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Abstract. Attenuation correction is an essential requirement of positron
emission tomography (PET) image reconstruction to allow for accu-
rate quantification. However, attenuation correction is particularly chal-
lenging for PET-MRI as neither PET nor magnetic resonance imag-
ing (MRI) can directly image tissue attenuation properties. MRI-based
computed tomography (CT) synthesis has been proposed as an alterna-
tive to physics based and segmentation-based approaches that assign a
population-based tissue density value in order to generate an attenua-
tion map. We propose a novel deep fully convolutional neural network
that generates synthetic CTs in a recursive manner by gradually reduc-
ing the residuals of the previous network, increasing the overall accuracy
and generalisability, while keeping the number of trainable parameters
within reasonable limits. The model is trained on a database of 20 pre-
acquired MRI/CT pairs and a four-fold random bootstrapped validation
with a 80:20 split is performed. Quantitative results show that the pro-
posed framework outperforms a state-of-the-art atlas-based approach de-
creasing the Mean Absolute Error (MAE) from 131HU to 68HU for the
synthetic CTs and reducing the PET reconstruction error from 14.3% to
7.2%.

1 Introduction

Positron emission tomography - magnetic resonance imaging (PET-MRI) is a
relatively new joint imaging technique that combines the functional information
from PET with the flexibility of MRI. To obtain quantitative PET images, it
is essential to know the tissue attenuation coefficients throughout the patient.
However, this is a difficult problem for PET-MRI as neither PET nor MRI can
directly image tissue attenuation properties, which is why computer tomography
(CT) remains the clinically accepted gold-standard for attenuation correction.
However, it is desirable to circumvent the requirement of an additional CT ac-
quisition not just to reduce the exposed radiation dose to the patient but also
to avoid the risk of registration errors between the MR and CT volumes. Hence,

SASHIMI2018, 005, v4 (final): ’DEEP BOOSTED REGRESSION FOR MR TO CT SYN� . . . 1



2

synthesising pseudo CTs from MR images gained a lot of interest in the field of
attenuation correction for hybrid PET-MR systems.

Within the last ten years, several research groups focused on the development
of single- and multi-atlas-based approaches that predict attenuation coefficients
on a continuous scale by deforming an anatomical model or dataset to match
the subject’s anatomy using non-rigid registration. Synthesis methods based on
multi-atlas information propagation, such as the model proposed by Burgos et
al. [1], have dominated this area of research for several years.

Recently, deep learning approaches have started outperforming multi-atlas
methods. In particular, convolutional neural networks (CNNs) have proved to
be a powerful tool for translating an image between domains (as between MRI
and CT). Within deep learning approaches, methods for image-to-image trans-
lation can be classified into two classes: unsupervised and supervised represen-
tation learning. The first learns the contextual information between two image
domains from unpaired data, allowing general-purpose image-to-image transla-
tion. For example, Zhu et al. recently proposed a CycleGAN model that assumes
an underlying relationship between two different domains that can be learned by
an adversarial loss that competes with a second network trained to produce im-
ages that are in principle indistinguishable from the desired output [2]. Recently,
Wolternik et al. successfully applied the CycleGAN model to medical image data
in order to perform CT synthesis [3]. However, just like the majority of CNN
frameworks, their framework addresses the image translation problem on the
basis of 2D image representations, neglecting the 3 dimensional nature of the
anatomical representation. Several attempts have been made to stably train 3
dimensional networks, a challenging task due to the curse of dimensionality. Most
3D network architectures exploit a fully convolutional architecture, where neigh-
bourhood information is preserved either through pooling/upsampling layers [4,
5], or through the use of dilated convolutions [6]. Here, we approach the image
translation task in a supervised learning setting, where corresponding data pairs
are available. However, unlike previous supervised methods [7], we propose to
use a fully 3D architecture with an efficient parameter count and large receptive
field, namely HighRes3DNet by Li et al. [6], to learn a 3 dimensional represen-
tation of the data. This representation is then mapped to the domain of CT
images through a series of 1D convolutions with non-linear activation functions.
This proposed architecture also makes extensive use of residual connections to
avoid the need to model the identity mapping of the representation, improving
the overall accuracy and training stability. Finally, we reformulate the residual
connection architecture as a corrective model, which can be seen as a form of
boosting in classic machine learning. This is achieved by recursively applying
a corrective model with shared parameters and with a deep supervision loss,
recursively reducing the residuals of the predictions. We evaluate our approach
on a dataset of 20 patients using a four-fold random bootstrapped validation
with a 80:20 split. The results demonstrate an improvement over a state-of-the-
art multi-atlas based method, as well as the ability of our method to simulate
abnormal structures not observable in the training data. As we are validating
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the advantages of the use of a recursive boosting model, the contribution of the
paper is independent of the choice of cost function.

2 Methods

2.1 Deep Boosted Regression

The aim of the proposed image synthesis approach is to find a mapping from the
domain of T1- and T2-weighted MR input images to the domain of CT images.
This mapping can be formulated as

RT1,T2 → RCT ,

which is a mapping from y ← [ f(x), where f is a function that maps input
x ∈ RT1,T2 to y ∈ RCT . This mapping function is highly nonlinear, and can
be approximated by a composition of simpler functions with parameters φ, of
the form ỹ = f (n)(f (n−1)(...(f (2)(f (1)(x, φ1), φ2), ...), φn−1), φn). In a supervised
learning context, these parameters φ are determined by minimising a loss func-
tion that aims to minimise the residuals between the predicted CT ỹ and the
true CT y

L2 = ||y − ỹ||2.

Note, however, that the large number of functions and parameters φ creates
computational and optimisation challenges. To avoid this, we propose to formu-
late the problem as a boosting model, where the output of each function f (n)

aims to approximate y. If ỹ1 = f (1)(x, φ1), then subsequent functions can be
seen as a form of corrective learning, as ỹ2 = f (2)(ỹ1, x). Thus, the model above
can be rewritten as

ỹ = f (n)(f (n−1)(...(f (2)(f (1)(x, φ1), x, φ2), ...), x, φn−1), x, φn).

It is important to note that this corrective learning model introduces more pa-
rameters for every corrective function f , resulting in model overfit and making it
hard to optimise. Instead, we propose to create a single corrective function f (c),
equivalent to sharing parameters between functions f (2) to f (n), which is applied
recursively after an initial approximation of ỹ given by f (1). We can define our
recursion as

ỹk =

{
f (1)(x | N1) if k = 0

f (c)(x, ỹk−1 | Nc) if k > 0

where a function with parameters N1 synthesises ỹ1 from an input MRI x, at
iteration k = 0. For k > 0, a corrective function, with parameters Nc, maps the
previous prediction ỹk−1 and the input MR images x to a better approximation of
the true CT y. Finally, to ensure that the function’s parameters can be optimised,
we change the loss function to
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Loss =

n∑

k=0

‖ỹk − y‖2 .

thus providing a form of deep supervision by introducing gradients for each
function f . We called this method Deep Boosted Regression as it is inspired by
the recursive residual minimisation approach of classical boosting models.

2.2 Proposed Network Architecture

The functions described in the previous section are approximated by two separate
CNNs, both following the network architecture of the high-resolution compact
architecture presented by Li et al. [6], which has been shown to be very effi-
cient in learning 3D representations from large-scale image data. It consists of
20 convolutional layers with kernel size 3 x 3 x 3 that encode low-level image
features. Mid- and high-level image features are captured within the following
convolutional layers with kernels that are dilated by a factor of two or four,
respectively, preserving the spatial resolution of the input image throughout the
network. Convolutional layers are grouped into pairs of two, and residual con-
nections are added that enable an identity mapping so that both parameters and
computational cost are minimal as shown by He et al. [8].

The proposed network architecture is illustrated in Fig. 1. The first network
N1 is trained to synthesise an initial pseudo CT (pCT) taking both T1- and T2-
weighted MR images as inputs. This first pCT is passed to a second network Nc

that learns the residuals between pCT and the real CT. Therefore the weights
of Nc depend on the output of N1, but not vice versa. An improved pCT is then
generated by adding the residuals to the initially synthesised pCT, which is then
again fed back into Nc in order to update the weights of the network. By sharing
the parameters of Nc no additional parameters are introduced to the network
keeping computational complexity within limits and making the model more
generalisable even if only a limited number of training datasets are available.
This recursive cycle can be repeated for k iterations, however, the number of
iterations is limited to avoid overfitting. The proposed Deep Boosted Regression
(DBR) approach exploits the advantages of the recursive boosting model and is
therefore independent of the choice of the cost function.

2.3 Implementation Details

In the training stage, the data (see sec. 3) were randomly sampled into subvol-
umes of size 56 x 56 x 56 pixels that were augmented by randomly rotating each
of the three orthogonal planes on the fly by an angle in the interval of [-10◦,
10◦]. The MR data was also randomly scaled by a factor between 0.9 and 1.1.
Patches were sampled more often from high frequency regions of the image as
these areas are harder to model. The network was trained from scratch on a
single NVIDIA Titan X GPU using the Adam optimisation method. We did a
four-fold random bootstrapped validation, where for each fold, the data was split
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Fig. 1. Framework of proposed Deep Boosted Regression method. MRs are fed into
a first network N1, an initial pseudo CT (pCT) is synthesised by minimising the loss
between pCT and original CT. Within the space K, residual learning is performed,
where the residuals are added to pCT and fed into a second network Nc, wherefore the
”+” illustrates an accumulator. A second loss is introduced minimising the difference
between ground-truth CT and updated pCT. The final output is an error boosted pCT
(bpCT). The number of residual learning cycles (K) is limited to avoid overfitting (e.g.
we used K=4).

into 70% training, 10% validation and 20% testing data. The model was trained
with a learning rate of 0.001 and a weight decay of 5.0 x 10−8. We trained the
network for 10K iterations before decreasing the learning rate by a factor of 10.
We terminated the training after 40K iterations when the error had converged.
The training and validation loss is demonstrated in Fig. 2. We implemented our
method with NiftyNet, which is a TensorFlow-based open-source CNN platform
that can be used for research in medical image analysis. The model will be made
available online as part of the NiftyNet model zoo [9].

3 Experimental Datasets and Materials

The experimental dataset consisted of pairs of T1- and T2-weighted MR and
CT brain images of 20 patients. For each subject MRs and CTs were aligned
using first a rigid registration algorithm followed by a very low degree of freedom
non-rigid deformation [1]. A second non-linear registration was performed, using
a cubic B-spline with normalised mutual information, only on the neck region to
correct for soft tissue shift [10]. Each volume had 301 x 301 x 153 voxels with a
voxel size of approximately 1mm3. For evaluation purposes a head region mask
was extracted from the CT image to exclude the background from the analysis.

4 Experiments and Results

Figure 3 shows an example MR input image, a synthesised CT image obtained
by a current state-of-the-art multi-atlas propagation approach [1], a synthesised
CT generated by the proposed deep boosting approach and the corresponding
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reference CT images. Other than the multi-atlas propagation method, our net-
work is able to generate details in the pseudo CT that the network has never
seen. For example, Fig. 3 shows a patient with an epidermoid cyst in the skull
being correctly generated by the network, even though no other patient in the
training database shows a similar anatomical abnormality. The greatest error
can be observed at the contour of the head and air, especially in the region of
the nasal cavity.

We had no access to the raw PET data therefore the PET images were
reconstructed using the following simulation using NiftyPET software [11]. The
original PET image was forward projected using the Siemens mMR scanner
geometry, then multiplied by the forward projected CT-based attenuation map
in order to obtain simulated measured PET sinograms. The simulated measured
data were then reconstructed using the original CT-based attenuation map to
obtain a reference image, to which the reconstructed images obtained by the
multi-atlas propagation method and our Deep Boosted Regression approach were
compared. Figure 4 shows an example slice of the simulated reference PET, the
synthesised PET and the corresponding difference image generated by the multi-
atlas propagation method and the proposed DBR approach, respectively.

In order to quantify the results we calculated the Mean Absolute Error
(MAE) of the synthesised CTs only within the head region by masking the

Fig. 2. Training (orange) and validation (blue) loss for each fold of four-fold random
bootstrapped validation with a 80:20 split. The training was terminated after 40K
iterations when the error had converged.
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Fig. 3. From left to right: Input MR image, synthesised CT using multi-atlas prop-
agation approach, reference real CT, synthesised CT using proposed Deep Boosted
Regression, and absolute error between real and synthesised boosted CT images of the
whole head (top), an anatomical abnormality in the skull (middle) and the sinus region
(bottom).

surrounding air out and compared it to the multi-atlas propagation method.
The choice of MAE as error metric derives from its good suitability for PET
attenuation correction and due to the quantitative nature of CT images. We
also investigated how the MAE of the testing data progresses after each run
through the network. The results are demonstrated in Fig. 5. The average MAE
of the test images synthesised with the multi-atlas propagation approach lies
around 131.4HU, whereas the proposed method for MR-to-CT translation is
able to reduce this error by around 48%. A paired t-test was used to show that
the agreement between true CT images and images generated by the proposed
model was significantly higher (p < 10−5) compared to the images synthesised
using the multi-atlas propagation approach. The MAE also significantly reduces
after the first two boosting cycles of the network confirming that the integrated
boosting for the minimisation of the residuals works. Table 1 shows a direct

Fig. 4. From left to right: PET reconstructed with real CT, with synthesised CT using
multi-atlas propagation approach (mapCT), difference between real CT and mapCT,
PET reconstructed with synthesised CT from Deep Boosted Regression (bpCT), dif-
ference between real CT and bpCT.
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Fig. 5. Progression of Mean Absolute Error (MAE) of synthesised CTs after each step
of the Deep Boosted Regression network (zoomed panel) compared to a current state-
of-the-art multi-atlas propagation method (MAP). The MAE decreases significantly
after the first and second boosting cycle (horizontal lines with asterisk) as well as
overall compared to a simple feed forward network (HighRes3D only).

comparison between the proposed model, the multi-atlas propagation approach
and two other recent deep learning methods for MR to CT synthesis.

5 Discussion and Conclusion

In this work we proposed a new image-to-image translation network that is
able to synthesise CT images from input MR images by gradually reducing
the error using a separate boosting network. We validated the advantages of
the recursive boosting model using a four-fold random bootstrapped validation
with a 80:20 split that showed that the average difference between synthesised
CT and ground-truth CT images was 68.6HU ± 15HU, compared to Burgos
et al.’s method that achieved a MAE of 131.4HU ± 60HU. Other deep learning

Method Mean Absolute Error

Multi-atlas propagation [1] 131.4HU ± 60HU

Context-Aware Generative Adversarial Network [12] 92.5HU ± 13.9HU

Deep CNN [7] 84.8HU ± 17.3HU

Deep Boosted Regression 68.6HU ± 15HU

Table 1. Mean absolute error (MAE) in Houndsfield Units (HU) of state-of-the-art
multi-atlas propagation method, two deep learning CT synthesis methods and proposed
Deep Boosted Regression.
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approaches reported a MAE of 92.5HU ± 13.9HU [12] and 84.8HU ± 17.3HU [7].
However, while results are not directly comparable due to differing data, DBR
reports state-of-the-art results on MAE among other deep learning approaches.

To quantify the performance of the proposed Deep Boosted Regression method
relative to the CT-based attenuation correction, the mean absolute percentage
error (MAPE) within the head region only was used as the figure of merit. The
obtained MAPE for the proposed method was 7.2%, which showed an improve-
ment to the state-of-the-art method [1], which obtained MAPE of 14.3%. As
part of our future work, we will also investigate the impact of the synthesised
CT images in radiotherapy treatment dose planning.

Furthermore, the success of the training highly depends on the registration
quality of the MR/CT database. Even small inaccuracies in the registration can
have a great influence on the training. An idea to circumvent the requirement of
paired data is to incorporate a generative adversarial loss which provides a means
of learning the context between CT and MR images from unpaired data. This
has potential to provide a significant advantage in terms of the data availability
for training due to the scarcity of accurately paired datasets, however, challenges
in terms of validation emerge due to a missing ground truth. Moreover, we intend
to extend the weighted patch sampling scheme to an adaptive sampling scheme
that samples patches dynamically from areas with large residuals.
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Išgum, I.: Deep mr to ct synthesis using unpaired data. In: SASHIMI, Springer
(2017) 14–23

4. Kamnitsas, K., Ledig, C., Newcombe, V.F., Simpson, J.P., Kane, A.D., Menon,
D.K., Rueckert, D., Glocker, B.: Efficient multi-scale 3d cnn with fully connected
crf for accurate brain lesion segmentation. Medical image analysis 36 (2017) 61–78

5. Kleesiek, J., Urban, G., Hubert, A., Schwarz, D., Maier-Hein, K., Bendszus, M.,
Biller, A.: Deep mri brain extraction: a 3d convolutional neural network for skull
stripping. NeuroImage 129 (2016) 460–469

SASHIMI2018, 005, v4 (final): ’DEEP BOOSTED REGRESSION FOR MR TO CT SYN� . . . 9



10

6. Li, W., Wang, G., Fidon, L., Ourselin, S., Cardoso, M.J., Vercauteren, T.: On
the compactness, efficiency, and representation of 3d convolutional networks: brain
parcellation as a pretext task. In: IPMI, Springer (2017) 348–360

7. Han, X.: Mr-based synthetic ct generation using a deep convolutional neural net-
work method. Medical physics 44(4) (2017) 1408–1419

8. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
CoRR abs/1512.03385 (2015)

9. Gibson, E., Li, W., Sudre, C.H., Fidon, L., Shakir, D., Wang, G., Eaton-Rosen,
Z., Gray, R., Doel, T., Hu, Y., Whyntie, T., Nachev, P., Barratt, D.C., Ourselin,
S., Cardoso, M.J., Vercauteren, T.: Niftynet: a deep-learning platform for medical
imaging. CoRR abs/1709.03485 (2017)

10. Modat, M., Ridgway, G.R., Taylor, Z.A., Lehmann, M., Barnes, J., Hawkes, D.J.,
Fox, N.C., Ourselin, S.: Fast free-form deformation using graphics processing units.
Computer methods and programs in biomedicine 98(3) (2010) 278–284

11. Markiewicz, P.J., Ehrhardt, M.J., Erlandsson, K., Noonan, P.J., Barnes, A., Schott,
J.M., Atkinson, D., Arridge, S.R., Hutton, B.F., Ourselin, S.: Niftypet: a high-
throughput software platform for high quantitative accuracy and precision pet
imaging and analysis. Neuroinformatics 16(1) (Jan 2018) 95–115

12. Nie, D., Trullo, R., Lian, J., Petitjean, C., Ruan, S., Wang, Q., Shen, D.: Medical
image synthesis with context-aware generative adversarial networks. In: MICCAI,
Springer (2017) 417–425

10 SASHIMI2018, 005, v4 (final): ’DEEP BOOSTED REGRESSION FOR MR TO CT SYN� . . .


