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a b s t r a c t 

Thanks to its mesoscopic nature, the recently developed discrete Boltzmann method (DBM) has the ca- 

pability of providing deeper insight into nonequilibrium reactive flows accurately and efficiently. In this 

work, we employ the DBM to investigate the hydrodynamic and thermodynamic nonequilibrium (HTNE) 

effects around the detonation wave. The individual HTNE manifestations of the chemical reactant and 

product are probed, and the main features of their velocity distributions are analyzed. Both global and 

local HTNE effects of the chemical reactant and product increase approximately as a power of the chem- 

ical heat release that promotes the chemical reaction rate and sharpens the detonation front. With in- 

creasing relaxation time, the global HTNE effects of the chemical reactant and product are enhanced by 

power laws, while their local HTNE effects show changing trends. The physical gradients are smoothed 

and the nonequilibrium area is enlarged as the relaxation time increases. Finally, to estimate the rela- 

tive height of detonation peak, we define the peak height as H(q ) = (q max − q s ) / (q v on − q s ) , where q max 

is the maximum of q around a detonation wave, q s is the CJ solution and q von is the ZND solution at the 

von-Neumann-peak. With increasing relaxation time, the peak height decreases, because the nonequilib- 

rium effects attenuate and widen the detonation wave. The peak height is an exponential function of the 

relaxation time. 

© 2018 The Authors. Published by Elsevier Inc. on behalf of The Combustion Institute. 

This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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1. Introduction 

Detonation is a type of violent combustion that propagates

through an exothermic supersonic wave [1,2] . In practice, deto-

nation is extremely complex as it encompasses various interac-

tive physicochemical phenomena, covers a wide range of spatio-

temporal scales, and incorporates hydrodynamic, thermodynamic

and chemical nonequilibrium effects [3–6] . Specifically, a flow is

in hydrodynamic equilibrium if the net force on each of its in-

dividual parts is zero, otherwise, it is hydrodynamic nonequilib-

rium (HNE). A system is thermodynamic equilibrium if the veloc-

ity distribution function is the Maxwellian distribution function,

otherwise, it is thermodynamic nonequilibrium (TNE). In fact, both

hydrodynamic and thermodynamic nonequilibrium (HTNE) effects

often exert significant influences on fluid systems, especially on

detonation. The nonequilibrium detonation phenomenon has long

been studied [7,8] . Nichols examined the influence of nonequilib-

rium diffusional flow upon detonation velocities in composite ex-
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losives [7] . Romick et al. investigated the dynamics of a one-

imensional detonation using a one-step irreversible Arrhenius ki-

etic model, which considered partly nonequilibrium features of

ass, momentum and energy diffusion [8] . Previous works, how-

ver, were mainly focused on macroscopic manifestations by using

raditional hydrodynamic methods, usually ignoring more abun-

ant, complex and essential thermodynamic nonequilibrium effects

aused by interactions at microscopic scales. 

To predict fluid behaviors accurately, it is necessary to take

TNE into consideration. A possible method is to use molecular

ynamics (MD) [9–11] or direct simulation Monte Carlo (DSMC)

12,13] . Kawakatsu and Ueda employed MD to study the energy

elaxation processes around a detonation wave [9] . Liu et al. pre-

ented an MD simulation of shock waves, and probed the ion

elocity distributions and nonequilibrium characteristics near the

hock front [11] . With the DSMC method, Bruno et al. showed that

he nonequilibrium feature of the velocity distribution function at

he shock front changes significantly the kinetics of chemical re-

ctions and the global profile of the reaction zone [12] . But both

D and DSMC encounter the issue that the spatio-temporal scales
stitute. This is an open access article under the CC BY license. 
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Fig. 1. Sketch of the discrete velocities. 
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menable are rather limited due to the high computation cost. To

ddress this problem, a promising way is to resort to a kinetic

ethodology based on the Boltzmann equation. Up to today, great

fforts have been made and various kinetic models have been de-

eloped, such as the fast spectral method [14] , unified gas kinetic

cheme [15] , discrete unified gas kinetic scheme [16] , discrete ve-

ocity method [17] , Lattice Boltzmann model (LBM) [18] , and dis-

rete Boltzmann method (DBM) [19] , etc. 

In fact, as a mesoscopic method, the DBM has the capabil-

ty of modeling and simulating nonequilibrium systems with rel-

tively high efficiency [19–25] . The idea of investigating nonequi-

ibrium behavior with the DBM was explored by Xu et al. [19] .

pecifically, kinetic moments of the departure of the distribution

unction from its equilibrium counterpart were regarded as the

onequilibrium manifestations. Furthermore, Yan et al. proposed

he first DBM for combustion and detonation in 2013 [20] . Later,

in et al. presented a polar-coordinate DBM for explosion or im-

losion, and investigated the main features of the velocity distri-

ution function by analyzing nonequilibrium manifestations [21] .

hang et al. then demonstrated that nonequilibrium characteris-

ics are related to the entropy increasing rate [26] . More recently,

hang et al. constructed a discrete ellipsoidal statistical BGK model

nd gave a scheme to recover the actual velocity distribution func-

ion quantitatively [27] . The DBM results are consistent with the

D results [11,27] . In the following, we use a recently developed

wo-component DBM [23] to study the individual HTNE effects of

hemical reactant and product around the detonation wave. 

. Discrete Bolzmann method 

The DBM is a variant of the LBM that has been employed as

n effective tool for complex systems [28–39] . The LBM has been

idely adopted as a solver for partial differential equations, such

s incompressible Navier-Stokes (NS) equations. Several sets of dis-

rete distribution functions are used to describe physical quanti-

ies, such as the flow velocity, temperature, and species concen-

ration. Consequently, the flow field and chemical reaction are not

oupled naturally in traditional LBMs. In contrast, the hydrody-

amic and thermodynamic quantities interact with each other in

he DBM, which is consistent with the Boltzmann equation. All

hysical quantities are described by the same set of discrete dis-

ribution functions. In addition, the DBM provides more nonequi-

ibrium information beyond the macroscopic governing equations

r the traditional LBM solvers. 

The DBM is based on the following equation, 

∂ f σ
i 

∂t 
+ v σi · ∇ f σi = − 1 

τ

(
f σi − f σ eq 

i 

)
+ R 

σ
i , (1)

here the superscript σ denotes the fluid component, t the time, τ
he relaxation time, f σ

i 
the discrete distribution function. In Eq. (1) ,

he time derivative is solved in analytic form [40] , while the space

erivatives are treated with the second order nonoscillatory and

onfree-parameter dissipation difference scheme [41] . The discrete

elocities take the form, 

 

σ
i = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

cyc : v σa ( ±1 , 0 ) , 1 ≤ i ≤ 4 , 

cyc : v σ
b ( ±1 , ±1 ) , 5 ≤ i ≤ 8 , 

cyc : v σc ( ±1 , 0 ) , 9 ≤ i ≤ 12 , 

cyc : v σ
d ( ±1 , ±1 ) , 13 ≤ i ≤ 16 , 

(2) 

here ( v σa , v σb , v 
σ
c , v σd ) are tunable parameters. Figure 1 illustrates

he sketch of the discrete velocities. It is noteworthy that various

pecies have independent discrete velocities. We use the same lat-

ice for different species in this work. The discrete velocities, spa-

ial step, and temporal step are decoupled in the DBM, which is

ifferent from the standard LBM. This feature makes the DBM pos-

ess better numerical robustness than the standard LBM. 
The molar concentration n σ , density ρσ , hydrodynamic velocity

 

σ , and temperature T σ are calculated with the following formula,

 

σ = 

∑ 

i 
f σi , (3) 

σ = m 

σ n 

σ , (4) 

 

σ u 

σ = 

∑ 

i 
f σi v σi , (5) 

 

σ
[ 
( D + I σ ) 

T σ

m 

σ
+ u 

σ · u 

σ
] 

= 

∑ 

i 
f σi 

(
v σi · v σi + ησ2 

i 

)
, (6) 

here m 

σ = 1 represents the molar mass, D = 2 stands for the

pace dimension, I σ indicates extra degrees of freedom corre-

ponding to molecular rotation and/or vibration. ησ
i 

= ησ
α for

 ≤ i ≤ 4, ησ
i 

= ησ
b 

for 5 ≤ i ≤ 8, ησ
i 

= ησ
c for 9 ≤ i ≤ 12, and ησ

i 
= ησ

d 
or 13 ≤ i ≤ 16, respectively. The mixing molar concentration n , den-

ity ρ , hydrodynamic velocity u , and temperature T are obtained as

ollows: 

 = 

∑ 

σ
n 

σ , (7) 

= 

∑ 

σ
ρσ , (8) 

u = 

∑ 

σ
ρσ u 

σ , (9) 

ρu · u + 

∑ 

σ n 

σ ( D + I σ ) T 

= 

∑ 

σ [ n 

σ ( D + I σ ) T σ + ρσ u 

σ · u 

σ ] . (10) 

nd the mixing internal energy is E = 

∑ 

σ n σ ( D + I σ ) T / 2 . The dis-

rete equilibrium distribution function, f 
σ eq 
i 

= f 
σ eq 
i 

(n σ , u , T ) , sat-

sfies the following seven kinetic moments, 

 

σ = 

∑ 

i 
f σ eq 
i 

, (11) 

 

σ u = 

∑ 

i 
f σ eq 
i 

v σi , (12) 

 

σ
[ 
( D + I σ ) 

T 

m 

σ
+ u · u 

] 
= 

∑ 

i 
f σ eq 
i 

(
v σi · v σi + ησ2 

i 

)
, (13) 

 

σ
(

T 

m 

σ
I + uu 

)
= 

∑ 

i 
f σ eq 
i 

v σi v σi , (14) 

 

σ ξσ u = 

∑ 

i 
f σ eq 
i 

(
v σi · v σi + ησ2 

i 

)
v σi , (15) 

 

σ T 

m 

σ
� + n 

σ uuu = 

∑ 

i 
f σ eq 
i 

v σi v σi v σi , (16) 

n 

σ ξσ T 
m 

σ I + n 

σ
(
ξσ + 

2 T 
m 

σ

)
uu 

= 

∑ 

i f 
σ eq 
i 

(
v σ

i 
· v σ

i 
+ ησ2 

i 

)
v σ

i 
v σ

i 
, (17) 
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Fig. 2. Physical quantities around the detonation wave with τ = 4 × 10 −5 and Q = 

2 : (a) pressure p , temperature T , density ρ , horizontal velocity u x , (b) mole fraction 

Y σ , (c) twice the nonorganized energy in the x direction �σ
2 ,xx , and (d) twice the 

nonorganized energy flux in the x direction �σ
3 , 1 ,x . A vertical guideline is plotted 

across the pressure maximum. 

�  

fl  

s  

t  

r  

o  

fl  

t  

t

3

 

s  

p  

l  

t  

F  

s  

b  

t  

N  

t

3

 

4  

h{

w  

r  

t  

o  

r  

3

 

s  

l  

[  

u  
with I = δαβe αe β, ξσ = (D + I σ + 2) T 
m 

σ + u · u , � = ( δβχ u α +
δαχ u β + δαβu χ ) e αe βe χ , and e α the unit vector in the α direction.

The above seven relations can be uniformly written as 

 f eq = Mf eq , (18)

where the column matrix f eq = ( f 
σ eq 
1 

, f 
σ eq 
2 

, . . . , f 
σ eq 
16 

) T , the column

matrix ˆ f eq = ( ̂  f 
σ eq 
1 

, ˆ f 
σ eq 
2 

, . . . , ˆ f 
σ eq 
16 

) , and M is a square matrix with

16 × 16 elements (see the appendix in Ref. [23] for details). Then,

the discrete equilibrium distribution function is expressed as 

f eq = M 

−1 ˆ f eq . (19)

The reaction term R 

σ
i 

is the change rate of the discrete dis-

tribution function due to the chemical reaction. The treatment of

the chemical reaction is based on the following considerations.

The chemical reaction is irreversible and exothermic. The electronic

excitation, ionization and radiation are negligible. The time scale

of the chemical reaction is much longer than that of the kinetic

process but shorter than that of the hydrodynamic flow behavior.

Therefore, during a relatively short period of the local chemical re-

action, both mass density and hydrodynamic velocity of the mix-

ture remain unaffected while the temperature changes with the

chemical heat released. The thermodynamic nonequilibrium be-

haviors take place on the relaxation time scale, which is much

shorter than that of the chemical reaction. The reaction term is

calculated as below, 

R 

σ
i = 

1 

�t 

(
f σ ∗eq 
i 

− f σ eq 
i 

)
, (20)

where f 
σ ∗eq 
i 

= f 
σ ∗eq 
i 

(n σ ∗, u , T ∗) is the discrete equilibrium distri-

bution function after a time step, �t , during the chemical reaction

[23] . The physical quantities n σ ∗ and T ∗ are computed as below, 

n 

σ ∗ = n 

σ + S σω�t , (21)

E ∗ = E + ωQ�t , (22)

T ∗ = 

2 E ∗∑ 

σ n 

σ ∗( D + I σ ) 
. (23)

In this work, σ = A and B stand for the chemical reactant and

product, respectively. The chemical reactant changes into the prod-

uct, i.e., A → B , with the parameters ( S A , S B ) = (−1 , 1) . 

The Arrhenius function is adopted to describe the reaction, 

ω = k ov n 

A exp 

[ 
− E a 

RT 

] 
, (24)

where k ov is the reaction coefficient, n A the molar concentration

of chemical reactant, E a the effective activation energy, R = 1 the

universal gas constant. Note that variables and parameters used in

this paper are expressed in nondimensional forms, i.e., the widely

accepted LB units. The results are then expressed in the physical

units based on the similarity. 

It has been proved that the DBM can recover the reactive NS

equations [23,24] and capture the following nonequilibrium quan-

tities [23,24] , 

�σ
2 = m 

σ
∑ 

i 

(
f σi − f σ eq 

i 

)
v σi v σi , (25)

�σ
3 , 1 = m 

σ
∑ 

i 

(
f σi − f σ eq 

i 

)(
v σi · v σi + ησ2 

i 

)
v σi , (26)

�σ
3 = m 

σ
∑ 

i 

(
f σi − f σ eq 

i 

)
v σi v σi v σi , (27)

�σ
4 , 2 = m 

σ
∑ 

i 

(
f σi − f σ eq 

i 

)(
v σi · v σi + ησ2 

i 

)
v σi v σi , (28)

Physically, �σ
2 

= �σ
2 αβ

e αe β refers to the viscous stress tensor

and nonorganized momentum fluxes. �σ
3 , 1 = �σ

3 , 1 ,αe α and �σ
3 =

�σ
3 ,αβγ

e αe βe γ are relevant to the nonorganized energy fluxes.
σ
4 , 2 

= �σ
4 , 2 ,αβ

e αe β is related to the flux of nonorganized energy

ux. Furthermore, 1 
2 �

σ
2 αα represents the nonorganized energy of

pecies σ in the α direction, i.e., the departure of the transla-

ional energy of species σ in the α direction from its equilib-

ium counterpart. 1 
2 �

σ
3 , 1 ,α indicates the nonorganized energy flux

f species σ in the α direction, i.e., the departure of the energy

ux of species σ in the α direction from its equilibrium coun-

erpart. Clearly, the above nonequilibrium information provided by

he DBM is beyond traditional NS models [23,24] . 

. Nonequilibrium detonation 

Let us investigate the nonequilibrium detonation. First of all, we

tudy the main HTNE characteristics of the chemical reactant and

roduct, from which we obtain the fundamental features of the ve-

ocity distributions near the detonation front. Next, we investigate

he impact of the chemical heat and relaxation time on the HTNE.

or the sake of convenience and simplicity, only one-dimensional

teady detonation is considered. Moreover, the inflow and periodic

oundary conditions are adopted in the x and y directions, respec-

ively. To ensure the resolution is high enough, we adopt the mesh

 x × N y = 50 0 0 × 1 , the lattice width �x = �y = 2 × 10 −4 , and the

ime step �t = 5 × 10 −6 . 

.1. Nonequilibrium characteristics of detonation 

The first simulation is conducted with the relaxation time τ =
 × 10 −5 , the chemical heat per unit mass Q = 2 , and the specific

eat ratio γ = 1 . 4 . The initial field is, 

(ρ, u x , u y , p) L = (1 . 48043 , 0 . 81650 , 0 , 3 . 05433) , 
(ρ, u x , u y , p) R = (1 , 0 , 0 , 1) , 

here the subscripts L and R designate 0 ≤ x < 0.1 and 0.1 ≤ x < 1.0,

espectively. The left part is occupied by the chemical product, and

he right part is filled with the chemical reactant. The quantities

f the two parts satisfy the Rankine-Hugoniot relations. Other pa-

ameters are I σ = 3 , ( v σa , v σb , v 
σ
c , v σd , η

σ
a , η

σ
b 

, ησ
c , η

σ
d 

) = (1.6, 1.5,

.7, 4.7, 0, 5, 1, 0). 

Figure 2 (a) illustrates profiles of the detonation wave: pres-

ure p , temperature T , density ρ , horizontal velocity u x . The

ines denote the Zeldovich-Neumann-Doering (ZND) solutions

1] . The numerical results behind the detonation are ( p, ρ , T,

 x ) = (3.05426, 1.48056, 2.06291, 0.81653). Compared with the
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Fig. 3. Sketches of the velocity distribution functions located at the pressure maxi- 

mum: (a) f σ versus v x , (b) f σ versus v y , (c) f A in the velocity space ( v x , v y ), and (d) 

f B in the velocity space ( v x , v y ). 
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Fig. 4. Physical quantities around the detonation wave with τ = 4 × 10 −5 and Q = 

64 : (a) p, T, ρ , u x , (b) Y σ , (c) �σ
2 ,xx , and (d) �σ
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ND solutions (3.05433, 1.48043, 2.06314, 0.81650), the relative er-

ors are (0.0 02%, 0.0 09%, 0.011%, 0.0 04%), respectively. The numer-

cal detonation speed is v s = 2 . 516 , whose relative error is only

.001% compared to the solution 2.51603. It is satisfying. In ad-

ition, there are a few differences between the numerical and an-

lytical results near the detonation front. The ZND theory assumes

 sharp discontinuity at the detonation wave and ignores all ther-

odynamic nonequilibrium effects [1] , while we take into consid-

ration the viscosity, heat conduction and other nonequilibrium ef-

ects. 

Figure 2 (b) exhibits the mole fraction Y σ . As the detonation

ave travels from left to right, the chemical reactant changes into

he product, and the chemical heat converts to kinetic energy and

nternal energy. Obviously, Y A changes from 1 into 0, Y B changes

rom 0 into 1, and Y A + Y B = 1 . Figure 2 (c) and (d) delineate the

onequilibrium quantities �σ
2 ,xx 

and �σ
3 , 1 ,x 

, respectively. A guide-

ine is plotted across the pressure maximum in panel (a), and it

s shown in panels (b)-(d) as well. In panel (c), there is a trough

nd a peak for �A 
2 ,xx 

, and there is only a peak for �B 
2 ,xx 

. Here �A 
2 ,xx 

 �B 
2 ,xx ) is twice the nonorganized energy of the chemical reactant

product) in the x direction. Similarly, in panel (d), there is a trough

nd a peak for �A 
3 , 1 ,x 

, and there is only a peak for �B 
3 , 1 ,x 

. Here
A 
3 , 1 ,x ( �B 

3 , 1 ,x ) is twice the nonorganized energy flux of the chem-

cal reactant (product) in the x direction. Specifically, the nonequi-

ibrium quantities are �A 
2 ,xx 

= −0 . 17288 , �B 
2 ,xx 

= 0 . 13895 , �A 
2 ,xx 

+
B 
2 ,xx 

= −0 . 03393 , �A 
3 , 1 ,x 

= −0 . 50947 , �B 
3 , 1 ,x 

= 0 . 53433 , �A 
3 , 1 ,x 

+
B 
3 , 1 ,x 

= 0 . 02486 at the guideline. It can be found that the total

onequilibrium effects of the fluid mixture are weak due to the

pposite nonequilibrium effects of the chemical reactant and prod-

ct near the von-Neumann-peak, while their individual nonequilib-

ium effects are relatively strong. 

In fact, from above nonequilibrium manifestations, we can ob-

ain the fundamental characteristics of the distribution functions

 

σ , see Fig. 3 . To be specific, the equilibrium distribution function

akes the form [42] 

f M = n 

σ
(

m 

σ

2 πkT 

)(
m 

σ

2 π I σ kT 

)1 / 2 

exp 

[
−m 

σ ( v − u ) 
2 

2 kT 
− m 

σ η2 

2 I σ kT 

]
, 

(29) 

here k = 1 is the Boltzmann constant. Mathematically, f M is a

ormal distribution function whose peak is located at u . At the
ressure maximum, �A 
2 ,xx < 0 implies that, for some v y , the dis-

ribution function of the chemical reactant f A ( v x ) is “thinner” and

higher” than f M ( v x ). Meanwhile, �A 
3 , 1 ,x 

< 0 indicates that, for some

 y , f 
A ( v x ) is asymmetric, i.e., the portion of f A for v x > u x is smaller

han that for v x < u x . Similarly, �B 
2 ,xx > 0 means that, for some

 y , the distribution function of the product f B ( v x ) is “fatter” and

lower” than f M ( v x ). �B 
3 , 1 ,x 

> 0 results from that, for some v y , the

ortion of f B ( v x ) for v x > u x is larger than that for v x < u x . More-

ver, with the nonequilibrium quantities �A 
2 ,yy 

= 0 . 02046 , �B 
2 ,yy 

=
 . 00197 , �A 

3 , 1 ,y = �B 
3 , 1 ,y = 0 at the guideline, we obtain that f A ( v y )

nd f B ( v y ) are “fatter” and “lower” than f M , and both are symmet-

ical about the axis v y = u y , see Fig. 3 (b). Combining the sketches

f f σ versus v x and v y , it is easy to obtain the main features of f σ

n the velocity space ( v x , v y ), see Fig. 3 (c) and (d). Clearly, the peak

f f B is shifted towards the burnt gas, whereas that of f A is leaning

owards the fresh gas. 

It is worth noting that the source of the nonequilibrium effect

s the physical gradients and chemical reaction [23,43] . In turn,

he nonequilibrium affects the physical gradients and chemical re-

ction. The physical gradients and chemical reaction interact with

ach other as well. Next, let us study the interplay between them. 

.2. Effects of chemical heat 

It is clear that the departure of f σ from f σ eq is far with in-

reasing nonequilibrium physical quantities. To gain a deeper un-

erstanding of nonequilibrium effects on detonation systems, we

robe them with various chemical heat. Figure 4 exhibits physical

uantities around the detonation wave with chemical heat Q = 64 ,

hich is compared to the case with Q = 2 in Fig. 2 . We can find

hat the length of the reaction zone (or the nonequilibrium zone)

s about 0.01 in Fig. 2 , while it is around 0.02 in Fig. 4 . That is to

ay, the nonequilibrium area becomes wider with increasing chem-

cal heat. Meanwhile, the physical quantities ( p, T, ρ , u x ) increase

aster and the physical gradients become steeper for increasing

hemical heat. Physically, increasing chemical heat promotes the

hemical reaction rate and results in a sharp increase of physi-

al quantities and their gradients near the detonation front. The

TNE effects are strong if the chemical reaction is violent, and/or

he physical quantities as well as their gradients are large [23] . 

Figure 5 (a) demonstrates the amplitude of �σ
2 ,xx 

versus the

hemical heat. Its amplitude is defined as the half distance be-

ween the peak and trough of �σ
2 ,xx 

around the detonation wave.

igure 5 (b) exhibits 
∫ | �σ

2 ,xx 
| dx versus the chemical heat, where

he integral is extended over the region around the detonation

ave. Figure 5 (c) and (d) is for �σ
3 , 1 ,x 

. Squares and triangles de-



360 C. Lin, K.H. Luo / Combustion and Flame 198 (2018) 356–362 

a b

c d

Fig. 5. Nonequilibrium effects versus the chemical heat release: (a) amplitude of 

�σ
2 ,xx , (b) 

∫ | �σ
2 ,xx | dx, (c) amplitude of �σ

3 , 1 ,x , and (d) 
∫ | �σ

3 , 1 ,x | dx . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a b

c d

Fig. 6. Physical quantities around the detonation wave with τ = 1 . 28 × 10 −3 and 

Q = 2 : (a) p, T, ρ , u x , (b) Y σ , (c) �σ
2 ,xx , and (d) �σ

3 , 1 ,x . 

a b

c d

Fig. 7. Nonequilibrium effects versus the relaxation time: (a) amplitude of �σ
2 ,xx , 

(b) 
∫ | �σ

2 ,xx | dx, (c) amplitude of �σ
3 , 1 ,x , and (d) 

∫ | �σ
3 , 1 ,x | dx . 
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s  

f  

P  
note the chemical reactant and product, and lines represent the fit-

ting functions, F A (φ) = −2 . 93 + 1 . 15 φ and F B (φ) = −3 . 89 + 1 . 17 φ
in panel (a), F A (φ) = −12 . 3 + 1 . 40 φ and F B (φ) = −12 . 9 + 1 . 40 φ
in panel (b), F A (φ) = −2 . 17 + 1 . 53 φ and F B (φ) = −2 . 77 + 1 . 52 φ
in panel (c), F A (φ) = −11 . 3 + 1 . 76 φ and F B (φ) = −11 . 5 + 1 . 82 φ in

panel (d), with φ = log 2 (Q ) . Physically, the amplitudes of �σ
2 ,xx 

and �σ
3 , 1 ,x 

represent the local HTNE effects, while the integrals

of | �σ
2 ,xx 

| and | �σ
3 , 1 ,x 

| indicate the global HTNE effects around the

detonation wave. It is clear that both local and global HTNE effects

of the chemical reactant and product become intense with increas-

ing chemical heat. The slope of F A ( φ) is close to that of F B ( φ) in

each panel. The relationships between these nonequilibrium effects

and the chemical heat roughly obey a power law. 

Mathematically, the nonorganized energy depends on the

chemical heat, reaction rate, relaxation time, specific heat ratio,

and physical field around the detonation wave [23] . Physically, the

chemical heat released plays a direct role in the mixing tempera-

ture (an equilibrium physical quantity) and the nonorganized en-

ergy (a nonequilibrium physical quantity). The chemical heat re-

leased, which results in the temperature gradient and causes the

heat flux, also exerts an indirect influence on the nonorganized

energy. Similarly, the chemical heat affects the nonorganized heat

flux directly and indirectly, as well. 

3.3. Effects of relaxation time 

The discrete Boltzmann equation is a special discretization and

simplification of the Boltzmann equation, which is a fundamental

equation in nonequilibrium statistical physics. In Eq. (1) , the re-

laxation time τ describes the speed of a fluid system relaxing to

its local thermodynamic equilibrium state. In fact, ν = 1 /τ is the

molecular collision frequency. The effect of molecular collisions is

to force the nonequilibrium distribution function f σ
i 

back to the

most probable distribution f 
σ eq 
i 

[42] , and the rate is proportional

to the molecular collision frequency. Moreover, via the Chapman-

Enskog expansion, it is found that the dynamic viscosity coefficient

μσ and heat conductivity κσ of species σ are related to the relax-

ation time, i.e., μσ = p σ τ and κσ = γ σ μσ , with the specific heat

ratio γ σ = (D + I σ + 2) / (D + I σ ) [24] . 

In this subsection, we investigate the nonequilibrium effect on

the detonation. Because the relaxation time is a key parameter

relative to the nonequilibrium effect. To investigate the nonequi-

librium influence upon the detonation, we simulate detonations

with various relaxation time. Now, let us compare the case with
= 1 . 28 × 10 −3 in Fig. 6 to the case with τ = 4 × 10 −5 in Fig. 2 .

he length of the reaction zone is about 0.02 in Fig. 6 , which is

ider than that in Fig. 2 . The length of the nonequilibrium zone is

bout 0.04 in Fig. 6 , which is also wider than that in Fig. 2 . Namely,

oth the reaction and nonequilibrium areas are enlarged with in-

reasing relaxation time, and the nonequilibrium area increases

aster than the reaction area. In addition, the physical quantities

 p, T, ρ , u x ) increase more slowly and the physical gradients are

maller for increasing relaxation time. Physically, the local HTNE

ecomes stronger with the increase in either the relaxation time

r physical gradients [23] , while the global HTNE is proportional to

oth the local nonequilibrium amplitude and the entire nonequi-

ibrium area [22] . The physical gradients decrease and the nonequi-

ibrium area enlarges when the relaxation time increases. 

Figure 7 exhibits the nonequilibrium effects versus the re-

axation time. Squares and triangles denote the chemical re-

ctant and product, respectively. The lines stand for the fit-

ing functions, F A (φ) = −2 . 11 + 0 . 58 φ and F B (φ) = 1 . 98 + 0 . 91 φ
n panel (b), F A (φ) = 1 . 02 + 0 . 71 φ and F B (φ) = 3 . 87 + 0 . 90 φ
n panel (d), with φ = log 2 (τ ) . It is clear in panels (b)

nd (d) that the global nonequilibrium effects around the

etonation wave increase with the relaxation time approxi-

ately in power laws. On the other hand, panels (a) and (c)

how that the relation between the local nonequilibrium ef-

ects and the relaxation time does not follow the power law.

anels (a)-(d) show that both local and global nonequilibrium ef-
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a b c

Fig. 8. The peak heights of pressure, density, and horizontal velocity versus the relaxation time: (a) H ( p ) versus τ , (b) H ( ρ) versus τ , (c) H ( u x ) versus τ . The squares represent 

the DBM results, the lines represent the fitting functions. 

a b c

Fig. 9. Physical quantities around the detonation wave without nonequilibrium effects: (a) p, T, ρ , u x , (b) �σ
2 ,xx , and (c) �σ

3 , 1 ,x . 
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ects of the chemical reactant are greater (less) than those of the

roduct for smaller (larger) relaxation time. Physically, the local

TNE becomes stronger with the increasing relaxation time, chem-

cal heat, reaction rate, or physical gradients [23] . The global HTNE

epends upon both the local nonequilibrium amplitude and the

ntire nonequilibrium area [22] . Specifically, the physical gradients

educe and the nonequilibrium area enlarges when the relaxation

ime increases [22] . The increasing relaxation time and decreasing

hysical gradients exert opposite influences on the local HTNEs.

onsequently, the local HTNEs increase when the impact of in-

reasing relaxation time dominates, otherwise, they reduce. Mean-

hile, increasing relaxation time, reducing physical gradients and

nlarging nonequilibrium area play competitive roles in the global

TNEs. The global HTNEs increase as the impact of increasing re-

axation time and enlarging nonequilibrium area dominates. 

Finally, it is evident in Figs. 2 (a) and 6 (a) that the peaks of pres-

ure, density, and horizontal velocity decrease with increasing re-

axation time. For the sake of quantitative study, we introduce a

imensionless parameter, H , named peak height. The peak height

f a physical quantity q is defined as 

 ( q ) = 

q max − q s 

q v on − q s 
, (30) 

here q max is the maximum of q around a detonation wave, q s 
he value of q behind the detonation wave, and q von the max-

mum of q in the case without nonequilibrium effects. Actually,

 s is the Chapmann–Jouguet (CJ) solution in the steady produc-

ion zone, q von is the ZND solution of q at the von-Neumann-

eak. For one-dimensional steady detonation, q s ≤ q max ≤ q von , i.e.,

 ≤ L ( q ) ≤ 1. q max approaches q s and H ( q ) becomes close to 0 when

he relaxation time is large. Otherwise, q max approaches q von and

 ( q ) becomes close to 1. Figure 8 demonstrates H ( p ), H ( ρ), and

 ( u x ) versus τ , respectively. Here H ( p ), H ( ρ), and H ( u x ) indicate the

eak heights of pressure, density, and horizontal velocity, respec-

ively. The squares represent the DBM results, the lines represent

he fitting functions, H(p) = exp (−1821 τ ) in panel (a), H(ρ) =
xp (−2920 τ ) in panel (b), and H(u x ) = exp (−2141 τ ) in panel (c),
espectively. Obviously, the peak heights of physical quantities ( p,

, u x ) are exponential functions of the relaxation time, and they

educe with increasing relaxation time. 

As shown in Figs. 2 and 6 , with increasing relaxation time,

he global nonequilibrium effects become stronger, the detonation

eak becomes lower, and the detonation wave becomes wider. It

ndicates that the nonequilibrium effects attenuate and widen the

etonation wave. To further demonstrate this conclusion, we con-

uct a simulation with all nonequilibrium terms switched off, i.e.,

f σ
i 

− f 
σ eq 
i 

= 0 , in each iterative step. The configuration is the same

s the one in Fig. 6 . The results are plotted in Fig. 9 . Figure 9 (b) and

c) shows that the nonequilibrium effects vanish. The peak heights

f pressure, density, and horizontal velocity in Fig. 9 (a) are 0.984,

.987, 0.968, respectively. While the peak heights of pressure, den-

ity, and horizontal velocity in Fig. 6 (a) are 0.0 07, 0.0 01, 0.0 05, re-

pectively. The differences between the peak heights in Figs. 6 (a)

nd 9 (a) mainly result from the significant nonequilibrium effects.

omparisons between Figs. 6 (a) and 9 (a) lead to three points. (I)

he detonation peak under nonequilibrium effects is lower than

hat without nonequilibrium effects; (II) The detonation wave un-

er nonequilibrium effects is wider than that without nonequilib-

ium effects; (III) The physical gradients under nonequilibrium ef-

ects are sharper than those without nonequilibrium effects. 

. Conclusions 

It is a challenging issue to investigate the complex detona-

ion system which encompasses various interactive physicochem-

cal phenomena, covers a wide range of spatio-temporal scales,

nd incorporates significant HTNE behaviors. Based on the kinetic

heory, the DBM has the capability of providing a deeper insight

nto nonequilibrium reactive flows in an accurate, efficient and ro-

ust way. In the present study, the DBM is employed to investi-

ate the HTNE around the detonation wave. We probe the indi-

idual HTNE manifestations of the chemical reactant and product,

nd analyze the fundamental features of their velocity distribu-
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tions in velocity space. The velocity distribution functions depart

far from their equilibrium counterparts when the local nonequi-

librium effects are strong. Moreover, we investigate the impact of

the chemical heat and relaxation time on local and global HTNE

effects, respectively. The local HTNE effects become strong with

increasing relaxation time, physical gradients, and/or chemical re-

action, while the global HTNE effects depend on the local HTNE

effects and entire nonequilibrium area. It is found that both lo-

cal and global HTNE effects of the chemical reactant and prod-

uct increase approximately as a power of the chemical heat which

promotes the chemical reaction rate and sharpens the detonation

front. With increasing relaxation time, the global HTNE effects of

the chemical reactant and product are enhanced by power laws,

while their local HTNE effects show changing trends. The phys-

ical gradients are smoothed and the nonequilibrium area is en-

larged as the relaxation time increases. Finally, to estimate the rel-

ative height of detonation peak, we introduce and define the peak

height as H(q ) = (q max − q s ) / (q v on − q s ) , where q max is the maxi-

mum of q around a detonation wave, q s is the CJ solution and q von 

is the ZND solution at the von-Neumann-peak. With increasing re-

laxation time, the height of detonation peak reduces, because the

nonequilibrium effects attenuate and widen the detonation wave.

We find that the peak heights of physical quantities ( p, ρ , u x ) are

exponential functions of the relaxation time. 
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