 027 as previously thought. The comparative 

genomic hybridisation and Bayesian phylogeny study performed by Stabler et al., 

also found PCR ribotype 244 (strain BI-14) in lineage 2 but, as an outlier within the 

lineage (Stabler et al., 2006). The PCR ribotyping banding pattern for PCR ribotype 

244 also differed by two bands to PCR ribotype 027 instead of only one band like 

with PCR ribotypes 176 and 198. 

 

Additional sequence types and PCR ribotypes were also found associated with 

lineage 2 in this study (Table 3.15). This is similar to that found by other studies. 

Griffiths et al., found sequence types 32 and 67 (Griffiths et al., 2010) and Dingle et 

al., found sequence type 67 (Dingle et al., 2011a) within lineage 2. Griffiths et al., 

also found an additional PCR ribotype, 036 associated with sequence type 1 which 

was similar in PCR ribotyping banding pattern like what our study has found with 

PCR ribotypes 176 and 198. With our larger collection of strains, our data has found 
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further sequence types, 61 and 62 associated with lineage 2. This suggests that 

lineage 2 has evolved further with new sequence types and supports the notion that 

PCR ribotyping and REA analysis do not correspond as well as previously thought. 

Both typing methods rely on the examination of DNA migration through a matrix, 

usually an agarose gel and comparison to a standard. Simple changes in DNA can 

have distinct changes in resulting profiles. For example, a change in the repeat copy 

number, inter-chromosomal homologous recombination for PCR ribotyping, primer 

binding sites or SNPs within restriction sites for REA can produce differences in 

banding patterns, which may result in the strain being designated as a different type 

or variant even though they are phylogenetically similar. In light of the phylogenetic 

similarities between multiple PCR ribotypes i.e. 027, 198 and 076, it would be 

plausible to investigate as future work the phenotypic similarities between PCR 

ribotypes that are different PCR ribotypes but highly similar in PCR ribotyping 

profile and phylogeny by MLST. 

 

3.6 Conclusion 

With a large and diverse collection of strains (n=385), our study confirmed the five 

lineages of C. difficile found by other studies with evidence of further micro-

diversity of the C. difficile species. By including isolates from a variety of sources 

and geographical origin, our data found no lineage exclusive to C. difficile strains 

isolated from non-human sources or a geographical origin. Our study has revealed 

new links between closely related PCR ribotypes and sequence types, providing 

insights into the microevolution of C. difficile. 
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Our study confirmed that not all C. difficile REA type BI strains are PCR ribotype 

027 but other PCR ribotypes such as 176, 198 and 244. Considering the similarity in 

phylogeny of these PCR ribotypes in this study and other studies (Stabler et al., 

2006, Krutova et al., 2017, Lim et al., 2014), suggests C. difficile REA type BI, PCR 

ribotype 027 and non-PCR ribotype 027 strains have co-evolved or possibly evolved 

from each other. Given that PCR ribotyping is the most widely used typing method 

worldwide, and that MLST studies confirm the close grouping of different PCR 

ribotypes such as PCR ribotypes 176, 198, 244 with 027, suggests that although PCR 

ribotyping is useful, it must be considered that there should be heightened awareness 

of the clinical significance of these closely related PCR ribotypes.  

 

MLST is an appropriate method for studying the phylogeny of C. difficile and the 

continued collection and genotyping of diverse C. difficile strains from all sources is 

vital for monitoring the emergence and disappearance of evolving virulent clones. 

Although five lineages of C. difficile have been confirmed using MLST, these should 

be investigated in more detail using WGS which offers superior resolution compared 

to MLST. Therefore, I have further investigated an individual lineage in more detail 

in chapters 4 and 5; C. difficile PCR ribotype 017. 

 

 

 

 

 

 

 



135 

 

 

 

 

 

Chapter 4 
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of a hospital outbreak of  
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4 Characterisation of a hospital outbreak of C. difficile 

PCR ribotype 017 using WGS and phenotypic assays 

4.1 Statement of contribution 

Isolate selection, PCR ribotyping and genomic DNA extractions were performed by 

M. Cairns. WGS were performed both at the WTSI by D. Harris and at the LSHTM 

by M. Cairns. The collection of epidemiology data were performed by M. Cairns 

with help from the infection control team at UHL. SNP calling were performed by 

Dr Mark Preston. De novo assembly were performed by M. Cairns with help from 

Dr Richard Stabler. Phenotypic assays, statistical analysis and data interpretation 

were performed by M. Cairns.  

4.2 Introduction 

MLST and WGS studies have confirmed the existence of at least five clonal lineages 

of C. difficile (Dingle et al., 2011a, Stabler et al., 2006) and this was confirmed in 

chapter 3 using MLST (Stabler et al., 2012). 

 

C. difficile PCR ribotype 027 has been well studied, but less is known about other 

PCR ribotypes that make up the five lineages identified by MLST and WGS such as 

PCR ribotype 017. It is known that pathogenic strains of PCR ribotype 027 produce 

both toxins A and B (A+B+) and an unrelated CDT that has been implicated in 

virulence. By contrast, PCR ribotype 017 strains lack most of the tcdA gene (A-B+) 

and completely lack the CDT gene yet have emerged worldwide causing significant 

disease (Johnson et al., 2003, Pituch et al., 2006, Goorhuis et al., 2009, Hawkey et 

al., 2013). The reasons for the emergence of a less toxigenic lineage remain unclear. 
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The epidemiology of C. difficile in the Asia/Pacific regions and eastern parts of 

Europe also appears to differ from elsewhere where the prevalence of toxin A-B+ 

strains is higher in these locations compared to other PCR ribotypes including 027 

which is toxin A+B+ (Hawkey et al., 2013). Like PCR ribotype 027, C. difficile 

toxin A-B+ strains have been associated with increased disease severity where they 

have been related to PMC in patients (Shin et al., 2008, Elliott et al., 2009, Limaye 

et al., 2000, Sambol et al., 2000, Johnson et al., 2001).  

 

The Department of Health guidelines recommend use of a chlorine-containing 

cleaning agent for routine environmental disinfection in hospitals; however, studies 

have suggested that PCR ribotypes have differing susceptibilities to disinfectants. A 

study by Dawson et al., compared the efficacy of nine commonly used hospital 

disinfectants (including chlorine-containing cleaning agents) against a selection of 

difference PCR ribotypes and found their efficacy was either dependent on the 

concentration, PCR ribotype or both (Dawson et al., 2011). The study found the 

percentage spore count for PCR ribotype 017 was significantly higher than that for 

PCR ribotypes 027 (Dawson et al., 2011).  

 

UHL in South London experienced multiple clusters of non-severe CDI caused by 

PCR ribotype 017 that occurred at different times between 2009 and 2013; 21 

isolates were recovered from 20 patients, 17 of which were taken from patients 

whilst on one elderly care ward during this time period (Table 4.1, Page 143). Due to 

these clusters, an environmental screen was performed on the ward (30/08/2010) 

followed by hydrogen peroxide vapour (HPV) decontamination (30/09/2010). 
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However, subsequent to this, isolates of PCR ribotype 017 were again recovered 

from patients with CDI from the same ward.  

 

WGS offers considerable advantages over traditional phenotypic and genotypic 

typing methods where it has superior resolution and can perform a fine-grain 

analysis that facilitates the accurate tracing of the sources and routes of transmission 

(Parkhill and Wren, 2011). As well as SNP analysis, WGS can identify regions of a 

genome suggestive of horizontal gene transfer and horizontal transfer of genes on 

mobile genetic elements; conventional typing methodologies are unable to do this.  

Mobile genetic elements refer to DNA that can move around within and between 

genomes and include; conjugative transposons, plasmids, bacteriophages and introns 

(Frost et al., 2005). Mobile genetic elements are important since they play a major 

role in bacterial evolution and virulence whereby they often carry genes associated 

with virulence (Wiedenbeck and Cohan, 2011). Approximately, 11% of the C. 

difficile genome is made up of mobile genetic elements and a significant proportion 

of these elements are conjugative transposons (Sebaihia et al., 2006). Studied 

conjugative transposons in C. difficile include; Tn916 (Roberts and Mullany, 2009), 

Tn5397 (Mullany et al., 1996), Tn4453a and Tn4453b  (Wren et al., 1988) and 

Tn1549 (Sebaihia et al., 2006, Garnier et al., 2000) each with varying accessory 

regions and putative virulence factors. 
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4.3 Hypotheses of the research described in this chapter 

PCR ribotype 017 is interesting; it forms its own phylogenetic lineage by MLST and 

WGS analysis, it is toxin A negative but is still pathogenic, it has shown to produce 

more spores than the hypervirulent PCR ribotype 027 and a London hospital has 

experienced multiple clusters of CDI caused by this PCR ribotype. These data 

warrant further investigation of this PCR ribotype using WGS in order to investigate 

its transmission and virulence. Detection of transmission has an implication for 

infection control and surveillance and identification of a virulent phenotype would 

justify heightened awareness, surveillance and investigation of improvements to 

laboratory diagnostics like that with PCR ribotype 027 and the Xpert
®
 C. difficile 

assay described in chapter 3. This study was designed to test the following 

hypotheses: 

 

Chapter 4: hypothesis 1 

The C. difficile isolates from UHL are clonal and represent a phylogenetically 

distinct cluster when compared to C. difficile isolates from other London hospitals. 

 

Chapter 4: hypothesis 2 

The C. difficile isolates from UHL are phenotypically different to C. difficile isolates 

from other London hospitals.  
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4.4 Results  

With my role as lead CDRN scientist at the London laboratory, I noticed that there 

were multiple isolates of PCR ribotype 017 being reported to UHL. I discussed this 

finding with the infection control nurses at UHL and this study commenced. 

 

A total of 37 C. difficile isolates were used in this study and their details are listed in 

Table 4.1. These were; 22 strains isolated from humans who at different times were 

on the same hospital ward at UHL and two strains isolated from the same hospital 

ward. An additional 13 contemporaneous strains isolated from humans from other 

London hospitals were also included for comparison. 

 

Twenty-three of the UHL isolates were part of an ongoing cluster, one of which (H-

UHL-1) was a historical isolate from 2005 which predates the other 22 isolates in the 

cluster which were isolated between 2009 and 2013, and even the existing building 

where the elderly care ward was located. Two of these cluster isolates were 

environmental (E-UHL-19 and E-UHL-20) and recovered from the toilet and floor 

of the elderly care ward side-room at UHL when an environmental screen was 

performed. 

 

All isolates in this study were propagated on appropriate culture media (Sections 

2.2.2, Page 70 and 2.2.3, Page 71) from which genomic DNA was extracted using 

methods described for PCR ribotyping and WGS (Sections 2.3.1, Page 77 and 

2.3.3.1, Page 83 respectively). PCR ribotyping was performed by PCR amplification 

and agarose gel electrophoresis (Section 2.3.1, Page 77). In preparation for WGS, 

DNA was quantified (Section 2.3.3.2, Page 84) and WGS was performed using 
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Illumina Sequencing Technology (Sections 2.3.3.3, Page 85 and 2.3.3.4, Page 88). 

SNPs and haplotypes were identified by sequence mapping and assembly (Sections 

2.3.3.5, Page 85 to 2.3.3.9, Page 92 inclusive), and de novo genome assembly 

analysis and visual inspection using ACT was performed to identify regions of DNA 

that were; present in a test strain but absent from the reference control M68 

(insertions) and present in the control strain M68 but absent from a test strain 

(deletions) [Section 2.3.3.10, Page 92]). Software tools were used to produce 

phylogenetic trees to enable visual comparisons of SNP differences between UHL 

and non-UHL C. difficile isolates (Section 2.3.9, Page 91) and phenotypic assays and 

statistical analysis were performed on select isolates (UHL-1, UHL-3, UHL-19, CX-

32) to identify a phenotype unique to the UHL C. difficile isolates (Sections 2.2.6, 

Page 73 to 2.2.10, Page 76 inclusive). 
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Table 4.1: Bacterial isolates used in chapter 4 

Table adapted from a publication by Cairns et al., (Cairns et al., 2015). 

 

* = historical isolate pre-dating the build of the hospital ward, ** = environmental 

isolate recovered from the ward and *** = community-acquired infection isolate. 

 

Isolate Provider 
Sample 

Date 

Hospital (date/s patient on elderly care ward at UHL if not the 

same as the date the sample was taken) 

*H-UHL-1 CDRN 2005 UHL (ward non-existent) 

UHL-2 CDRN 11/03/09 UHL (ward) 

UHL-3 CDRN 27/03/09 UHL (24/02/09-05/03/09) 

UHL-4 CDRN 17/04/09 UHL (ward) 

UHL-5 CDRN 16/04/09 UHL (ward) 

UHL-6 CDRN 28/09/09 UHL (ward) 

UHL-7 CDRN 20/09/09 UHL (ward) 

UHL-8 CDRN 16/10/09 UHL (ward) 

UHL-9 CDRN 29/10/09 UHL (ward) 

UHL-10 CDRN 28/01/10 UHL (ward) 

UHL-11 CDRN 08/02/10 UHL (ward) 

UHL-12 CDRN 17/02/10 UHL (ward) 

UHL-13 CDRN 01/04/10 UHL (ward) 

UHL-14 CDRN 26/04/10 UHL (ward) 

UHL-15 CDRN 17/07/10 UHL (ward) 

UHL-16 CDRN 19/07/10 UHL (ward) 

UHL-17 CDRN 06/08/10 UHL (never) 

UHL-18 CDRN 10/08/10 UHL (ward) 

**E-UHL-19 CDRN 13/08/10 UHL (ward: side-room toilet) 

**E-UHL-20 CDRN 13/08/10 UHL (ward: side-room floor) 

UHL-21 CDRN 04/10/10 UHL (never) 

UHL-22 CDRN 07/10/10 UHL (04/06/10-12/07/10) 

UHL-23 CDRN 26/04/11 UHL (15/02/1-14/04/11) 

***C-UHL-24 CDRN 08/03/13 UHL (26/12/12-28/12/12, 04/02/13-07/02/13 and 08/03/13-20/02/13) 

NP-25 CDRN 13/05/08 Northwick Park Hospital 

B-26 CDRN 27/02/09 Barnet Hospital 

NM-27 CDRN 2005 North Middlesex Hospital 

GOSH-28 CDRN 22/03/10 Great Ormond Street Hospital 

GOSH-29 CDRN 24/03/10 Great Ormond Street Hospital 

GOSH-30 CDRN 27/03/10 Great Ormond Street Hospital 

RF-31 CDRN 09/12/10 Royal Free Hospital 

CX-32 CDRN 25/01/11 Charing Cross Hospital 

B-33 CDRN 11/05/11 Barnet Hospital 

QM-34 CDRN 16/07/11 Queen Mary’s Hospital 

WX-35 CDRN 08/12/11 Whipp’s Cross Hospital 

WX-36 CDRN 16/01/12 Whipp’s Cross Hospital 

GOSH-37 CDRN 30/11/13 Great Ormond Street Hospital 
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4.4.1 Genotypic comparison of isolates from London hospitals 

4.4.1.1 PCR ribotyping 

The 34 patient and two environmental isolates (Table 4.1) were confirmed to be 

PCR ribotype 017 by PCR ribotyping and agarose gel electrophoresis (Section 

2.3.1). Reference strains R20291 (PCR ribotype 027) and M68 (PCR ribotype 017) 

were used as controls and all isolates were assumed to be toxinotype VIII, A-B+ 

based on their being PCR ribotype 017. There are no known reports of PCR ribotype 

017 having any other toxin profile other than toxinotype VIII, A-B+. 

4.4.1.2  Inference of phylogeny using SNP data 

To investigate the phylogeny and clonality of the isolates in this study, after 

sequence quality control and mapping to the control strain M68 reference genome, 

SNP analysis revealed 162 bi-allelic SNP loci in the samples within the 4,308,325 

bp of the control strain M68 with the majority 79.0% (128/162) exhibiting a MAF of 

less than 10% including 54.3% (88/162) loci being identified in one sample. Only 17 

SNP loci (10.5%) had a non-reference allele frequency above 50% and each isolate 

contained up to 46/162 (28.4%) mutations, with 64.9% (24/37) isolates containing 

between 17 and 19 (10.5-11.7%) SNPs.  

 

The complete dataset of 36 isolates revealed 23 different haplotypes designated A to 

W of between three and 47 SNPs (Table 4.2). Nine of the 23 haplotypes were only 

found in 23 isolates; H-UHL-1 and UHL-2 to UHL-23 (labelled A to I). Twenty-four 

SNP loci were unique to these 23 UHL samples; 16 non-synonymous, five 

synonymous and three non-genic (Table 4.3). Haplotype A was the ‘core’ haplotype 

consisting of 11 SNPs common to all, and unique to the UHL isolates. Haplotypes B 
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to H contained one or two extra SNPs to the haplotype A pattern. Haplotype I was 

distinguishable from haplotype A by five SNPs.  

 

Table 4.2: Haplotypes for the London isolates 

 

Haplotype Number of isolates Number of SNPs Cluster 

A 10 17 Cluster 1-UHL  

B 4 18 Cluster 1-UHL  

C 3 19 Cluster 1-UHL  

D 1 19 Cluster 1-UHL  

E 1 18 Cluster 1-UHL  

F 1 18 Cluster 1-UHL  

G 1 19 Cluster 1-UHL  

H 1 18 Cluster 1-UHL  

I 1 22 Cluster 1-UHL  

J 1 3 Cluster 2-M68 

K 1 7 Cluster 2-M68  

L 1 18 Cluster 2-M68  

M 1 19 Cluster 2-M68  

N 1 23 Cluster 2-M68  

O 1 9 Cluster 2-M68  

P 1 7 Cluster 2-M68  

Q 1 19 Cluster 2-M68  

R 1 32 Cluster 3 

S 1 38 Cluster 3 

T 1 38 Cluster 3 

U 1 38 Cluster 3 

V 1 47 Cluster 3 

W 1 38 Cluster 3 
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Table 4.3: SNPs unique to cluster 1-UHL isolates 

 

Position in genome Reference Alternative Type Product/Putative Function Haplotype 

345335 S R Non-synonymous Protein-tyrosine phosphatase reductase A to I 

433205 S S Synonymous Formate/nitrite transporter A to I 

578215 P S Non-synonymous Iron hydrogenase A to I 

707105 F L Non-synonymous Multidrug family ABC transporter permease A to I 

1123155 G S Non-synonymous Putative membrane protein A to I 

1241002 L L Synonymous NhaC family Na+/H+ antiporter A to I 

1316457 A A Synonymous 3-hydroxybutyrate dehydrogenase A to I 

2764775 P L Non-synonymous Diguanylate kinase signaling protein A to I 

3072208 G A Non-synonymous Maf-like protein A to I 

3202066 L F Non-synonymous Multidrug family ABC transporter  A to I 

4025381 . . Intergenic Unknown A to I 

1491685 . . Intergenic Unknown B, C and D 

584197 C R Non-synonymous Response regulator (quorum-sensing system) E 

1245898 H N Non-synonymous Copper-sensing transcriptional repressor CsoR H 

1395682 I L Non-synonymous Hypothetical protein H 

583796 R L Non-synonymous Response regulator (quorum-sensing system) F 

1932695 I V Non-synonymous Putative membrane protein C 

3698806 . . Intergenic Unknown G 

3056134 L I Non-synonymous Ribonuclease G (RNase G)  D 

34552 S Y Non-synonymous rpoB gene I 

2744067 E E Synonymous Putative TPR repeat-containing protein I 

2813984 E E Synonymous GntR family transcriptional regulator I 

3289962 S Y Non-synonymous ABC transporter substrate-binding protein I 

3766047 K Stop codon Non-synonymous Two-component response regulator I 

Table adapted from a publication by Cairns et al., (Cairns et al., 2015). 
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A heat map of genetic Manhattan distance (Figure 4.1) depicts the three related 

groups of samples designated cluster 1-UHL, cluster 2-M68 and cluster 3. A heat 

map acts as a graphical illustration of the relationship between data points in a data 

set. Individual pairwise comparisons are represented by a value between 0 and 1 in a 

matrix. These are represented by colour in a heat map; black is completely identical 

data points (0) and white is completely different (1). By using Manhattan distance 

between two data points of SNP data, normalised between 0 and 1, a heat map can 

easily be made. Figure 4.1 illustrates genetic similarity as darker colours based on 

SNPs; the cluster 1-UHL isolates are darker colour indicating their clonality. 
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Figure 4.1: Heat map of the inter- and intra-cluster relatedness of the C. 

difficile PCR ribotype 017 isolates from London hospitals 

 

Heat map taken from a publication by Cairns et al., (Cairns et al., 2015) to show the 

inter- and intra-cluster relatedness of the London C. difficile isolates. A normalised 

Manhattan distance between samples was used, with darker colours indicating a 

closer genetic identity between samples. The clonality of the cluster 1-UHL isolates 

is illustrated by the darker colour. 
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A maximum-likelihood phylogenetic tree (Figure 4.2) also depicts the three related 

groups of isolates designated cluster 1-UHL, cluster 2-M68 and cluster 3. Figure 4.2 

also depicts the genetic relatedness specifically between the cluster 1-UHL isolates 

(a maximum of 5 SNPs). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2: Maximum-likelihood phylogenetic analysis of the C. difficile PCR 

ribotype 017 isolates from London hospitals 

 

Figure adapted from a publication by Cairns et al., (Cairns et al., 2015). Maximum-

likelihood phylogenetic analysis trees of all 37 London C. difficile isolates. A) based 

on core-genome SNPs against the control strain M68 and B) cluster 1-UHL 

haplotypes.  
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The cluster 1-UHL was composed exclusively of haplotypes A to I, containing 23/24 

isolates from UHL; 96.3% of SNP loci were found exclusively in this cluster. One 

isolate in this cluster, H-UHL-1 (haplotype I) is an historical isolate from 2005 

which predates the other 22 isolates in the cluster, and even the existing building 

where the elderly care ward was located. The H-UHL-1 sample/haplotype I was 

distinguishable from the UHL core haplotype (A) by only five SNPs. The four year 

isolation gap between the historical isolate in 2005 and the first cluster 1-UHL 

isolate in 2009 is consistent with a mutation rate of 0.74SNPs/year (Eyre et al., 

2013), one to two SNPs/year (He et al., 2013) and 1.4 SNPs/year (Didelot and 

Maiden, 2010) suggesting that the historical H-UHL-1 isolate shares a common 

ancestor with cluster 1-UHL or is itself the ancestral strain. Haplotypes A to H were 

indistinguishable based on a ≤ 2 SNP difference suggesting they are the same strain 

and transmission has occurred between patients and/or via ward contamination. 

Additionally, the two environmental isolates (E-UHL-19 and E-UHL-20) recovered 

from the toilet and floor of the elderly care ward side-room were indistinguishable 

from the cluster 1-UHL; the environment was therefore contaminated with this 

strain. Two UHL isolates (UHL-17 and UHL-21) from patients who were never 

admitted onto the elderly care ward were found to be part of the cluster 1-UHL, 

strongly suggesting inter-ward transmission. One isolate (C-UHL-24) recovered 

from a patient taken on the day of admittance to the elderly care ward was 

distinguishable from the cluster 1-UHL; however, this CDI was defined as 

community-acquired based on the patient developing CDI < 48 hours of hospital 

admission. Although the patient had spent time on the elderly care ward in the past, 

this CDI episode was likely picked up in the community or visit/s to other healthcare 

institution/s. Subsequent to the hydrogen peroxide ward decontamination that was 
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performed in September 2010, two isolates of C. difficile PCR ribotype 017 

indistinguishable from the cluster 1-UHL were recovered from patients in October 

2010 and April 2011 (UHL-22 and UHL-23). This strain has persisted at UHL with 

a possible internal reservoir that was never eliminated during the HPV 

decontamination. With the historical isolate from 2005 being indistinguishable from 

the more recent clonal isolates, the possibility of an external source that has re-

introduced this strain to the elderly care ward or a patients exit and re-entry to the 

ward cannot be excluded. 

 

All isolates in cluster 1-UHL (haplotypes A to I) contained a gene putatively 

associated with virulence; a multidrug family ABC transporter (Table 4.3). These 

have been associated with contributing to antimicrobial resistance where they play a 

role in active efflux of antimicrobial agents from the bacterial cell rendering it 

ineffective against the bacteria (Lubelski et al., 2007). Cluster 2-M68 (containing the 

control strain M68) encompassed the outer London hospitals and a UHL patient 

(UHL-24) who had spent time on the elderly care ward (26/12/12 to 28/12/12, 

04/02/13 to 07/02/13 and 08/03/13 to 20/02/13), though their CDI was defined as 

community acquired due to their symptoms beginning < 48 hours post hospital 

admission. Cluster 3 contains all of the isolates from the three inner London 

hospitals (Great Ormond Street, Royal Free and Charing Cross).  All 162 SNPs were 

the same mutations and the same positions across all isolates, and only six SNP loci 

(3.8%) had mutations in more than one cluster.  Cluster 3 contained isolates that 

were the most distinguishable from the control strain M68 with between 32 and 47 

SNPs. 
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As well as SNPs unique to the cluster 1-UHL haplotypes, a noteworthy SNP was 

present in both cluster 1-UHL and cluster 3 isolates but absent from cluster 2-M68 

isolates. This was a non-synonymous SNP in the bioB gene (Appendix 3, Page 256). 

This is one of four genes that play a major role in the biotin biosynthetic pathway 

(Satiaputra et al., 2016). Biotin mediates the transport of CO2 in many vital 

metabolic reactions and is essential for life. Interestingly, studies have shown 

decreased available biotin results in increased toxin synthesis by C. difficile 

(Yamakawa et al., 1996). This SNP may affect biotin production, limiting its 

availability and in-turn increasing toxin synthesis.  

4.4.1.3 De novo genome assembly analysis 

The SNP analysis tells us about single base pair changes but doesn't tell us about 

larger deletions or insertions or other rearrangements within the genome, therefore I 

undertook de novo assembly of each isolate in comparison to the control strain M68 

with programmatic and visual inspection of the comparisons using ACT software. 

This revealed a 49 kbp genetic region exclusive to the cluster 1-UHL (23/37) 

isolates (Figure 4.3). No other large structural variations between samples were 

revealed. Annotation of the region identified 30 coding sequences that had 

orthologues to known gene sequences and 15 coding sequences with no known 

orthologue (Table 4.4). These 45 predicted genes are highly conserved; 41/45 had 

100% amino acid identity across all 23 samples in the 1-UHL cluster.  

 

The genetic region contained genes suggestive for transposition; conjugative transfer 

of transposon-like mobile genetic element genes and an endonuclease relaxase 

MobA/VirD2 (Byrd and Matson, 1997, Silby et al., 2007). Transposons are known 
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to carry additional genes associated with virulence and/or transmissibility (Brouwer 

et al., 2011). The 49 kbp genetic region in this study does contain genes putatively 

associated with virulence and transmissibility (Table 4.4); sortase B gene (Spirig et 

al., 2011), the sporulation gene spo0J (Wu and Errington, 2003) and genes 

associated with antimicrobial resistance; tetracycline resistance transcriptional 

regulator and a multi antimicrobial extrusion protein (Nies et al., 2012). 
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Figure 4.3: ACT illustration of the 49 kbp genetic region exclusive to the cluster 

1-UHL isolates 

 

Figure adapted from a publication by Cairns et al., (Cairns et al., 2015). 

Comparative genomic analyses were performed using ACT software with the 

C. difficile genomes for the reference control strain M68 and strain H-UHL-19. Red 

bars indicate sequence similarity. The ACT analysis revealed a genetic region 

exclusive to isolates in cluster 1-UHL (including H-UHL-19) which is encircled.  
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Table 4.4: Predicted coding sequences found in the 49 kbp genetic region 

exclusive to cluster 1-UHL isolates 

 

 

Table adapted from a publication by Cairns et al., (Cairns et al., 2015). 

Genetic region in the 

H-UHL-19 genome 
Putative Product/Role/Function according to NCBI Blast and UniProt 

Data01.09_00455 Uncharacterised protein  
Data01.09_00456 Uncharacterised protein  

Data01.09_00457 Soj (parA) protein (plasmid and chromosome partitioning) 

Data01.09_00458 Spo0J (parB) protein (plasmid and chromosome partitioning) 

Data01.09_00459 Collagen-binding Cna protein, TonB-dependent receptor 

Data01.09_00460 Uncharacterised protein 

Data01.09_00461 RadA - ATP-dependent protein (DNA repair and degradation of proteins) protease 

Data01.09_00462 Uncharacterised protein 

Data01.09_00463 Superfamily II DNA and RNA helicase (RNA and DNA metabolism) 

Data01.09_00464 Uncharacterised protein 

Data01.09_00465 None 

Data01.09_00466 Uncharacterised protein 

Data01.09_00467 Uncharacterised protein 

Data01.09_00468 Endonuclease relaxase, MobA/VirD2 

Data01.09_00469 Uncharacterised protein 

Data01.09_00470 Uncharacterised protein 

Data01.09_00471 Conjugative transfer of transposon-like mobile genetic elements 

Data01.09_00472 Aspartyl/glutamyl-tRNA(Asn/Gln) amidotransferase 

Data01.09_00473 Adenine-specific methyltransferase (macrolide resistance) 

Data01.09_00474 Uncharacterised protein 

Data01.09_00475 Phd_YefM (antitoxins in type II toxin-antitoxin systems) 

Data01.09_00476 Plasmid stabilisation system protein 

Data01.09_00477 Uncharacterised protein  

Data01.09_00478 PrgI family protein (uncharacterised protein)   

Data01.09_00479 AAA-like domain protein (uncharacterised protein) 

Data01.09_00480 Modification methylase MboII (DNA methylation) 

Data01.09_00481 Uncharacterised protein 

Data01.09_00482 Sortase B (surface protein attachment) 

Data01.09_00483 Transglycosylase (enzymatic activity) 

Data01.09_00484 MerR family transcriptional regulator (DNA binding) 

Data01.09_00485 Uncharacterised protein 

Data01.09_00486 Uncharacterised protein 

Data01.09_00487 Conjugative transposon protein (enzymatic activity) 

Data01.09_00488 Tetracycline resistance, transcriptional regulator 

Data01.09_00489 Iron-sulfur protein (4Fe-4S binding domain) 

Data01.09_00490 Multi antimicrobial extrusion protein (drug transportation) 

Data01.09_00491 DNA binding, transcriptional regulator   

Data01.09_00492 ABC transporter family protein (membrane transport) 

Data01.09_00493 ftsX-like permease family protein (membrane structure) 

Data01.09_00494 Two-component response regulator (uncharacterised protein)  

Data01.09_00495 Two-component sensor histidine kinase (environmental stimuli response) 

Data01.09_00496 Cysteine-rich KTR (uncharacterised protein) 

Data01.09_00497 RNA polymerase ECF-type sigma factor (RNA transcription) 

Data01.09_00498 PemK family transcriptional regulator (cell growth regulation) 

Data01.09_00499 Short C-terminal (SHOCT) domain (oligomerisation and nucleic acid binding) 
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4.4.2 Phenotypic comparison of isolates from London hospitals 

With the findings that isolates of cluster 1-UHL haplotypes contained a gene 

putatively associated with antimicrobial resistance (multidrug family ABC 

transporter permease) and a 49 kbp genetic region exclusive to the cluster 1-UHL 

isolates with genes potentially involved in sporulation and antimicrobial resistance 

(sortase B gene, the sporulation gene spo0J and genes associated with antimicrobial 

resistance; tetracycline resistance and a multi antimicrobial extrusion protein), 

phenotypic assays were performed to try and identify a phenotype unique to the UHL 

clonal isolates that may play a role in environmental persistence and/or transmission. 

Isolates were selected to identify characteristics that would contribute to the ability 

of the cluster 1-UHL isolates to persist and spread in a population and environment; 

a strain with increased speed of growth, sporulation, germination, resistant 

antibiogram and resistance to hospital disinfectant/s would be at advantage to persist 

and spread. Four London isolates were selected based on them having the most 

variation with regards to isolation date and geographical location; UHL-1, UHL-3, 

UHL-19 and CX-32.  

4.4.2.1 Growth kinetics 

In vitro growth curves were performed to identify any differences in growth kinetics 

between the UHL and non-UHL isolates. In order to measure growth rates, isolates 

were grown at 37 °C anaerobically in BHIS broth and cell densities were measured 

by monitoring the OD590 over time, this was performed in duplicate and with three 

independent biological experiments.  
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Overall the growth rates of strains UHL-3, UHL-19, CX-32 and the control strain 

M68 were similar to one another (Figure 4.4), all entering stationary phase at around 

six hours. However, the growth rate of UHL-1 was consistently slower entering 

stationary phase at around seven hours. At four hours, the cell density for UHL-19 

was marginally higher compared to UHL-1 (p≤ 0.05) and at five hours, the cell 

density for UHL-19 and CX-32 was significantly higher (p≤ 0.0001) and for M68 

was marginally higher (p≤ 0.05) compared to UHL-1. The cell density for UHL-3 

was also marginally higher compared CX-32 (p≤ 0.05). The cell density for M68 and 

UHL-3 at six hours was significantly higher compared to UHL-1 (p≤ 0.01). At 24 

hours, the cell density for CX-32 was significantly higher compared to M68, UHL-

19 and UHL-1 (p≤ 0.001, p≤ 0.0001 and p≤ 0.01 respectively) and that for UHL-3 

was marginally higher compared to M68 and significantly higher compared UHL-19 

(p≤ 0.05 and p≤ 0.001 respectively).  

 

These experiments show the historical isolate from UHL (UHL-1) to have a slower 

growth rate compared to the more recent isolates from UHL (UHL-3 and UHL-19), 

the reference strain M68 and the isolate from Charing Cross hospital (CX-32). 

However, no statistically significant differences in growth rate between UHL and 

non-UHL isolates were observed. 
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Figure 4.4: Growth kinetics for the London C. difficile phenotypic study isolates 

 

The data represent the average of three independent experiments and duplicate 

technical replicates from separate cultures of five strains. Statistical significance was 

assessed using Two-Way ANOVA followed with Tukey’s multiple comparison tests 

in GraphPad Prism. Although there was some variation between isolates, no 

statistically significant differences in growth rate between UHL and non-UHL 

isolates were observed that could explain the persistence of the cluster 1-UHL clone. 
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4.4.2.2 Sporulation 

To investigate the rate at which the four London C. difficile phenotypic study isolates 

formed spores in vitro, the isolates were grown in medium supplemented with 

cysteine and yeast extract as the organism is known to sporulate well under these 

conditions (Sorg and Sonenshein, 2008). Cells were inoculated to fresh secondary 

cultures and grown anaerobically; samples were taken at 24 hours, 72 hours and 144 

hours and were subjected to heat treatment at 60 ºC for 30 minutes to kill vegetative 

cells but not the spores. Colony forming units were enumerated on blood agar 

supplemented with sodium taurocholate which has been shown to induce 

germination of C. difficile. 

  

The control strain M68 appears to have a slower sporulation rate than the other 

strains, but they all peak at a similar cfu by 144 hours (Figure 4.5). The sporulation 

rate of the control strain M68 increases from log 4 to log 5 between 24 hours and 72 

hours then log 5 to log 6.5 at 72 hours to 144 hours. This is in comparison to the 

other strains that were already sporulating between log 5 to log 6.5 hours at 24 hours 

and 72 hours but then reached their peak sporulation and did not increase anymore 

between 72 hours and 144 hours. At 24 hours, CX-32 had a higher spore count 

compared to UHL-19 and the control strain M68 (p≤ 0.001 and p≤ 0.0001 

respectively) and UHL-1 was significantly higher than control strain M68 (p≤ 0.01). 

At 72 hours, UHL-19 had a significantly higher spore count compared to control 

strain M68, UHL-3, CX-32 and a marginally higher spore count compared to UHL-1 

(p≤ 0.01, p≤ 0.01, p≤ 0.01 and p≤ 0.05 respectively). UHL-19 had a higher spore 

count at 144 hours, though this was not statistically significant.  
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These spore assays showed variation in sporulation rates with the isolate from 

Charing Cross hospital (CX-32) producing more spores after 24 hours incubation 

compared with the other four isolates, and the environmental isolate from UHL 

produced more spores after 72 hours incubation. Four isolates were found to 

sporulate to higher cfus than the control strain M68 at 24 hours and 72 hours, 

however, no statistically significant differences in sporulation rate between cluster 1-

UHL and non-cluster 1-UHL isolates were observed. 
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Figure 4.5: Total spores recovered at 24 hours, 72 hours and 144 hours for the London C. difficile phenotypic study isolates 

 

The data represent the average of three independent experiments and duplicate technical replicates from separate cultures. Statistical significance 

was assessed using One-Way ANOVA followed with Tukey’s multiple comparison tests in GraphPad Prism. Error bars indicate the standard 

error of the means and significant differences are marked with a bracket (* = p≤ 0.05, ** = p≤ 0.01, *** = p≤ 0.001 and **** = p≤ 0.0001). 

Although there was some variation between isolates, no statistically significant differences in spore production between UHL and non-UHL 

isolates were observed that could explain the persistence of the cluster 1-UHL clone. 

48 hours 24 hours 72 hours 
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4.4.2.3 Percentage spore production 

To estimate the rate of sporulation more accurately, and to take into account possible 

variation in cell growth rate, the sporulation rates were expressed as percentage of 

spores to vegetative cells and calculated as follows: [N spore count *100] / N all cell 

count. Percentage spore production for the study isolates are shown in Figure 4.6. 

The percentage spore production for the non-UHL isolate (CX-32) at 72 hours was 

significantly higher than the UHL isolate (UHL-3) but only marginally higher than 

the control strain M68 (p≤ 0.01 and p≤ 0.05 respectively). No significant difference 

in the percentage spore production was observed at 24 hours or 144 hours. No 

statistically significant differences in percentage spore production between cluster 1-

UHL and non-cluster 1-UHL isolates were observed. 
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Figure 4.6: Percentage spores recovered at 24 hours, 72 hours and 144 hours for the London C. difficile phenotypic study isolates 

 

The data represent the average of three independent experiments and duplicate technical replicates from separate cultures. Statistical significance 

was assessed using One-Way ANOVA followed with Tukey’s multiple comparison tests in GraphPad Prism. Error bars indicate the standard 

error of the means and significant differences are marked with a bracket (* = p≤ 0.05, ** = p≤ 0.01, *** = p≤ 0.001 and **** = p≤ 0.0001). 

Although there was some variation between isolates, no statistically significant differences in percentage spore production between UHL and 

non-UHL isolates were observed that could explain the persistence of the cluster 1-UHL clone. 

48 hours 24 hours 72 hours 
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4.4.2.4 Total cell recovery 

To investigate the total cell recovery (vegetative cells and spores) characteristics, 

cfus were enumerated on blood agar supplemented with sodium taurocholate without 

heat treatment which allows for all cells, both vegetative cells and spores to be 

recovered. These counts are shown in Figure 4.7. No significant differences were 

observed in the cell counts at 24 hours and 144 hours, however, at 72 hours, the cell 

count for the control strain M68 were marginally higher than CX-32 (p≤ 0.05). No 

statistically significant differences in all cell recovery rates between cluster 1-UHL 

and non-cluster 1-UHL isolates were observed. 
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Figure 4.7: Total cells recovered at 24 hours, 72 hours and 144 hours for the London C. difficile phenotypic study isolates 

 

The data represent the average of three independent experiments and duplicate technical replicates from separate cultures. Statistical significance 

was assessed using One-Way ANOVA followed with Tukey’s multiple comparison tests in GraphPad Prism. Error bars indicate the standard 

error of the means and significant differences are marked with a bracket (* = p≤ 0.05, ** = p≤ 0.01, *** = p≤ 0.001 and **** = p≤ 0.0001). 

Although there was some variation between isolates, no statistically significant differences in total cell production between UHL and non-UHL 

isolates were observed that could explain the persistence of the cluster 1-UHL clone. 

48 hours 24 hours 72 hours 
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4.4.2.5 Minimum inhibitory concentrations 

MICs were determined using the broth dilution method against the antibiotics; 

metronidazole, vancomycin, erythromycin, lincomycin, fusidic acid, naladixic acid, 

rifampicin and rifamycin. MIC data are shown in Table 4.5.  

 

 

Table 4.5: MIC assay data for the London phenotypic study isolates 
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M68 2-M68 1.5 1 ≥ 256 ≥ 256 4 128 ≤ 0.5 ≤ 0.5 

UHL-3 2-M68 1.5 1 ≥ 256 ≥ 256 4 128 ≤ 0.5 ≤ 0.5 

UHL-1 1-UHL 1.5 1 ≥ 256 ≥ 256 4 128 ≤ 0.5 2 

UHL-19 1-UHL 1.5 1 ≥ 256 ≥ 256 4 128 ≤ 0.5 ≤ 0.5 

CX-32 3 1.5 1.5 ≤ 0.5 32 4 128 ≤ 0.5 ≤ 0.5 

 

Five strains were tested using an antibiotic range of 0 (negative control) to 256µg/ml. 

The data represent the average of at least two independent experiments and duplicate 

technical replicates from separate cultures. Although there was variation in MICs 

between some isolates, no defined antibiogram was exclusive to the cluster 1-UHL 

isolates. 

 

 

Although no antimicrobial susceptibility phenotype exclusive to the cluster 1-UHL 

isolates was identified, there were some notable variations. Compared with the other 

four isolates tested, the historic isolate UHL-1 had a higher MIC to the antibiotic 

rifaximin, one that is considered as intermediate resistance in the clinical setting. 
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This isolate (haplotype I) was shown in this study to have five additional SNPs 

compared to the core modern UHL sample haplotype A (Tables 4.2 and 4.3). Three 

SNPs were non-synonymous and found in; the rpoB gene, an ABC transporter and in 

a two-component response regulator resulting in a stop-codon. The remaining two 

SNPs were synonymous and found in a gntR gene (family transcriptional regulator) 

and the other a hypothetical protein of unknown function.  

 

Isolate CX-32 from a patient at Charing Cross hospital had significantly lower MICs 

to the macrolide antibiotics; erythromycin and lincomycin compared with the other 

four isolates tested (the three isolates from cluster 1-UHL tested phenotypically were 

found resistant). De novo analysis in this study revealed all isolates in cluster 1-UHL 

and isolates M68, QM-34, NM-27, B-26 and B-33 to carry the well characterised 

transposon Tn6194 which carries the ermB gene and is known to confer resistance to 

the macrolide class of antibiotics (Brouwer et al., 2013). Isolates WX-35, WX-36 

and NP-25 and all isolates in cluster 3 which includes CX-32 were found not to carry 

or have lost this transposon.  

4.4.2.6 Disinfectant susceptibility assays  

Studies have found C. difficile spores are able to survive the recommended 1000 

parts-per million strength for chlorine releasing agents (Dawson et al., 2011, 

Kulikovsky et al., 1975). This could explain the persistence of the cluster 1-UHL 

isolates. Actichlor Plus, a combined chlorine releasing agent plus a detergent was the 

commonly used disinfectant at UHL. To investigate the resistance to Actichlor Plus 

as a cause of the cluster 1-UHL isolates environmental persistence, the susceptibility 

to this disinfectant was determined for the four study isolates tested phenotypically 
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and the control strain M68. These data are shown in Figure 4.8. The disinfectant 

Actichlor Plus at a concentration of 1000 parts-per million demonstrated ≥ 99% 

efficacy with all five isolates tested. Furthermore, to take into consideration possible 

variation in germination and sporulation rates, the percentage survival was calculated 

which showed no significant variation (Figure 4.9). No statistically significant 

variation in the susceptibilities to Achtichlor Plus was observed between the isolates 

tested. 
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Figure 4.8: Total Achtichlor Plus assay data for the London C. difficile 

phenotypic study isolates 

 

The data represent the average of three independent experiments and duplicate 

technical replicates from separate cultures. Statistical significance was assessed using 

One-Way ANOVA followed with Tukey’s multiple comparison tests in GraphPad 

Prism. Error bars indicate the standard error of the means and significant differences 

are marked with a bracket (* = p≤ 0.05, ** = p≤ 0.01, *** = p≤ 0.001 and **** = p≤ 

0.0001). The disinfectant Actichlor Plus at a concentration of 1000 parts-per million 

demonstrated ≥ 99% efficacy with all five isolates tested though no statistically 

significant variation in susceptibility between isolates was observed. 
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Figure 4.9: Percentage survival following Actichlor Plus treatment for the 

London C. difficile phenotypic study isolates 

 

The data represent the average of three independent experiments and duplicate 

technical replicates from separate cultures. Statistical significance was assessed using 

One-Way ANOVA followed with Tukey’s multiple comparison tests in GraphPad 

Prism. Error bars indicate the standard error of the means and significant differences 

are marked with a bracket (* = p≤ 0.05, ** = p≤ 0.01, *** = p≤ 0.001 and **** = p≤ 

0.0001). No statistically significant variation in the percentage survival following 

Achtichlor Plus treatment between the isolates tested was observed. 
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4.5 Discussion 

Using PCR ribotyping, WGS and phenotyping assays, my study investigated a total 

of 37 C. difficile PCR ribotype 017 isolates (Table 4.1); 22 strains isolated from 

humans who at different times were present on the same hospital ward at UHL, two 

environmental strains isolated from the same hospital ward and 13 contemporaneous 

strains isolated from humans from other London hospitals. 

 

My data shows that the C. difficile isolates from UHL are clonal and genotypically 

different to C. difficile isolates from other London hospitals included in my study. 

Phylogenetic analysis of SNPs revealed three diverging sub-lineages of C. difficile 

PCR ribotype 017 (cluster 1-UHL, cluster 2-M68 and cluster 3) with 96.3% of SNP 

loci found exclusively in only cluster 1-UHL. Through de novo assembly analysis, a 

49 kbp genetic region that further differentiated cluster 1-UHL isolates from cluster 

2-M68 and cluster 3 isolates was revealed. Although not all virulence genes are on 

mobile genetic elements, mobile genetic elements commonly carry virulence genes 

(Pallen and Wren, 2007) and the presence of putative virulence genes within this 49 

kbp genetic region suggests that it may be a transposon-like putative mobile genetic 

element. To prove it is a transposon-like mobile genetic element and has been 

acquired by the clonal strains, the sequences spanning the insertion site of the 49 kbp 

genetic region could be sequenced using long read sequencing methodologies such as 

MinION or PacBio (Table 1.4, Page 61). This would confirm element and location 

and would help determine if the 49 kbp genetic region is similar to a known 

transposable element or meets the criteria to be assigned as a new transposable 

element, i.e. evidence of excision from the chromosome and presence of accessory 

genes not associated with transfer and which may encode functions that contribute to 
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a survival advantage, commonly antimicrobial resistance  (Roberts et al., 2008, 

Campbell et al., 1979). Additionally, to meet the definition of a transposable element 

“specific DNA segments that can repeatedly insert into one or more sites in one or 

more genomes” (Roberts et al., 2008), bacterial mating experiments may also be 

attempted to confirm the genetic region is mobile and the phenotype is transferable 

(Brouwer et al., 2013, Hussain et al., 2005, Roberts et al., 2001). 

 

A non-synonymous SNP in the bioB gene (Appendix 3, Page 256) was present in all 

isolates of cluster 1-UHL and cluster 3. This is one of four genes that play a major 

role in the biotin biosynthetic pathway (Satiaputra et al., 2016). Biotin mediates the 

transport of CO2 in many vital metabolic reactions and is essential for life. 

Interestingly, studies have shown decreased available biotin results in increased toxin 

synthesis by C. difficile (Yamakawa et al., 1996). This SNP may affect biotin 

production, limiting its availability and in-turn increasing toxin synthesis. It would be 

worth investigating this phenomenon by repeating the assay reported in the study by 

Yamakawa et al., which is dated. Here we could study the effect of biotin on toxin 

production between isolates from the different London clusters. 

 

With the identification of a unique genotype and to identify a phenotype exclusive to 

the UHL outbreak isolates that may play a role in environmental persistence and/or 

transmission, phenotypic assays were performed on five isolates (UHL-1, UHL-3, 

UHL-19, CX-32 and the control strain M68) to place these strains into geographical 

and historical context. Variations in growth kinetics, sporulation, sporulation rates, 

vegetative cell counts and antimicrobial susceptibility were observed, though none 
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were statistically significant that would differentiate cluster 1-UHL and non-cluster 

1-UHL isolates. There were no significant variations in susceptibility to the 

disinfectant Actichlor Plus between those isolates tested, indicating therefore that 

there was no potential survival advantage observed for the UHL isolates with regards 

to susceptibility to this disinfectant. A phenotype exclusive to the UHL outbreak 

isolates that may play a role in environmental persistence and/or transmission was 

not identified.  

 

Although no statistically significant difference in antimicrobial susceptibility 

differentiating cluster 1-UHL and non-cluster 1-UHL isolates was found, there were 

some interesting observations. The three isolates from cluster 1-UHL (UHL-1, UHL-

3 and UHL-19) were found phenotypically resistant and the isolate from Charing 

Cross hospital (CX-32) had significantly lower MICs to the macrolide antibiotics 

erythromycin and lincomycin. De novo analysis showed that isolate CX-32 did not 

carry or had lost the well characterised transposon Tn6194 which carries the ermB 

gene of which is known to confer resistance to the macrolide class of antibiotics 

whereas all isolates in cluster 1-UHL and isolates M68 did carry this transposon. 

This may explain the variation in susceptibility of these isolates to erythromycin as 

the ermB gene is required for resistance to erythromycin and lincomycin (Wust and 

Hardegger, 1983, Hachler et al., 1987, Farrow et al., 2000). As previously described, 

CDI is associated with prior antimicrobial therapy and patients > 65 years of age. A 

common cause of hospitalisation in elderly patients is for the management of 

community acquired pneumonia; this is frequently treated with the macrolide class of 

antimicrobials to cover atypical pathogens and/or those patients who are penicillin 

allergic. Of note the reference strain M68 was also resistant to the macrolide 
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antibiotics and this strain was associated with outbreaks of CDI in Ireland (Drudy et 

al., 2007b, Drudy et al., 2007c). It may be hypothesised that this resistance may have 

contributed to the establishment of the outbreak at UHL. A clonal cluster of C. 

difficile that is exclusively resistant to an antimicrobial may have implications for 

antimicrobial stewardship. The occurrence of a clonal cluster of isolates with a 

specific antibiogram combined with time of sampling, patient location with regards 

to time and place and details of antimicrobial prescriptions will enable clinicians to 

decide if they need to alter local antimicrobial stewardship. 

 

The historical isolate UHL-1 had a higher MIC to the antibiotic rifaximin, one that is 

considered as intermediate resistance in the clinical setting. This isolate (haplotype I) 

was also found to have five additional SNPs compared to the core modern UHL 

sample haplotype A (Tables 4.2 and 4.3). Three of these were non-synonymous and 

found in; the rpoB gene, an ABC transporter and in a two-component response 

regulator resulting in a stop-codon. Rifaximin resistance has been associated with 

SNPs in the rpoB gene of C. difficile (O'Connor et al., 2008, Curry et al., 2009) and 

so it is possible that the higher MIC to rifaximin in this historical isolate is a 

consequence of the non-synonymous SNP in the rpoB gene. Rifaximin is a treatment 

option for recurrent CDI, but rarely used for this indication, however, it is used for 

other bacterial infections in hospitalised patients. It would be worth investigating if 

the higher MIC to rifaximin is a consequence of the non-synonymous SNP in the 

rpoB gene since this resistance may have given the historical isolate a selective 

advantage allowing the persistence of the UHL cluster like that observed with the 

epidemic PCR ribotype 027 strain and its resistance to the fluoroquinolone class of 

antibiotics (He et al., 2013).  
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The transposon-like putative mobile genetic element identified in this study encodes 

a gene putatively associated with tetracycline resistance; a tetracycline resistance 

transcriptional regulator (Table 4.4). Transcriptional regulators are known to control 

the expression of genes associated with tetracycline resistance, for example the tet 

class of genes (Ramos et al., 2005). The presence of a putative tetracycline resistance 

transcriptional regulator may play an indirect role in resistance to tetracycline; 

however, the isolates selected for phenotypic study were not tested for susceptibility 

to tetracycline. 

 

With the observations associated with the macrolides, rifaximin and tetracycline, it 

may be hypothesised that prior administration of these antimicrobials may have 

contributed to the cluster 1-UHL outbreak; it would be plausible to investigate if use 

of these antibiotics were a contributory cause of the outbreak at UHL. A timeline of 

CDI cases and prescriptions of these antibiotics would illustrate this and may alter 

local antimicrobial stewardship as well as susceptibility testing against tetracycline. 

 

There were limitations in this study. Firstly, the choice of control isolate used for 

detection of SNPs and de novo analysis of insertions and deletions; obviously results 

will vary depending upon which control strain is used for comparison. This study 

compared the genomes of the study isolates with the reference genome of the 

C. difficile PCR ribotype 017 strain M68 GenBank accession number FN668375 (He 

et al., 2010). This was the most appropriate strain to use as a control for this study 

since only two reference genomes of C. difficile PCR ribotype 017 were available 

and there was a better understanding of strain M68 with it being involved in 

outbreaks in Ireland (Drudy et al., 2007a, Drudy et al., 2007b). Another limitation in 
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this study is the methodology applied for the detection of SNPs. The method 

obviously reads only the parts of the genome that match the control strain that it is 

assembled against; if there are regions of the genome that are not present in the 

control strain, then these regions are not analysed for SNPs. The methodology also 

does not read regions of repetitive DNA (sequences that are similar or identical to 

sequences elsewhere in the genome); therefore, any differences in repetitive regions 

between strains are not detected. Another limitation in this study is the methodology 

applied for the identification of unique genomic regions indicative of horizontal gene 

transfer; the method is programmatic and relies on visual inspection of comparisons 

using the ACT application. This has limitations in that it is manual and when 

analysing multiple strains, there is potential for user error.  

4.6 Conclusion 

This is the first study in the UK to investigate the phylohistory of isolates from 

hospitalised patients with CDI due to C. difficile PCR ribotype 017. It is a snapshot 

of isolates and suggests that a clonal strain of C. difficile toxin A-B+ PCR ribotype 

017 has persisted in a ward at one London hospital for at least five years and which is 

different to C. difficile PCR ribotype 017 strains that are circulating in other London 

hospitals. The clonal strain was found to exclusively harbour a 49 kbp genetic region 

suggestive of being a transposon-like putative mobile genetic element however, no 

phenotype exclusive to this cluster was revealed. The C. difficile PCR ribotype 017 

lineage, with its unique toxin profile and unusual global prevalence, is understudied. 

My study shows that there are existing questions about the population structure and 

epidemiology of C. difficile toxin A-B+ PCR ribotype 017 strains. 
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5 The global phylogeny of C. difficile PCR ribotype 017 

5.1 Statement of contribution 

Isolate selection, PCR ribotyping and genomic DNA extractions were performed by 

M. Cairns. WGS were performed both at the WTSI by D. Harris and at the LSHTM 

by M. Cairns. The collection of epidemiology data were performed by M. Cairns. 

SNP calling were performed by Dr Mark Preston. De novo assembly were performed 

by M. Cairns with help from Dr Richard Stabler. MIC assays were performed by 

Catherine Hall (LSHTM). Data interpretation was performed by M. Cairns.  

 

5.2 Introduction 

With testing a larger collection of strains (n=385) of multiple PCR ribotypes isolated 

from multiple sources and geographical locations using MLST, chapter 3 confirmed 

that C. difficile is made up of five phylogenetic lineages; PCR ribotypes 017, 023, 

027, 078 and a heterogeneous grouping of mixed PCR ribotypes. The MLST data 

found no association between sequence type and geographical location or source. 

The lineage associated with PCR ribotype 027 has been investigated further using 

WGS and identified the presence of two genetically diverse global sub-lineages (He 

et al., 2013), however, less is known about the in-depth phylogeny of the other four 

lineages of C. difficile.  

 

Historically, C. difficile PCR ribotype 017 strains were identified in outbreaks of 

CDI in Asia; it is thought that PCR ribotype 017 spread from Asia to Europe and 
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other continents (Hawkey et al., 2013, Collins et al., 2013) however, this hypothesis 

has never been tested. In chapter 4, I investigated PCR ribotype 017 on a local scale 

where WGS identified a clonal strain from a single ward in a London hospital. WGS 

can also be applied to a larger collection of strains from multiple sources isolated 

over a large time scale to elucidate the phylogeny of a species like that applied to 

PCR ribotype 027 (He et al., 2013). No study had yet investigated the phylogeny of a 

large, global collection of PCR ribotype 017 strains using WGS, therefore, it is 

unknown if there are sub-lineages of PCR ribotype 017 like that seen with PCR 

ribotype 027. WGS would provide far superior discrimination compared with MLST.  

 

The two lineages of PCR ribotype 027 identified through WGS had emerged in USA 

within a relatively short period of time after acquiring the same fluoroquinolone 

resistance conferring mutation (He et al., 2013). This implies that antimicrobial 

resistance played a significant role in driving the global spread of PCR ribotype 027. 

Reduced susceptibility and resistance to the first-line antimicrobial agents 

metronidazole and vancomycin have been described in C. difficile although the 

mechanisms of resistance are still not completely understood (Pelaez et al., 2008, 

Brazier et al., 2001, Chong et al., 2014, Goudarzi et al., 2013, Adler et al., 2015). It 

has been suggested that resistance to metronidazole is attributable to mutations 

within multiple genomic loci, including genes responsible for altered iron 

metabolism (Chong et al., 2014) whilst resistance to vancomycin may be due to 

amino acid changes in the peptidoglycan biosynthesis (Leeds et al., 2014). Reduced 

susceptibility to antibiotics commonly used for bacterial infections (other than C. 

difficile) not only contribute to the occurrence of CDI, but also in driving the 

evolution of C. difficile and emergence of new strains and lineages, like that 
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described with PCR ribotype 027 and fluoroquinolone resistance (He et al., 2013). 

Therefore, investigating other antimicrobials not routinely used in the treatment of 

CDI for resistance is useful for surveillance purposes. Resistance to the 

fluoroquinolone class of antimicrobials is attributable to mutations in the quinolone 

resistance determining region of the gyrA and/or gyrB genes (Ackermann et al., 

2001, Drudy et al., 2006, Drudy et al., 2007d). Resistance to rifampicin has also been 

observed in C. difficile and this is due to alterations in the rpoB gene encoding the 

RNA polymerase (Freeman et al., 2015). 

 

Antimicrobial resistance is confirmed phenotypically; an organism is grown in the 

presence of varying concentrations of an antimicrobial and the MIC is determined 

(Andrews, 2001).  The most common phenotypic methodologies are the agar dilution 

and episilometer test (Etest) however; these methods are laborious and time-

consuming. To overcome this, the molecular detection of known antimicrobial 

resistance determinants is employed. In the diagnostic setting, commercial target-

specific PCR platforms for the molecular detection of organisms and antimicrobial 

genotypes such as the Xpert
®

 platform mentioned in chapter 3 are available. This 

platform and similar have advanced the routine diagnostic microbiology laboratory 

improving the sensitivity of target detection and turn-around times of results. This is 

beneficial for organisms that possess fastidious growth requirements i.e. 

Mycobacterium tuberculosis and C. difficile. The molecular detection of a pathogen 

with a genotype associated with antimicrobial resistance in a diagnostic 

microbiology setting is also useful when prompt bed management is required. For 

example, the prompt detection of patients colonised with MRSA allowing infection 

control interventions such as cohorting and decolonisation (Jeyaratnam et al., 2008). 
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Additionally, the clinical management of a patient with sepsis is likely improved 

whereby reducing exposure to unnecessary broad-spectrum antibiotics would reduce 

the selective pressure for the development of antimicrobial resistance. However, such 

PCR platforms that are used in diagnostic microbiology laboratories are target 

specific and therefore limited to providing only the detection of that specifically 

sought. 

 

As well as SNPs that confer antimicrobial resistance, mobile genetic elements such 

as transposons are also important whereby they often carry genes associated with 

antimicrobial resistance (Wiedenbeck and Cohan, 2011). Through De novo 

assembled genome analysis, the clonal strain of PCR ribotype 017 identified in 

chapter 4 was found to exclusively possess a 49 kbp genetic region suggestive of 

being a transposon-like putative mobile element which would not have been revealed 

by conventional typing methodologies.  

 

WGS allows the unbiased analysis of the bacterial genome to detect putative 

antimicrobial resistance determinants, differentiate between varying mechanisms 

resulting in the same resistance pattern and identify new resistance determinants all 

in a single assay. Although WGS is not routinely used to detect a bacterium’s 

antimicrobial phenotype, high concordance between genotypic and phenotypic 

resistance in multiple pathogens has been shown (Zankari et al., 2013, Read and 

Massey, 2014, Palmer and Kishony, 2013). Therefore WGS acts as a useful tool to 

predict phenotypic antimicrobial resistance which is useful diagnostically for a 

patient and also for surveillance and identification of clonal expansions that may be 

driven by antimicrobial resistance. PCR ribotype 017 has been associated with higher 



 

183 

 

levels of antimicrobial resistance compared with other PCR ribotypes (Drudy et al., 

2007b), however, it is not known if there are sub-lineages of PCR ribotype 017 and if 

there are, if antimicrobial resistance played a role in their spread like with the sub-

lineage of PCR ribotype 027 (He et al., 2013). 

 

C. difficile is known to cause similar infection in both humans and animals and it is 

well documented that PCR ribotype 078 is the predominant PCR ribotype isolated 

from animal species with CDI (Keel et al., 2007, Jhung et al., 2008, Rupnik et al., 

2008). Although C. difficile is not a proven food-borne pathogen, there is evidence 

that the same strain can cause symptomatic disease in both pigs and humans (Debast 

et al., 2009) and data from chapter 3 indicate that strains isolated from humans, 

animals and food origins are not phylogenetically distinct by MLST. With a global 

collection of C. difficile PCR ribotype 017 strains, it is therefore plausible to 

hypothesise that C. difficile PCR ribotype 017 isolated from human and non-human 

sources are not distinct by WGS. 

5.3 Hypotheses of the research described in this chapter 

The data in chapter 4 suggests a clonal strain of C. difficile toxin A-B+ PCR ribotype 

017 has persisted in London for five years. This clonal strain was found to 

exclusively harbour a 49 kbp genetic region suggestive of being a transposon-like 

putative mobile genetic element. The PCR ribotype 017 lineage, with its unique toxin 

profile and unusual global prevalence, is understudied. There are existing questions 

about the population structure and epidemiology of toxin A-B+ PCR ribotype 017 

strains; by resolving these may have implications on the awareness of this PCR 
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ribotype and whether this needs to be heightened. This study was designed to test the 

following hypotheses: 

 

Chapter 5: hypothesis 1 

One or more SNP/s and/or insertions or deletions (including those associated with 

antimicrobial resistance) are associated with the global spread of C. difficile PCR 

ribotype 017.  

 

Chapter 5: hypothesis 2 

C. difficile PCR ribotype 017 isolated from different geographical origins are 

phylogenetically distinct by WGS.  

 

Chapter 5: hypothesis 3 

C. difficile PCR ribotype 017 isolated from human and non-human sources are not 

phylogenetically distinct by WGS.  

 

Chapter 5: hypothesis 4 

C. difficile PCR ribotype 017 originated in Asia.  
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5.4 Results  

In order to test my hypotheses, I aimed to collate the first global collection of C. 

difficile PCR ribotype 017 strains isolated from a broad range of hosts and 

geographical locations. In order to do this, I established a network of global 

collaborators which was initially started by networking with fellow researchers at 

international conferences and poster sessions. A total of 384 C. difficile isolates were 

collated from collaborators (Page 27).  

 

Upon receipt of strains from collaborators all isolates were propagated on appropriate 

culture media (Sections 2.2.2, Page 70 and 2.2.3, Page 71). Before inclusion in the 

collection of strains, I first confirmed they were PCR ribotype 017 by PCR 

ribotyping and agarose gel electrophoresis (Section 2.3.1, Page 77). A total of 277 

isolates were confirmed to be PCR ribotype 017 and were included for study. This 

collection of 277 strains were from; human (n=251), bovine (n=9), canine (n=11), 

equine (n=4) and hospital ward environment (n=2) with isolation dates between 1990 

and 2013 and included isolates from six global continents (Appendix 2, Page 249). 

Once confirmed, in preparation for WGS, DNA was quantified (Section 2.3.3.2, Page 

84) and WGS was performed using Illumina Sequencing Technology (Sections 

2.3.3.3, Page 85 and 2.3.3.4, Page 88). SNPs and haplotypes were identified by 

sequence mapping and assembly (Sections 2.3.3.5, Page 85 to 2.3.3.9, Page 92 

inclusive) and de novo genome assembly analysis and visual inspection using ACT 

was performed to identify genomic deletions and insertions (Section 2.3.3.10, Page 

92). Software tools were used to produce phylogenetic trees to enable visual 

comparisons of SNP differences in the global collection of C. difficile isolates 

(Section 2.3.9, Page 91) and phenotypic antimicrobial susceptibility testing was 
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performed on select isolates (S- 017.72, WA 1514, S- 017.92, S- 017.27, S- 017.74, I 

6 and 01-116) to identify an antibiogram that may be exclusive to a particular group 

of isolates and/or one which correspond with genotypic data (Section 2.2.7, Page 73). 

To investigate the phenomenon that C. difficile PCR ribotype 017 originated in Asia, 

global transmission events were inferred from bayesian evolutionary and geo-

temporal analyses of the collection of 277 C. difficile PCR ribotype 017 isolates 

(Section 2.3.9, Page 91).  

 

 

5.4.1 The phylogeny of a global collection of C. difficile PCR ribotype 

017 strains using PCR ribotyping and WGS 

5.4.1.1 PCR ribotyping 

All 277 isolates in this study were confirmed to be PCR ribotype 017 by PCR 

ribotyping and agarose gel electrophoresis. Reference strains R20291 (PCR ribotype 

027) and M68 (PCR ribotype 017) were used as controls and all isolates were 

assumed to be toxinotype VIII, A-B+ based on their being PCR ribotype 017. There 

are no known reports of PCR ribotype 017 having any other toxin profile other than 

toxinotype VIII, A-B+. 

5.4.1.2 Inference of phylogeny using SNP data 

To investigate the phylogeny and clonality of the isolates in this study, after 

sequence quality control and mapping to the control strain M68 reference genome, 

SNP analysis revealed 1288 bi-allelic SNPs with 311 present in greater than 1% of 

samples and greater than 1 bp from an insertion or deletion. Of these SNPs, 65.6% 
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(204/311) were non-synonymous (Appendix 3, Page 256), 17.7% (55/311) 

synonymous and 16.7% (52/311) were present in non-coding regions of the genome. 

Twelve SNPs affected stop-codons; eleven non-synonymous and one synonymous 

(Table 5.1). SNP data revealed 109 haplotypes containing between 0 and 52 SNPs 

with 76.5% (212/277) of isolates having between 10 and 35 SNPs compared to the 

reference genome. 
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Table 5.1: Stop-codon associated SNPs for the global isolates 

Position in the 

M68 genome 

M68 

Reference 

Codon 

Alternative 

Codon 

Non-

Synonymous / 

Synonymous 

Gene Predicted Function and/or Potential Impact 
No. of isolates 

with SNP 

1907433 TAA GAA NS msrAB Peptide methionine sulfoxide reductase 256 

1204039 GGA TGA NS M68_01144 Hydrolase 36 

3304067 TCA* GCA* NS Sigma-54 Controls expression of nitrogen related genes 29 

132573 TGG TGA NS M68_00168 Amino acid aminotransferase 16 

3399853 TTG* TAA* NS M68_03193 Ca2+/Na+ antiporter 13 

3704987 CCA* TGA* NS sleB Spore-cortex-lytic protein 8 

4157880 TTG* TAA* NS M68_03851 PTS system, IIc component 6 

557896 TTC* TAA* NS feoB3 Ferrous iron transport protein B 3 

1359584 GGA TGA NS M68_01270 Extracellular solute-binding protein 3 

1916756 AAT* GAT* S M68_01782 Unknown 3 

3402470 CAA TAA NS plfB Formate acetyltransferase 3 

3784055 TTC* TAA* NS M68_03513 Penicillin-binding protein 3 

* = encoded on reverse strand  

 

Table adapted from a publication by Cairns et al., (Cairns et al., 2017). 
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A maximum-likelihood phylogenetic tree based on the 1288 SNPs was generated 

with geographical and temporal data combined in a phylogeographic analysis 

generated by mclust software (Figure 5.1).  Of the 1288 SNPs, 76% (977/1288) had a 

MAF of ≤ 1% and/or were within 1 bp of an insertion or deletion. To control for 

false positive identification of SNPs (these SNPs may mask the true phylogeny of 

PCR ribotype 017) phylogenetic trees with and without these SNPs were generated. 

The inclusion of 977 SNPs only had a minor effect on the overall phylogenetic tree.  

 

The mclust software divided the isolates into 20 clusters by cluster analysis (Figure 

5.1). The combination of epidemiological, genetic and temporal data, cluster 2 (C2) 

was defined as the best fit and demonstrates the presence of two genetically diverse 

sub-lineages; SL1 and SL2.  

 

By combining Bayesian evolutionary analysis with geo-temporal modelling of the 

277 isolates, the evolution of C. difficile PCR ribotype 017 can be orientated though 

time (Figures 5.1 and 5.2). The analysis depicted in these figures indicate a split from 

SL1 (upper samples) into SL2 (lower samples) c1990. SL1 was more closely related 

to the control strain M68 of the two sub-lineages (Figure 5.2). Both Figures 5.1 and 

5.2 also illustrate that isolates from different continents are amongst both SL1 and 

SL2 indicating that both sub-lineages are global in nature. 

 

The two sub-lineages were differentiated by four SNPs; one present in a non-coding 

region and three non-synonymous SNPs (Table 5.2).  
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Figure 5.1: Temporal phylogeny and maximum likelihood clusters for the global C. difficile PCR ribotype 017 isolates 

 

Figure adapted from a publication by Cairns et al., (Cairns et al., 2017). Temporal phylogeny and maximum likelihood clusters of the 277 C. 

difficile PCR ribotype 017 isolates. The phylogenetic tree illustrates how the collection of isolates has evolved over time with continents 

identified by colour and division between SL1 and SL2 identified. The heat map on this figure splits the collection of 277 isolates into 20 

possible clusters (C1-C20) based on maximum likelihood generated by mclust software. Cluster 2 (C2) was selected as the best fit based on 

epidemiological, genetic and temporal data associated with the isolates. 
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Table 5.2: Lineage defining SNPs for the global isolates 

*Non-Synonymous (NS), Synonymous (S), Non-Coding (NC) 

Table adapted from a publication by Cairns et al., (Cairns et al., 2017). 

 

 

5.4.1.3 De novo genome assembly analysis 

In chapter 4, de novo assembled genomes revealed a 49 kbp transposon-like putative 

mobile genetic element exclusive to a hospital clonal cluster of PCR ribotype 017 

strains. To investigate the global collection of strains in this study for this and/or 

other insertions or deletions, programmatic and visual inspection of the comparisons 

was performed. De novo assembly of each isolate and comparison to the control 

strain M68 revealed 56 regions of DNA between ~4 and ~61.5 kb that were absent in 

the control strain M68. These had 34 different insertion sites. Additionally, regions 

of DNA of between ~8 and ~29 kb at six sites were found absent from multiple 

strains but present in the control M68 strain. Details of genes of interest found in 

either an insertion or deletion are depicted in Figure 5.2 and listed in Table 5.3. 

 

Bayesian evolutionary analysis and geo-temporal modelling was combined with a 

heat map to also depict presence/absence of insertions and antimicrobial resistance 

associated SNPs in relation to the isolates and continent (Figure 5.2). The deletions 

Position 
Amino 

Acid 

Reference 

Base 

Alternative 

Base 

*NS/

S/NC 
Gene 

Predicted Function and/or 

Potential Impact 

650374 19 A G NS merR 
Altered response to 

environmental stimuli 

900866 . C T NC . . 

2914248 257  A G NS dacF  
Reduced resistance  

to heat  or β-lactam antibiotics 

3604289 329 C A NS Hypothetical Unknown 
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and insertions are well distributed geographically and temporally and the 49 kb 

transposon-like putative mobile genetic element identified in chapter 4 was also 

found to insert at a different site in single isolates from Canada, the USA and the UK 

with isolation dates of 2006, 2006 and 2011 respectively.  

 

A single SNP in the PaLoc region resulting in a synonymous change was found in 

five Korean strains in SL2 isolated between 2004 and 2008, however, visual 

inspection of the comparisons in the ACT application revealed no variations in the 

genes tcdA or tcdB compared with the reference control strain M68. 
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Figure 5.2: Bayesian evolutionary analysis of the global C. difficile PCR 

ribotype 017 isolates 

 

Figure adapted from a publication by Cairns et al., (Cairns et al., 2017). Bayesian 

evolutionary analysis of 277 global C. difficile PCR ribotype 017 isolates based on 

core-genome SNPs against the control strain M68. Using a geo-temporal model the 

evolution of the PCR ribotype 017 isolates can be orientated though time. The 

analysis indicates a split from SL1 (upper samples) into SL2 (lower samples) c1990, 

with the control strain M68 in SL1. The introduction of resistance associated SNPs 

(such as in rpoC) fall within closely related groups in the phylogeny. The heat map 

depicts the sub-lineage, presence/absence of insertions and antimicrobial resistance 

associated SNPs in relation to the isolates and continent. Details for insertions and 

deletions are shown in Table 5.3. 
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Table 5.3: Genes of interest found in either an insertion or deletion when compared to the M68 reference strain referred to in Figure 5.2 

 

 Abbreviation Insertion/Deletion Number of isolates Sub -lineage Gene/s of Interest/Putative Function 

London insertion Insertion 23 SL1 & SL2 Sporulation protein J and putative sortase B 

AGs Deletion  99 SL1 & SL2 Aminoglycoside 6-adenylyltransferase 

ErmB Deletion 53 SL1 & SL2 Dimethyladenosine transferase (ermB) 

KstR2 Insertion 3 SL2 HTH-type transcriptional repressor KstR2 

TetR Insertion  15 SL1 TetR-family transcriptional regulator 

PadR Insertion 6 SL2 Transcriptional regulator PadR-like family protein 

DHFR Insertion 32 SL1 & SL2 Dihydrofolate reductase region 

DicA Insertion 7 SL1 Transcriptional repressor DicA 

MDRP Insertion  14 SL1 Multidrug resistance protein 

C-P/M Insertion 6 SL1 Putative corrin/porphyrin methyltransferase 

Na
+
 /drug anti Insertion 5 SL1 & SL2 Putative drug/sodium antiporter 

CS protein Insertion 8 SL1 & SL2 Putative cell surface protein 

Cfr Insertion 2 SL2 Putative radical SAM enzyme and Cfr family 

Spo Insertion 3 SL1 
Sporulation initiation inhibitor, Radical SAM protein, 

putative cell wall hydrolase, Stage 0 sporulation protein J 

SAM Insertion 2 SL1 SAM protein 
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5.4.2 Genotypic antimicrobial resistance determinants and phenotypic 

antimicrobial resistance 

The data revealed SNPs commonly associated with antimicrobial resistance (Table 

5.4 and Appendix 4, Page 265); 89.5% (248/277) and 5% (13/277) of isolates were 

found to have the amino acid substitutions found in the gyrB gene (V426D) and 

(V426I) respectively and 64.6% (179/277) to have the amino acid substitution found 

in the gyrA gene (T82I) which are known to confer resistance to the fluoroquinolone 

class of antibiotics. Additionally, substitutions in the 81 bp rifampicin resistance 

determining region of the rpoB gene; R505K, H502N and S485F were found in 

32.5% (90/277), 33.2% (92/277) and 1.1% (3/277) respectively. These data are 

depicted and listed according to sub-lineage in Figure 5.2 and Table 5.4 respectively 

(also in Appendix 4, Page 265). 

 

Genes potentially involved in antimicrobial resistance were also found in insertions 

and deletions; these are listed in Tables 5.5 and 5.6 respectively. 

 

 

 

 

Antimicrobial resistance 

associated SNPs 
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Table 5.4: SNPs associated with antimicrobial resistance found in the global isolates 

* Reference residue/amino acid/ alternative residue. 

 

Table 5.5: Genes found in insertions potentially involved in antimicrobial resistance 

 

Table 5.6: Genes found in deletions potentially involved in antimicrobial resistance 

Sub-

lineage 

Number  

of 

Isolates 

Rifampicin resistance Fluoroquinolone resistance Resistance inferred 

34,687 34,697 34,747 112,752 113,641 113,642 Position 

rpoB rpoB rpoB gyrA gyrB gyrB Gene 

R505K H502N S485F T82I V426D V426I *Amino acid change 

SL1 163 73 (44.8%) 79 (48.5%) 0 (0%) 124 (76.1%) 134 (82.2%) 4 (2.5%)  

SL2 114 17 (15%) 13 (11.4%) 3 (2.6%) 55 (48.2%) 114 (100%) 9 (7.9%)  

Insertion 

designation 

Insertion site 

in M68 (base) 

Size of 

insertion (bps) 

Number 

of isolates 
Sub-lineage Gene/s of Interest/Putative Function Potential antimicrobial resistance 

A 697659 10,260 15 SL1 
Drug/sodium antiporter & TetR-family transcriptional 

regulator 
Tetracycline and others unknown 

B 3873711 32,589 14 SL1 
Streptogramin A acetyltransferase, antibiotic resistance 

ABC transporter & multidrug resistance protein 
Streptogramin and others unknown 

C 3879955 12,555 5 SL1 and SL2 Drug/sodium antiporter Unknown 

D 2633741 9,297 1 SL2 TetR-family transcriptional regulator Tetracycline 

E 3854778 6,571 1 SL2 Chloramphenicol o-acetyltransferase Chloramphenicol 

Deletion 

designation 

Deletion site 

in M68 (base) 

Size of  

deletion (bps) 

Number 

of isolates 
Sub-lineage Gene/s of Interest/Putative Function Potential antimicrobial resistance 

F 480308 27,982 67 SL1 and SL2 Dimethyladenosine transferase (ermB) Erythromycin 

G 2527343 9,890 99 SL1 and SL2 Aminoglycoside 6-adenylyltransferase Aminoglycoside class 

H 2969461 16,713 5 SL1 and SL2 Teicoplanin resistance gene & beta-lactamase Teicoplanin & β-lactam antibiotics 
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To determine if any of the SNPs or genes found in insertions or deletions listed in 

Tables 5.4, 5.5 and 5.6 correlated with phenotypic antimicrobial resistance, seven 

isolates were selected for MIC testing based on maximising variation with regards to 

isolation date, geographical location, presence or absence of resistant SNPs and 

presence or absence of insertions and deletions containing genes potentially 

associated with antimicrobial resistance; S- 017.72, WA 1514, S- 017.92, S- 017.27, 

S- 017.74, I 6 and 01-116. MICs were determined (Section 2.2.7) against the 

antibiotics; chloramphenicol, rifampicin, tetracycline, erythromycin, naladixic acid, 

gentamicin, teicoplanin and ampicillin. MIC values are shown in Table 5.7.  

 

All eight isolates were resistant to naladixic acid, ampicillin, gentamicin and all were 

sensitive to teicoplanin. Two isolates (2/8) were resistant and six (6/8) were sensitive 

to chloramphenicol. Four isolates (4/8) were resistant, two (2/8) were intermediate 

and two (2/8) were sensitive to rifampicin. Six isolates (6/8) were resistant and two 

isolates (2/8) were found with intermediate resistance to tetracycline. Seven isolates 

(7/8) were resistant and one isolates (1/8) was sensitive to erythromycin.  
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Table 5.7:  Genotypic and phenotypic antimicrobial resistance data for the global isolates 

 

 

Table adapted from a publication by Cairns et al., (Cairns et al., 2017). 

  Strain M68 S- 017.72 WA 1514 S- 017.92 S- 017.27 S- 017.74 I 6 01-116 

 Location Ireland Walsall Australia China Wrexham Walsall Indonesia Korea 

 Date Isolated 2006 2011 2012 2009 1996 2011 2011 2001 

Sub-lineage SL1 SL1 SL1 SL1 SL2 SL2 SL2 SL1 

*Insertion   A, B A  C D, E  

**Deletion F, G, H  F F, G H F, H F, H  

R
es

is
ta

n
t 

S
N

P
s 

rpoB ( R505K)         

rpoB (H502N)         

rpoB (S485F)         

gyrA (T82I)         

gyrB (V426I)         

gyrB (V426D)         

A
n

ti
m

ic
ro

b
ia

l 
A

g
en

t 

a
Chloramphenicol 8 (S) 8 (S) 4 (S) 64 (R) 8 (S) 8 (S) 256 (R) 8 (S) 

a
Rifampicin 0.008 (I) 2 (I) 0.004 (S) >256 (R) >256 (R) 0.004 (S) >256 (R) >256 (R) 

b
Tetracycline 32 (R) 32 (R) 0.25 (I) 32 (R) 32 (R) 0.25 (I) 32 (R) 32 (R) 

b
Erythromycin >256 (R) >256 (R) >256 (R) >256 (R) >256 (R) <2 (S) >256 (R) >256 (R) 

b
Nalidixic acid 256 (R) 256 (R) 256 (R) 256 (R) 256 (R) 256 (R) 256 (R) 256 (R) 

c
Gentamicin >256 (R) >256 (R) 256 (R) >256 (R) 256 (R) 256 (R) >256 (R) >256 (R) 

c
Teicoplanin <1 (S) <1 (S) <1 (S) <1 (S) <1 (S) <1 (S) <1 (S) <1 (S) 
b
Ampicillin 8 (R) 8 (R) 8 (R) 8 (R) 8 (R) 4 (R) 4 (R) 8 (R) 
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 (S) = sensitive, (I) = intermediate resistance (R) = resistant 

 
a 
Recommended by the European Committee on Antimicrobial Susceptibility Testing 

(EUCAST). 
b 

Recommended by CLSI (M11-A8, 2012, and M-100-S23, 2013). 
c 
No guidance from CLSI or EUCAST, cut-offs based on data according to the CLSI 

M-100-S23 (interpretative values for Staphylococcus aureus). 

 

 

*Genes carried by insertions potentially involved in antimicrobial resistance: 

Insertion A: Putative drug/sodium antiporter and radical SAM protein TetR-family 

transcriptional regulator 

Insertion B: Streptogramin A acetyltransferase and multidrug resistance protein 

Insertion C: Putative drug/sodium antiporter 

Insertion D: TetR-family transcriptional regulator 

Insertion E: Chloramphenicol o-acetyltransferase (M68 has one copy of 

chloramphenicol) 

 

** Genes carried by deletions potentially involved in antimicrobial resistance: 

Deletion F: Dimethyladenosine transferase (ermB) 

Deletion G: Putative teicoplanin resistance gene and putative beta-lactamase  

Deletion H: Aminoglycoside 6-adenylyltransferase 

 

 

To investigate the correlation between genotypic determinants of antimicrobial 

resistance with the actual phenotype data, both were compared. Based on the gyrA 

and gyrB SNP data, 76.2% (211/277) of isolates had a genotypic SNP associated 

with resistance to the fluoroquinolone class of antibiotics. All eight isolates (8/8) 

were phenotypically resistant to naladixic acid indicating resistance to the 

fluoroquinolone class of antimicrobials. Based on the rpoB SNP data, this study 

found 34.7% (96/277) of isolates with a genotypic SNP associated with resistance to 

the rifampicin class of antibiotics and 82% (152/185) of these mutations were found 

in SL1. Only two isolates (2/8) were sensitive to rifampicin with one isolate 

containing the R505K and H502N SNP indicating that these alone do not confer 

phenotypic resistance. The SNP S485F was found in three historical isolates from 

Wrexham, UK. All isolates (8/8) were sensitive to teicoplanin despite one isolate 
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with the deletion containing a putative teicoplanin resistance gene. Six isolates (6/8) 

were resistant and two isolates (2/8) were found with intermediate resistance to 

tetracycline, however, the two TetR-family transcriptional regulator genes found in 

insertions (insertions A and D) did not correlate with this variation in resistance 

indicating that neither of the two TetR-family transcriptional regulator genes alone 

conferred resistance or there is another mechanism involved. Seven isolates (7/8) 

were resistant and one isolates (1/8) was sensitive to erythromycin, however, the 

deletion that contained the dimethyladenosine transferase (ermB) gene (deletion F) 

did not correlate with this variation in phenotypic resistance. Two isolates (2/8) were 

resistant and six (6/8) were sensitive to chloramphenicol, however, the insertion that 

contained the chloramphenicol o-acetyltransferase gene (insertion E) did not 

correlate with this variation in phenotypic resistance. All isolates (8/8) were 

phenotypically resistant to gentamicin despite only three isolates with the deletion 

containing an aminoglycoside 6-adenylyltransferase (deletion H). All eight isolates 

(8/8) were resistant ampicillin despite the presence or absence of the genotypic 

determinants of antimicrobial resistance in Table 5.7. 

 

By investigating the SNPs, insertions and deletions of a global collection of 277 PCR 

ribotype 017 isolates revealed two sub-lineages (SL1 and SL2), however, when 

comparing with phenotypic data, no SNPs, insertions, deletions or phenotypic 

antimicrobial resistance was associated with a clonal expansion of C. difficile PCR 

ribotype 017. 
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5.4.3 Genotypic comparison of isolates between geographical locations 

To investigate if strains of C. difficile PCR ribotype 017 isolated from different 

geographical origins are phylogenetically distinct by WGS, Table 5.8 lists the 

isolates by geographical origin and a maximum-likelihood phylogenetic tree based 

on the 1288 SNPs was generated (Figure 5.3) with separation by continent (Figure 

5.4). The majority of isolates are from Europe (137/277), Asia (59/277) and North 

America (59/277). The data in Table 5.8 and as illustrated in Figures 5.3 and 5.4 

indicate that isolates from varying geographical locations are widespread amongst 

both sub-lineages. 

 

 

Table 5.8: Number and percentage of isolates by origin and sub-lineage 

 
Geographical 

Location 

Number of 

isolates 

Percentage of 

isolates 
Sub-lineage/s 

Europe 137 49.5% 1 and 2 

Asia 59 21.3% 1 and 2 

North America 59 21.3% 1 and 2 

Africa 9 3.3% 1 and 2 

Oceania 7 2.5% 1 and 2 

South America 4 1.4% 1 

Middle East 2 0.7% 1 

TOTAL 277 100% 1 and 2 
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Figure 5.3: Maximum-likelihood phylogenetic analysis for the global C. difficile 

isolates 

 

Figure adapted from a publication by Cairns et al., (Cairns et al., 2017). Maximum-

likelihood phylogenetic analysis of 277 global C. difficile PCR ribotype 017 isolates 

based on core-genome SNPs against the M68 reference. Non-rare (>1% MAF) SNPs 

that were not in close proximity to insertions or deletions to determine the 

phylogenetic tree were used. The SL1 and SL2 sub-lineages were differentiated by 

four SNPs with the reference strain M68 falling into SL1. The coloured nodes 

indicate the geographical source of isolates. 
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Figure 5.4: Maximum-likelihood phylogenetic analysis (separated by continent) 

for the global C. difficile PCR ribotype 017 isolates 

 

Figure adapted from a publication by Cairns et al., (Cairns et al., 2017). Maximum-

likelihood phylogenetic analysis of 277 global C. difficile PCR ribotype 017 isolates 

based on core-genome SNPs against the control strain M68 separated into individual 

panels corresponding to continent. Data from five out of seven continental 

designations (Africa, Europe, Asia, Oceania and USA) include SL1 and SL2 isolates 

indicating that both sub-lineages are global in nature. 
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5.4.4 Genotypic comparison of isolates between sources  

 

To investigate if strains of C. difficile PCR ribotype 017 isolated from non-human 

sources are phylogenetically distinct by WGS, Table 5.9 lists the isolates by source 

and a maximum-likelihood phylogenetic tree based on the 1288 SNPs was generated 

with separation by source (Figure 5.5). There is no sub-lineage exclusively 

associated with non-human isolates, all non-human isolates are in sub-lineage 1 

amongst human isolates. 

 

Table 5.9: Number and percentage of isolates by source and sub-lineage 

 
Geographical 

Location 

Number of 

isolates 

Percentage of 

isolates 
Sub-Lineage/s 

*Human 253 91.3% 1 and 2 

Canine 11 4% 1 

Bovine 9 3.3% 1 

Equine 4 1.4% 1 

TOTAL 277 100% 1 and 2 

 

*includes the two environmental strains isolated from a hospital ward 
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Figure 5.5: Maximum-likelihood phylogenetic analysis (separated by source) for 

the global C. difficile PCR ribotype 017 isolates 
 

Figure adapted from a publication by Cairns et al., (Cairns et al., 2017). Maximum-

likelihood phylogenetic analysis of the global C. difficile PCR ribotype 017 isolates 

based on core-genome SNPs against the control strain M68 depicting the 24 animal 

isolates by coloured nodes. Note the three equine isolates are positioned (and 

masked) by the bovine and canine cluster. The two bovine isolates on the bottom of 

the tree have a SNP distance of 17 from the bovine, canine, and equine cluster on the 

top. All animal isolates are from Ontario, Canada and isolated between 2002 and 

2005.  

Bovine 

Canine 

Equine 
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5.4.5 The origins of C. difficile PCR ribotype 017 

To investigate the belief that C. difficile PCR ribotype 017 originated in Asia, global 

transmission events inferred from Bayesian evolutionary analysis was performed 

and inferred global transmission as depicted in Figure 5.6. The data indicates a USA 

origin and suggests that it was Europe that introduced C. difficile PCR ribotype 017 

to Asia and Australia, with subsequent spread from Asia to the Middle East, South 

America and South Africa. The analysis indicates over 40 movements back and forth 

over the span of 30 years. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.6: Inferred global transmission events of the global C. difficile PCR 

ribotype 017 isolates 

 

Figure adapted from a publication by Cairns et al., (Cairns et al., 2017). Global 

transmission events inferred from bayesian evolutionary analysis of C. difficile PCR 

ribotype 017 isolates. From geo-temporal analyses the first movement into each 

continent of isolates in this study can be inferred, with the date and originating 

continent. The analysis indicates a USA origin with an expansion into Europe in the 

mid-1980s, followed by a move into Asia and on to Africa and South America 

through the 1990s and early 2000s. PCR ribotype 017 was not identified in Oceania 

(Australia) until the late 2000s, via a jump from Europe. 
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5.5 Discussion 

Using PCR ribotyping, WGS and MIC assays, my study investigated a total of 277 

C. difficile isolates (Appendix 2, Page 249). This collection of 277 strains were from; 

human (n=251), bovine (n=9), canine (n=11), equine (n=4) and hospital ward 

environment (n=2) with isolation dates between 1990 and 2013 and included isolates 

from six global continents (Europe, North America, South America, Asia, Oceania 

and Africa). 

 

No SNP/s and/or insertions or deletions (including those associated with 

antimicrobial resistance) were found associated with the global spread of C. difficile 

PCR ribotype 017 in my study. It is possible that one or more were associated yet not 

identified using the methods described in this thesis. Reminiscent of the C. difficile 

PCR ribotype 027 lineage, two distinct sub-lineages of C. difficile PCR ribotype 017 

that contain multiple independent clonal expansions were revealed in this study 

(Figures 5.1 and 5.2). These two sub-lineages differed by four SNPs; one present in a 

non-coding region and three non-synonymous SNPs (Table 5.2) with isolates in both 

sub-lineages being geographically and temporally diverse. My data shows that the 

multiple haplotypes revealed for C. difficile PCR ribotype 017 is similar to PCR 

ribotype 027 where >100 distinct genotypes were found in 151 isolates (He et al., 

2013). The insertions and deletions were well distributed geographically and 

temporally suggesting either the rapid dissemination of strains or the multiple 

independent acquisition and loss of DNA regions. The insertion of different clusters 

of genes at the same site suggests ‘hot-spot’ sites for the uptake of DNA and a 49 

kbp putative transposon-like putative mobile genetic element found exclusive to the 
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clonal cluster of 23/37 London isolates from chapter 4 were also found to insert at a 

different site in single isolates from Canada, the USA and the UK with isolation 

dates of 2006, 2006 and 2011 respectively (Figure 5.2) suggesting these isolates have 

independently acquired this insertion.  

 

The data revealed SNPs, insertions and deletions associated with antimicrobial 

resistance and variation in phenotypic resistance (Tables 5.4, 5.5 and 5.6), however, 

no antimicrobial resistance genotype or phenotype was found associated with the 

geographical spread of C. difficile PCR ribotype 017 like that seen with PCR 

ribotype 027 and the SNP associated with fluoroquinolone resistance (He et al., 

2013).  

 

The majority of isolates (76%) were found to possess a SNP present in either the 

gyrA or gyrB genes which are associated with phenotypic resistance to the 

fluoroquinolone class of antibiotics (gyrA [T82I], gyrB [V426I] and gyrB [V426D]). 

All eight isolates tested phenotypically, were resistant to the fluoroquinolone 

naladixic acid. The SNP T82I found in the gyrA gene is the same mutation reported 

in the global outbreak of C. difficile PCR ribotype 027 (He et al., 2013) however, it 

was not shown to lead to the expansion of a sub-lineage like seen with PCR ribotype 

027. Interestingly, the control strain M68 was resistant yet it did not possess any of 

the gyrA and gyrB associated SNPs or genes carried by insertions potentially 

involved in antimicrobial resistance suggesting that there is another mechanism for 

resistance to the fluoroquinolone class of antibiotics. This resistance amongst all 

eight strains tested is not unusual; other studies have found high levels of resistance 

to one or more of the fluoroquinolone class of antimicrobials. Barbut et al., (Barbut 
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et al., 2007) found 33% (134/411) of isolates were intermediate susceptibility or 

resistant to moxifloxacin. Spigaglia et al., (Spigaglia et al., 2008) further tested 83 of 

these isolates, eleven of which were PCR ribotype 017. All 11 isolates were resistant 

to the fluoroquinolones tested (moxifloxacin, ciprofloxacin, gatifloxacin, 

levofloxacin).  

 

My study found 34.7% of isolates to possess a SNP present in the rpoB gene which 

is associated with phenotypic resistance to the rifampicin class of antibiotics. My 

phenotypic data found four, two and two isolates to be resistant, intermediate 

resistance and sensitive to rifampicin respectively. The SNPs R505K and H502N 

have previously been associated with rifampicin resistance in C. difficile (Curry et 

al., 2009) however, based on MIC data from my study, one of the two isolates that 

were sensitive to rifampicin contained the R505K and H502N SNPs indicating that 

these SNPs alone do not confer phenotypic resistance. My study also identified a 

third SNP in the rpoB gene (S485F) which was found in three historical isolates from 

Wrexham, UK. This resistance conferring SNP has not previously been reported in 

C. difficile, only in Mycobacterium tuberculosis (Bahrmand et al., 2009). All three 

isolates were phenotypically resistant to rifampicin, however, all three isolates also 

contained the SNP R505K and so confirming the SNPs (S485F) contribution to 

resistance was not possible. Gene expression profiling in tandem with phenotypic 

assays could be performed to confirm the contribution of this SNP to phenotypic 

resistance to rifampicin since not all genotypic determinants are expressed. 

 

All eight isolates tested phenotypically were sensitive to teicoplanin despite one 

isolate with the deletion containing a putative teicoplanin resistance gene. This 
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indicates that the presence of the genetic region containing the putative teicoplanin 

resistance gene played no role alone or at all in the MIC of the seven isolates tested. 

 

Phenotypic susceptibility to the antimicrobials tetracycline, ampicillin, erythromycin, 

gentamicin and chloramphenicol was found not to correlate with genotypic resistance 

determinants identified through WGS (Table 5.7) suggesting that there are other 

mechanisms required for phenotypic resistance to these antimicrobials. All isolates 

demonstrated phenotypic resistance to gentamicin. This is to be expected as C. 

difficile as an anaerobic organism is intrinsically resistant to the aminoglycoside class 

of antimicrobials. Anaerobes lack the oxygen-dependent transport mechanism 

required for cellular uptake (Bryan et al., 1979). This indicates that the determination 

of MICs to this class of antimicrobial in this thesis was futile. 

 

C. difficile PCR ribotype 017 has previously been associated with high level 

antimicrobial resistance (Drudy et al., 2007c, Kuijper et al., 2001, Pituch et al., 2007, 

Freeman et al., 2015) and different countries appear to have different levels of 

antimicrobial resistance (for all PCR ribotypes) which is likely a result of varying 

antimicrobial prescribing and subsequent selective pressure (Freeman et al., 2015). 

With a large collection of C. difficile PCR ribotype 017 strains, it would be 

interesting to test the susceptibilities of more of the strain collection in this study. 

The geographical patterns of antimicrobial resistance for this toxin A-B+ PCR 

ribotype could then be determined. 

 

C. difficile PCR ribotype 017 isolated from different geographical origins were not 

phylogenetically distinct by WGS.  The transcontinental spread of both sub-lineages 



 

212 

 

containing strains from varied global locations showing no distinct pattern of spread 

(Figures 5.3 and 5.4) suggests that C. difficile PCR ribotype 017 isolated from 

different geographical origins are not phylogenetically distinct by WGS. This was 

not known previously and is a significant finding, as it suggests that neither sub-

lineage of C. difficile PCR ribotype 017 has had a selective advantage in its ability to 

spread globally like that found with PCR ribotype 027 (He et al., 2013) 

  

C. difficile PCR ribotype 017 isolated from human and non-human sources were not 

phylogenetically distinct by WGS (Figure 5.5). All non-human isolates were in SL1 

only, however, the collection of non-human isolates was small (n=24) and were 

isolated from a similar location (Ontario, Canada) over a relatively short period of 

time (2002 and 2005) suggesting they were clonal by time and place. Importantly, all 

non-human isolates were placed phylogenetically amongst human isolates suggesting 

possible transmission between humans and animals. Although it is known that C. 

difficile can cause similar infection in both humans and animals (Limaye et al., 

2000), transmission and phylogenetic associations have previously only been shown 

using MLST and not WGS. Therefore, this data shows that the same strain of PCR 

ribotype 017 can cause infection in both humans and animals using WGS. 

 

C. difficile PCR ribotype 017 did not originate in Asia (Figure 5.6). Traditionally, it 

has been considered that C. difficile PCR ribotype 017 strains emerged from Asia 

due to its reported high incidence that could not relate to nor depend on toxin A-

based assays for diagnosis (Collins et al., 2013). However, the global transmission 

events inferred from Bayesian evolutionary analyses in my study supports a USA 

origin for C. difficile PCR ribotype 017 with multiple, global transmission events 
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with its earliest movement into Europe in 1986 (Figure 5.6). This is similar to that 

found with PCR ribotype 027; the USA health system and practices appeared to have 

facilitated the evolution and epidemic spread of C. difficile PCR ribotype 027 (He et 

al., 2013) and now in this study with PCR ribotype 017. This is consistent with 

population movements of a globalised society (Soto, 2009). 

 

The non-synonymous SNP found in the dacF gene was one of four SNPs that 

differentiated the two sub-lineages and was present in all 114/277 isolates in sub-

lineage 2 (Table 5.2). The dacF gene codes for D-alanyl-D-alanine carboxypeptidase 

and has been shown to regulate peptidoglycan crosslinking in Bacillus subtilis 

(Popham et al., 1999). The β-lactam class of antibiotics target the peptidoglycan of 

the bacterial cell wall; the antibiotic inhibits the final step of peptidoglycan synthesis 

and inactivates penicillin-binding proteins that form the peptidoglycan layer of the 

cell wall. Due to the loss of the cell wall, this leads to cell death as a result of osmotic 

pressure (Tipper and Strominger, 1965). It is possible that a SNP in the dacF gene 

may result in a fitness advantage to strains possessing this genotype within the 

healthcare environment rendering the bacteria resistant to β-lactam antibiotics. 

Conversely, a study found that knockout mutants lacking the dacF gene in C. 

perfringens, reduced heat resistance, likely due to reduced cortex integrity when 

subjected to high heat (Orsburn et al., 2009). However, no difference in susceptibility 

to the β-lactam antibiotics teicoplanin or ampicillin between isolates in both sub-

lineages was observed (Table 5.7) suggesting that this SNP did not affect 

susceptibility to β-lactam antibiotics nor did it lead to a clonal expansion of either 

sub-lineage like that seen with fluoroquinolone resistance and PCR ribotype 027 (He 

et al., 2013). 
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It has been well documented that fluoroquinolone use preceded resistance and 

subsequent global outbreaks of a clonal strain of C. difficile PCR ribotype 027 (He et 

al., 2013). PCR ribotype 017 is associated with higher rates of antimicrobial 

resistance when compared with other PCR ribotypes and in my study, a significant 

number of isolates had SNPs associated with phenotypic antimicrobial resistance 

(76% of isolates had a SNP present in either the gyrA or gyrB genes and 34.7% of 

isolates had a SNP present in the rpoB gene). It would therefore be plausible to 

consider that a clone of PCR ribotype 017 could be as problematic as PCR ribotype 

027. However, my data shows no global clonal expansion of a strain of PCR ribotype 

017. The strains used in my study also date back to 1990 which is prior to the 

concept of antimicrobial stewardship and its role in controlling C. difficile outbreaks 

in healthcare facilities. This would suggest that there are other phenotypic 

characteristics as well as antimicrobial resistance that are required for the global 

spread of a clonal strain like that seen with PCR ribotype 027. Future work to this 

study could include comparing the genotypic and phenotypic characteristics of PCR 

ribotype 017 and the clonal strain of PCR ribotype 027 to establish why the PCR 

ribotype 027 strain was clonal and spread globally and why PCR ribotype 017 has 

not. Previous studies have found PCR ribotype 027 to have phenotypic 

characteristics that could be associated with its global spread however; there is 

conflicting evidence for a phenotype specific to PCR ribotype 027 that would enable 

a strain to be clonal (Section 1.10, Page 50). No study has yet compared the 

phenotypic characteristics of the clonal strain of 027 with a large collection of 

isolates of other PCR ribotypes with known genotype. This could be performed with 
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select isolates from this study with the WGS data available for strains of PCR 

ribotype 017. 

 

There were limitations in this study. Similar to chapter 4, there were limitations to 

the choice of control strain and methodologies used for detection of SNPs and de 

novo analysis of insertions and deletions (as described in Section 4.5, Page 175). 

Furthermore, the choice of control strain for the detection of phenotypic resistance 

was likely flawed. All isolates with MIC testing (both chapters 4 and 5) were 

resistant to naladixic acid including the reference control strain M68. Therefore, 

there was no negative control for this antibiotics effectiveness and achievement of a 

successful MIC assay. There may have been deterioration of the antibiotic, error in 

inoculum or the control strain was resistant to this antibiotic. Further phenotypic 

MIC studies should seek to include a fully sensitive control strain of C. difficile.  

 

5.6 Conclusion 

This study investigated the genetic diversity of 277 C. difficile PCR ribotype 017 

isolates with isolation date, geographical, and source variation using WGS. 

Phylogenetic analysis of the SNPs suggests there are two main sub-lineages of PCR 

ribotype 017 that share an ancestry and are globally disseminated. Both sub-lineages 

contain isolates from diverse geographical locations and isolation dates, with animal 

isolates spread among human isolates. Together with the haplotype diversity and 

geographical and temporal diverse presence of insertions and deletions, these data 

suggest widespread transcontinental spread and recombination with independent 

acquisition and loss within different clusters. Antimicrobial resistant genotypic 
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determinants were well distributed geographically and none were found exclusive to 

phenotypic resistance suggesting there are other genotypic determinants associated 

with phenotypic antimicrobial resistance in this collection of strains. 
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Chapter 6 

Final Discussion 
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6 Final Discussion 

C. difficile continues to be a leading cause of healthcare-associated infections in the 

developed world. Its spores are able to survive, persist and spread in hostile 

environments and cause outbreaks of CDI amongst susceptible hosts in wards, 

hospitals and other healthcare facilities. This species was selected for study as there 

was a deficiency in our understanding of its phylogenetics and phylohistory. Genetic 

exploration using PCR ribotyping, MLST, WGS and phenotypic assays was 

performed and has provided an insight into how this species is evolving. 

 

Clostridium difficile – a multifarious pathogen 

Previous MLST and WGS studies identified five divergent phylogenetic lineages of 

C. difficile PCR ribotypes; 017, 027, 078, 023 and a group containing multiple PCR 

ribotypes (Griffiths et al., 2010, Dingle et al., 2011a, Lemee et al., 2004, Lemee et 

al., 2005). However, these studies were limited by only focusing on either; various 

hosts, geographic sources, various PCR ribotypes, or hospital and community and 

various PCR ribotypes. Chapter 3 of this thesis applied MLST to a larger collection 

of isolates (n=385) from diverse human, animal and food sources from three 

continents and of multiple PCR ribotypes and confirmed the five lineages of 

C. difficile previously identified. Chapter 3 also demonstrated that the typing 

techniques PCR ribotyping and REA do not correlate as well as previously thought 

and genotypes identified by one technique are incorrectly assumed a genotype based 

on a different typing technique. For example, strains previously assigned as PCR 

ribotype 027 but subsequently confirmed to be PCR ribotypes 176 and 198 but are 

sequence type 1 and cluster with lineage 2. Similarly, PCR ribotype 244 shares the 
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same genetic lineage as PCR ribotype 027 according to SNP analysis (Eyre et al., 

2015) and like PCR ribotype 027, patients present with severe CDI and higher 

mortality (Lim et al., 2014). It is a concern that emerging PCR ribotypes 

phylogenetically similar to other PCR ribotypes by MLST and associated with 

hypervirulence and increased transmission are not initially associated as having a 

similar phenotype (Lim et al., 2014, Polivkova et al., 2016).  

 

Since chapter 3 was performed, the number of PCR ribotypes and sequence types has 

dramatically increased; the PCR ribotype and MLST databases now comprises 877 

PCR ribotypes (12/04/2018, Dr Warren Fawley, personal communication) and 488 

sequence types (19/04/2018, MLST database https://pubmlst.org/cdifficile/).This 

suggests further evolution. This MLST analysis has broadened our understanding of 

the pathogen C. difficile by demonstrating how evolution can be observed using SNP 

variation in MLST alleles, however, investigating the individual lineages in more 

depth with finer resolution will enable us to monitor the emergence of evolving 

virulent and highly transmissible clones. There is need for immediate awareness of a 

hypervirulent clone which would prompt earlier intervention as has already been 

shown with other pathogens such as Listeria monocytogenes (Jackson et al., 2016, 

Kvistholm Jensen et al., 2016), Streptococcus pyogenes (Tagini et al., 2017), MRSA 

(Azarian et al., 2015),  Salmonella (Inns et al., 2017), S. aureus and C. difficile (Eyre 

et al., 2012). 

 

PCR ribotype 017 – Historical London clone 

The MLST data in chapter 3 confirmed previous findings that C. difficile PCR 

ribotype 017 strains cluster as an individual lineage (Griffiths et al., 2010, Dingle et 

https://pubmlst.org/cdifficile/
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al., 2011a, Stabler et al., 2012). This coupled with its unique toxin profile (Alfa et al., 

2000), unusual global prevalence (Hawkey et al., 2013) and multiple clusters of CDI 

caused by PCR ribotype 017 in a London hospital elderly care ward between 2009 

and 2011, led to hypothesising that these cluster isolates would be clonal and a 

phenotype that may explain a persistent trait could be characterised.  

 

Phylogenetic analysis of WGS SNPs of 37 C. difficile PCR ribotype 017 isolates 

ascertained that a clone was present at UHL which included a historical isolate from 

2005 and was thought to be the ancestral cluster strain. Additionally, a 49 kbp 

genetic region suggestive of being a transposon-like putative mobile genetic element 

was found exclusive to the clonal strains. This putative mobile genetic element 

contained genes potentially involved in virulence and/or transmissibility and with the 

clonal nature of this cluster, phenotypic assays were performed, however, no 

phenotype exclusive to the clonal cluster was characterised. It is unknown if the 

clonal strain identified in this chapter possessed genetic attributes that contributed to 

a persistence phenotypic trait and/or if any of the SNPs or genes carried by the 49 

kbp genetic region contributed to this. It is equally possible that the clonal strain did 

not possess any attributable phenotype and was simply re-introduced into the new 

hospital build and was never eradicated from the environment. 

 

Although the observations detailed within chapter 4 were derived from a small sub-

set of isolates, this was the first report in the UK investigating the phylohistory of 

isolates from hospitalised patients with CDI due to PCR ribotype 017.  
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PCR ribotype 017 – a global perspective 

In chapter 3 the evolution of individual lineages of C. difficile was confirmed and in 

chapter 4 a historical clone of PCR ribotype 017 unique to a hospital ward that 

exclusively possessed a genetic region suggestive of being a transposon-like putative 

mobile genetic element was identified. Studies have investigated the in-depth 

phylogenetics of C. difficile PCR ribotype 027 using WGS and significant to chapter 

5, He et al., revealed the global expansion of a fluoroquinolone resistant sub-lineage 

of PCR ribotype 027 (He et al., 2013). However, no studies have reported the global 

phylogeny of other lineages of C. difficile.  

 

A hypothesis of chapter 5 was to investigate the global population structure of 

C. difficile PCR ribotype 017. It was postulated that PCR ribotype 017 evolved 

similar to PCR ribotype 027 but from a different geographical location; due to the 

unusual global prevalence of PCR ribotype 017 previously reported, it was 

hypothesised that PCR ribotype 017 evolved out of Asia unlike PCR ribotype 027 

which evolved out of USA (He et al., 2013). An advantage of chapter 5 was the 

collection of isolates; it was large (n=277) and a global representation of PCR 

ribotype 017. Chapter 5 identified two distinct sub-lineages (SL1 and SL2) of PCR 

ribotype 017 containing multiple independent clonal expansions and multiple 

antimicrobial resistant SNP determinants. The gyrA T82I SNP reported in the global 

outbreak of PCR ribotype 027 (He et al., 2013) was found, however, this did not 

result in the global expansion of a strain like that seen with PCR ribotype 027, nor 

did any other antimicrobial genotype or phenotype. Similar to the PCR ribotype 027 

study, the data did reveal multiple haplotypes suggesting both lineages have evolved 

in a similar fashion (He et al., 2013). The data alludes to possible transmission 
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between humans and animals with 24 animal strains placed amongst human isolates. 

The animal isolates were amongst human isolates which is not surprising as studies 

have already indicated this for PCR ribotype 078 using PCR ribotyping and MLST 

(Debast et al., 2009, Jhung et al., 2008, Goorhuis et al., 2007, Gould and Limbago, 

2010). This data shows that the same strain of PCR ribotype 017 can cause CDI in 

both humans and animals using WGS. 

 

Chapter 5 identified multiple insertions and deletions which were well distributed 

geographically and temporally. Isolates from Canada, USA and UK harboured the 49 

kb transposon-like putative mobile genetic element found in chapter 4 although 

inserted at different sites suggesting integration ‘hot-spot’ sites for horizontal transfer 

of genetic material. These data suggest either the rapid dissemination of strains or the 

multiple independent acquisition and loss of DNA regions.  

 

Like that found with PCR ribotype 027 (He et al., 2013), using geo-temporal 

analyses, the findings in chapter 5 support a USA origin for PCR ribotype 017 with 

multiple, global transmission events, movement to Europe in ~1986, and subsequent 

spread to Asia and Australia, and from Asia to the Middle East, South America and 

South Africa. The data indicates over 40 movements back and forth over the span of 

30 years which is consistent with population movements of a globalised society 

(Soto, 2009). This is surprising considering the published data indicating an Asian 

origin for PCR ribotype 017, however, the USA health system and practices 

appeared to facilitate the ready evolution and epidemic spread of PCR ribotype 027 

(He et al., 2013) and the same appears possible in this chapter with PCR ribotype 

017.  
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Conclusions and future direction 

The key findings of this thesis are that C. difficile as a species is continually evolving 

with the appearance of divergent sub-lineages and mini-clusters within lineages, with 

further description of SNPs associated with antimicrobial resistance, haplotypes and 

genetic deletions and insertions. This knowledge contributes to our understanding of 

the evolution of C. difficile and more specifically PCR ribotype 017. However, it 

remains to be identified why PCR ribotype 017 is so successful and has spread 

globally yet lacks toxin A. It could be postulated that toxins are not as important in 

strain dissemination as was previously thought. There may be other compensatory 

factors that PCR ribotype 017 has that have enabled it to spread globally and be so 

transmissible. For example, improved environmental survival by spore formation; 

may be this is more important for PCR ribotype 017. Interestingly, data subsequent 

to this thesis compared strains of PCR ribotype 023 from across Europe and China 

using WGS and showed great similarity between strains which was consistent with a 

recently emerged lineage that appears to be under little selective pressure to evolve 

(Shaw et al., submitted, Page 23). This is similar to the findings in this thesis for 

PCR ribotype 017 and in contrast to PCR ribotype 027 where a sub-lineage was 

shown to spread globally as a result of antimicrobial selective pressure (He et al., 

2013). It remains to be determined why evolutionary distinct lineages of C. difficile 

are simultaneously emerging to cause disease. 

 

The application and utility of WGS for tracking transmission, outbreak investigation 

and studying the evolution of many pathogens has demonstrated WGS to be superior 

to routine typing tools. Examples include; the prompt investigation of a clonal strain 

of Escherichia coli (Rasko et al., 2011), improved epidemiological inferences and 
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linkages of M. tuberculosis (Gardy et al., 2011) and real-time investigation enabling 

actionable results and transmission monitoring of an outbreak of Salmonella (Quick 

et al., 2015). WGS has demonstrated to be superior to routine typing tools for 

outbreak investigation of C. difficile enabling the involvement of infection control to 

promptly reduce the incidence of CDI (Eyre et al., 2017). If WGS were available in 

2003, detection of the C. difficile fluoroquinolone resistant genotype outbreak strain, 

PCR ribotype 027 would likely have been confirmed much earlier (He et al., 2013, 

Dingle et al., 2017) and would have enabled appropriate antimicrobial stewardship 

and subsequent reduction in the global outbreaks that this strain caused. 

 

WGS allows for the identification and description of selective pressures acting on 

microbial pathogens; the global spread of C. difficile PCR ribotype 027 is an 

example of the selective pressure of antimicrobial prescribing where use of 

fluoroquinolones selected for this clone (He et al., 2013).  

 

In addition to the detection of known genetic virulence determinants (i.e. the Xpert
®

 

C. difficile assay and detection of PCR ribotype 027), WGS performed alongside 

phenotypic studies enables the identification and characterisation of virulent 

genotypes, for example the identification of genetic markers associated with C. 

difficile PCR ribotype 027 (Stabler et al., 2009). This is valuable for the diagnostic 

laboratory and patient/s. 

 

Despite this, WGS does have its limitations. To scientists and clinicians in the 

diagnostic field of microbiology, it can present unknown genotypes for which the 

phenotype and clinical significance maybe unknown. Relying on WGS will also not 
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detect new and emerging phenotypes as clearly as if phenotypic testing was 

performed. WGS requires sophisticated bioinformatics, quick data processing, large 

data storage capabilities and experienced bioinformaticians to analyse and interpret 

data and put it into clinical context (Tsai et al., 2016, Fricke and Rasko, 2014); this is 

currently too costly for most diagnostic microbiology laboratories. A number of 

global organisations, collaborative projects and laboratory consortia are actively 

working to overcome technical barriers, develop bioinformatic solutions and pilot 

studies of WGS-based typing for public health protection and to develop standards 

(European Centre for Disease Prevention and Control, 2016).  

 

Before genotypic data can be relied upon clinically, sufficient data must be collated 

and compared with phenotype to ensure reliable correlation. Further studies 

comparing genotype to phenotype and expression profiles using WGS, knockout 

mutant studies (Lyras et al., 2009, Bradshaw et al., 2017, Ngernsombat et al., 2017) 

and proteomic studies (Pettit et al., 2014, Dresler et al., 2017) will lead the way to 

improving the inference and ultimately confidence in WGS. 

 

Improvements to the limitations described will progress diagnostic microbiology. 

The integration of WGS into routine diagnostic laboratories will lead the way for 

real-time identification and monitoring of outbreaks (local and national), surveillance 

of global transmission, and identification of novel pathogenic genotypes which may 

have otherwise evaded detection by current diagnostic techniques. This will 

ultimately improve the management of patients and populations with infectious 

diseases. 
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Appendix 1: Bacterial isolates used in chapter 3 
 

NT = nontypeable (PCR ribotype not recognised by the London CDRN reference laboratory), * = Novel sequence type, ** = Isolates used in the 

PCR ribotype 027 depth study. 

 

Isolate Provider 
PCR 

ribotype 

Sequence 

type 

Alleles Sequence 

type lineage 
Origin Location 

Date 

isolated adk atpA dxr glyA recA sodA tpi 

630 J. Brazier 012 54 1 4 7 1 1 3 3 Lineage 1 Human Switzerland 1982 

IS58 T. V. Riley 033 11 5 8 5 11 9 11 8 Lineage 5 Human Australia < 2004 

2046 J. Brazier 001 3 1 1 2 1 1 1 1 Lineage 1 unknown unknown unknown 

2047 J. Brazier NT 8 1 1 2 6 1 5 1 Lineage 1 unknown unknown unknown 

2050 J. Brazier 015 44 2 5 2 1 1 3 1 Lineage 1 unknown unknown unknown 

2052 J. Brazier 023 5 1 6 4 7 2 8 7 Lineage 3 unknown unknown unknown 

**2053 J. Brazier 027 1 1 1 1 10 1 3 5 Lineage 2 unknown unknown unknown 

2054 J. Brazier NT 11 5 8 5 11 9 11 8 Lineage 5 unknown unknown unknown 

2055 J. Brazier 106 42 1 1 2 1 1 7 1 Lineage 1 unknown unknown unknown 

5342 J. G. Songer NT 11 5 8 5 11 9 11 8 Lineage 5 Bovine USA unknown 

5350 J. G. Songer 078 11 5 8 5 11 9 11 8 Lineage 5 Bovine USA unknown 

**5359 J. G. Songer NT 1 1 1 1 10 1 3 5 Lineage 2 unknown unknown unknown 

5361 J. G. Songer 078 11 5 8 5 11 9 11 8 Lineage 5 Bovine USA 26/12/2006 

5363 J. G. Songer 078 11 5 8 5 11 9 11 8 Lineage 5 Bovine USA 20/03/2007 

**5370 J. G. Songer 027 1 1 1 1 10 1 3 5 Lineage 2 Bovine USA 26/06/2007 

**5373 J. G. Songer 027 1 1 1 1 10 1 3 5 Lineage 2 Bovine USA 20/03/2007 
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Isolate Provider 
PCR 

ribotype 

Sequence 

type 

Alleles Sequence 

type lineage 
Origin Location 

Date 

isolated adk atpA dxr glyA recA sodA tpi 

5379 J. G. Songer NT 11 5 8 5 11 9 11 8 Lineage 5 Bovine USA unknown 

5384 J. G. Songer 078 11 5 8 5 11 9 11 8 Lineage 5 Bovine USA 20/03/2007 

5397 J. G. Songer 078 11 5 8 5 11 9 11 8 Lineage 5 Bovine USA 26/06/2007 

5407 J. G. Songer 078 11 5 8 5 11 9 11 8 Lineage 5 Bovine USA 26/09/2006 

5408 J. G. Songer 078 11 5 8 5 11 9 11 8 Lineage 5 Bovine USA 26/06/2007 

5416 J. G. Songer NT 11 5 8 5 11 9 11 8 Lineage 5 Bovine USA 2006 

5416 J. G. Songer 078 11 5 8 5 11 9 11 8 Lineage 5 Bovine USA 2006 

**5427 J. G. Songer 027 1 1 1 1 10 1 3 5 Lineage 2 Bovine USA 31/07/2007 

5428 J. G. Songer 078 11 5 8 5 11 9 11 8 Lineage 5 Bovine USA 20/03/2007 

5429 J. G. Songer 078 11 5 8 5 11 9 11 8 Lineage 5 Bovine USA 15/10/2007 

5432 J. G. Songer 078 11 5 8 5 11 9 11 8 Lineage 5 Bovine USA 23/01/2007 

5444 J. G. Songer 078 11 5 8 5 11 9 11 8 Lineage 5 Bovine USA 15/10/2007 

5468 J. G. Songer NT 11 5 8 5 11 9 11 8 Lineage 5 Bovine USA unknown 

5898 J. G. Songer 078 11 5 8 5 11 9 11 8 Lineage 5 Bovine USA 20/03/2007 

5904 J. G. Songer 078 11 5 8 5 11 9 11 8 Lineage 5 Bovine USA 15/10/2007 

5911 J. G. Songer 078 11 5 8 5 11 9 11 8 Lineage 5 Bovine USA 17/04/2007 

5912 J. G. Songer NT 11 5 8 5 11 9 11 8 Lineage 5 Bovine USA unknown 

5917 J. G. Songer 078 11 5 8 5 11 9 11 8 Lineage 5 Bovine USA 15/10/2007 

5920 J. G. Songer NT 3 1 1 2 1 1 1 1 Lineage 1 Bovine USA 31/07/2007 

5921 J. G. Songer 078 11 5 8 5 11 9 11 8 Lineage 5 Bovine USA 20/11/2006 
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Isolate Provider 
PCR 

ribotype 

Sequence 

type 

Alleles Sequence 

type lineage 
Origin Location 

Date 

isolated adk atpA dxr glyA recA sodA tpi 

5927 J. G. Songer NT 11 5 8 5 11 9 11 8 Lineage 5 Bovine USA unknown 

5927 J. G. Songer NT 11 5 8 5 11 9 11 8 Lineage 5 Bovine USA unknown 

5933 J. G. Songer NT 11 5 8 5 11 9 11 8 Lineage 5 Bovine USA unknown 

5938 J. G. Songer 078 11 5 8 5 11 9 11 8 Lineage 5 Bovine USA 20/11/2006 

5946 J. G. Songer 078 11 5 8 5 11 9 11 8 Lineage 5 Bovine USA 20/03/2007 

5954 J. G. Songer NT 11 5 8 5 11 9 11 8 Lineage 5 Bovine USA unknown 

5963 J. G. Songer 078 11 5 8 5 11 9 11 8 Lineage 5 Bovine USA 20/11/2006 

5968 J. G. Songer 078 11 5 8 5 11 9 11 8 Lineage 5 Bovine USA 20/03/2007 

5982 J. G. Songer 078 11 5 8 5 11 9 11 8 Lineage 5 Bovine USA 20/11/2006 

5983 J. G. Songer 078 11 5 8 5 11 9 11 8 Lineage 5 Bovine USA 20/03/2007 

5984 J. G. Songer 078 11 5 8 5 11 9 11 8 Lineage 5 Bovine USA 15/10/2007 

5986 J. G. Songer 078 11 5 8 5 11 9 11 8 Lineage 5 Bovine USA 31/07/2007 

5987 J. G. Songer 078 11 5 8 5 11 9 11 8 Lineage 5 Bovine USA 15/10/2007 

5992 J. G. Songer NT 11 5 8 5 11 9 11 8 Lineage 5 Bovine USA unknown 

5996 J. G. Songer 078 11 5 8 5 11 9 11 8 Lineage 5 Bovine USA 15/10/2007 

6004 J. G. Songer NT 11 5 8 5 11 9 11 8 Lineage 5 Bovine USA unknown 

6005 J. G. Songer 078 11 5 8 5 11 9 11 8 Lineage 5 Bovine USA 26/06/2007 

6007 J. G. Songer 078 11 5 8 5 11 9 11 8 Lineage 5 Bovine USA 2007 

6007 J. G. Songer 078 11 5 8 5 11 9 11 8 Lineage 5 Bovine USA 2007 

**6014 J. G. Songer 027 1 1 1 1 10 1 3 5 Lineage 2 Bovine USA unknown 
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Isolate Provider 
PCR 

ribotype 

Sequence 

type 

Alleles Sequence 

type lineage 
Origin Location 

Date 

isolated adk atpA dxr glyA recA sodA tpi 

6015 J. G. Songer 078 11 5 8 5 11 9 11 8 Lineage 5 Bovine USA 15/10/2007 

6021 J. G. Songer 078 11 5 8 5 11 9 11 8 Lineage 5 Bovine USA 20/03/2007 

6065 J. G. Songer NT 11 5 8 5 11 9 11 8 Lineage 5 Bovine USA unknown 

6067 J. G. Songer NT 11 5 8 5 11 9 11 8 Lineage 5 Bovine USA unknown 

**8864 J. Brazier 036 62 1 1 1 9 1 3 1 Lineage 2 Human UK < 2004 

10/33 E. Kuijper 078 11 5 8 5 11 9 11 8 Lineage 5 unknown unknown unknown 

30256 J. G. Songer NT 11 5 8 5 11 9 11 8 Lineage 5 Bovine USA unknown 

31807 E. Kuijper NT 11 5 8 5 11 9 11 8 Lineage 5 unknown unknown unknown 

13/03 E. Kuijper 078 11 5 8 5 11 9 11 8 Lineage 5 unknown unknown unknown 

19/07 E. Kuijper 078 11 5 8 5 11 9 11 8 Lineage 5 unknown unknown unknown 

19/09 E. Kuijper 078 11 5 8 5 11 9 11 8 Lineage 5 unknown unknown unknown 

17/10 E. Kuijper 078 11 5 8 5 11 9 11 8 Lineage 5 unknown unknown unknown 

3/11 E. Kuijper 078 11 5 8 5 11 9 11 8 Lineage 5 unknown unknown unknown 

80249 E. Kuijper 078 11 5 8 5 11 9 11 8 Lineage 5 unknown unknown 20/03/2007 

**2004101 J. G. Songer 027 1 1 1 1 10 1 3 5 Lineage 2 Human USA 2004 

**2004102 J. G. Songer 027 1 1 1 1 10 1 3 5 Lineage 2 Human USA 2004 

**2004118 J. G. Songer 027 1 1 1 1 10 1 3 5 Lineage 2 Human USA 2004 

**2004163 J. G. Songer 027 1 1 1 1 10 1 3 5 Lineage 2 Human USA 2004 

**2005079 J. G. Songer NT 1 1 1 1 10 1 3 5 Lineage 2 Human USA 2005 

2005088 J. G. Songer NT 11 5 8 5 11 9 11 8 Lineage 5 Porcine USA 2005 
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Isolate Provider 
PCR 

ribotype 

Sequence 

type 

Alleles Sequence 

type lineage 
Origin Location 

Date 

isolated adk atpA dxr glyA recA sodA tpi 

2005093 J. G. Songer 126 11 5 8 5 11 9 11 8 Lineage 5 Porcine USA 2005 

2005094 J. G. Songer NT 11 5 8 5 11 9 11 8 Lineage 5 Porcine USA 2005 

2005325 J. G. Songer 078 11 5 8 5 11 9 11 8 Lineage 5 Human USA 2005 

2005508 J. G. Songer NT 11 5 8 5 11 9 11 8 Lineage 5 Porcine USA 2005 

2005511 J. G. Songer 078 11 5 8 5 11 9 11 8 Lineage 5 Porcine USA 2005 

2005515 J. G. Songer 078 11 5 8 5 11 9 11 8 Lineage 5 Porcine USA 2005 

2005517 J. G. Songer NT 48 1 1 2 1 1 5 1 Lineage 1 Porcine USA 2005 

2005519 J. G. Songer NT 11 5 8 5 11 9 11 8 Lineage 5 Porcine USA 2005 

**2006237 J. G. Songer 027 1 1 1 1 10 1 3 5 Lineage 2 Equine USA 2006 

2006238 J. G. Songer 078 11 5 8 5 11 9 11 8 Lineage 5 Bovine USA 2006 

2006239 J. G. Songer 078 11 5 8 5 11 9 11 8 Lineage 5 Bovine USA 2006 

2006240 J. G. Songer 078 11 5 8 5 11 9 11 8 Lineage 5 Bovine USA 2006 

2006241 J. G. Songer 078 11 5 8 5 11 9 11 8 Lineage 5 Bovine USA 2006 

2006243 J. G. Songer 078 11 5 8 5 11 9 11 8 Lineage 5 Bovine USA 2006 

2006244 J. G. Songer 078 11 5 8 5 11 9 11 8 Lineage 5 Bovine USA 2006 

2006245 J. G. Songer 078 11 5 8 5 11 9 11 8 Lineage 5 Bovine USA 2006 

2006246 J. G. Songer 078 11 5 8 5 11 9 11 8 Lineage 5 Bovine USA 2006 

2006253 J. G. Songer 078 11 5 8 5 11 9 11 8 Lineage 5 Bovine USA 2006 

2006254 J. G. Songer 078 11 5 8 5 11 9 11 8 Lineage 5 Bovine USA 2006 

2006354 J. G. Songer 078 11 5 8 5 11 9 11 8 Lineage 5 Human USA 2006 
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isolated adk atpA dxr glyA recA sodA tpi 

2006379 J. G. Songer 078 11 5 8 5 11 9 11 8 Lineage 5 Human  USA 2006 

2006437 J. G. Songer 078 11 5 8 5 11 9 11 8 Lineage 5 Food USA 2006 

2006438 J. G. Songer 078 11 5 8 5 11 9 11 8 Lineage 5 Food USA 2006 

**2006439 J. G. Songer 027 1 1 1 1 10 1 3 5 Lineage 2 Food USA 2006 

2006460 J. G. Songer 078 11 5 8 5 11 9 11 8 Lineage 5 Human  USA 2006 

2007007 J. G. Songer 078 11 5 8 5 11 9 11 8 Lineage 5 Human  USA 2007 

2007011 J. G. Songer 078 11 5 8 5 11 9 11 8 Lineage 5 Human USA 2007 

2007019 J. G. Songer 126 11 5 8 5 11 9 11 8 Lineage 5 Human  USA 2007 

2007024 J. G. Songer 078 11 5 8 5 11 9 11 8 Lineage 5 Human USA 2007 

**2007042 J. G. Songer 027 1 1 1 1 10 1 3 5 Lineage 2 Food USA 2007 

2007054 J. G. Songer 078 11 5 8 5 11 9 11 8 Lineage 5 Human  USA 2007 

**2007098 J. G. Songer NT 32 1 1 11 1 1 3 2 Lineage 2 Human  USA 2007 

2007134 J. G. Songer NT 11 5 8 5 11 9 11 8 Lineage 5 Human USA 2007 

**2007140 J. G. Songer 027 1 1 1 1 10 1 3 5 Lineage 2 Human USA 2007 

**2007195 J. G. Songer NT 41 1 1 9 9 1 3 2 Lineage 2 Human USA 2007 

2007206 J. G. Songer NT 11 5 8 5 11 9 11 8 Lineage 5 Human USA 2007 

**2007218 J. G. Songer 027 1 1 1 1 10 1 3 5 Lineage 2 Food USA 2007 

2007219 J. G. Songer 078 11 5 8 5 11 9 11 8 Lineage 5 Food USA 2007 

**2007222 J. G. Songer 027 1 1 1 1 10 1 3 5 Lineage 2 Food USA 2007 

**2007223 J. G. Songer 027 1 1 1 1 10 1 3 5 Lineage 2 Food USA 2007 
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2007224 J. G. Songer NT 11 5 8 5 11 9 11 8 Lineage 5 Food USA 2007 

2007229 J. G. Songer 126 11 5 8 5 11 9 11 8 Lineage 5 Food USA 2007 

2007230 J. G. Songer 078 11 5 8 5 11 9 11 8 Lineage 5 Food USA 2007 

**2007235 J. G. Songer NT 1 1 1 1 10 1 3 5 Lineage 2 Food USA 2007 

2007334 J. G. Songer 078 11 5 8 5 11 9 11 8 Lineage 5 Human USA 2007 

2007361 J. G. Songer 078 11 5 8 5 11 9 11 8 Lineage 5 Human USA 2007 

2007380 J. G. Songer 078 11 5 8 5 11 9 11 8 Lineage 5 Human USA 2007 

2007600 J. G. Songer 126 11 5 8 5 11 9 11 8 Lineage 5 Human Spain 2007 

2007601 J. G. Songer 126 11 5 8 5 11 9 11 8 Lineage 5 Human Spain 2007 

2007606 J. G. Songer 078 11 5 8 5 11 9 11 8 Lineage 5 Food USA 2007 

2007607 J. G. Songer 078 11 5 8 5 11 9 11 8 Lineage 5 Food USA 2007 

2007786 J. G. Songer 078 11 5 8 5 11 9 11 8 Lineage 5 Human Italy 2007 

2007792 J. G. Songer 078 11 5 8 5 11 9 11 8 Lineage 5 Human Italy 2007 

**2007825 J. G. Songer 027 1 1 1 1 10 1 3 5 Lineage 2 Human USA 2007 

**2007826 J. G. Songer NT 61 1 5 11 1 1 3 2 Lineage 2 Human USA 2007 

**2007827 J. G. Songer 262 67 1 1 9 9 1 3 5 Lineage 2 Human USA 2007 

**2007828 J. G. Songer NT 1 1 1 1 10 1 3 5 Lineage 2 Human USA 2007 

**2007829 J. G. Songer 262 67 1 1 9 9 1 3 5 Lineage 2 Human USA 2007 

**2007830 J. G. Songer 027 1 1 1 1 10 1 3 5 Lineage 2 Human USA 2007 

2007831 J. G. Songer 001 3 1 1 2 1 1 1 1 Lineage 1 Human USA 2007 
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**2007832 J. G. Songer 027 1 1 1 1 10 1 3 5 Lineage 2 Human USA 2007 

**2007833 J. G. Songer 027 1 1 1 1 10 1 3 5 Lineage 2 Human USA 2007 

2007834 J. G. Songer 078 11 5 8 5 11 9 11 8 Lineage 5 Human USA 2007 

2007835 J. G. Songer 078 11 5 8 5 11 9 11 8 Lineage 5 Human USA 2007 

2007838 J. G. Songer 078 11 5 8 5 11 9 11 8 Lineage 5 Human USA 2007 

**2007839 J. G. Songer NT 1 1 1 1 10 1 3 5 Lineage 2 Human USA 2007 

2007841 J. G. Songer NT 3 1 1 2 1 1 1 1 Lineage 1 Human USA 2007 

**2007843 J. G. Songer NT 61 1 5 11 1 1 3 2 Lineage 2 Food USA 2007 

**2007844 J. G. Songer NT 61 1 5 11 1 1 3 2 Lineage 2 Food USA 2007 

**2007850 J. G. Songer 027 1 1 1 1 10 1 3 5 Lineage 2 Household USA 2007 

**2007855 J. G. Songer 027 1 1 1 1 10 1 3 5 Lineage 2 Bovine USA 2007 

6600639 M. Holland 078 11 5 8 5 11 9 11 8 Lineage 5 Human UK unknown 

6600726 M. Holland 050 18 1 1 2 5 1 3 1 Lineage 1 Human UK unknown 

6601158 M. Holland NT 17 1 1 2 1 1 5 3 Lineage 1 Human UK unknown 

6601667 M. Holland 002 8 1 1 2 6 1 5 1 Lineage 1 Human UK unknown 

6603036 M. Holland 015 10 2 1 2 1 1 3 1 Lineage 1 Human UK unknown 

6603061 M. Holland NT 2 1 1 2 1 5 3 1 Lineage 1 Human UK unknown 

6604395 M. Holland 015 44 2 5 2 1 1 3 1 Lineage 1 Human UK unknown 

6605117 M. Holland 005 *131 2 1 6 8 1 5 1 Lineage 1 Human UK unknown 

6605475 M. Holland 015 44 2 5 2 1 1 3 1 Lineage 1 Human UK unknown 
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6614282 M. Holland 023 5 1 6 4 7 2 8 7 Lineage 3 Human UK unknown 

6614376 M. Holland 078 11 5 8 5 11 9 11 8 Lineage 5 Human UK unknown 

6615591 M. Holland 002 8 1 1 2 6 1 5 1 Lineage 1 Human UK unknown 

6615723 M. Holland 014 49 1 1 2 1 5 3 3 Lineage 1 Human UK unknown 

6616023 M. Holland 078 11 5 8 5 11 9 11 8 Lineage 5 Human UK unknown 

6616104 M. Holland 078 11 5 8 5 11 9 11 8 Lineage 5 Human UK unknown 

001-01 M. Holland 001 3 1 1 2 1 1 1 1 Lineage 1 unknown UK unknown 

001-02 M. Holland 001 3 1 1 2 1 1 1 1 Lineage 1 unknown UK unknown 

001-03 M. Holland 001 3 1 1 2 1 1 1 1 Lineage 1 unknown UK unknown 

001-04 M. Holland 001 3 1 1 2 1 1 1 1 Lineage 1 unknown UK unknown 

001-05 M. Holland 001 3 1 1 2 1 1 1 1 Lineage 1 unknown UK unknown 

001-06 M. Holland 001 3 1 1 2 1 1 1 1 Lineage 1 unknown UK unknown 

001-07 M. Holland 001 3 1 1 2 1 1 1 1 Lineage 1 unknown UK unknown 

001-08 M. Holland 001 2 1 1 2 1 5 3 1 Lineage 1 unknown UK unknown 

001-09 M. Holland 001 3 1 1 2 1 1 1 1 Lineage 1 unknown UK unknown 

001-10 M. Holland 001 3 1 1 2 1 1 1 1 Lineage 1 unknown UK unknown 

078W M. Holland 078 11 5 8 5 11 9 11 8 Lineage 5 unknown unknown unknown 

106- 01 M. Holland 106 42 1 1 2 1 1 7 1 Lineage 1 Human UK unknown 

106- 02 M. Holland 106 42 1 1 2 1 1 7 1 Lineage 1 Human UK unknown 

106- 04 M. Holland 106 42 1 1 2 1 1 7 1 Lineage 1 Human UK unknown 
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106- 05 M. Holland 106 42 1 1 2 1 1 7 1 Lineage 1 Human UK unknown 

106- 06 M. Holland 106 42 1 1 2 1 1 7 1 Lineage 1 Human UK unknown 

106-07 M. Holland 106 42 1 1 2 1 1 7 1 Lineage 1 Human UK unknown 

106-10 M. Holland 106 42 1 1 2 1 1 7 1 Lineage 1 Human UK unknown 

17/50 E. Kuijper 078 11 5 8 5 11 9 11 8 Lineage 5 unknown unknown unknown 

18/21 E. Kuijper 078 11 5 8 5 11 9 11 8 Lineage 5 unknown unknown unknown 

19/44 E. Kuijper 078 11 5 8 5 11 9 11 8 Lineage 5 unknown unknown unknown 

19/52 E. Kuijper 078 11 5 8 5 11 9 11 8 Lineage 5 unknown unknown unknown 

19/72 E. Kuijper 078 11 5 8 5 11 9 11 8 Lineage 5 unknown unknown unknown 

20/28 E. Kuijper 078 11 5 8 5 11 9 11 8 Lineage 5 unknown unknown unknown 

22/31 E. Kuijper 078 11 5 8 5 11 9 11 8 Lineage 5 unknown unknown unknown 

23/41 E. Kuijper 078 11 5 8 5 11 9 11 8 Lineage 5 unknown unknown unknown 

25/40 E. Kuijper 078 11 5 8 5 11 9 11 8 Lineage 5 unknown unknown unknown 

3623 -03 J. G. Songer NT 26 1 1 6 1 4 3 4 Lineage 1 Human Germany < 2004 

5353 (3/20) J. G. Songer 078 11 5 8 5 11 9 11 8 Lineage 5 Bovine USA 20/03/2007 

**5354 (17/4) J. G. Songer 027 1 1 1 1 10 1 3 5 Lineage 2 Bovine USA unknown 

5379 (26/12) J. G. Songer 078 11 5 8 5 11 9 11 8 Lineage 5 Bovine USA unknown 

5404 (17/4) J. G. Songer 078 11 5 8 5 11 9 11 8 Lineage 5 Bovine USA 17/04/2007 

5404 (9/26) J. G. Songer 078 11 5 8 5 11 9 11 8 Lineage 5 Bovine USA 26/09/2006 

5424 (2/20) J. G. Songer 078 11 5 8 5 11 9 11 8 Lineage 5 Bovine USA 20/02/2007 
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5945 (2/21)  J. G. Songer NT 11 5 8 5 11 9 11 8 Lineage 5 Bovine USA 20/11/2006 

5964 (20/11) J. G. Songer 078 11 5 8 5 11 9 11 8 Lineage 5 Bovine USA 20/11/2006 

5964 (9/1) J. G. Songer 078 11 5 8 5 11 9 11 8 Lineage 5 Bovine USA 09/01/2007 

5994 (9/4) J. G. Songer NT 11 5 8 5 11 9 11 8 Lineage 5 Bovine USA 04/09/2007 

6612-065 M. Holland 002 8 1 1 2 6 1 5 1 Lineage 1 Human UK unknown 

6612-590 M. Holland 015 44 2 5 2 1 1 3 1 Lineage 1 Human UK unknown 

6612-647 M. Holland NT 55 1 1 6 6 1 12 12 Lineage 1 Human UK unknown 

6612-820 M. Holland 094 12 1 1 6 4 3 5 1 Lineage 1 Human UK unknown 

6612-978 M. Holland 094 12 1 1 6 4 3 5 1 Lineage 1 Human UK unknown 

6613-373 M. Holland 002 8 1 1 2 6 1 5 1 Lineage 1 Human UK unknown 

6613-833 M. Holland 087 46 4 1 6 1 1 10 1 Lineage 1 Human UK unknown 

AI149 T. V. Riley 126 11 5 8 5 11 9 11 8 Lineage 5 Kangaroo Australia unknown 

AI15 T. V. Riley 237 11 5 8 5 11 9 11 8 Lineage 5 Porcine Australia unknown 

AI152 T. V. Riley NT 11 5 8 5 11 9 11 8 Lineage 5 Porcine Australia unknown 

AI18 T. V. Riley 014 *132 5 1 6 1 5 3 1 Lineage 1 Porcine Australia unknown 

AI24 T. V. Riley 237 11 5 8 5 11 9 11 8 Lineage 5 Porcine Australia unknown 

AI35 T. V. Riley 237 11 5 8 5 11 9 11 8 Lineage 5 Porcine Australia unknown 

**B1 D. N. Gerding NT 63 1 1 7 5 1 3 3 Lineage 1 Human UK 1978 

BI-1 D. N. Gerding 027 1 1 1 1 10 1 3 5 Lineage 2 Human USA 26/02/1988 

**BI-10 D. N. Gerding 027 1 1 1 1 10 1 3 5 Lineage 2 Human USA 10/08/2001 
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**BI-13 D. N. Gerding 027 1 1 1 1 10 1 3 5 Lineage 2 Human USA 09/09/2004 

**BI-15 D. N. Gerding 027 1 1 1 1 10 1 3 5 Lineage 2 Human USA 09/09/2004 

**BI-2 D. N. Gerding 027 1 1 1 1 10 1 3 5 Lineage 2 Human USA 14/01/1991 

**BI-5 D. N. Gerding 027 1 1 1 1 10 1 3 5 Lineage 2 Human USA 25/08/1995 

**BI-6 D. N. Gerding 027 (176) 1 1 1 1 10 1 3 5 Lineage 2 Human USA 20/05/2003 

**BI-6p D. N. Gerding 027 1 1 1 1 10 1 3 5 Lineage 2 Human USA 09/09/2004 

**BI-7 D. N. Gerding 027 1 1 1 1 10 1 3 5 Lineage 2 Human USA 20/05/2003 

**BI-8 D. N. Gerding 027 1 1 1 1 10 1 3 5 Lineage 2 Human USA 22/01/2004 

BI-9 D. N. Gerding 001 3 1 1 2 1 1 1 1 Lineage 1 Human USA unknown 

CD DE2 E. Kuijper NT 3 1 1 2 1 1 1 1 Lineage 1 unknown unknown unknown 

CD#101 E. Kuijper NT 63 1 1 7 5 1 3 3 Lineage 1 unknown unknown unknown 

CD#17 E. Kuijper NT 37 3 7 3 8 6 9 11 Lineage 4 unknown unknown unknown 

CD#371 E. Kuijper NT 3 1 1 2 1 1 1 1 Lineage 1 unknown unknown unknown 

**CD1 CDRN 027 1 1 1 1 10 1 3 5 Lineage 2 Human UK 12/07/2007 

CD1010 CDRN 274 *133 1 1 7 1 1 3 3 Lineage 1 Human UK 20/01/2010 

CD1049 CDRN 013 45 4 1 6 1 1 5 1 Lineage 1 Human UK 03/03/2010 

CD1061 CDRN 283 *134 1 3 2 15 1 3 3 Lineage 1 Human UK 19/03/2010 

CD1075 CDRN 070 55 1 1 6 6 1 12 12 Lineage 1 Human UK 04/03/2010 

CD1077 CDRN 106 *135 1 1 2 8 1 7 1 Lineage 1 Human UK 29/03/2010 

CD1079 J. G. Songer 078 11 5 8 5 11 9 11 8 Lineage 5 Human USA 27/03/2010 
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CD1080 CDRN 052 *136 2 1 6 16 1 5 13 Lineage 1 Human UK 27/03/2010 

CD1099 CDRN 059 53 1 2 2 1 1 5 1 Lineage 1 Human UK 02/04/2010 

**CD11 CDRN 027 1 1 1 1 10 1 3 5 Lineage 2 Human UK 21/05/2007 

CD1108 CDRN 097 21 2 2 2 1 1 1 3 Lineage 1 Human UK 18/04/2010 

CD1128 CDRN 118 42 1 1 2 1 1 7 1 Lineage 1 Human UK 04/05/2010 

CD1132 CDRN 216 33 1 1 2 1 6 5 3 Lineage 1 Human UK 07/05/2010 

CD1141 CDRN 020 2 1 1 2 1 5 3 1 Lineage 1 Human UK 17/05/2010 

CD1143 CDRN 140 26 1 1 6 1 4 3 4 Lineage 1 Human UK 04/05/2010 

CD1144 CDRN 003 57 1 1 6 4 3 5 13 Lineage 1 Human UK 17/05/2010 

CD1149 CDRN 186 51 1 1 2 6 1 7 6 Lineage 1 Human UK 23/05/2010 

CD1153 CDRN 139 52 1 1 2 16 1 12 1 Lineage 1 Human UK 27/05/2010 

CD1157 CDRN 046 35 2 5 8 1 1 3 6 Lineage 1 Human UK 24/05/2010 

CD1165 CDRN 053 63 1 1 7 5 1 3 3 Lineage 1 Human UK 28/05/2010 

CD1170 CDRN 018 17 1 1 2 1 1 5 3 Lineage 1 Human UK 22/05/2010 

CD1171 CDRN 029 *137 1 1 2 3 1 3 1 Lineage 1 Human UK 26/05/2010 

CD1199 CDRN 021 56 1 3 6 3 1 5 1 Lineage 1 Human UK 09/06/2010 

**CD12 CDRN 027 1 1 1 1 10 1 3 5 Lineage 2 Human UK 06/07/2007 

CD1201 CDRN 015 10 2 1 2 1 1 3 1 Lineage 1 Human UK 11/06/2010 

CD1202 CDRN 012 54 1 4 7 1 1 3 3 Lineage 1 Human UK 09/05/2010 

CD1210 CDRN 054 43 1 7 6 1 1 5 6 Lineage 1 Human UK 18/06/2010 
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CD1214 CDRN 011 *138 2 1 2 16 1 5 1 Lineage 1 Human UK 04/12/2009 

CD1220 CDRN 005 6 2 1 6 1 1 5 1 Lineage 1 Human UK 20/06/2010 

CD1224 CDRN 107 *139 2 1 2 1 1 1 3 Lineage 1 Human UK 14/06/2010 

**CD20 CDRN 027 1 1 1 1 10 1 3 5 Lineage 2 Human UK 07/08/2007 

**CD25 CDRN 027 1 1 1 1 10 1 3 5 Lineage 2 Human UK 31/07/2007 

CD305 CDRN 023 22 1 1 4 7 2 8 7 Lineage 3 Human UK 24/04/2008 

CD453 CDRN 023 5 1 6 4 7 2 8 7 Lineage 3 Human UK 30/09/2008 

CD527 CDRN 030 48 1 1 2 1 1 5 1 Lineage 1 Human UK 06/01/2009 

CD586 CDRN 017 37 3 7 3 8 6 9 11 Lineage 4 Human UK 11/03/2009 

**CD59 CDRN 027 1 1 1 1 10 1 3 5 Lineage 2 Human UK 11/08/2007 

**CD60 CDRN 027 1 1 1 1 10 1 3 5 Lineage 2 Human UK 04/10/2007 

**CD630 CDRN 027 1 1 1 1 10 1 3 5 Lineage 2 Human UK 04/04/2009 

CD637 CDRN 017 37 3 7 3 8 6 9 11 Lineage 4 Human UK 16/04/2009 

**CD679 CDRN 027 1 1 1 1 10 1 3 5 Lineage 2 Human UK 16/04/2009 

**CD682 CDRN 027 1 1 1 1 10 1 3 5 Lineage 2 Human UK 27/04/2009 

**CD683 CDRN 027 1 1 1 1 10 1 3 5 Lineage 2 Human UK 23/04/2009 

CD689 CDRN 064 33 1 1 2 1 6 5 3 Lineage 1 Human UK 11/05/2009 

CD714 CDRN 050 16 1 1 2 6 1 3 1 Lineage 1 Human UK 12/06/2009 

CD718 CDRN 085 39 3 7 10 8 7 2 10 Lineage 4 Human UK 08/06/2009 

CD735 CDRN 081 *139 2 1 2 1 1 1 3 Lineage 1 Human UK 03/07/2009 
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CD742 CDRN 243 *139 2 1 2 1 1 1 3 Lineage 1 Human UK 01/01/2009 

CD759 CDRN 050 6 2 1 6 1 1 5 1 Lineage 1 Human UK 15/07/2009 

**CD762 CDRN 111 *140 1 1 9 9 1 1 2 Lineage 2 Human UK 31/07/2009 

CD767  CDRN 015 10 2 1 2 1 1 3 1 Lineage 1 Human UK 27/07/2009 

**CD790 CDRN 027 1 1 1 1 10 1 3 5 Lineage 2 Human UK 02/08/2009 

**CD806 CDRN 027 1 1 1 1 10 1 3 5 Lineage 2 Human UK 02/09/2009 

**CD81 CDRN 027 1 1 1 1 10 1 3 5 Lineage 2 Human UK 28/08/2007 

CD816 CDRN 017 37 3 7 3 8 6 9 11 Lineage 4 Human UK 28/09/2009 

CD825 CDRN 017 37 3 7 3 8 6 9 11 Lineage 4 Human UK 01/10/2009 

CD839 CDRN 017 37 3 7 3 8 6 9 11 Lineage 4 Human UK 29/10/2009 

CD853 CDRN 062 44 2 5 2 1 1 3 1 Lineage 1 Human UK 21/10/2009 

CD871 CDRN 259 *141 1 3 7 1 3 1 6 Lineage 1 Human UK 06/11/2009 

**CD877 CDRN 135 41 1 1 9 9 1 3 2 Lineage 2 Human UK 22/11/2009 

CD886 CDRN 116 10 2 1 2 1 1 3 1 Lineage 1 Human UK 06/12/2009 

CD909 CDRN 264 *142 8 7 14 8 6 25 15 Lineage 4 Human UK 17/12/2009 

CD914 CDRN 010 15 1 1 6 1 8 5 1 Lineage 1 Human UK 14/12/2009 

CD915 CDRN 126 11 5 8 5 11 9 11 8 Lineage 5 Human UK 02/12/2009 

CD917 CDRN 022 66 1 1 2 6 1 5 3 Lineage 1 Human UK 20/12/2009 

CD955 CDRN 268 3 1 1 2 1 1 1 1 Lineage 1 Human UK 15/01/2010 

CD959 CDRN 262 *143 1 11 6 16 1 1 1 Lineage 1 Human UK 13/01/2010 
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CD966 CDRN 196 *144 1 1 2 2 1 5 3 Lineage 1 Human UK 22/01/2010 

CD970 CDRN 271 6 2 1 6 1 1 5 1 Lineage 1 Human UK 23/01/2010 

CD973 CDRN 002 8 1 1 2 6 1 5 1 Lineage 1 Human UK 24/11/2009 

CD134 CDRN 002 8 1 1 2 6 1 5 1 Lineage 1 Human UK unknown 

CF3 J. Brazier 017 37 3 7 3 8 6 9 11 Lineage 4 Human Belgium 1995 

CF5 J. Brazier 017 86 3 7 3 8 6 19 11 Lineage 4 Human Belgium 1995 

**DS209/06  M. Holland NT 1 1 1 1 10 1 3 5 Lineage 2 unknown UK unknown 

E327 -98 T. V. Riley 126 11 5 8 5 11 9 11 8 Lineage 5 Equine Switzerland < 2004 

ES173 T. V. Riley 017 37 3 7 3 8 6 9 11 Lineage 4 Human Australia 18/12/2006 

ES130 T. V. Riley 280 11 5 8 5 11 9 11 8 Lineage 5 Human unknown unknown 

ES166 T. V. Riley 281 11 5 8 5 11 9 11 8 Lineage 5 Human Australia 28/06/1905 

ES67 T. V. Riley 014 13 1 1 6 1 5 3 1 Lineage 1 unknown Australia unknown 

**ES84 T. V. Riley 027 1 1 1 1 10 1 3 5 Lineage 2 unknown Canada unknown 

J9 J. G. Songer NT 3 1 1 2 1 1 1 1 Lineage 1 Human USA unknown 

JGS 6047 J. G. Songer NT 3 1 1 2 1 1 1 1 Lineage 1 Equine USA unknown 

JGS 679 J. G. Songer 078 11 5 8 5 11 9 11 8 Lineage 5 Bovine USA unknown 

JGS344 J. G. Songer NT 35 2 5 8 1 1 3 6 Lineage 1 Murine USA unknown 

JGS355 J. G. Songer 002 35 2 5 8 1 1 3 6 Lineage 1 Murine USA unknown 

JGS356 J. G. Songer 002 35 2 5 8 1 1 3 6 Lineage 1 Murine USA unknown 

JGS357 J. G. Songer 002 35 2 5 8 1 1 3 6 Lineage 1 Murine USA unknown 
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JGS360 J. G. Songer 002 35 2 5 8 1 1 3 6 Lineage 1 Murine USA unknown 

JGS6042 J. G. Songer 002 8 1 1 2 6 1 5 1 Lineage 1 Equine USA unknown 

JGS6050 J. G. Songer 020 2 1 1 2 1 5 3 1 Lineage 1 Canine USA unknown 

JGS655 J. G. Songer NT 8 1 1 2 6 1 5 1 Lineage 1 Porcine USA unknown 

JGS673 J. G. Songer 078 11 5 8 5 11 9 11 8 Lineage 5 Bovine USA unknown 

JGS674 J. G. Songer 078 11 5 8 5 11 9 11 8 Lineage 5 Bovine USA unknown 

JGS675 J. G. Songer 078 11 5 8 5 11 9 11 8 Lineage 5 Bovine USA unknown 

JGS676 J. G. Songer 078 11 5 8 5 11 9 11 8 Lineage 5 Bovine USA unknown 

JGS677 J. G. Songer 078 11 5 8 5 11 9 11 8 Lineage 5 Bovine USA unknown 

JGS688 J. G. Songer 126 11 5 8 5 11 9 11 8 Lineage 5 Porcine USA unknown 

JGS691 J. G. Songer 078 11 5 8 5 11 9 11 8 Lineage 5 Porcine USA unknown 

JGS692 J. G. Songer 002 48 1 1 2 1 1 5 1 Lineage 1 Porcine USA unknown 

M1 D. Drudy NT 64 1 1 6 1 1 13 1 Lineage 1 unknown unknown unknown 

M120 D. Drudy 078 11 5 8 5 11 9 11 8 Lineage 5 Human Ireland unknown 

M13 D. Drudy NT 15 1 1 6 1 8 5 1 Lineage 1 Human unknown unknown 

M68 D. Drudy 017 37 3 7 3 8 6 9 11 Lineage 4 Human Ireland 2006 

metal 1 J. G. Songer NT 11 5 8 5 11 9 11 8 Lineage 5 Bovine USA unknown 

**O1-027 M. Holland 027 1 1 1 1 10 1 3 5 Lineage 2 Human UK unknown 

O1-078 M. Holland 078 11 5 8 5 11 9 11 8 Lineage 5 Human UK unknown 

PMH13 T. V. Riley 010 15 1 1 6 1 8 5 1 Lineage 1 Human Australia 09/01/2007 
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PMH44 T. V. Riley 126 11 5 8 5 11 9 11 8 Lineage 5 Human Australia 16/08/2008 

**R10287 J. Brazier 027 1 1 1 1 10 1 3 5 Lineage 2 Human France unknown 

R1040  J. Brazier 212 5 1 6 4 7 2 8 7 Lineage 3 Human unknown unknown 

R10459 J. Brazier 106 42 1 1 2 1 1 7 1 Lineage 1 Human unknown unknown 

**R20291 J. Brazier 027 1 1 1 1 10 1 3 5 Lineage 2 Human UK 2006 

**R20352 J. Brazier 027 1 1 1 1 10 1 3 5 Lineage 2 Human Canada 2005 

R279  J. Brazier NT 5 1 6 4 7 2 8 7 Lineage 3 Human unknown unknown 

R711 J. Brazier 031 29 1 1 2 16 1 3 1 Lineage 1 Human unknown unknown 

R714 J. Brazier 001 3 1 1 2 1 1 1 1 Lineage 1 Human unknown unknown 

R8366 J. Brazier 001 3 1 1 2 1 1 1 1 Lineage 1 Human unknown unknown 

R839 J. Brazier NT 3 1 1 2 1 1 1 1 Lineage 1 Human unknown unknown 

R894 J. Brazier 002 8 1 1 2 6 1 5 1 Lineage 1 Human unknown unknown 

RPH101 T. V. Riley NT 11 5 8 5 11 9 11 8 Lineage 5 Human Australia 27/01/2007 

RPH13 T. V. Riley NT 63 1 1 7 5 1 3 3 Lineage 1 Human Australia 24/08/2006 

RPH35 T. V. Riley 087 *145 4 1 6 1 1 10 12 Lineage 1 Human Australia 30/08/2006 

RPH56 T. V. Riley 014 2 1 1 2 1 5 3 1 Lineage 1 Human Australia 02/06/2006 

RPH61 T. V. Riley 005 6 2 1 6 1 1 5 1 Lineage 1 Human Australia 04/11/2006 

RT023 M. Holland 023 5 1 6 4 7 2 8 7 Lineage 1 unknown unknown unknown 

RT026 M. Holland 026 7 1 1 7 1 1 5 1 Lineage 1 unknown unknown unknown 

RT042 M. Holland 042 6 2 1 6 1 1 5 1 Lineage 1 unknown unknown unknown 
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Isolate Provider 
PCR 

ribotype 

Sequence 

type 

Alleles Sequence 

type lineage 
Origin Location 

Date 

isolated adk atpA dxr glyA recA sodA tpi 

RT050 M. Holland 050 18 1 1 2 5 1 3 1 Lineage 1 unknown unknown unknown 

**RT176 M. Holland 176 1 1 1 1 10 1 3 5 Lineage 2 unknown unknown unknown 

**S10.1014 M. Holland 027 1 1 1 1 10 1 3 5 Lineage 2 Human UK 2010 

S10.1486 M. Holland NT 13 1 1 6 1 5 3 1 Lineage 1 Human UK 2010 

S10.1920 M. Holland 002 *146 1 1 2 6 1 5 4 Lineage 1 Human UK 2010 

S10.358 M. Holland 078 11 5 8 5 11 9 11 8 Lineage 5 Human UK 2010 

**S10.564 M. Holland 027 1 1 1 1 10 1 3 5 Lineage 2 Human UK 2010 

Slaughter 1 J. G. Songer 078 11 5 8 5 11 9 11 8 Lineage 5 Bovine USA unknown 

T7 M. Holland NT 3 1 1 2 1 1 1 1 Lineage 1 Human unknown unknown 

VPI 10463 J. G. Songer 087 46 4 1 6 1 1 10 1 Lineage 1 Human USA 1935 

WA 107 T. V. Riley 127 11 5 8 5 11 9 11 8 Lineage 5 Human Australia 01/03/2006 

WA 12 T. V. Riley 239 *147 10 8 5 11 9 11 8 Lineage 5 Human Australia unknown 

WA 122 T. V. Riley 002 8 1 1 2 6 1 5 1 Lineage 1 Human Australia 14/04/2006 

WA 13 T. V. Riley 291 *148 5 8 5 11 9 11 20 Lineage 5 Human Australia 31/12/2005 

WA 146 T. V. Riley NT 55 1 1 6 6 1 12 12 Lineage 1 Human Australia 27/12/2005 

WA 15 T. V. Riley 002 8 1 1 2 6 1 5 1 Lineage 1 Human Australia 05/01/2009 

WA 151 T. V. Riley 237 11 5 8 5 11 9 11 8 Lineage 5 Human Australia 11/07/2006 

WA 156 T. V. Riley 012 54 1 4 7 1 1 3 3 Lineage 1 Human Australia 14/06/2006 

WA 158 T. V. Riley NT 34 1 5 7 1 1 3 1 Lineage 1 Human Australia 08/06/2006 

WA 161 T. V. Riley 010 15 1 1 6 1 8 5 1 Lineage 1 Human Australia 05/07/2006 
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Isolate Provider 
PCR 

ribotype 

Sequence 

type 

Alleles Sequence 

type lineage 
Origin Location 

Date 

isolated adk atpA dxr glyA recA sodA tpi 

WA 169 T. V. Riley 081 9 1 1 6 1 1 6 1 Lineage 1 Human Australia 02/06/2006 

WA 48 T. V. Riley 127 11 5 8 5 11 9 11 8 Lineage 5 Human Australia 14/11/2005 

WA 52 T. V. Riley 014 2 1 1 2 1 5 3 1 Lineage 1 Human Australia 02/09/2005 

WA 68 T. V. Riley 009 3 1 1 2 1 1 1 1 Lineage 1 Human Australia 09/10/2005 

WA 76 T. V. Riley 001 3 1 1 2 1 1 1 1 Lineage 1 Human Australia 13/10/2005 

WA 77 T. V. Riley 127 11 5 8 5 11 9 11 8 Lineage 5 Human Australia 14/10/2005 

WA 80 T. V. Riley NT 55 1 1 6 6 1 12 12 Lineage 1 Human Australia 19/10/2005 

WA 93 T. V. Riley 054 43 1 7 6 1 1 5 6 Lineage 1 Human Australia 28/01/2006 

WA 94 T. V. Riley 078 11 5 8 5 11 9 11 8 Lineage 5 Human Australia 19/01/2006 
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Appendix 2: Bacterial isolates used in chapter 5 

Isolate Provider Location Date Isolated Origin 

M04-34 K. Solomon Dublin, Ireland 2004 Human 

M04-21 K. Solomon Dublin, Ireland 2004 Human 

M04-30 K. Solomon Dublin, Ireland 2004 Human 

M04-40 K. Solomon Dublin, Ireland 2004 Human 

M04-50 K. Solomon Dublin, Ireland 2004 Human 

M05-213 K. Solomon Dublin, Ireland 2005 Human 

M05-195 K. Solomon Dublin, Ireland 2005 Human 

M05-214 K. Solomon Dublin, Ireland 2005 Human 

M04-9 K. Solomon Dublin, Ireland 2004 Human 

M08-127 K. Solomon Dublin, Ireland 2008 Human 

M08-150 K. Solomon Dublin, Ireland 2008 Human 

IE 1104 K. Solomon Dublin, Ireland 2009 Human 

SV04-54 K. Solomon Dublin, Ireland 2005 Human 

S3 K. Solomon Dublin, Ireland 2006 Human 

MOH849 J. S. Weese Ontario, Canada 2003 Human 

CD257 J. S. Weese Ontario, Canada 2003 Human 

CD334 J. S. Weese Ontario, Canada 2003 Human 

CD459 J. S. Weese Ontario, Canada 2003 Human 

S- 017.8 P.M Hawkey Dublin, Ireland 2000 Human 

S- 017.9 P.M Hawkey Dublin, Ireland 2000 Human 

S- 017.10 P.M Hawkey Dublin, Ireland 2000 Human 

MOH82 J. S. Weese Ontario, Canada 2003 Human 

CD656
 
 J. S. Weese Ontario, Canada 2004 Bovine 

CD657
 
 J. S. Weese Ontario, Canada 2004 Bovine 

S- 017.5 P.M Hawkey Carlisle, UK 1994 Human 

GAI 95601 H. Kato Japan 1995 Human 

S- 017.13 P.M Hawkey Japan 1999 Human 

B-33 CDRN London, UK 2011 Human 

M04-106 K. Solomon Dublin, Ireland 2005 Human 

M05-185 K. Solomon Dublin, Ireland 2005 Human 

7081082 E. J. Kuijper The Netherlands 2007 Human 

8083571 E. J. Kuijper The Netherlands 2008 Human 

MRL 1135 D. N. Gerding North Dakota, USA 2007 Human 

UHL-24 CDRN London, UK 2013 Human 

MRL 981 D. N. Gerding California, USA 2007 Human 

S- 017.12 P.M Hawkey Japan 1999 Human 

11-383 H. Kim Korea 2011 Human 

PT 1307 E. J. Kuijper Portugal 2009 Human 

S- 017.22 P.M Hawkey Poole, UK 2003 Human 

S- 017.23 P.M Hawkey Poole, UK 2003 Human 
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Isolate Provider Location Date Isolated Origin 

S- 017.24 P.M Hawkey Poole, UK 2003 Human 

S- 017.25 P.M Hawkey Poole, UK 2003 Human 

MRL 529 D. N. Gerding Michigan, USA 2007 Human 

SV04-9 K. Solomon Dublin, Ireland 2004 Human 

SV04-17 K. Solomon Dublin, Ireland 2004 Human 

SV04-29 K. Solomon Dublin, Ireland 2004 Human 

MRL 532 D. N. Gerding Michigan, USA 2007 Human 

CD552
 
 J. S. Weese Ontario, Canada 2002 Equine 

CD577
 
 J. S. Weese Ontario, Canada 2003 Equine 

CD409 J. S. Weese Ontario, Canada 2003 Human 

CD159 J. S. Weese Ontario, Canada 2003 Human 

CD210 J. S. Weese Ontario, Canada 2003 Human 

CD160 J. S. Weese Ontario, Canada 2003 Human 

CD425 J. S. Weese Ontario, Canada 2003 Human 

CD345 J. S. Weese Ontario, Canada 2003 Human 

CD538
 
 J. S. Weese Ontario, Canada 2003 Equine 

CD562 J. S. Weese Ontario, Canada 2004 Human 

CD744
 
 J. S. Weese Ontario, Canada 2004 Bovine 

CD472
 
 J. S. Weese Ontario, Canada 2004 Bovine 

CD748
 
 J. S. Weese Ontario, Canada 2004 Bovine 

CD754
 
 J. S. Weese Ontario, Canada 2004 Bovine 

CD755
 
 J. S. Weese Ontario, Canada 2004 Bovine 

CD746
 
 J. S. Weese Ontario, Canada 2004 Bovine 

CD762
 
 J. S. Weese Ontario, Canada 2004 Bovine 

CD479
 
 J. S. Weese Ontario, Canada 2005 Canine 

CD493
 
 J. S. Weese Ontario, Canada 2005 Canine 

CD504 J. S. Weese Ontario, Canada 2005 Canine 

CD515
 
 J. S. Weese Ontario, Canada 2005 Canine 

CD523
 
 J. S. Weese Ontario, Canada 2005 Canine 

CD527
 
 J. S. Weese Ontario, Canada 2005 Canine 

CD528
 
 J. S. Weese Ontario, Canada 2005 Canine 

CD529
 
 J. S. Weese Ontario, Canada 2005 Canine 

CD531
 
 J. S. Weese Ontario, Canada 2005 Canine 

CD578
 
 J. S. Weese Ontario, Canada 2005 Equine 

CD524
 
 J. S. Weese Ontario, Canada 2005 Canine 

CD514
 
 J. S. Weese Ontario, Canada 2005 Canine 

S- 017.15 P.M Hawkey Kuwait 2001 Human 

S- 017.16 P.M Hawkey Kuwait 2001 Human 

DS 1383 T. D. Lawley Singapore 2003 Human 

SI 032 T. D. Lawley Singapore 2008 Human 

MOH207 J. S. Weese Ontario, Canada 2003 Human 

MRL 270 D. N. Gerding Ontario, Canada 2006 Human 
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Isolate Provider Location Date Isolated Origin 

MRL 102 D. N. Gerding Ohio, USA 2006 Human 

09-275 H. Kim Korea 2009 Human 

BG 181 E. J. Kuijper Bulgaria 2009 Human 

GR 0108 E. J. Kuijper Greece 2009 Human 

S- 017.43 P.M Hawkey Hong Kong 2011 Human 

S- 017.75 P.M Hawkey Coventry, UK 2011 Human 

S- 017.40 P.M Hawkey Hong Kong 2011 Human 

SCH5842529 S. Reid South Africa 2012 Human 

SI 064 T. V. Riley Singapore 2012 Human 

WX-36 CDRN London, UK 2012 Human 

S- 017.79 P.M Hawkey Nottinghamshire, UK 2012 Human 

02-210 H. Kim Korea 2002 Human 

SI 1101 E. J. Kuijper Slovenia 2009 Human 

S- 017.55 P.M Hawkey Nottinghamshire, UK 2009 Human 

S- 017.91 P.M Hawkey China 2009 Human 

S- 017.32 P.M Hawkey Hong Kong 2010 Human 

S- 017.33 P.M Hawkey Hong Kong 2010 Human 

WX-35 CDRN London, UK 2011 Human 

WA 1514 T. V. Riley Australia 2012 Human 

MRL 3836 D. N. Gerding Illinois, USA 2009 Human 

S- 017.77 P.M Hawkey Coventry, UK 2012 Human 

S- 017.92 P.M Hawkey China 2009 Human 

CZ 1201 E. J. Kuijper Czech Republic 2009 Human 

675 E. J. Kuijper Romania 2009 Human 

S- 017.20 P.M Hawkey Poland 2003 Human 

S- 017.1 P.M Hawkey Argentina 2001 Human 

S- 017.2 P.M Hawkey Argentina 2001 Human 

S- 017.3 P.M Hawkey Argentina 2001 Human 

NP-25 CDRN London, UK 2008 Human 

ES 531 T. V. Riley Australia 2011 Human 

S- 017.35 P.M Hawkey Hong Kong 2010 Human 

S- 017.37 P.M Hawkey Hong Kong 2010 Human 

S- 017.38 P.M Hawkey Hong Kong 2010 Human 

ES 580 T. V. Riley Australia 2012 Human 

ES 720 T. V. Riley Australia 2012 Human 

12H001405 CDRN London, UK 2013 Human 

6797 D. N. Gerding Argentina 2011 Human 

PL 1204 E. J. Kuijper Poland 2009 Human 

01-116 H. Kim Korea 2001 Human 

S- 017.19 P.M Hawkey Poland 2003 Human 

6050595 E. J. Kuijper The Netherlands 2006 Human 

7036732 E. J. Kuijper The Netherlands 2007 Human 
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Isolate Provider Location Date Isolated Origin 

S- 017.58 P.M Hawkey Nottinghamshire, UK 2010 Human 

03-182 H. Kim Korea 2003 Human 

06-378 H. Kim Korea 2006 Human 

07-613 H. Kim Korea 2007 Human 

0 9-02 H. Kim Korea 2009 Human 

08-191 H. Kim Korea 2008 Human 

06-472 H. Kim Korea 2006 Human 

07-527 H. Kim Korea 2007 Human 

04-247 H. Kim Korea 2004 Human 

05-269 H. Kim Korea 2005 Human 

0 8-26 H. Kim Korea 2008 Human 

S- 017.48 P.M Hawkey Coventry, UK 2008 Human 

S- 017.47 P.M Hawkey Coventry, UK 2008 Human 

S- 017.60 P.M Hawkey Nottinghamshire, UK 2010 Human 

S- 017.62 P.M Hawkey Nottinghamshire, UK 2010 Human 

S- 017.68 P.M Hawkey Coventry, UK 2011 Human 

S- 017.69 P.M Hawkey Coventry, UK 2011 Human 

S- 017.46 P.M Hawkey Coventry, UK 2008 Human 

S- 017.50 P.M Hawkey Coventry, UK 2008 Human 

S- 017.49 P.M Hawkey Coventry, UK 2008 Human 

S- 017.51 P.M Hawkey Coventry, UK 2008 Human 

S- 017.52 P.M Hawkey Coventry, UK 2008 Human 

05-302 H. Kim Korea 2005 Human 

S- 017.72 P.M Hawkey Walsall, UK 2011 Human 

S- 017.73 P.M Hawkey Walsall, UK 2011 Human 

S- 017.64 P.M Hawkey Walsall, UK 2011 Human 

S- 017.65 P.M Hawkey Walsall, UK 2011 Human 

S- 017.66 P.M Hawkey Walsall, UK 2011 Human 

S- 017.90 P.M Hawkey China 2009 Human 

S- 017.57 P.M Hawkey Nottinghamshire, UK 2009 Human 

S- 017.59 P.M Hawkey Nottinghamshire, UK 2010 Human 

S- 017.70 P.M Hawkey Lincolnshire, UK 2011 Human 

S- 017.86 P.M Hawkey China 2009 Human 

S- 017.87 P.M Hawkey China 2009 Human 

S- 017.95 P.M Hawkey China 2010 Human 

S- 017.88 P.M Hawkey China 2009 Human 

S- 017.89 P.M Hawkey China 2009 Human 

S- 017.93 P.M Hawkey China 2009 Human 

S- 017.94 P.M Hawkey China 2009 Human 

5992 D. N. Gerding Illinois, USA 1996 Human 

S- 017.80 P.M Hawkey Wolverhampton, UK 2012 Human 

S- 017.78 P.M Hawkey Wolverhampton, UK 2012 Human 



 

253 

 

Isolate Provider Location Date Isolated Origin 

S- 017.36 P.M Hawkey Hong Kong 2010 Human 

95-24 H. Kim Korea 1995 Human 

95-25 H. Kim Korea 1995 Human 

S- 017.14 P.M Hawkey Japan 1999 Human 

T-14 P. J. Tsai Taiwan 2011 Human 

MRL 991 D. N. Gerding California, USA 2007 Human 

QM-34 CDRN London, UK 2011 Human 

S- 017.11 P.M Hawkey Fife, UK 2002 Human 

S- 017.21 P.M Hawkey Poland 2003 Human 

MRL 738 D. N. Gerding Washington, USA 2007 Human 

S- 017.30 P.M Hawkey Hong Kong 2010 Human 

S- 017.31 P.M Hawkey Hong Kong 2010 Human 

S- 017.41 P.M Hawkey Hong Kong 2011 Human 

S- 017.45 P.M Hawkey Hong Kong 2011 Human 

S- 017.44 P.M Hawkey Hong Kong 2011 Human 

WA 1196 T. V. Riley Australia 2012 Human 

S- 017.4 P.M Hawkey Aylesbury, UK 2005 Human 

00-108 H. Kim Korea 2000 Human 

5572 D. N. Gerding Minnesota, USA 1992 Human 

6084529 E. J. Kuijper The Netherlands 2006 Human 

SI 010 T. V. Riley Singapore 2008 Human 

S- 017.56 P.M Hawkey Birmingham, UK 2009 Human 

7038446 E. J. Kuijper The Netherlands 2007 Human 

7047343 E. J. Kuijper The Netherlands 2007 Human 

WA 1428 T. V. Riley Australia 2012 Human 

SI 004 T. V. Riley Singapore 2008 Human 

S- 017.67 P.M Hawkey Coventry, UK 2011 Human 

S- 017.71 P.M Hawkey Staffordshire, UK 2011 Human 

S- 017.81 P.M Hawkey Walsall, UK 2012 Human 

SI 007 T. V. Riley Singapore 2008 Human 

S- 017.76 P.M Hawkey Coventry, UK 2012 Human 

DS 21 T. D. Lawley Singapore 2003 Human 

I 6 T. V. Riley Indonesia 2011 Human 

9029054 E. J. Kuijper The Netherlands 2009 Human 

S- 017.7 P.M Hawkey Dorchester, UK 1996 Human 

NM-27 CDRN Middlesex, UK 2005 Human 

S- 017.6 P.M Hawkey Dorchester, UK 1996 Human 

4241 D. N. Gerding Minnesota, USA 1990 Human 

S- 017.53 P.M Hawkey Worcestershire, UK 2009 Human 

SI 047 T. V. Riley Singapore 2012 Human 

SI 099 T. V. Riley Singapore 2012 Human 

B-26 CDRN London, UK 2009 Human 
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Isolate Provider Location Date Isolated Origin 

S- 017.27 P.M Hawkey Wrexham, UK 1996 Human 

S- 017.28 P.M Hawkey Wrexham, UK 1996 Human 

S- 017.29 P.M Hawkey Wrexham, UK 1996 Human 

T-79 P. J. Tsai Taiwan 2011 Human 

T-16 P. J. Tsai Taiwan 2011 Human 

SV04-6 K. Solomon Dublin, Ireland 2004 Human 

SV05-3 K. Solomon Dublin, Ireland 2005 Human 

SV05-25 K. Solomon Dublin, Ireland 2005 Human 

SV04-10 K. Solomon Dublin, Ireland 2004 Human 

SV04-18 K. Solomon Dublin, Ireland 2004 Human 

SV04-19 K. Solomon Dublin, Ireland 2004 Human 

SCH6148880 S. Reid South Africa 2012 Human 

UHL-4 CDRN London, UK 2009 Human 

SCH5806999 S. Reid South Africa 2012 Human 

SCH6098043 S. Reid South Africa 2012 Human 

SCH5824693 S. Reid South Africa 2012 Human 

SCH5845556 S. Reid South Africa 2012 Human 

MRL 985 D. N. Gerding California, USA 2007 Human 

UHL-1 CDRN London, UK 2005 Human 

UHL-6 CDRN London, UK 2009 Human 

UHL-8 CDRN London, UK 2009 Human 

UHL-5 CDRN London, UK 2009 Human 

UHL-7 CDRN London, UK 2009 Human 

UHL-2 CDRN London, UK 2009 Human 

UHL-3 CDRN London, UK 2009 Human 

UHL-9 CDRN London, UK 2009 Human 

UHL-12 CDRN London, UK 2010 Human 

UHL-10 CDRN London, UK 2010 Human 

UHL-11 CDRN London, UK 2010 Human 

UHL-13 CDRN London, UK 2010 Human 

UHL-14 CDRN London, UK 2010 Human 

UHL-22 CDRN London, UK 2010 Human 

SI 006 T. V. Riley Singapore 2008 Human 

CDP08WTH7 T. D. Lawley Liverpool, UK 2010 Human 

UHL-15 CDRN London, UK 2010 Human 

UHL-16 CDRN London, UK 2010 Human 

UHL-17 CDRN London, UK 2010 Human 

UHL-21 CDRN London, UK 2010 Human 

UHL-23 CDRN London, UK 2011 Human 

UHL-19 CDRN London, UK 2010 Hospital ward 

UHL-21 CDRN London, UK 2010 Hospital ward 

UHL-18 CDRN London, UK 2010 Human 
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Isolate Provider Location Date Isolated Origin 

MRL 2923 D. N. Gerding Colorado, USA 2008 Human 

5733 D. N. Gerding Illinois, USA 1995 Human 

8070899 E. J. Kuijper The Netherlands 2008 Human 

CX-32 CDRN London, UK 2011 Human 

MRL 2259 D. N. Gerding California, USA 2008 Human 

4092 D. N. Gerding Minnesota, USA 1990 Human 

4139 D. N. Gerding Minnesota, USA 1990 Human 

H-219 D. N. Gerding Illinois, USA 2006 Human 

12H400159 CDRN London, UK 2013 Human 

5264 D. N. Gerding Minnesota, USA 1992 Human 

5265 D. N. Gerding Minnesota, USA 1992 Human 

5340 D. N. Gerding Minnesota, USA 1993 Human 

S- 017.84 P.M Hawkey Northamptonshire, UK 2012 Human 

S- 017.82 P.M Hawkey Northamptonshire, UK 2012 Human 

S- 017.83 P.M Hawkey Northamptonshire, UK 2012 Human 

GOSH-28 CDRN London, UK 2010 Human 

GOSH-29 CDRN London, UK 2010 Human 

GOSH-30 CDRN London, UK 2010 Human 

RF-31 CDRN London, UK 2010 Human 

S- 017.61 P.M Hawkey Birmingham, UK 2010 Human 

S- 017.74 P.M Hawkey Walsall, UK 2011 Human 

S- 017.85 P.M Hawkey Northamptonshire, UK 2012 Human 

WA 0908 T. V. Riley Australia 2012 Human 

GOSH-37 CDRN London, UK 2013 Human 

SCH5865760 S. Reid South Africa 2012 Human 

SCH5864722 S. Reid South Africa 2012 Human 

SCH6163235 S. Reid South Africa 2012 Human 
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Appendix 3: Chapter 5 isolates: non-synonymous SNPs and predicted function (includes isolates from chapter 4) 

Position in 

genome 

Reference 

Base 

Alternative 

Base 

Amino 

Acid 
Gene/Predicted Function and/or Potential Impact 

Number of 

isolates with SNP 

23868 G T 6 rpsJ (tigecyline resistance) 265 

1907433 T G 282 msrAB (altered response to environmental stress) 256 

113641 A T 426 gyrB (fluoroquinolone resistance) 248 

288057 C A 56 phnM (degradation of phosphonate compounds) 248 

1869520 A G 144 hisC (histidinol-phosphate aminotransferase) 248 

112752 G A 82 gyrA (fluoroquinolone resistance) 179 

650374 A G 19 MerR (altered response to environmental stimuli) 114 

2914248 A G 257 dacF Reduced resistance to heat  or β-lactam antibiotics 

to heat  or β-lactam antibiotics 
114 

3604289 C A 329 Hypothetical protein 114 

34697 G T 502 rpoB (rifampicin resistance) 92 

34687 C T 505 rpoB (rifampicin resistance) 90 

1918864 T C 292 
bioB (altered biotin production, limiting its availability and in-turn increasing 

toxin synthesis) 
59 

3419885 A C 314 Signalling protein 59 

800885 C T 20 PTS system, IIa component (altered sensitivity to bacteriocins) 55 

72976 C T 218 Beta-glucosidase (hydrolysis of cellobiose to two molecules of glucose) 39 

3355379 C A 346 Signalling protein 39 

1204039 G T 141 HAD superfamily hydrolase (hydrolytic enzyme reactions) 36 

213561 C T 193 Hypothetical protein 29 

345335 A C 31 
Protein-tyrosine-phosphatase (control of the biosynthesis of capsular and 

extracellular polysaccharides) 
29 

465423 T C 97 Hypothetical protein 29 

1666328 T C 87 Signalling protein 29 
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Position in 

genome 

Reference 

Base 

Alternative 

Base 

Amino 

Acid 
Gene/Predicted Function and/or Potential Impact 

Number of 

isolates with SNP 

1669112 G T 392 Signalling protein 29 

2155937 G A 134 Glyoxalase (altered response to environmental stress) 29 

2761655 T C 104 MerR (altered response to environmental stimuli) 29 

3304067 T G 559 Sigma-54 (controls expression of nitrogen related genes) 29 

3366100 G T 164 Permease (membrane transporter) 29 

400308 C A 321 cbiK (iron transport system) 26 

2764775 C T 676 Signalling protein 26 

3067079 C G 497 Penicillin-binding protein (B-lactam resistance) 26 

4025381 G A 11 FlgG (altered formation of flagella) 26 

3066391 G A 726 Penicillin-binding protein (B-lactam resistance) 25 

3202066 T A 332 ABC transporter, permease/ATP-binding protein 25 

578215 C T 252 Iron-only hydrogenase 23 

707105 C A 98 ABC transporter, permease protein 23 

1123155 G A 125 Membrane protein 23 

1541265 G A 394 Sensor histidine kinase 23 

2236997 C T 429 aroA 23 

3072208 C G 66 maf 23 

3403871 G T 115 plfA 23 

2881638 T G 223 tepA 20 

457651 C A 37 Multidrug efflux protein 19 

1178734 G T 223 Cell surface protein 19 

1942550 T A 158 Signalling protein 19 

1997615 A T 133 Xanthine/uracile permease 19 

3053095 C T 162 obg 19 

3364434 G A 227 CoA-transferase 19 
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Position in 

genome 

Reference 

Base 

Alternative 

Base 

Amino 

Acid 
Gene/Predicted Function and/or Potential Impact 

Number of 

isolates with SNP 

3916418 G A 239 Hypothetical protein 19 

3511614 T C 9 Transporter 18 

132573 G A 330 Amino acid aminotransferase 16 

850525 C T 163 bglG1 16 

2764219 G T 491 Signalling protein 16 

1032720 C T 275 ABC transporter, substrate-binding protein 15 

2060217 G A 67 argC 15 

2075525 G T 854 clpB 15 

2800650 C A 356 Oxidoreductase 15 

3382194 G A 555 Penicillin-binding protein (B-lactam resistance) 15 

4024527 G A 31 flgG 15 

113642 C T 426 gyrB 13 

2284466 G T 174 Nitrite and sulfite reductase subunit 13 

2733799 G A 55 folP 13 

3399853 G A 310 Ca2+/Na+ antiporter 13 

4184694 T A 197 buk 13 

50281 C A 317 Dual-specificity prolyl/cysteinyl-tRNA synthetase 12 

1115288 G A 48 Aromatic amino acid aminotransferase 12 

1303022 G A 9 Lipoprotein 12 

1394996 C A 145 TetR-family transcriptional regulator 12 

3066199 A G 790 Penicillin-binding protein (B-lactam resistance) 12 

3066407 A G 721 Penicillin-binding protein (B-lactam resistance) 12 

2764414 G A 556 Diguanylate kinase signalling protein 11 

3066235 G A 778 Penicillin-binding protein (B-lactam resistance) 11 

1382195 A G 641 Exported protein 10 
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Position in 

genome 

Reference 

Base 

Alternative 

Base 

Amino 

Acid 
Gene/Predicted Function and/or Potential Impact 

Number of 

isolates with SNP 

1977841 G T 212 Xanthine/uracil permease 10 

2961596 C T 498 smc 10 

3174341 A C 90 Cell surface protein (Putative N-acetylmuramoyl-L-alanine amidase) 10 

3174343 T C 89 Cell surface protein (Putative N-acetylmuramoyl-L-alanine amidase) 10 

388057 G T 323 cbiP 9 

470760 G C 264 bclA3 9 

585426 C T 50 Peptidase 9 

657360 G T 515 Sensor histidine kinase 9 

1048935 G A 67 Drug/sodium antiporter 9 

1276180 C A 78 Hypothetical protein 9 

1381396 A G 375 Exported protein 9 

1458207 C T 358 Bifunctional protein 9 

1474488 C T 364 Sodium: dicarboxylate symporter family protein 9 

1538843 T C 249 selB 9 

2495508 G A 81 Exported protein 9 

2646577 A G 339 Iron-sulfur protein 9 

2656639 C T 691 feoB2 9 

2902717 T C 473 acd 9 

3066331 G A 746 Penicillin-binding protein (B-lactam resistance) 9 

3166570 C T 449 Helicase 9 

3229965 C A 675 Two-component sensor histidine kinase 9 

3300923 C A 281 PTS system lactose/cellobiose-family transporter subunit IIC 9 

3514262 G A 302 Transposase-like protein b 9 

3514307 A G 287 Transposase-like protein b 9 

3514802 C T 122 Transposase-like protein b 9 
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Position in 

genome 

Reference 

Base 

Alternative 

Base 

Amino 

Acid 
Gene/Predicted Function and/or Potential Impact 

Number of 

isolates with SNP 

3514805 G A 121 Transposase-like protein b 9 

567449 G T 632 Two-component sensor histidine kinase 8 

1252965 A C 86 Two-component response regulator 8 

1491685 T C 27 kstR2 8 

1949814 T G 265 Membrane protein 8 

3239437 G A 337 leuC 8 

3382096 A G 522 Penicillin-binding protein (B-lactam resistance) 8 

3704987 C T 19 sleB 8 

3751894 T G 1315 Cell surface protein (Putative hemagglutinin/adhesin) precursor 8 

644128 C T 259 Two-component sensor histidine kinase 7 

2629377 C A 475 Signalling protein 7 

2636947 A G 631 ABC transporter, permease protein 7 

382360 T G 171 Aldose epimerase00416 6 

682915 G A 305 xdhA3 6 

763280 C T 152 Hypothetical protein 6 

839287 C T 148 Transcription antiterminator 6 

1165584 G T 537 secA2 6 

1828018 C A 289 Signalling protein 6 

4157880 G A 395 PTS system, IIc component 6 

15593 C T 20 rpsE 5 

51607 C A 487 proS 5 

221342 C T 274 pyrAB1_2 5 

232498 C T 200 Hypothetical protein 5 

383181 C A 26 Hypothetical protein 5 

395438 A G 3 cbiT 5 
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Position in 

genome 

Reference 

Base 

Alternative 

Base 

Amino 

Acid 
Gene/Predicted Function and/or Potential Impact 

Number of 

isolates with SNP 

850279 C T 81 bglG1 5 

906912 G A 39 glvC 5 

939561 A G 61 Hypothetical protein 5 

1208476 A G 478 Signalling protein 5 

1242643 A T 4 Aminotransferase 5 

1303484 G A 163 Lipoprotein 5 

1508773 C A 18 Two-component sensor histidine kinase 5 

1694380 G A 221 Oligoendopeptidase 5 

1698282 G A 77 grdE 5 

1927579 G T 59 Serine/threonine protein kinase 5 

3066400 G A 723 Penicillin-binding protein (B-lactam resistance) 5 

3147022 G A 117 Phosphoesterase 5 

3267110 A G 24 speE 5 

51218 A T 4 Dual-specificity prolyl/cysteinyl-tRNA synthetase 4 

127314 A G 47 soj_1 4 

1873506 G T 199 Acetyl-CoA synthetase 4 

2438942 G T 158 Lipoprotein 4 

2444939 C T 143 Iron compound ABC transporter, permease protein 4 

2830244 A T 256 Phage protein 4 

2933682 C A 225 topA 4 

3581263 G C 496 hrsA_2 4 

3784489 C T 373 Penicillin-binding protein (B-lactam resistance) 4 

3850253 A G 86 Hypothetical protein 4 

34747 G A 485 rpoB (rifampicin resistance) 3 

464168 G A 11 Transcriptional regulator 3 
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Position in 

genome 

Reference 

Base 

Alternative 

Base 

Amino 

Acid 
Gene/Predicted Function and/or Potential Impact 

Number of 

isolates with SNP 

511931 C T 43 hydN1 3 

557896 C A 342 feoB3 3 

569182 C T 181 Hypothetical protein 3 

612296 C A 21 bclA2_1 3 

660220 T C 285 ABC transporter (salivaricin lantibiotic) 3 

714135 G A 112 Hypothetical protein 3 

918006 T C 299 Hypothetical protein 3 

941032 A G 96 Thioredoxin 3 

941686 C T 287 Aaminotransferase 3 

996373 G A 212 ABC transporter, substrate-binding protein 3 

1050326 C T 709 Signalling protein 3 

1064970 A C 394 Sigma-54-dependent transcriptional regulator 3 

1161805 T C 74 slpA 3 

1162228 A G 215 slpA 3 

1185215 C T 451 pgm2 3 

1206681 G A 259 N-acetylmuramoyl-L-alanine amidase" 3 

1220630 C T 417 Radical SAM family protein 3 

1250085 C T 138 Transferase 3 

1359584 G T 272 Extracellular solute-binding protein 3 

1405479 T C 247 Carbon starvation 3 

1463838 G A 207 Sugar transporter, permease protein 3 

1553544 G C 104 Lipoprotein 3 

1795359 G A 343 PTS system, IIbc component 3 

1907960 G T 89 Hypothetical protein 3 

1920960 G T 8 ATP/GTP-binding protein 3 
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Position in 

genome 

Reference 

Base 

Alternative 

Base 

Amino 

Acid 
Gene/Predicted Function and/or Potential Impact 

Number of 

isolates with SNP 

1932695 G A 43 Membrane protein 3 

2036515 T C 212 Hypothetical protein 3 

2060944 C T 309 argC 3 

2084143 T G 96 TetR-family transcriptional regulator 3 

2373940 A G 159 Molybdopterin-guanine biosynthesis protein 3 

2401429 G T 101 Membrane protein 3 

2457775 C T 580 Calcium-transporting ATPase 3 

2523615 G A 142 Arylesterase 3 

2704311 C T 180 Ruberythrin 3 

2719354 G A 143 ABC transporter, ATP-binding protein 3 

2764540 G A 598 Signalling protein 3 

2801003 G A 239 Oxidoreductase 3 

2943677 G A 66 Hypothetical protein 3 

2987909 C A 103 Penicillin-binding protein (B-lactam resistance) 3 

3036429 G A 47 fabH 3 

3067082 T C 496 Penicillin-binding protein (B-lactam resistance) 3 

3253744 G T 343 opuCC 3 

3306641 T A 136 oppF 3 

3340579 A C 78 Oxidative stress regulatory protein 3 

3382086 T G 519 Penicillin-binding protein (B-lactam resistance) 3 

3402470 C T 445 plfB 3 

3522538 G A 135 RNA polymerase sigma factor  3 

3626504 T G 222 Two-component sensor histidine kinase 3 

3627605 T A 160 Hypothetical protein 3 

3660789 G A 144 Chemosensory protein 3 
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Position in 

genome 

Reference 

Base 

Alternative 

Base 

Amino 

Acid 
Gene/Predicted Function and/or Potential Impact 

Number of 

isolates with SNP 

3784055 C A 518 Penicillin-binding protein (B-lactam resistance) 3 

3831154 T C 51 DNA-binding transcriptional activator YeiL 3 

3832857 G A 63 Acetyltransferase 3 

3924724 G T 628 ABC transporter, permease protein 3 

4000580 T C 5 ABC transporter, permease protein 3 

4130077 G A 76 Amidohydrolase/peptidase 3 

4169330 G A 37 fabZ 3 

4180249 C T 148 Phosphoglucomutase/phosphomannomutase mutase 3 
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Appendix 4: Chapter 5 isolates: total genotypic breakdown (includes isolates from chapter 4) 
 

Non-human isolates are indicated by strain names followed by “
C”

 (canine), “
B” 

(bovine), “
E” 

(equine) and “
HW” 

(hospital ward).  
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Rifampicin resistance Fluoroquinolone resistance Resistance inferred 

34,687 34,697 34,747 112,752 113,641 113,642 Position 

rpoB rpoB rpoB gyrA gyrB gyrB Gene 

R505K H502N S485F T82I V426D V426I *Amino acid change 

1 M04-34 Dublin, Ireland 2004 1 0  
 

  
 

  
 

 

1 M04-21 Dublin, Ireland 2004 1 0  
 

  
 

  
 

 

1 M04-30 Dublin, Ireland 2004 1 0  
 

  
 

  
 

 

1 M04-40 Dublin, Ireland 2004 1 0  
 

  
 

  
 

 

1 M04-50 Dublin, Ireland 2004 1 0  
 

  
 

  
 

 

1 M05-213 Dublin, Ireland 2005 1 0  
 

  
 

  
 

 

1 M05-195 Dublin, Ireland 2005 1 0  
 

  
 

  
 

 

1 M05-214 Dublin, Ireland 2005 1 0  
 

  
 

  
 

 

1 M04-9 Dublin, Ireland 2004 2 2  
 

  
 

  
 

 

1 M08-127 Dublin, Ireland 2008 3 3  
 

  
 

  
 

 

1 M08-150 Dublin, Ireland 2008 3 3  
 

  
 

  
 

 

1 IE 1104 Dublin, Ireland 2009 3 3  
 

  
 

  
 

 

1 SV04-54 Dublin, Ireland 2005 4 5  
 

  
 

  
 

 

1 S3 Dublin, Ireland 2006 4 5  
 

  
 

  
 

 

1 MOH849 Ontario, Canada 2003 5 6  
 

  
 

  
 

 

1 CD257 Ontario, Canada 2003 5 6  
 

  
 

  
 

 

1 CD334 Ontario, Canada 2003 5 6  
 

  
 

  
 

 

1 CD459 Ontario, Canada 2003 5 6  
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Rifampicin resistance Fluoroquinolone resistance Resistance inferred 

34,687 34,697 34,747 112,752 113,641 113,642 Position 

rpoB rpoB rpoB gyrA gyrB gyrB Gene 

R505K H502N S485F T82I V426D V426I *Amino acid change 

1 S- 017.8 Dublin, Ireland 2000 6 7          

1 S- 017.9 Dublin, Ireland 2000 6 7  
 

  
 

  
 

 

1 S- 017.10 Dublin, Ireland 2000 6 7  
 

  
 

  
 

 

1 MOH82 Ontario, Canada 2003 7 8  
 

  
 

  
 

 

1 CD656
 B

 Ontario, Canada 2004 7 8  
 

  
 

  
 

 

1 CD657
 B

 Ontario, Canada 2004 7 8  
 

  
 

  
 

 

1 S- 017.5 Carlisle, UK 1994 8 9  
 

  
 

  
 

 

1 GAI 95601 Japan 1995 8 9  
 

  
 

  
 

 

1 S- 017.13 Japan 1999 8 9  
 

  
 

  
 

 

1 B-33 London, UK 2011 8 9  
 

  
 

  
 

 

1 M04-106 Dublin, Ireland 2005 9 10  
 

  
 

  
 

 

1 M05-185 Dublin, Ireland 2005 9 10  
 

  
 

  
 

 

1 7081082 The Netherlands 2007 10 10  
 

  
 

  
 

 

1 8083571 The Netherlands 2008 10 10  
 

  
 

  
 

 

1 MRL 1135 North Dakota, USA 2007 11 10     
 

  
 

 

1 UHL-24 London, UK 2013 12 11  
 

  
 

  
 

 

1 MRL 981 California, USA 2007 13 11     
 

    

1 S- 017.12 Japan 1999 14 11  
 

  
 

  
 

 

1 11-383 Korea 2011 15 11     
 

  
 

 

1 PT 1307 Portugal 2009 16 13     
 

  
 

 

1 S- 017.22 Poole, UK 2003 17 13  
 

  
 

  
 

 

1 S- 017.23 Poole, UK 2003 17 13  
 

  
 

  
 

 

1 S- 017.24 Poole, UK 2003 17 13  
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Rifampicin resistance Fluoroquinolone resistance Resistance inferred 

34,687 34,697 34,747 112,752 113,641 113,642 Position 

rpoB rpoB rpoB gyrA gyrB gyrB Gene 

R505K H502N S485F T82I V426D V426I *Amino acid change 

1 S- 017.25 Poole, UK 2003 17 13          

1 MRL 529 Michigan, USA 2007 18 13          

1 SV04-9 Dublin, Ireland 2004 19 14  
 

  
 

  
 

 

1 SV04-17 Dublin, Ireland 2004 19 14  
 

  
 

  
 

 

1 SV04-29 Dublin, Ireland 2004 19 14  
 

  
 

  
 

 

1 MRL 532 Michigan, USA 2007 20 15     
 

  
 

 

1 CD552
 E

 Ontario, Canada 2002 21 15  
 

  
 

  
 

 

1 CD577
 E

 Ontario, Canada 2003 21 15  
 

  
 

  
 

 

1 CD409 Ontario, Canada 2003 21 15  
 

  
 

  
 

 

1 CD159 Ontario, Canada 2003 21 15  
 

  
 

  
 

 

1 CD210 Ontario, Canada 2003 21 15  
 

  
 

  
 

 

1 CD160 Ontario, Canada 2003 21 15  
 

  
 

  
 

 

1 CD425 Ontario, Canada 2003 21 15  
 

  
 

  
 

 

1 CD345 Ontario, Canada 2003 21 15     
 

  
 

 

1 CD538
 E

 Ontario, Canada 2003 21 15  
 

  
 

  
 

 

1 CD562 Ontario, Canada 2004 21 15  
 

  
 

  
 

 

1 CD744
 B

 Ontario, Canada 2004 21 15  
 

  
 

  
 

 

1 CD472
 B

 Ontario, Canada 2004 21 15     
 

  
 

 

1 CD748
 B

 Ontario, Canada 2004 21 15  
 

  
 

  
 

 

1 CD754
 B

 Ontario, Canada 2004 21 15  
 

  
 

  
 

 

1 CD755
 B

 Ontario, Canada 2004 21 15  
 

  
 

  
 

 

1 CD746
 B

 Ontario, Canada 2004 21 15  
 

  
 

  
 

 

1 CD762
 B

 Ontario, Canada 2004 21 15  
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Rifampicin resistance Fluoroquinolone resistance Resistance inferred 

34,687 34,697 34,747 112,752 113,641 113,642 Position 

rpoB rpoB rpoB gyrA gyrB gyrB Gene 

R505K H502N S485F T82I V426D V426I *Amino acid change 

1 CD479
 C

 Ontario, Canada 2005 21 15          

1 CD493
 C

 Ontario, Canada 2005 21 15          

1 CD504
C
 Ontario, Canada 2005 21 15          

1 CD515
 C

 Ontario, Canada 2005 21 15  
 

  
 

  
 

 

1 CD523
 C

 Ontario, Canada 2005 21 15  
 

  
 

  
 

 

1 CD527
 C

 Ontario, Canada 2005 21 15  
 

  
 

  
 

 

1 CD528
 C

 Ontario, Canada 2005 21 15  
 

  
 

  
 

 

1 CD529
 C

 Ontario, Canada 2005 21 15  
 

  
 

  
 

 

1 CD531
 C

 Ontario, Canada 2005 21 15  
 

  
 

  
 

 

1 CD578
 E

 Ontario, Canada 2005 21 15  
 

  
 

  
 

 

1 CD524
 C

 Ontario, Canada 2005 21 15  
 

  
 

  
 

 

1 CD514
 C

 Ontario, Canada 2005 21 15  
 

  
 

  
 

 

1 S- 017.15 Kuwait 2001 22 15  
 

  
 

  
 

 

1 S- 017.16 Kuwait 2001 22 15  
 

  
 

  
 

 

1 DS 1383 Singapore 2003 23 16  
 

  
 

  
 

 

1 SI 032 Singapore 2008 23 16  
 

  
 

  
 

 

1 MOH207 Ontario, Canada 2003 24 16  
 

  
 

  
 

 

1 MRL 270 Ontario, Canada 2006 24 16     
 

  
 

 

1 MRL 102 Ohio, USA 2006 24 16     
 

  
 

 

1 09-275 Korea 2009 25 16     
 

  
 

 

1 BG 181 Bulgaria 2009 25 16     
 

  
 

 

1 GR 0108 Greece 2009 25 16     
 

  
 

 

1 S- 017.43 Hong Kong 2011 25 16     
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Rifampicin resistance Fluoroquinolone resistance Resistance inferred 

34,687 34,697 34,747 112,752 113,641 113,642 Position 

rpoB rpoB rpoB gyrA gyrB gyrB Gene 

R505K H502N S485F T82I V426D V426I *Amino acid change 

1 S- 017.75 Coventry, UK 2011 25 16          

1 S- 017.40 Hong Kong 2011 25 16          

1 SCH5842529 South Africa 2012 25 16          

1 SI 064 Singapore 2012 25 16          

1 WX-36 London, UK 2012 25 16     
 

  
 

 

1 S- 017.79 Nottinghamshire, UK 2012 25 16     
 

  
 

 

1 02-210 Korea 2002 27 17     
 

  
 

 

1 SI 1101 Slovenia 2009 28 17     
 

  
 

 

1 S- 017.55 Nottinghamshire, UK 2009 28 17     
 

  
 

 

1 S- 017.91 China 2009 28 17     
 

  
 

 

1 S- 017.32 Hong Kong 2010 28 17     
 

  
 

 

1 S- 017.33 Hong Kong 2010 28 17     
 

  
 

 

1 WX-35 London, UK 2011 28 17     
 

  
 

 

1 WA 1514 Australia 2012 29 17     
 

  
 

 

1 MRL 3836 Illinois, USA 2009 30 17     
 

  
 

 

1 S- 017.77 Coventry, UK 2012 31 18     
 

  
 

 

1 S- 017.92 China 2009 32 18     
 

  
 

 

1 CZ 1201 Czech Republic 2009 32 18     
 

  
 

 

1 675 Romania 2009 32 18     
 

  
 

 

1 S- 017.20 Poland 2003 35 18  
 

  
 

  
 

 

1 S- 017.1 Argentina 2001 37 18  
 

  
 

  
 

 

1 S- 017.2 Argentina 2001 37 18     
 

  
 

 

1 S- 017.3 Argentina 2001 37 18  
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Rifampicin resistance Fluoroquinolone resistance Resistance inferred 

34,687 34,697 34,747 112,752 113,641 113,642 Position 

rpoB rpoB rpoB gyrA gyrB gyrB Gene 

R505K H502N S485F T82I V426D V426I *Amino acid change 

1 NP-25 London, UK 2008 39 19          

1 ES 531 Australia 2011 39 19          

1 S- 017.35 Hong Kong 2010 40 19          

1 S- 017.37 Hong Kong 2010 40 19          

1 S- 017.38 Hong Kong 2010 40 19          

1 ES 580 Australia 2012 41 19     
 

  
 

 

1 ES 720 Australia 2012 41 19     
 

  
 

 

1 12H001405 London, UK 2013 41 19     
 

  
 

 

1 6797 Argentina 2011 43 19  
 

  
 

  
 

 

1 PL 1204 Poland 2009 49 20  
 

  
 

    

1 01-116 Korea 2001 56 20  
 

  
 

  
 

 

1 S- 017.19 Poland 2003 57 21  
 

  
 

  
 

 

1 6050595 The Netherlands 2006 57 21  
 

  
 

  
 

 

1 7036732 The Netherlands 2007 57 21  
 

  
 

  
 

 

1 S- 017.58 Nottinghamshire, UK 2010 62 22  
 

  
 

  
 

 

1 03-182 Korea 2003 63 22     
 

  
 

 

1 06-378 Korea 2006 64 22  
 

  
 

  
 

 

1 07-613 Korea 2007 64 22     
 

  
 

 

1 0 9-02 Korea 2009 64 22  
 

  
 

  
 

 

1 08-191 Korea 2008 65 22     
 

  
 

 

1 06-472 Korea 2006 66 23  
 

  
 

    

1 07-527 Korea 2007 66 23  
 

  
 

    

1 04-247 Korea 2004 67 23     
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Rifampicin resistance Fluoroquinolone resistance Resistance inferred 

34,687 34,697 34,747 112,752 113,641 113,642 Position 

rpoB rpoB rpoB gyrA gyrB gyrB Gene 

R505K H502N S485F T82I V426D V426I *Amino acid change 

1 05-269 Korea 2005 67 23          

1 0 8-26 Korea 2008 67 23          

1 S- 017.48 Coventry, UK 2008 68 23          

1 S- 017.47 Coventry, UK 2008 68 23          

1 S- 017.60 Nottinghamshire, UK 2010 68 23          

1 S- 017.62 Nottinghamshire, UK 2010 68 23          

1 S- 017.68 Coventry, UK 2011 68 23  
 

  
 

  
 

 

1 S- 017.69 Coventry, UK 2011 68 23  
 

  
 

  
 

 

1 S- 017.46 Coventry, UK 2008 72 24  
 

  
 

  
 

 

1 S- 017.50 Coventry, UK 2008 72 24  
 

  
 

  
 

 

1 S- 017.49 Coventry, UK 2008 72 24  
 

  
 

  
 

 

1 S- 017.51 Coventry, UK 2008 72 24  
 

  
 

  
 

 

1 S- 017.52 Coventry, UK 2008 72 24  
 

  
 

  
 

 

1 05-302 Korea 2005 75 25     
 

  
 

 

1 S- 017.72 Walsall, UK 2011 79 27  
 

  
 

  
 

 

1 S- 017.73 Walsall, UK 2011 79 27  
 

  
 

  
 

 

1 S- 017.64 Walsall, UK 2011 79 27  
 

  
 

  
 

 

1 S- 017.65 Walsall, UK 2011 79 27  
 

  
 

  
 

 

1 S- 017.66 Walsall, UK 2011 79 27  
 

  
 

  
 

 

1 S- 017.90 China 2009 82 30     
 

  
 

 

1 S- 017.57 Nottinghamshire, UK 2009 83 31  
 

  
 

  
 

 

1 S- 017.59 Nottinghamshire, UK 2010 83 31  
 

  
 

  
 

 

1 S- 017.70 Lincolnshire, UK 2011 84 31     
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Rifampicin resistance Fluoroquinolone resistance Resistance inferred 

34,687 34,697 34,747 112,752 113,641 113,642 Position 

rpoB rpoB rpoB gyrA gyrB gyrB Gene 

R505K H502N S485F T82I V426D V426I *Amino acid change 

1 S- 017.86 China 2009 94 34          

1 S- 017.87 China 2009 94 34          

1 S- 017.95 China 2010 94 34          

1 S- 017.88 China 2009 95 35          

1 S- 017.89 China 2009 95 35          

1 S- 017.93 China 2009 95 35          

1 S- 017.94 China 2009 95 35          

2 5992 Illinois, USA 1996 26 17  
 

  
 

  
 

 

2 S- 017.80 Wolverhampton, UK 2012 33 18     
 

  
 

 

2 S- 017.78 Wolverhampton, UK 2012 33 18     
 

  
 

 

2 S- 017.36 Hong Kong 2010 34 18     
 

  
 

 

2 95-24 Korea 1995 36 18     
 

  
 

 

2 95-25 Korea 1995 36 18     
 

  
 

 

2 S- 017.14 Japan 1999 38 19  
 

  
 

  
 

 

2 T-14 Taiwan 2011 38 19  
 

  
 

  
 

 

2 MRL 991 California, USA 2007 42 19     
 

  
 

 

2 QM-34 London, UK 2011 42 19  
 

  
 

  
 

 

2 S- 017.11 Fife, UK 2002 44 19     
 

  
 

 

2 S- 017.21 Poland 2003 44 19     
 

  
 

 

2 MRL 738 Washington, USA 2007 44 19     
 

  
 

 

2 S- 017.30 Hong Kong 2010 44 19     
 

  
 

 

2 S- 017.31 Hong Kong 2010 44 19     
 

  
 

 

2 S- 017.41 Hong Kong 2011 44 19     
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Rifampicin resistance Fluoroquinolone resistance Resistance inferred 

34,687 34,697 34,747 112,752 113,641 113,642 Position 

rpoB rpoB rpoB gyrA gyrB gyrB Gene 

R505K H502N S485F T82I V426D V426I *Amino acid change 

2 S- 017.45 Hong Kong 2011 44 19          

2 S- 017.44 Hong Kong 2011 44 19          

2 WA 1196 Australia 2012 44 19          

2 S- 017.4 Aylesbury, UK 2005 45 19          

2 00-108 Korea 2000 46 19          

2 5572 Minnesota, USA 1992 47 20          

2 6084529 The Netherlands 2006 48 20          

2 SI 010 Singapore 2008 48 20          

2 S- 017.56 Birmingham, UK 2009 50 20  
 

  
 

  
 

 

2 7038446 The Netherlands 2007 51 20  
 

  
 

  
 

 

2 7047343 The Netherlands 2007 51 20     
 

  
 

 

2 WA 1428 Australia 2012 52 20  
 

  
 

  
 

 

2 SI 004 Singapore 2008 53 20     
 

  
 

 

2 S- 017.67 Coventry, UK 2011 54 20     
 

  
 

 

2 S- 017.71 Staffordshire, UK 2011 55 20     
 

    

2 S- 017.81 Walsall, UK 2012 55 20  
 

  
 

    

2 SI 007 Singapore 2008 58 21  
 

  
 

  
 

 

2 S- 017.76 Coventry, UK 2012 59 21     
 

    

2 DS 21 Singapore 2003 60 21     
 

  
 

 

2 I 6 Indonesia 2011 61 22     
 

  
 

 

2 9029054 The Netherlands 2009 69 23     
 

  
 

 

2 S- 017.7 Dorchester, UK 1996 70 23  
 

  
 

  
 

 

2 NM-27 Middlesex, UK 2005 71 24  
 

  
 

  
 

 



 

274 

 

S
u

b
-lin

ea
g

e
 

Strain Name Location 

Iso
la

tio
n

 

Y
ea

r 

H
a

p
lo

ty
p

e 

N
o

. o
f 

S
N

P
s 

In
ser

tio
n

 

D
ele

tio
n

 

Rifampicin resistance Fluoroquinolone resistance Resistance inferred 

34,687 34,697 34,747 112,752 113,641 113,642 Position 

rpoB rpoB rpoB gyrA gyrB gyrB Gene 

R505K H502N S485F T82I V426D V426I *Amino acid change 

2 S- 017.6 Dorchester, UK 1996 73 25          

2 4241 Minnesota, USA 1990 74 25          

2 S- 017.53 Worcestershire, UK 2009 74 25          

2 SI 047 Singapore 2012 74 25          

2 SI 099 Singapore 2012 74 25          

2 B-26 London, UK 2009 76 26          

2 S- 017.27 Wrexham, UK 1996 77 26          

2 S- 017.28 Wrexham, UK 1996 77 26          

2 S- 017.29 Wrexham, UK 1996 77 26          

2 T-79 Taiwan 2011 78 27     
 

  
 

 

2 T-16 Taiwan 2011 78 27     
 

  
 

 

2 SV04-6 Dublin, Ireland 2004 80 28  
 

  
 

  
 

 

2 SV05-3 Dublin, Ireland 2005 80 28  
 

  
 

  
 

 

2 SV05-25 Dublin, Ireland 2005 80 28  
 

  
 

  
 

 

2 SV04-10 Dublin, Ireland 2004 81 30  
 

  
 

  
 

 

2 SV04-18 Dublin, Ireland 2004 81 30  
 

  
 

  
 

 

2 SV04-19 Dublin, Ireland 2004 81 30  
 

  
 

  
 

 

2 SCH6148880 South Africa 2012 85 31     
 

  
 

 

2 UHL-4 London, UK 2009 86 31     
 

  
 

 

2 SCH5806999 South Africa 2012 87 32  
 

  
 

  
 

 

2 SCH6098043 South Africa 2012 87 32  
 

  
 

  
 

 

2 SCH5824693 South Africa 2012 88 32  
 

  
 

    

2 SCH5845556 South Africa 2012 88 32  
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Rifampicin resistance Fluoroquinolone resistance Resistance inferred 

34,687 34,697 34,747 112,752 113,641 113,642 Position 

rpoB rpoB rpoB gyrA gyrB gyrB Gene 

R505K H502N S485F T82I V426D V426I *Amino acid change 

2 MRL 985 California, USA 2007 89 32          

2 UHL-1 London, UK 2005 90 32          

2 UHL-6 London, UK 2009 90 32          

2 UHL-8 London, UK 2009 90 32          

2 UHL-5 London, UK 2009 90 32          

2 UHL-7 London, UK 2009 90 32          

2 UHL-2 London, UK 2009 90 32          

2 UHL-3 London, UK 2009 90 32          

2 UHL-9 London, UK 2009 90 32          

2 UHL-12 London, UK 2010 90 32          

2 UHL-10 London, UK 2010 90 32     
 

  
 

 

2 UHL-11 London, UK 2010 90 32     
 

  
 

 

2 UHL-13 London, UK 2010 90 32  
 

  
 

  
 

 

2 UHL-14 London, UK 2010 90 32  
 

  
 

  
 

 

2 UHL-22 London, UK 2010 90 32     
 

  
 

 

2 SI 006 Singapore 2008 91 33     
 

  
 

 

2 CDP08WTH7 Liverpool, UK 2010 91 33  
 

  
 

  
 

 

2 UHL-15 London, UK 2010 92 33     
 

  
 

 

2 UHL-16 London, UK 2010 92 33     
 

  
 

 

2 UHL-17 London, UK 2010 92 33     
 

  
 

 

2 UHL-21 London, UK 2010 92 33     
 

  
 

 

2 UHL-23 London, UK 2011 92 33     
 

  
 

 

2 UHL-19
 HW

 London, UK 2010 93 34     
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Rifampicin resistance Fluoroquinolone resistance Resistance inferred 

34,687 34,697 34,747 112,752 113,641 113,642 Position 

rpoB rpoB rpoB gyrA gyrB gyrB Gene 

R505K H502N S485F T82I V426D V426I *Amino acid change 

2 UHL-21
 HW

 London, UK 2010 93 34          

2 UHL-18 London, UK 2010 93 34          

2 MRL 2923 Colorado, USA 2008 96 36          

2 5733 Illinois, USA 1995 97 37          

2 8070899 The Netherlands 2008 98 37          

2 CX-32 London, UK 2011 98 37          

2 MRL 2259 California, USA 2008 99 38          

2 4092 Minnesota, USA 1990 100 38          

2 4139 Minnesota, USA 1990 100 38          

2 H-219 Illinois, USA 2006 100 38          

2 12H400159 London, UK 2013 101 39          

2 5264 Minnesota, USA 1992 102 39     
 

  
 

 

2 5265 Minnesota, USA 1992 102 39     
 

  
 

 

2 5340 Minnesota, USA 1993 102 39     
 

  
 

 

2 S- 017.84 Northamptonshire, UK 2012 103 39  
 

  
 

  
 

 

2 S- 017.82 Northamptonshire, UK 2012 103 39  
 

  
 

  
 

 

2 S- 017.83 Northamptonshire, UK 2012 103 39  
 

  
 

  
 

 

2 GOSH-28 London, UK 2010 104 41  
 

  
 

  
 

 

2 GOSH-29 London, UK 2010 105 47  
 

  
 

  
 

 

2 GOSH-30 London, UK 2010 105 47  
 

  
 

  
 

 

2 RF-31 London, UK 2010 105 47     
 

  
 

 

2 S- 017.61 Birmingham, UK 2010 106 48     
 

  
 

 

2 S- 017.74 Walsall, UK 2011 106 48     
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Rifampicin resistance Fluoroquinolone resistance Resistance inferred 

34,687 34,697 34,747 112,752 113,641 113,642 Position 

rpoB rpoB rpoB gyrA gyrB gyrB Gene 

R505K H502N S485F T82I V426D V426I *Amino acid change 

2 S- 017.85 Northamptonshire, UK 2012 106 48          

2 WA 0908 Australia 2012 106 48          

2 GOSH-37 London, UK 2013 107 49          

2 SCH5865760 South Africa  2012 108 51          

2 SCH5864722 South Africa 2012 109 52          

2 SCH6163235 South Africa 2012 109 52          
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