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The use of the last observation carried forward (LOCF) method for imputing
missing outcome data in randomized clinical trials has been much criticized
and its shortcomings are well understood. However, only recently have pub-
lished studies widely started using more appropriate imputation methods. Con-
sequently, meta-analyses often include several studies reporting their results
according to LOCF. The results from such meta-analyses are potentially biased
and overprecise. We develop methods for estimating summary treatment effects
for continuous outcomes in the presence of both missing and LOCF-imputed
outcome data. Our target is the treatment effect if complete follow-up was
obtained even if some participants drop out from the protocol treatment. We
extend a previously developed meta-analysis model, which accounts for the
uncertainty due to missing outcome data via an informative missingness param-
eter. The extended model includes an extra parameter that reflects the level of
prior confidence in the appropriateness of the LOCF imputation scheme. Nei-
ther parameter can be informed by the data and we resort to expert opinion and
sensitivity analysis. We illustrate the methodology using two meta-analyses of
pharmacological interventions for depression.
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1 INTRODUCTION

Missing data in clinical trials pervade all fields of medicine and may compromise the validity of inferences even from
well-designed randomized controlled trials.1 Trials usually follow patients over time and take measurements at several
time points. Many participants drop out from follow-up before the end of the study but have their outcomes reported at
intermediate time points. Our target is the treatment effect if complete follow-up was obtained, even if some participants
discontinue the protocol treatment. Of course, discontinuing treatment is indicative of how effective and acceptable a
treatment is, but ideally, the target in a randomized controlled trial is to take measurements and calculate an effect size
at the end of the trial in order to abide by the intention-to-treat principle.

To achieve this, some imputation method is needed. A standard methodology in many clinical fields for imputing
incomplete longitudinal data sets is the last observation carried forward (LOCF) method: The missing outcome is replaced
by the last observed value. Missing data are particularly evident in mental health trials where dropout rates may exceed
50%2 and the LOCF method is commonly applied.3

An LOCF analysis is valid for estimating the treatment effect under very restrictive and usually unrealistic assump-
tions. In medical fields, disease progression is a definite feature and patients are expected to deteriorate over time, eg,
in dementia,4 assuming no progression after dropout is expected to give biased results. In such a case, a LOCF analysis
would give overly optimistic results for both groups; if participants in the treatment group leave earlier (ie, due to adverse
events) or more frequently, then results would favor the treatment group. However, in depression and psychosis trials, we
expect participants to improve over time and an early stop may give conservative results if participants in the experimental
treatment drop out earlier because of adverse events.

Establishing a treatment effect based on an analysis that is clearly conservative represents compelling evidence of effi-
cacy from a regulatory perspective.1 However, LOCF may induce bias in unpredictable ways, so treatment effects estimated
using these assumptions are not necessarily conservative. LOCF (and other single-imputation methods) does not propa-
gate imputation uncertainty and leads to an underestimation of standard errors, which, in turn, increases the likelihood
of finding a false positive result.

Although more appropriate methods have been proposed and adopted in new trials, older trials included in systematic
reviews and meta-analyses often use LOCF.5 A recent study showed that more than 75% of meta-analyses in mental health
contained studies that had LOCF imputed outcomes.3 The availability of individual participant data is rare and, as a result,
meta-analyses are not able to use appropriate imputation methods (eg, multiple imputation, likelihood methods) within
each study. In this paper we focus on meta-analysis with aggregate data (AD) and provide methods to reanalyze any
study in an AD meta-analysis whose reporting used the most common single-imputation methods. In these reanalyses,
we make a range of assumptions about the missing data. We use the term ‘LOCF analysis’ to refer to a synthesis of the
reported outcome data from completers with LOCF-imputed outcome values.

If studies take one single measurement at the end of the trial, then the complete case analysis would be valid under the
missing-at-random (MAR) assumption: Missingness is conditionally independent of the outcome given any predictor. In
either case (multiple or one final measurement), the probability of missingness may depend on unobserved characteristics
such as the value of the missing outcome. In this case, data are missing not at random (MNAR). Patients in the treatment
group may leave earlier because of adverse events, or patients randomized to a placebo group or a suboptimal treatment
may leave earlier because of improvement and an LOCF analysis would give a biased treatment effect.

Methods to account for missing outcome data in AD meta-analysis have been previously developed.6 They are pri-
marily based on informative missingness parameters; parameters that relate the observed outcomes in completers to the
assumed missing outcomes. White et al presented a pattern mixture model for handling dichotomous missing outcomes
in which the degree of departure from the MAR assumption is quantified by the informative missingness odds ratio; this is
defined as the ratio of the odds of the outcome in the missing participants to the odds of the outcome in the completers.7,8

Mavridis et al extended the approach to missing continuous outcomes and to network meta-analysis by quantifying the
degree of departure from a MAR assumption using various informative missingness parameters such as an informa-
tive missingness difference of means (IMDoM, the difference in mean value of outcome in the missing participants and
completers).9

Little work has been done, however, to account for uncertainty in data that have been imputed using LOCF.
Dimitrakopoulou et al considered a sensitivity analysis by decomposing the probability of an unobserved successful out-
come assuming various prior distributions for the sensitivity and specificity of the LOCF imputation.10 Here, we extend
our previous work on AD meta-analysis with continuous outcomes to account not only for missing outcome data but also
for outcomes that have been imputed using LOCF.
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We propose a pattern-mixture model that allows us not only to consider LOCF as a special case but also to assume LOCF
with some uncertainty introduced for the imputed values. Hence, we may get LOCF estimates with increased uncertainty
reflecting the facts that we made an assumption that may not be true and that imputed data should not be treated as if they
had been actually observed. The suggested model uses expert opinion to correct for bias. If expert opinion is not available,
we can employ a sensitivity analysis to explore how robust results are to departures from the LOCF assumptions. The
methods potentially work for the most common single-imputation method, but we describe them for LOCF as this is the
commonest and we describe other single-imputation methods in the discussion.

This paper is organized as follows. In Section 2, we present two data sets from a large network of depression trials.11 In
Section 3, we define the model. In Section 4, we discuss how we can inform the informative missingness parameters of
the model, and in Section 5, we illustrate the methodology using the data sets presented in Section 2. We conclude with
a discussion in Section 6.

2 MOTIVATING EXAMPLES

We use two data sets to illustrate the suggested methodology. The first data set (Table 1) consists of 14 studies comparing
fluoxetine and venlafaxine, whereas the second one (Table 2) consists of 11 studies comparing reboxetine with placebo.
Both comparisons are taken from a large network of depression trials.11 In both data sets, the outcome is the reduction in

TABLE 1 Sample size, mean value, and standard deviation for completers plus imputed and completers for the comparison fluoxetine vs
venlafaxine. The number of LOCF-imputed and missing outcomes, and SMDs from the complete case analysis and the LOCF analysis are also
given

id Treatment LOCF Analysis Complete Case Analysis
SMD Sample Mean SD LOCF, % SMD Sample Mean SD Missing, %

(95% CI) Size (95% CI) Size
Clerc Fluoxetine −0.58 34 17,40 11,60 12(35%) NA 22 NA NA 0(0%)
1994 Venlafaxine (−1.07,−0.09) 33 11,00 10,30 5(15%) 28 NA NA 1(3%)
Dierick Fluoxetine −0.18 161 12,40 8,88 40(25%) NA 121 NA NA 0(0%)
1996 Venlafaxine (−0.40,0.04) 153 10,70 9,90 38(25%) 115 NA NA 0(0%)
Tylee Fluoxetine NA NA NA NA 0(0%) −0.08 140 11,24 13,34 30(18%)
1997 Venlafaxine NA NA NA 0(0%) (−0.32,0.16) 132 10,19 13,34 39(23%)
Costaesilva Fluoxetine −0.05 186 10,20 7,52 18(10%) NA 168 NA NA 0(0%)
1998 Venlafaxine (−0.25,0.15) 196 9,80 7,52 29(15%) 167 NA NA 0(0%)
Alves Fluoxetine −0.26 47 10,55 8,59 9(19%) NA 38 NA NA 0(0%)
1999 Venlafaxine (−0.68,0.17) 40 8,31 8,59 10(25%) 30 NA NA 0(0%)
Rudolph Fluoxetine −0.21 103 14,20 8,19 28(27%) −0.27 75 12,80 9,00 0(0%)
1999 Venlafaxine (−0.49,0.07) 95 12,50 8,10 14(15%) (−0.58,0.05) 81 10,40 9,00 5(5%)
Silverstone Fluoxetine −0.05 119 13,40 7,94 30(25%) NA 89 NA NA 2(2%)
1999 Venlafaxine (−0.30,0.20) 122 13,00 7,90 31(25%) 91 NA NA 6(5%)
Tzanakaki Fluoxetine −0.09 50 12,50 8,59 8(16%) −0.18 42 11,10 9,00 4(7%)
2000 Venlafaxine (−0.48,0.29)) 54 11,70 8,59 11(20%) (−0.60,0.25) 43 9,50 9,00 1(2%)
Schatzberg Fluoxetine −0.17 99 16,30 8,59 29(29%) NA 70 NA NA 1(1%)
2006 Venlafaxine (−0.46,0.11) 93 14,80 8,59 26(28%) 67 NA NA 11(11%)
Nemeroff Fluoxetine −0.20 100 13,90 8,59 14(14%) NA 86 NA NA 4(4%)
2007 Venlafaxine (−0.48,0.08) 96 12,20 8,59 18(19%) 78 NA NA 6(6%)
Keller Fluoxetine 0.04 266 8,90 6,52 47(18%) NA 220 NA NA 8(3%)
2007 Venlafaxine (−0.10,0.18) 781 9,20 8,38 124(16%) 656 NA NA 41(5%)
Sheehan Fluoxetine −0.27 99 18,09 8,89 23(23%) −0.61 76 17,03 8,81 0(0%)
2009 Venlafaxine (−0.55,0.02) 91 15,59 9,81 25(28%) (−0.95,−0.28) 66 11,85 7,92 4(4%)
Heller Venlafaxine −0.28 15 8,86 4,50 3(20%) NA 12 NA NA 0(0%)
2009 Fluoxetine (−1.01,0.45) 14 10,15 4,52 5(36%) 9 NA NA 0(0%)
Chang Fluoxetine 0.09 58 8,00 7,70 12(21%) NA 46 NA NA 0(0%)
2015 Venlafaxine (−0.28,0.46) 54 8,70 8,30 11(20%) 43 NA NA 0(0%)

POOLED RESULTS −0.13 Heterogeneity SD = 0.09 −0.28 Heterogeneity SD = 0.18
RANDOM EFFECTS (−0.20,−0.05) (−0.51,−0.04)

Abbreviations: CI, confidence interval; LOCF, last observation carried forward; SD, standard deviation; SMD, standardized mean difference.
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TABLE 2 Sample size, mean value, and standard deviation for completers plus imputed and completers for the comparison placebo vs
reboxetine. The number of LOCF-imputed and missing outcomes is also given

id Treatment LOCF Analysis Completers
SMD Sample Mean SD LOCF, % SMD Sample Mean SD Missing, %

(95% CI) Size (95% CI) Size
Versiani2000 Reboxetine −1.42 28 12,60 10,30 4(14%) −0.70 22 10,10 8,20 0(0%)

(Study 091) Placebo (−2.01,−0.84) 28 29,50 13,30 16(57%) (−1.47,0.07) 10 16,30 10,20 0(0%)
Study 032a Reboxetine 0.12 22 17,18 4,75 7(32%) 0.22 17 16,59 4,73 2(12%)
(CTN032- Placebo (−0.46,0.69) 25 16,6 5,14 5(20%) (−0.42,0.87) 21 15,52 4,78 1(5%)
FCE20124)
Study 015 Reboxetine −0.19 110 14,04 9,22 23(21%) −0.24 89 11,26 7,17 2(2%)

Placebo (−0.45,0.08) 111 15,8 9,58 26(23%) (−0.54,0.06) 87 13,08 8,06 1(1%)
Bosc1997a Reboxetine −0.57 126 −13,45 8,45 38(30%) NA 88 NA NA 0(0%)
(Study 014 - Placebo (−0.82,−0.32) 128 −8,64 8,45 52(41%) 76 NA NA 0(0%)
Andreoli2002)
Ban1998 Reboxetine −0.61 81 11,60 7,64 8(10%) −0.69 73 10,40 6,32 3 (4%)
(Study 008) Placebo (−0.93,−0.30) 83 16,68 8,87 10 (12%) (−1.02,−0.36) 73 15,52 8,37 2(3%)
Study 049 Reboxetine −0.18 101 −9,30 5,44 37(37%) −0.19 71 −11,40 10,00 6(8%)

Placebo (−0.46,0.09) 101 −8,30 5,44 23(23%) (−0.51,0.13) 81 −9,50 10,00 4(5%)
Study 045 Reboxetine 0.21 174 −9,56 8,48 63(36%) 0.06 119 −13,32 9,96 12(10%)

Placebo (−0.05,0.46) 86 −11,30 8,45 20(23%) (−0.24,0.36) 68 −13,90 10,00 1(1%)
Clayton2003 Reboxetine 0.04 144 −10,80 8,45 63(44%) 0.08 90 −13,30 10,00 6(7%)

(Study 050) Placebo (−0.20,0.27) 143 −11,10 8,45 60(42%) (−0.21,0.37) 89 −14,10 10,00 7(8%)
M/2020/0046 Reboxetine 0 252 −11,50 8,45 67(27%) −0.03 205 −12,70 10,00 13(6%)

(Study 046) Placebo (−0.18,0.18) 247 −11,50 8,45 40(16%) (−0.22,0.16) 221 −12,40 10,00 10(5%)
M/2020/0047 Reboxetine −0.13 238 −11,00 6,91 69(29%) −0.10 189 −12,30 10,00 20(11%)
(Study 047) Placebo (−0.31,0.05) 239 −10,10 7,27 58(24%) (−0.30,0.10) 200 −11,30 10,00 15(8%)
Studie009 Reboxetine −0.08 24 14.38 8,94 6(25%) −0.31 18 12.56 8,30 2(11%)
(CTN009- Placebo (−0.65,0.49) 23 15.09 8,52 7(30%) (−0.98,0.36) 17 15.12 8,28 1(6%)
FCE20124)

POOLED RESULTS −0.24 Heterogeneity SD = 0.29 −0.15 Heterogeneity SD = 0.17
RANDOM EFFECTS (−0.43,−0.05) (−0.30,0.00)

Abbreviations: CI, confidence interval; LOCF, last observation carried forward; SD, standard deviation; SMD, standardized mean difference.

symptoms of depression in the Hamilton depression scale. Figure 1 shows the proportions of participants who are imputed
using LOCF, drop out from follow-up because of side effects, and have missing outcomes, for fluoxetine and venlafaxine
(graphs on top row) and for reboxetine and placebo (graphs on bottom row).

Dropout for side effects and dropout before providing any measurement (missing outcomes) are more likely in the
experimental groups (venlafaxine and reboxetine). The overall LOCF imputation rate is more balanced. We conjecture
that participants randomized to the experimental groups tend to leave the studies early because of side effects, whereas
those randomized to the control groups tend to leave somewhat later because of lack of efficacy. The inequalities between
missing/imputation rates raise concerns that data are likely to be MNAR and study effects are potentially biased.

It is interesting that the three studies that provide an effect from both a complete case and an LOCF analysis (that
includes both completers and imputed outcomes) show larger and less precise effect estimates for the former (Table 1).
For example, the study of Sheehan et al shows a very large effect in the complete case analysis, ie, −0.61 (95% confidence
interval,−0.95 to−0.28), and a much smaller effect in the LOCF analysis, ie,−0.27 (95% confidence interval,−0.55 to 0.02).

The analysis of completers (using only four studies) gave a summary standardized mean difference (SMD) of−0.28 (95%
confidence interval, −0.51 to −0.04) and a heterogeneity standard deviation (𝜏 = 0.18), suggesting that there is a small
difference between the two antidepressants. An analysis of the LOCF data gave a summary SMD of −0.13 (95% confidence
interval, − 0.20 to −0.05) with 𝜏 = 0.09, drawing the same conclusions but with a more precise and less heterogeneous
effect size. Both sources of data are likely to be biased, because the latter has used a single-imputation method and because
the former does not include more than two thirds of the studies and all the participants who dropped out.

In Table 2, all study-specific SMDs are more precise in the LOCF analysis than in completers, although within-study
standard deviations are smaller in completers. This happens because sample size in the LOCF analysis is much bigger.
The Versiani 2000 study had an imputation rate of 57% in the placebo group compared with a 14% rate in the experimental
group. As a result, the LOCF analysis hardly showed a benefit in the placebo group and an SMD of −1.42 (95% confidence
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FIGURE 1 Proportion of participants (left side) who are imputed using the last observation carried forward (LOCF), (center) who drop out
because of side effects, and (right side) who have missing outcomes (top row) for fluoxetine vs venlafaxine and (bottom row) for placebo vs
reboxetine [Colour figure can be viewed at wileyonlinelibrary.com]

interval, −2.01 to −0.84) was computed. The corresponding SMD for the completers is −0.70 (95% confidence interval,
−1.47 to 0.07). The analysis of completers gave a summary SMD of −0.15 (95% confidence interval, −0.30 to 0.00) and a
heterogeneity standard deviation (𝜏 = 0.17), suggesting that there is marginally not a statistically significant difference
between the two antidepressants. An analysis of the LOCF data gave a summary SMD of −0.24 (95% confidence interval,
− 0.43 to − 0.05) with heterogeneity 𝜏 = 0.29.

We see from these two examples that LOCF does not always give more conservative meta-analytic results than com-
pleters analysis. Although LOCF is typically suggested as a conservative method, in the second example, all studies are
more precise in the LOCF analysis compared with those in the complete-case analysis. The LOCF pooled estimate, how-
ever, is less precise because heterogeneity is much larger in the LOCF analysis. Hence, the decrease in within-study
variations in the LOCF analysis brought an increase in between-study variation.

3 METHODS

3.1 Notation and model definition
We divide all randomized individuals into three groups. Completers are those who completed the study providing outcome
data at the end of the study. Imputed are those who did not complete the study but provided an outcome at an intermediate
step and whose missing values at the end of the trial were imputed using LOCF (or another single-imputation method).
Missing are those who left the study without providing any outcome data. An analysis of the completers only is a complete
case analysis. The completers and imputed together form the reported outcomes, and we refer to an analysis of these
outcomes as an LOCF analysis.

In the notation, index i refers to study, j refers to study arm, and k refers to individuals. The notation involving 𝜋 denotes
population probabilities that a participant is of a particular type (completer/imputed/missing); 𝜒 and 𝜎 denote population
outcome means and standard deviations, respectively; and p, x, s denote sample counterparts of these quantities.

Among participants randomized to arm j of study i, we count ncom
𝑖𝑗

completers, nimp
𝑖𝑗

imputed, and nmiss
𝑖𝑗

missing. There-

fore, the fraction who reported at least one post-baseline measurement during the study is prep
𝑖𝑗

=
ncom
𝑖𝑗

+nimp
𝑖𝑗

ncom
𝑖𝑗

+nimp
𝑖𝑗

+nmiss
𝑖𝑗

with

http://wileyonlinelibrary.com
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TABLE 3 True parameters for study i and study group j

complement pmiss
𝑖𝑗

= 1 − prep
𝑖𝑗

. We use tilde throughout the manuscript to refer to quantities and estimates that have been
potentially contaminated by the LOCF imputation. What we observe is x̃rep

𝑖𝑗
, the mean outcome for the completers and

imputed participants. A thorough description of the model parameters is shown in Table 3.
We define Yijk to be the true outcome of the kth individual at the end of the trial and and we define indicator variable

Rijk to be 1 in reported outcomes and 0 in missing outcomes, where

P
(

Ri𝑗k = 1
)
= 𝜋

rep
i𝑗

E
(

Yi𝑗k|Ri𝑗k = 1
)
= 𝜒

rep
i𝑗

E
(

Yi𝑗k|Ri𝑗k = 0
)
= 𝜒miss

i𝑗 .

We then define 𝜒com
𝑖𝑗

and 𝜒
imp
𝑖𝑗

as the true mean outcomes in completers and imputed participants, respectively. We also

denote by 𝜋∗com
𝑖𝑗

and 𝜋
∗imp
𝑖𝑗

, with sample counterparts p∗com
𝑖𝑗

=
ncom
𝑖𝑗

ncom
𝑖𝑗

+nimp
𝑖𝑗

and p∗imp
𝑖𝑗

=
nimp
𝑖𝑗

ncom
𝑖𝑗

+nimp
𝑖𝑗

, the probabilities of an

individual being a completer and imputed, respectively, conditional on having at least one outcome reported.
Thus, in those who had their outcome imputed, we distinguish the imputed outcome Ỹ𝑖𝑗𝑘 with expectation 𝜒

imp
𝑖𝑗

from
the true unobserved outcome Yijk with expectation 𝜒

imp
𝑖𝑗

. More details are given in Appendix A.
We aim to estimate the mean outcome E(Yijk) and its variance var(Yijk) for all individuals that were initially randomized

to group j in study i. The former is expressed in the following equation:

E
(

Y𝑖𝑗𝑘

)
= 𝜒 tot

𝑖𝑗 = 𝜋
rep
𝑖𝑗

𝜒
rep
𝑖𝑗

+ 𝜋miss
𝑖𝑗 𝜒miss

𝑖𝑗 = 𝜋com
𝑖𝑗 𝜒com

𝑖𝑗 + 𝜋
imp
𝑖𝑗

𝜒
imp
𝑖𝑗

+ 𝜋miss
𝑖𝑗 𝜒miss

𝑖𝑗 . (1)

The true outcome in the reported data, 𝜒 rep
𝑖𝑗

, is not known. We define the expected mean value of the reported data using
LOCF imputation as

𝜒
rep
𝑖𝑗

= 𝜋∗com
𝑖𝑗 𝜒com

𝑖𝑗 + 𝜋
∗imp
𝑖𝑗

𝜒
imp
𝑖𝑗

. (2)

We develop a pattern mixture model as follows.

1. We estimate 𝜒
rep
𝑖𝑗

by associating it with the estimable parameter 𝜒
rep
𝑖𝑗

via an unidentified parameter using the
methodology presented in Section 3.2.

2. We estimate the outcome 𝜒 tot
𝑖𝑗

as a mixture of 𝜒 rep
𝑖𝑗

and 𝜒miss
𝑖𝑗

; see Equation (1). We associate 𝜒 tot
𝑖𝑗

with 𝜒
rep
𝑖𝑗

via an
unidentified parameter using methodology presented in the IMDoM paper.9

3. We contrast 𝜒 tot
𝑖𝑗

across study arms within the same study to obtain effect sizes and their standard errors.
4. We synthesize effect sizes via inverse variance random-effects meta-analysis.12
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3.2 Accounting for uncertainty and bias due to LOCF and missing outcome data
The aim here is to estimate the true outcome mean in participants who provided at least one outcome value. This is

𝜒
rep
𝑖𝑗

= 𝜋∗com
𝑖𝑗 𝜒com

𝑖𝑗 + 𝜋
∗imp
𝑖𝑗

𝜒
imp
𝑖𝑗

. (3)

However, only a sample estimate for 𝜒 rep
𝑖𝑗

is reported; see Equation (2).
To link 𝜒

rep
𝑖𝑗

to 𝜒
rep
𝑖𝑗

, we introduce a new parameter, the bias in LOCF (BILOCF) parameter 𝛿imp
𝑖𝑗

, that quantifies the bias
in the imputed values as the difference between the true outcome 𝜒

imp
𝑖𝑗

and the imputed outcome 𝜒
imp
𝑖𝑗

in patients who
left the study early:

𝛿
imp
𝑖𝑗

= 𝜒
imp
𝑖𝑗

− 𝜒
imp
𝑖𝑗

. (4)

The BILOCF parameter is not estimable and we need to make assumptions about its value. We may consider a fixed value

or a plausible range of values by assigning a distribution, eg, 𝛿imp
𝑖𝑗

∼ N
(
𝜇
𝛿

imp
𝑖𝑗

, 𝜎2
𝛿

imp
𝑖𝑗

)
, that would reflect our uncertainty

about its true value. Letting 𝛿
imp
𝑖𝑗

= 0 is equivalent to an analysis of reported outcomes. In the examples considered in
this manuscript, letting 𝛿

imp
𝑖𝑗

= 0 is equivalent to the LOCF analysis. We can acknowledge uncertainty about the correct
analysis by letting 𝜇

𝛿
imp
𝑖𝑗

= 0, meaning that our best guess is that those who dropped out neither improved nor deteriorated,
and 𝜎2

𝛿
imp
𝑖𝑗

> 0, expressing uncertainty about this guess. Effect estimates will be similar to the LOCF analysis but less

precise. The methodology can be applied for other imputation schemes (eg, mean imputation).
From Equations (2), (3), and (4), it follows that

𝜒
rep
𝑖𝑗

= 𝜋∗com
𝑖𝑗 𝜒com

𝑖𝑗 + 𝜋
∗imp
𝑖𝑗

(
𝛿

imp
𝑖𝑗

+ 𝜒
imp
𝑖𝑗

)
= 𝜒

rep
𝑖𝑗

+ 𝜋
∗imp
𝑖𝑗

𝛿
imp
𝑖𝑗

. (5)

We previously developed a model for missing outcome data that uses 𝛿miss
𝑖𝑗

, an IMDoM9 parameter, that quantifies the
difference in mean outcome between observed and missing participants:

𝛿miss
𝑖𝑗 = 𝜒miss

𝑖𝑗 − 𝜒
rep
𝑖𝑗

, (6)

with 𝛿miss
𝑖𝑗

∼ N
(
𝜇𝛿miss

𝑖𝑗
, 𝜎2

𝛿miss
𝑖𝑗

)
. Again, we need to resort to assumptions to define this distribution.

The total outcome is

𝜒 tot
𝑖𝑗 = 𝜋

rep
𝑖𝑗

𝜒
rep
𝑖𝑗

+ 𝜋miss
𝑖𝑗 𝜒miss

𝑖𝑗 . (7)

From Equations (5), (6), and (7), and assuming that 𝛿imp
𝑖𝑗

and 𝛿miss
𝑖𝑗

are independent, we obtain

𝜒 tot
𝑖𝑗 = 𝜒

rep
𝑖𝑗

+ 𝜋
∗imp
𝑖𝑗

𝛿
imp
𝑖𝑗

+ 𝜋miss
𝑖𝑗 𝛿miss

𝑖𝑗 . (8)

We now estimate these quantities from the data, which we write as expectations given the data. Using Equations (5) and (2),
we obtain the imputation-adjusted outcome

E
(
𝜒

rep
𝑖𝑗

)
= E

(
𝜋∗com
𝑖𝑗 𝜒com

𝑖𝑗 + 𝜋
∗imp
𝑖𝑗

(
𝛿

imp
𝑖𝑗

+ 𝜒
imp
𝑖𝑗

) |data
)
= 𝜋∗com

𝑖𝑗 xcom
𝑖𝑗 + 𝜋

∗imp
𝑖𝑗

𝜒
imp
𝑖𝑗

+ 𝜋
∗imp
𝑖𝑗

𝜇
𝛿

imp
𝑖𝑗

= x̃rep
𝑖𝑗

+ p∗imp
𝑖𝑗

𝜇
𝛿

imp
𝑖𝑗

. (9)

We can also estimate an imputation-adjusted variance for the mean outcome by using a Taylor-series approximation and
assuming that outcomes, probabilities of observing a pattern (completers, imputed, missing), and informative missingness
parameters are uncorrelated as

V
(
𝜒

rep
𝑖𝑗

)
≈ V

(
𝜋∗com
𝑖𝑗 𝜒com

𝑖𝑗 + 𝜋
∗imp
𝑖𝑗

(
𝛿

imp
𝑖𝑗

+ 𝜒
imp
𝑖𝑗

) |data
)
= V

(
x̃rep
𝑖𝑗

)
+

(
𝜇2
𝛿

imp
𝑖𝑗

+ 𝜎2
𝛿

imp
𝑖𝑗

)
p∗com
𝑖𝑗

p∗imp
𝑖𝑗

ncom
𝑖𝑗

+ nimp
𝑖𝑗

+ p∗imp2

𝑖𝑗
𝜎2
𝛿

imp
𝑖𝑗

. (10)

Proofs are given in Appendix A.
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If p∗com
𝑖𝑗

= 1 (all patients with intermediate measurements completed the study) or if 𝛿imp
𝑖𝑗

= 0(𝜇
𝛿

imp
𝑖𝑗

= 𝜎
𝛿

imp
𝑖𝑗

= 0) (the
imputation process is accurate without uncertainty), then V(𝜒 rep

𝑖𝑗
) = V(𝜒 rep

𝑖𝑗
). Otherwise, V(𝜒 rep

𝑖𝑗
) > V(𝜒 rep

𝑖𝑗
).

We can also let the BILOCF and IMDoM parameters be correlated. Mathematically, this is easily done (see Appendix B),
but eliciting information about this correlation may be hard in practice.

Data inform directly𝜒 rep
𝑖𝑗

, 𝜋∗imp
𝑖𝑗

, and 𝜋miss
𝑖𝑗

, whereas the external assumptions inform the BILOCF (𝛿imp
𝑖𝑗

) and the IMDoM
(𝛿miss

𝑖𝑗
). The expected value of the outcome conditional on the reported data is

E
(
𝜒 tot
𝑖𝑗 |data

)
= x̃rep

𝑖𝑗
+ p∗imp

𝑖𝑗
𝜇
𝛿

imp
𝑖𝑗

+ pmiss
𝑖𝑗 𝜇𝛿miss

𝑖𝑗
. (11)

By taking the variance of Equation (8) conditional on the observed data and using Equation (10) to replace V(𝜒 rep
𝑖𝑗

), we get

V
(
𝜒 tot
𝑖𝑗 |data

)
≈ V

(
x̃rep
𝑖𝑗

)
+

(
𝜇2
𝛿

imp
𝑖𝑗

+ 𝜎2
𝛿

imp
𝑖𝑗

)
p∗com
𝑖𝑗

p∗imp
𝑖𝑗

ncom
𝑖𝑗

+ nimp
𝑖𝑗

+
(

p∗imp
𝑖𝑗

)2
𝜎2
𝛿

imp
𝑖𝑗

+

(
𝜇2
𝛿miss
𝑖𝑗

+ 𝜎2
𝛿miss
𝑖𝑗

)
prep
𝑖𝑗

pmiss
𝑖𝑗

ncom
𝑖𝑗

+ nimp
𝑖𝑗

+ nmiss
𝑖𝑗

+
(

pmiss
𝑖𝑗

)2
𝜎2
𝛿miss
𝑖𝑗

. (12)

It should be noted that participants drop out for various reasons. It may be unrealistic to assume the same BILOCF
and IMDoM parameters (𝛿imp

𝑖𝑗
and 𝛿miss

𝑖𝑗
) across all imputed and missing participants, respectively (eg, for those who left

because of lack of improvement and side effects). In Appendix D, we present how one can assume different scenarios
according to the reasons for missingness and manipulate the aforementioned Equations accordingly by assuming different
BILOCF and IMDoM parameters for the various types of missing participants. However, the numbers of participants left
for any possible reason are rarely reported.

3.3 Estimating the effect size and its uncertainty for each trial
The unconditional means 𝜒 tot

𝑖𝑗
are contrasted to obtain the relative treatment effect in each study, which is defined as the

difference

𝛽i = 𝑓
(
𝜒 tot
𝑖𝑇

)
− 𝑓

(
𝜒 tot
𝑖𝐶

)
, (13)

where j = C and j = T refer to the control and treatment group and f is a link function that determines the effect measure.

If f is the identity function, f(u) = u, then 𝛽 i is the mean difference (MD). If 𝑓 (ui) =
ui
Si

, where Si =
√

(n𝑖𝑇−1)s2
𝑖𝑇
+(n𝑖𝐶−1)s2

𝑖𝐶

n𝑖𝑇+n𝑖𝐶−2
,

we obtain the SMD. We show the working for the SMD in the Appendix. For MDs, it holds

E (𝛽i|data) = E
(
𝜒 tot
𝑖𝑡 |data

)
− E

(
𝜒 tot
𝑖𝑐 |data

)
, (14)

and applying Equation (11) in each arm of the right-hand side of Equation (14), we obtain

E [ 𝛽i|data] = x̃rep
𝑖𝑇

+ p∗imp
𝑖𝑇

𝜇
𝛿

imp
𝑖𝑇

+ pmiss
𝑖𝑇

𝜇𝛿miss
𝑖𝑇

− x̃rep
𝑖𝐶

− p∗imp
𝑖𝐶

𝜇
𝛿

imp
𝑖𝐶

− pmiss
𝑖𝐶

𝜇𝛿miss
𝑖𝐶

. (15)

We assume that the BILOCF and IMDoM parameters are correlated across arms with correlations 𝜌
𝛿

imp
i

and 𝜌𝛿miss
i

, respec-

tively; that is, corr
(
𝛿

imp
𝑖𝑇

, 𝛿
imp
𝑖𝐶

)
= 𝜌

𝛿
imp
i

and corr
(
𝛿miss
𝑖𝑇

, 𝛿miss
𝑖𝐶

)
= 𝜌𝛿miss

i
. It follows that the variance of the MD is estimated as

V ( 𝛽i|data) = V
(
𝜒 tot
𝑖𝑇
|data

)
+ V

(
𝜒 tot
𝑖𝐶
|data

)
− 2𝜌

𝛿
imp
i
𝜎
𝛿

imp
𝑖𝑇

𝜎
𝛿

imp
𝑖𝐶

p∗imp
𝑖𝑇

p∗imp
𝑖𝐶

− 2𝜌𝛿miss
i

𝜎𝛿miss
𝑖𝑇

𝜎𝛿miss
𝑖𝐶

pmiss
𝑖𝑇

pmiss
𝑖𝐶

, (16)

where V
(
𝜒 tot
𝑖𝑇
|data

)
and V

(
𝜒 tot
𝑖𝐶
|data

)
can be estimated from Equation (12). More information is given in Appendix B.

Then, we can conduct a meta-analysis in two steps as follows.

a. Compute study-specific treatment effects and their variances from Equations (15) and (16).
b. Conduct an inverse-variance meta-analysis.12

Alternatively, the model can be fit in a single one-stage procedure,8 eg, in WinBUGS software.13
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4 INFORMING THE MODEL PARAMETERS

The model presented in Section 3 is underidentified because the distributions of 𝛿imp
𝑖𝑗

and 𝛿miss
𝑖𝑗

(BILOCF and IMDoM
parameters) cannot be informed by the data. To inform these parameters, we can either use expert opinion, possibly
informed by empirical data, eg, from studies with individual patient data to inform BILOCF, or conduct a sensitivity
analysis assuming various distributions for 𝛿imp

𝑖𝑗
and 𝛿miss

𝑖𝑗
, to explore how robust results are to departures from the LOCF

analysis.
Methods have been suggested in the literature14,15 to elicit the distribution of 𝛿miss

𝑖𝑗
. More details are given in Appendix C.

We propose new methods to elicit the distribution of 𝛿imp
𝑖𝑗

. This involves experts' beliefs about those who dropped out of
the study at an intermediate step and had their outcome imputed using LOCF. More specifically, we would like to know
how different the imputed outcome is from that we would have observed had the individual stayed in the trial until its end.

We can use an expert opinion to inform the BILOCF parameter. Along with the number of imputed outcomes, we
may inform the expert of the dropout times. Participants may have dropped out at different time points. Suppose that we
measure reduction in symptoms in depression at 12 weeks using the Hamilton Rating Scale for Depression (HAMD) scale.
Previous measurements exist for 4 and 8 weeks. We consulted two psychiatrists (AC and TF) with expertise in conducting
depression trials with the aim to identify what information is important to deliver to the expert and to form appropriate
questions for eliciting the parameters of interest (𝛿imp

𝑖𝑗
and 𝛿miss

𝑖𝑗
). We put forward the following question to the experts.

Participants randomized to fluoxetine who dropped out of follow-up at 8 weeks after the onset of the treatment were
observed at this point to have a mean score of 35 at the HAMD scale with 95% confidence interval [30-40]. What is your
prediction about their outcome at 12 weeks?

Then, we may repeat the question for measurements at a different time point (eg, we have measurements at 4 weeks)
or for other antipsychotics (eg, venlafaxine) or placebo. Table 4 shows the responses of a hypothetical expert who believes
that participants who left at 4 weeks would have improved considerably had they stayed in the study until its completion
but participants who left at week 8 would not change at 12 weeks. Translating the answers from Table 4 into parameter
values for the BILOCFs, we get approximately 𝛿

imp
𝑖𝑗

∼ N
(
−6, 32) for 4 weeks and 𝛿

imp
𝑖𝑗

∼ N
(
0, 62) for 8 weeks.

We typically know neither the mean imputed outcome (𝜒 imp
𝑖𝑗

) nor the time point participants dropped out from the
study. The latter is very important. For two active antidepressants, the typical trajectory in the acute phase treatment of
depression is that we have a large improvement in 2 to 4 weeks, a smaller one in 4 to 8 weeks, and then, the effect almost
flattens out. For a comparison between an antidepressant and placebo, we would expect a small difference in the first 2 to
4 weeks and the largest difference would occur around 8 weeks, and then, the difference decreases. Hence, we may have
different BILOCFs for different groups of participants (or even for different comparisons of interventions). We show how
this can be implemented in Appendix D.

Ideally, we would like to provide the expert with the following information:

1. proportion of participants who were LOCF-imputed;
2. mean outcome estimated from imputed participants

(
𝜒

rep
𝑖𝑗

)
and its uncertainty; and

3. time of dropout (eg, 20% left before completion of eight weeks—usually not available in the absence of individual
participant data).

TABLE 4 Eliciting expert opinion to evaluate the differences in the outcomes between LOCF imputed participants and their true
outcomes at the end of the trial. This table shows, for illustration purposes, a hypothetical example with the responses of an expert who
believes that participants who left at 4 weeks would have reduced by many points in the Hamilton Rating Scale for Depression (HAMD)
scale had they stayed in the trial, but those who left at 8 weeks would not change at the end of the trial
Participants randomized to fluoxetine were observed to have a mean score of 35 at the HAMD scale with 95% confidence interval
[30–40] at 4 and 8 weeks after onset of the treatment. What is your prediction about their outcome at 12 weeks?

Left at 8 weeks If the patient stayed in the study, s/he would have been improved by
−12 −9 −6 −3 0 3 6 9 12

around 23 around 26 around 29 around 32 around 35 around 38 around 41 around 44 around 47
Your answers 5 7 10 13 30 13 10 7 5
Left at 4 weeks If the patient stayed in the study, s/he would have been improved by

−12 −9 −6 −3 0 3 6 9 12
around 23 around 26 around 29 around 32 around 35 around 38 around 41 around 44 around 47

Your answers 10 20 40 20 10 0 0 0 0
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It is not always easy to elicit expert opinion. There are difficulties in communicating the question and translating the
experts' answers into parameters. With a systematic review including many studies, we would need expert opinion in each
one of the studies and such a process would entail a large time burden. This was not our intention in this work as we placed
more emphasis on establishing the statistical model. An easier solution is to conduct a thorough sensitivity analysis. We
can start assuming 𝛿

imp
𝑖𝑗

= 𝛿miss
𝑖𝑗

= 0∀i, 𝑗 and start moving gradually away from the LOCF analysis by considering 𝛿
imp
𝑖𝑗

∼

N
(
𝜇
𝛿

imp
𝑖𝑗

, 𝜎2
𝛿

imp
𝑖𝑗

)
and 𝛿miss

𝑖𝑗
∼ N

(
𝜇𝛿miss

𝑖𝑗
, 𝜎2

𝛿miss
𝑖𝑗

)
with increasingly larger values for mean values and standard deviations.

The sensitivity analysis should be prespecified in the protocol analysis.
A simple approach would be to assume 𝜇

𝛿
imp
𝑖𝑗

= 𝜇𝛿miss
𝑖𝑗

= 0 and increasingly assume larger values for 𝜎2
𝛿

imp
𝑖𝑗

and 𝜎2
𝛿miss
𝑖𝑗

. This

would be ideal if one believes in LOCF as it surpasses the problem of having spuriously narrow confidence intervals.

5 ANALYSIS OF MOTIVATING EXAMPLE

We suggest assuming 𝛿imp
𝑖𝑗

= 𝛿miss
𝑖𝑗

= 0 as the primary analysis, which is equivalent to the LOCF analysis. Any difference in
the mean values𝜇

𝛿
imp
𝑖𝑗

and𝜇𝛿miss
𝑖𝑗

across groups would favor one treatment over the other. We take a neutral stance, assuming
a zero mean for the BILOCF and IMDoM parameters in both groups (𝜇

𝛿
imp
𝑖𝑗

= 𝜇𝛿miss
𝑖𝑗

= 0). Most probably, this scenario
is not realistic but we use it for illustration purposes. We let the standard deviation of the BILOCFs and the IMDoMs
assume a range of values from 0 up to 6. The fact that we impute uncertainty around BILOCF and IMDoM would increase
within-study variation. Hence, the pooled effect would change because study effect sizes would be weighted differently.
In this example, missing and imputation rates are similar across studies and we do not expect big fluctuations. Figure A1
in the Appendix shows the summary effect size, denoted by a solid line, and its 95% confidence limits, denoted by the
dotted lines, under various scenarios with 𝜇

𝛿
imp
𝑖𝑗

= 𝜇𝛿miss
𝑖𝑗

= 0 and with increasing 𝜎
𝛿

imp
𝑖𝑗

, 𝜎𝛿miss
𝑖𝑗

reflected in the horizontal
axis. We assume that the BILOCF and IMDoM parameters are independent across arms and with each other and that
𝜎
𝛿

imp
𝑖𝑗

= 𝜎𝛿miss
𝑖𝑗

. We made this choice so that we will not a priori favor either of the drugs. The summary effect is similar across
the various scenarios with a minor reduction due to the different weights assigned to the studies. We observe that, when

TABLE 5 Random-effects meta-analysis results for summary effect size (standardized mean
difference [SMD]), 95% confidence intervals (CIs), and heterogeneity standard deviation for the two
sources of evidence and for various BIP and IMP scenarios. Results from the sensitivity analyses are
based on fourteen studies

Scenarios SMD (95% CI)
Neutral Scenarios

Complete case analysis [1] −0.28 (−0.51,−0.04)
LOCF analysis [2] −0.13 (−0.20, −0.05)

N1 𝛿
imp
𝑖𝑗

∼ N
(
0, 32), 𝛿miss

𝑖𝑗
∼ N

(
0, 32) −0.11 (−0.21, −0.02)

N2 𝛿
imp
𝑖𝑗

∼ N
(
0, 52), 𝛿miss

𝑖𝑗
∼ N

(
0, 52) −0.12 (−0.24, −0.00)

N3 𝛿
imp
𝑖𝑗

∼ N
(
0, 102), 𝛿miss

𝑖𝑗
∼ N

(
0, 102) −0.13 (−0.33, 0.07)

N4 𝛿
imp
𝑖𝑗

∼ N
(
−5, 22), 𝛿miss

𝑖𝑗
∼ N

(
5, 22) −0.09 (−0.17, −0.01)

N5 𝛿
imp
𝑖𝑗

∼ N
(
−10, 52), 𝛿miss

𝑖𝑗
∼ N

(
10, 52) −0.10 (−0.22, 0.03)

Scenarios That Favor Fluoxetine
F1 𝛿

imp
𝑖𝑇

∼ N
(
−5, 22), 𝛿imp

𝑖𝐶
∼ N

(
−10, 22), 𝛿miss

𝑖𝑇
∼ N

(
5, 22), 𝛿miss

𝑖𝐶
∼ N

(
10, 22) 0.00 (−0.09, 0.08)

F2 𝛿
imp
𝑖𝑇

= 0, 𝛿imp
𝑖𝐶

∼ N
(
−5, 22), 𝛿miss

𝑖𝑇
= 0, 𝛿miss

𝑖𝐶
∼ N

(
5, 22) −0.01 (−0.08, 0.07)

F3 𝛿
imp
𝑖𝑇

∼ N
(
−5, 52), 𝛿imp

𝑖𝐶
∼ N

(
−10, 52), 𝛿miss

𝑖𝑇
∼ N

(
5, 52), 𝛿miss

𝑖𝐶
∼ N

(
10, 52) −0.03 (−0.15, 0.10)

Scenarios That Favor Venlafaxine
V1 𝛿

imp
𝑖𝑇

∼ N
(
−5, 22), 𝛿imp

𝑖𝐶
= 0, 𝛿miss

𝑖𝑇
∼ N

(
5, 22), 𝛿miss

𝑖𝐶
= 0 −0.19 (−0.28, −0.11)

V2 𝛿
imp
𝑖𝑇

∼ N
(
−10, 22) , 𝛿imp

𝑖𝐶
∼ N

(
−5, 22), 𝛿miss

𝑖𝑇
∼ N

(
10, 22) , 𝛿miss

𝑖𝐶
∼ N

(
5, 22) −0.17 (−0.25, −0.08)

V3 𝛿
imp
𝑖𝑇

∼ N
(
−10, 52), 𝛿imp

𝑖𝐶
∼ N

(
−5, 52), 𝛿miss

𝑖𝑇
∼ N

(
10, 52), 𝛿miss

𝑖𝐶
∼ N

(
5, 52) −0.18 (−0.31, −0.06)

[1] Complete case analysis is based on four studies.
[2] Last observation carried forward (LOCF) analysis is based on thirteen studies.
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𝜎
𝛿

imp
𝑖𝑗

= 𝜎𝛿miss
𝑖𝑗

> 5, ie, 𝛿imp
𝑖𝑗

∼ N
(
0, 52) and 𝛿miss

𝑖𝑗
∼ N

(
0, 52), the summary estimate becomes nonsignificant for fluoxetine

vs venlafaxine. In the comparison placebo vs reboxetine, results become nonsignificant instantly, ie, 𝛿imp
𝑖𝑗

∼ N
(
0, 22) and

𝛿miss
𝑖𝑗

∼ N
(
0, 22), suggesting that even minor doubts about the LOCF results would result in no differences between the

two groups. Table 5 shows the summary effect assuming various scenarios. Some scenarios are neutral in the sense that
they assume that the distributions for BILOCF and IMDoM are the same across the two arms (scenarios N1-N5); other
nonneutral scenarios assume different distributions across the two arms so that either fluoxetine (F1-F3) or venlafaxine
is favored (V1-V3). Neutral scenarios do not have a large impact on the results unless 𝜎

𝛿
imp
𝑖𝑗

= 𝜎𝛿miss
𝑖𝑗

> 5. In this case,
there is a small drop in the summary effect because relative weights are reassigned and a study with a positive SMD
(Keller, 2009) loses much of its weight (Table E1 in the Appendix). However, with that much uncertainty around IMDoM
and BILOCF, the summary effect becomes nonstatistically significant. The Keller 2009 study is by far the largest in this
meta-analysis with 266 and 781 participants randomized to fluoxetine and venlafaxine, respectively (Table 2). It also has
large imputation numbers (47 and 124), but their imputation rates are similar to those of other studies (Table 2). However,
the penalty given to that study is relatively large exactly because of the large weight this study has on the LOCF analysis.
Not trusting the LOCF results impacts mainly studies with large imputation rates. If imputation rates are similar across
studies, not trusting the LOCF results impacts larger studies whose effect size has a larger impact on the summary results.

6 DISCUSSION

Missing data have not been handled properly in most trials, potentially leading to biased and overprecise results. These
problems are propagated in a synthesis of trials through a meta-analysis, and we run the risk of finding a false-positive
result because of the inflated sample sizes within trials. The LOCF method has been typically requested by regulatory
agencies on the grounds that it is a conservative method, but this is mistaken and recommendations have been against its
use.1,16-18 In this paper, we focused on LOCF, but the methodology can be applied to other imputation schemes. Another
well-known method is baseline observation carried forward (BOCF) in which the outcome at the end of the study is
replaced by its baseline measurement and is typically employed when patients withdrew from trials because of adverse
events and LOCF is seen as insufficiently conservative.19,20 This equal to assuming that missing participants have not
improved/deteriorated at all.

Most depression trials report the outcome values from the LOCF analysis. We agree with the current practice that
considers an LOCF analysis or a complete case analysis to be the primary analysis in a meta-analysis. The suggested
methodology can be used alongside as a sensitivity analysis. It is easily understood conceptually that, by using LOCF, we
not only run the risk of getting a biased outcome but also artificially increase the sample size of the study. Missing data are
usually MNAR. Participants may drop out of a study because they do not see any improvement or because of drug-related
side effects. Because drugs usually differ in terms of effectiveness and side effects, we expect different imputation rates
and time points of dropout across the groups of a study. The method can easily extend to network meta-analysis.21 We
created R code22 (given in Appendix E) that uses Equations (11) and (12) to compute the adjusted effect sizes and standard
errors and, then, uses R package “meta” to synthesize them.23 We have also created a Stata24 command that will become
available through “mtm.uoi.gr” and would be an extension of the recently developed command metamiss2.25

It is not always straightforward how to embed an expert's beliefs into a statistical model. We may have data on interme-
diate time points that show a very different effect across time points. It could be the case, depending on the field, that there
is a seemingly significant effect during the first weeks that is lost at the end of the trial (transient effect). In depression
trials, this may be the case when placebo or a suboptimal treatment is involved. It is important that experts understand
the reasons people drop out of a study group or collect reasons for dropout. If they leave with unequal rates, then missing
data may well introduce bias. There may be bias in favor of the group with the highest imputation rate if participants are
expected to deteriorate over time and in favor of the group with the lowest imputation rate if participants are expected
to improve over time. The researcher may try to adjust results by making assumptions about the BILOCF parameter that
favor the group that is not favored by the imputation rates. One way to inform the missing data parameters is through
individual participant data (from the studies where it is available) or from trials in the systematic review that have results
on all time points. In a comparison between two antidepressants, the one with the smallest imputation rate is favored as
patients stay in the study longer with more chances of seeing any improvement.

Any analysis about missing data has to make untestable assumptions because the actual data needed to test the
assumptions are missing. These assumptions can be used mathematically to inform effect estimates in a sensitivity
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analysis. Hence, starting with the LOCF analysis, we then consider various scenarios about the informative missingness
parameters and explore how robust results are. The outcomes can be adjusted in such a wide range of ways there is a risk
that one may, deliberately or not, make assumptions in favor of a certain drug. To minimize such a risk, we suggest that
the sensitivity analyses should be prespecified and described in detail in the protocol and that values for the BILOCF and
IMDoM parameters should be chosen on clinical grounds.

The validity of the analysis rests on the plausibility of the assumptions made. Clinicians with expertise in clinical tri-
als have a good understanding of the reasons for missingness in clinical trials, but caution is needed in translating this
expertise into values for the BILOCFs and the IMDoMs. We plan to continue working on how to formulate the appro-
priate questions to elicit information about the distributions of 𝛿imp

𝑖𝑗
and 𝛿miss

𝑖𝑗
. Extra caution is needed when trying to

elicit correlation parameters that are not easily understood by clinicians. Missing participants dropout for various rea-
sons, and ideally, these reasons are reported. It may be unrealistic to assume the same BILOCF or IMDoM across all
missing participants. In Appendix D, we present how one can assume different scenarios for the various types of missing
participants.

Even if we do not wish to favor any of the interventions, we suggest assuming departures from the missing distribution
assuming the same distributions for BILOCF and IMDoM across the groups of the study (neutral scenarios). An expert
may inform us on which drug is likely to be favored by the LOCF analysis and consider nonneutral scenarios in the
opposite drug.

In practice, it is very time consuming to define BILOCF and IMDoM for all studies taking into account their
characteristics and some grouping is necessary (eg, all placebo control studies have the same BILOCF and IMDoM).

Another limitation of the model presented here is that we associated the mean outcome in the missing participants
with the true outcome and not with the outcome reported in the trial. The reason we did this was to avoid potential
contamination due to the LOCF imputed outcomes. However, experts might be more comfortable relating missing values
to a quantity for which the data provides an estimate. The maths could be adapted to do this.

It is likely that dropouts in a randomized controlled trial would have dropped out in real life as well. Even in that
case, LOCF would underestimate/overestimate a drug's efficacy if patients are expected to improve/deteriorate over time.
The target in randomized controlled trials is to get an unbiased effect estimate at the predesignated primary outcome
measurement point. Such an estimate would inform us about the true effectiveness of the experimental intervention.
Dropouts and side effects should be taken into account (this is also why the dropout rate is a major outcome in depression
trials) when informing the patient of the benefits and costs of each drug.

Our model suggests an extra source of variance (around imputed and missing outcome data). If studies have similar
imputation/missing rates, then reweighting the studies would give more weight to small studies because we add an extra
source of uncertainty that would have a relatively larger impact on large studies with small variances. This is similar to
what is happening when we go from fixed to random effect meta-analysis. Hence, we have to take into account how much
confidence we would like to place to small and large studies. Small studies may be poorly reported (eg, not report missing
data) and hence get overweighted in the suggested analysis.

ACKNOWLEDGEMENTS

Dimitris Mavridis has received funding from the European Union's Horizon 2020 research and innovation programme
under grant agreement No 754936. Andrea Cipriani is supported by the NIHR cognitive health Clinical Research Facility.
Ian White is supported by the Medical Research Council Unit Programme MC_UU_12023/21.

ORCID

Dimitris Mavridis http://orcid.org/0000-0003-1041-4592
Ian R. White http://orcid.org/0000-0002-6718-7661

REFERENCES
1. Little RJ, D'Agostino R, Cohen ML, et al. The prevention and treatment of missing data in clinical trials. N Engl J Med.

2012;367(14):1355-1360. https://doi.org/10.1056/NEJMsr1203730
2. Wahlbeck K, Tuunainen A, Ahokas A, Leucht S. Dropout rates in randomised antipsychotic drug trials. Psychopharmacology (Berl).

2001;155(3):230-233. https://doi.org/10.1007/s002130100711

http://orcid.org/0000-0003-1041-4592
http://orcid.org/0000-0003-1041-4592
http://orcid.org/0000-0002-6718-7661
http://orcid.org/0000-0002-6718-7661
https://doi.org/10.1056/NEJMsr1203730
https://doi.org/10.1007/s002130100711


MAVRIDIS ET AL. 13

3. Spineli LM, Pandis N, Salanti G. Reporting and handling missing outcome data in mental health: a systematic review of Cochrane
systematic reviews and meta-analyses. Res Synth Methods. 2015;6(2):175-187. https://doi.org/10.1002/jrsm.1131

4. Molnar FJ, Hutton B, Fergusson D. Does analysis using “last observation carried forward” introduce bias in dementia research? Can Med
Assoc J. 2008;179(8):751-753. https://doi.org/10.1503/cmaj.080820

5. Lavange LM. Missing Data Issues in Regulatory Clinical Trials. 2015. http://www.jpma.or.jp/medicine/shinyaku/tiken/symposium/pdf/
20150213/20150213_3.pdf. Accessed July 21, 2017.

6. Mavridis D, Chaimani A, Efthimiou O, Leucht S, Salanti G. Addressing missing outcome data in meta-analysis. Evid Based Ment Health.
2014;17(3):85-89. https://doi.org/10.1136/eb-2014-101900

7. White IR, Higgins JPT, Wood AM. Allowing for uncertainty due to missing data in meta-analysis—part 1: two-stage methods. Statist Med.
2008;27(5):711-727. https://doi.org/10.1002/sim.3008

8. White IR, Welton NJ, Wood AM, Ades AE, Higgins JPT. Allowing for uncertainty due to missing data in meta-analysis—part 2: hierarchical
models. Statist Med. 2008;27(5):728-745. https://doi.org/10.1002/sim.3007

9. Mavridis D, White IR, Higgins JPT, Cipriani A, Salanti G. Allowing for uncertainty due to missing continuous outcome data in pairwise
and network meta-analysis. Statist Med. 2014; https://doi.org/10.1002/sim.6365

10. Dimitrakopoulou V, Efthimiou O, Leucht S, Salanti G. Accounting for uncertainty due to “last observation carried forward” outcome
imputation in a meta-analysis model. Statist Med. 2015;34(5):742-752. https://doi.org/10.1002/sim.6364

11. Cipriani A, Furukawa TA, Salanti G, et al. Comparative efficacy and acceptability of 21 antidepressant drugs for the acute treat-
ment of adults with major depressive disorder: a systematic review and network meta-analysis. Lancet. https://doi.org/10.1016/S0140-
6736(17)32802-7

12. Nikolakopoulou A, Mavridis D, Salanti G. Demystifying fixed and random effects meta-analysis. Evid Based Ment Health. 2014;17(2):53-57.
https://doi.org/10.1136/eb-2014-101795

13. Lunn DJ, Thomas A, Best N, Spiegelhalter D. WinBUGS - a Bayesian modelling framework: concepts, structure, and extensibility. Stat
Comput. 2000;10(4):325-337. https://doi.org/10.1023/A:1008929526011

14. Jackson D, White IR, Leese M. How much can we learn about missing data?: an exploration of a clinical trial in psychiatry. J Royal Stat
Soc Ser A Stat Soc. 2010;173(3):593-612. https://doi.org/10.1111/j.1467-985X.2009.00627.x

15. White IR, Carpenter J, Evans S, Schroter S. Eliciting and using expert opinions about dropout bias in randomized controlled trials. Clin
Trials. 2007;4(2):125-139. https://doi.org/10.1177/1740774507077849

16. Mallinckrodt CH, Kaisera CI, Watkino JG, Molenberghsb G, Carrollc RI. The effect of correlation structure on treatment contrasts
estimated from incomplete clinical trial data with likelihood-based repeated measures compared with last observation carried forward
ANOVA. Clin Trials. 2004;1:477-489. https://doi.org/10.1

17. Molenberghs G, Thijs H, Jansen I, et al. Analyzing incomplete longitudinal clinical trial data. Biostatistics. 2004;5(3):445-464. https://doi.
org/10.1093/biostatistics/5.3.445

18. Kenward MG, Molenberghs G. Last observation carried forward: a crystal ball? J Biopharm Stat. 2009;19(5):872-888. https://doi.org/10.
1080/10543400903105406

19. Ware JH. Interpreting incomplete data in studies of diet and weight loss. N Engl J Med. 2003;348(21):2136-2137. https://doi.org/10.1056/
NEJMe030054

20. Aveyard P, Lewis A, Tearne S, et al. Screening and brief intervention for obesity in primary care: a parallel, two-arm, randomised trial.
Lancet. 2016;388(10059):2492-2500. https://doi.org/10.1016/S0140-6736(16)31893-1

21. Salanti G. Indirect and mixed-treatment comparison, network, or multiple-treatments meta-analysis: many names, many benefits, many
concerns for the next generation evidence synthesis tool. Res Synth Methods. 2012;3:80-97. https://doi.org/10.1002/jrsm.1037

22. Core Team R. R: A language and environment for statistical computing. In: R Foundation for Statistical Computing. Vienna, Austria; 2013.
http://www.R-project.org/

23. Schwarzer G, Carpenter JR, Rücker G. Meta-analysis with R. Cham: Springer International Publishing; 2015. https://doi.org/10.1007/978-
3-319-21416-0

24. StataCorp. Stata Statistical Software: Release 15. College Station, TX: StataCorp LLC; 2017.
25. Chaimani A, Mavridis D, Higgins JPT, Salanti G, White IR. Allowing for informative missingness in aggregate data meta-analysis with

continuous or binary outcomes: extensions to metamiss. Stata J. 2018;18(3):716-740.

How to cite this article: Mavridis D, Salanti G, Furukawa TA, Cipriani A, Chaimani A, White IR. Allowing
for uncertainty due to missing and LOCF imputed outcomes in meta-analysis. Statistics in Medicine. 2018;1–18.
https://doi.org/10.1002/sim.8009

https://doi.org/10.1002/jrsm.1131
https://doi.org/10.1503/cmaj.080820
http://www.jpma.or.jp/medicine/shinyaku/tiken/symposium/pdf/20150213/20150213_3.pdf
http://www.jpma.or.jp/medicine/shinyaku/tiken/symposium/pdf/20150213/20150213_3.pdf
https://doi.org/10.1136/eb-2014-101900
https://doi.org/10.1002/sim.3008
https://doi.org/10.1002/sim.3007
https://doi.org/10.1002/sim.6365
https://doi.org/10.1002/sim.6364
https://doi.org/10.1016/S0140-6736(17)32802-7
https://doi.org/10.1016/S0140-6736(17)32802-7
https://doi.org/10.1136/eb-2014-101795
https://doi.org/10.1023/A:1008929526011
https://doi.org/10.1111/j.1467-985X.2009.00627.x
https://doi.org/10.1177/1740774507077849
https://doi.org/10.1
https://doi.org/10.1093/biostatistics/5.3.445
https://doi.org/10.1093/biostatistics/5.3.445
https://doi.org/10.1080/10543400903105406
https://doi.org/10.1080/10543400903105406
https://doi.org/10.1056/NEJMe030054
https://doi.org/10.1056/NEJMe030054
https://doi.org/10.1016/S0140-6736(16)31893-1
https://doi.org/10.1002/jrsm.1037
http://www.R-project.org/
https://doi.org/10.1007/978-3-319-21416-0
https://doi.org/10.1007/978-3-319-21416-0
https://doi.org/10.1002/sim.8009


14 MAVRIDIS ET AL.

APPENDIX A

CALCULATION OF IMPUTATION-ADJUSTED VARIANCE

Using the result for the variance of the product of two independent random variables A and B
var (AB) =

(
E(B)2 + var (B)

)
var (A) + E(A)2var (B)

with A =
(

1 − 𝜋∗com
𝑖𝑗

)
and B = 𝛿

imp
𝑖𝑗

, we take the variance of the true mean outcome for those who provided some data
(Equation (5) in the manuscript) as

V
(
𝜒

rep
𝑖𝑗

|data
)
≈ V

(
𝜒

rep
𝑖𝑗

|data
)
+

(
𝜇2
𝛿

imp
𝑖𝑗

+ 𝜎2
𝛿

imp
𝑖𝑗

)
p∗com
𝑖𝑗

p∗imp
𝑖𝑗

ncom
𝑖𝑗

+ nimp
𝑖𝑗

+ p∗imp2

𝑖𝑗
𝜎2
𝛿

imp
𝑖𝑗

,

which is actually Equation (10) in the manuscript.
By taking the variance of Equation (8) conditional on the observed data using the above result for random variables A

and B, we get

V
(
𝜒 tot
𝑖𝑗 |data

)
≈ V

(
𝜒

rep
𝑖𝑗

|data
)
+

(
𝜇2
𝛿miss
𝑖𝑗

+ 𝜎2
𝛿miss
𝑖𝑗

)
prep
𝑖𝑗

pmiss
𝑖𝑗

ncom
𝑖𝑗

+ nimp
𝑖𝑗

+ nmiss
𝑖𝑗

+ pmiss2

𝑖𝑗 𝜎2
𝛿miss
𝑖𝑗

.

Then, by using Equation (10) for V
(
𝜒

rep
𝑖𝑗

|data
)

, we get

V
(
𝜒 tot
𝑖𝑗 |data

)
≈ V

(
x̃rep
𝑖𝑗

)
+

(
𝜇2
𝛿

imp
𝑖𝑗

+ 𝜎2
𝛿

imp
𝑖𝑗

)
p∗com
𝑖𝑗

p∗imp
𝑖𝑗

ncom
𝑖𝑗

+ nimp
𝑖𝑗

+ p∗imp2

𝑖𝑗
𝜎2
𝛿

imp
𝑖𝑗

+

(
𝜇2
𝛿miss
𝑖𝑗

+ 𝜎2
𝛿miss
𝑖𝑗

)
prep
𝑖𝑗

pmiss
𝑖𝑗

ncom
𝑖𝑗

+ nimp
𝑖𝑗

+ nmiss
𝑖𝑗

+ pmiss2

𝑖𝑗 𝜎2
𝛿miss
𝑖𝑗

,

which is Equation (12) in the manuscript

APPENDIX B

COMPUTATION OF EFFECT SIZES FOR SIMPLE AND NETWORK META-ANALYSIS

We would like to compute the adjusted effect size of Equation (13)

𝛽i = 𝑓
(
𝜒 tot

iT
)
− 𝑓

(
𝜒 tot

iC
)
,

where j = C and j = T refer to the control and treatment group and f is a link function that determines the effect measure.
We would like to estimate E(𝛽 i| data) and V(𝛽 i| data).

FIGURE A1 (Dotted line) summary effect and (solid lines) 95% confidence interval. The mean value of bias in the last observation carried
forward (BILOCF) and informative missingness difference of means (IMDoM) is zero and their standard deviation is shown in the horizontal
axis
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For E(𝛽 i| data), we have to estimate

E(𝛽i|data) = E(𝑓
(
𝜒 tot
𝑖𝑇
|data

)
− E

(
𝑓
(
𝜒 tot
𝑖𝑐 |data

))
.

For the variance of a sum of two random variables, it holds

var (A ± B) = var (A) + var (B) ± 2cov (A,B) .

Data are independent in the two arms. If we let the BILOCF and IMDoM parameters follow univariate normal

distributions, ie, free such as 𝛿
imp
𝑖𝑗

∼ N
(
𝜇
𝛿

imp
𝑖𝑗

, 𝜎2
𝛿

imp
𝑖𝑗

)
and 𝛿miss

𝑖𝑗
∼ N

(
𝜇𝛿miss

𝑖𝑗
, 𝜎2

𝛿miss
𝑖𝑗

)
or study-specific such as 𝛿

imp
i ∼

N
(
𝜇
𝛿

imp
i
, 𝜎2

𝛿
imp
i

)
and 𝛿miss

i ∼N
(
𝜇𝛿miss

i
, 𝜎2

𝛿miss
i

)
, then there is no covariance term between 𝑓

(
𝜒 tot
𝑖𝑇
|data

)
and 𝑓

(
𝜒 tot
𝑖𝑐
|data

)
.

We may however let 𝛿imp
𝑖𝑗

and 𝛿miss
𝑖𝑗

be correlated across arms. For example, we may assume bivariate normal distribu-

tions with correlation 𝜌
𝛿

imp
i

and 𝜌𝛿miss
i

, respectively; that is, corr
(
𝛿

imp
𝑖𝐶

, 𝛿
imp
𝑖𝑇

)
= 𝜌

𝛿
imp
i

and corr
(
𝛿miss
𝑖𝐶

, 𝛿miss
𝑖𝑇

)
= 𝜌𝛿miss

i
expressed

as follows: (
𝛿

imp
iC

𝛿
imp
iT

)
∼ N

⎛⎜⎜⎝
(
𝜇
𝛿
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𝜇
𝛿

imp
iT

)
,
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𝛿
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𝜎
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and (
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iC
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iT

)
∼ N

((
𝜇𝛿miss

iC
𝜇𝛿miss

iT

)
,

(
𝜎2
𝛿miss

iC
𝜌𝛿miss

i
𝜎𝛿miss

iC
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iT

𝜌𝛿miss
i

𝜎𝛿miss
iC
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))
.

For estimating MDs, f is the identity function. The imputation-adjusted mean outcome and variance are given in
Equations (15) and (16) in the manuscript.

For estimating SMDs, we have 𝑓(ui) =
ui
Si

, where Si =
√

(n𝑖𝑇−1)s2
𝑖𝑇
+(n𝑖𝐶−1)s2

𝑖𝐶

n𝑖𝑇+n𝑖𝐶−2
and the imputation-adjusted mean outcome

and variance are given by dividing Equations (15) and (16) in the manuscript with Si and S2
i , respectively.

So far, we assumed that 𝛿imp
𝑖𝑗

and 𝛿miss
𝑖𝑗

are independent. If 𝛿imp
𝑖𝑗

and 𝛿miss
𝑖𝑗

are not independent, they can be jointly modeled
in a bivariate normal distribution. Then, we have to add to Equation (12) the quantity 2p∗imp

𝑖𝑗
pmiss
𝑖𝑗

𝜎
𝛿

imp
𝑖𝑗

𝜎𝛿miss
𝑖𝑗

𝜌
𝛿

imp
𝑖𝑗

,𝛿miss
𝑖𝑗

, where

𝜌
𝛿

imp
𝑖𝑗

,𝛿miss
𝑖𝑗

is the correlation coefficient between 𝛿
imp
𝑖𝑗

and 𝛿miss
𝑖𝑗

.

The method is easily extended to network meta-analysis. If there are three-arm trials, the correlation between effect
sizes using a common comparator should be accounted for. Suppose that, in a three-arm trial, we estimate 𝛽 iAB and 𝛽 iAC.
In this case, 𝛽 i = (𝛽 iAB, 𝛽 iAC)′ follows a bivariate normal distribution with covariance given by the formula

cov ( 𝛽𝑖𝐴𝐵, 𝛽𝑖𝐴𝐶 ) ≈ cov
(
𝜒 tot
𝑖𝐵
, 𝜒 tot

𝑖𝐶
|datai

)
𝜒 tot
𝑖𝑇
𝜒 tot
𝑖𝐶

− cov
(
𝜒 tot
𝑖𝐴
, 𝜒 tot

𝑖𝐵
|data𝑖

)
𝝌 tot

𝑖𝐴
𝜒 tot
𝑖𝐵

−cov
(
𝜒 tot
𝑖𝐴
, 𝜒 tot

𝑖𝐶
|datai

)
𝜒 tot
𝑖𝐴
𝜒 tot
𝑖𝐶

+ var
(
𝜒 tot
𝑖𝐴
|datai

)
𝜒 tot
𝑖𝐴
𝜒 tot
𝑖𝐴
.

If, instead of MD, we consider SMD, the above Equation should be multiplied by 1
S2

i
, where S2

i is the pooled variance.

APPENDIX C

PRIOR ELICITATION
To inform the IMDoM parameter 𝛿imp

𝑖𝑗
, we inform the experts of the data we have observed and ask them their opinion

about potential differences in the missing data. For example, suppose that we have a depression trial comparing reboxetine
to placebo, just like in Example 2, and the outcome is measured in the HAMD scale. We may ask the experts the following
question.

“Suppose that XX% of patients allocated to reboxetine had completed the final interview and their mean score in the HAMD
scale is 20 with standard deviation 6 (so that about 95% of these participants have values between 8 and 32). What is your
expectation for the mean outcome score for those who did not provide any outcome data compared with those who completed
the trial?”

The experts are then asked to distribute a total weight of 100 across nine categories. Most likely, we would expect missing
data to be judged worse than completers. In Table C1, we give an example of the answers of an expert who believes there
is no difference between missing participants and completers, and the beliefs of a second expert who believes that missing
participants did worse than completers.
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APPENDIX D

DIFFERENT BILOCF PARAMETERS

We expect to observe different effects in those dropping out before 4 weeks after the onset of treatment and in those
dropping out after 4 weeks. We introduce two BILOCFs, one referring to the period before 8 weeks and one to the period
from 8 weeks onwards. Similarly, if we have K groups, we introduce K BILOCF parameters.

𝛿
imp(k)
𝑖𝑗

= 𝜒
imp(k)
𝑖𝑗

− x̃imp(k)
𝑖𝑗

, k = 1, … ,K with

𝛿
imp(k)
𝑖𝑗

∼ N
(
𝜇
𝛿

imp(k)
𝑖𝑗

𝜎2
𝛿

imp(k)
𝑖𝑗

)
,

where upper index (k) refers to the kth group. Hence, 𝜒 imp
𝑖𝑗

=
∑K

k=1 𝜋
∗imp(k)
𝑖𝑗

x̃imp(k)
𝑖𝑗

with 𝜋
∗imp
𝑖𝑗

=
∑K

k=1 𝜋
∗imp(k)
𝑖𝑗

x̃imp(k)
𝑖𝑗

.
Equation (5) is now written

𝜒
rep
𝑖𝑗

= 𝜋∗com
𝑖𝑗 𝜒com

𝑖𝑗 +
∑K

k=1
𝜋
∗imp(k)
𝑖𝑗

(
𝛿

imp(k)
𝑖𝑗

+ x̃imp(k)
𝑖𝑗

)
= x̃obs

𝑖𝑗 +
∑K

k=1
𝜋
∗imp(k)
𝑖𝑗

𝛿
imp(k)
𝑖𝑗

,

and Equations (9) and (10) are
E
(
𝜒

rep
𝑖𝑗

|data
)
= x̃rep

𝑖𝑗
+
∑K

k=1
𝜋
∗imp(k)
𝑖𝑗

𝜇
𝛿

imp(k)
𝑖𝑗

and

V
(
𝜒

rep
𝑖𝑗

|data
)
= V

(
𝜒

rep
𝑖𝑗

|data
)
+

K∑
k=1

(
𝜇2
𝛿

imp(k)
𝑖𝑗

+ 𝜎2
𝛿

imp(k)
𝑖𝑗

)
𝜋∗com
𝑖𝑗

𝜋
∗imp(k)
𝑖𝑗

ncom
𝑖𝑗

+ nimp
𝑖𝑗

+
K∑

k=1
𝜋
∗imp(k)2
𝑖𝑗

𝜎2
𝛿

imp(k)
𝑖𝑗

.

Similar logic can be applied when we believe that participants have dropped out for different reasons and we do not want
one BILOCF parameter to express the difference between the true outcome 𝜒

imp
𝑖𝑗

and the imputed outcome 𝜒
imp
𝑖𝑗

in all
patients who left the study early and were subsequently imputed with LOCF

APPENDIX E

R CODE

metamissLOCF < −
function (yT,sdT,cT,lT,mT,yC,sdC,cC,lC,mC,mgT,sdgT,mgC,sdgC,rhog,mlT,sdlT,mlC,sdlC,rhol, ES)
{
### T denotes the treatment group and C denotes the control group
### y is the vector of effect sizes
### sd is the vector of standard deviations
### c is the vector with the number of completers per study
### l is the vector with the number of LOCF-imputed values per study
### m is the vector with the number of missing outcome data per study
### mg and sdg refer to the mean value and standard deviation of the BIP distribution
### rhog refers to the correlation of the BIP random variables across groups
### ml and sdl refer to the mean value and standard deviation of the IMDoM distribution
### rhoL refers to the correlation of the IMDoM random variables across groups

##########probabilities for completers given observed##############

pcomC = cC/(cC + lC)

pcomT = cT/(cT + lT)

##########probabilities for observers##########

pobsC = (cC + lC)/(cC + lC + mC)

pobsT = (cT + lT)/(cT + lT + mT)
# Equation (12) for estimating the variance
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vxcomC= sdC^2/(cC + lC) + (mgC^2 + sdgC^2)*pcomC*(1-pcomC)/(cC + lC) + (1-pcomC)^2*sdgC^2 + (mlC^2 + sdlC^2)
*pobsC*(1-pobsC)/(cC + lC + mC) + (1-pobsC)^2*sdlC^2

vxcomT = sdT^2/(cT + lT) + (mgT^2 + sdgT^2)*pcomT*(1-pcomT)/(cT + lT) + (1-pcomT)^2*sdgT^2 + (mlT^2 + sdlT^2)
*pobsT*(1-pobsT)/(cT + lT + mT) + (1-pobsT)^2*sdlT^2

##########effect size##########

# Equation (11) for estimating the expected value

xtotC = yC+(1-pcomC)*mgC+(1-pobsC)*mlC
xtotT = yT+(1-pcomT)*mgT+(1-pobsT)*mlT
##########variance for the effect size, including the correlation of IMDoM

covariance = rhol*sdlT*sdlC*(1-pobsC)*(1-pobsT) + rhog*sdgT*sdgC*(1-pcomC)*(1-pcomT)

#### choice of effect measure

if (ES==‘SMD’)
{

########## pooled standard deviation#####################
spooled = sqrt(((cC + lC-1)*sdC^2 + (cT + lT-1)*sdT^2))/sqrt (cC + cT + lC + lT-2)

es = (xtotT-xtotC)/spooled

var_es = (vxcomC + vxcomT-2*covariance)/spooled^2
}

else
{
es = (xtotT-xtotC)
var_es = vxcomC + vxcomT-2*covariance
}
results = metagen (es,sqrt (var_es))
list (results$TE.random,results$lower.random,results$upper.random,results$tau)
}

TABLE E1 Relative weights of studies from a random-effects meta-analysis under various scenarios

id Weights From LOCF Weights From Scenario N1 Weights From Scenario N2
Analysis 𝜹

imp
ij ∼ N

(
𝟎, 𝟑𝟐

)
𝜹

imp
ij ∼ N

(
𝟎, 𝟓𝟐

)
𝜹miss

ij ∼ N
(
𝟎, 𝟑𝟐

)
𝜹miss

ij ∼ N
(
𝟎, 𝟓𝟐

)
Clerc 1994 2% 3% 4%
Dierick 1996 10% 9% 8%
Tylee 1997 9% 12% 14%
Costaesilva 1998 12% 14% 15%
Alves 1999 3% 4% 4%
Rudolph 1999 6% 6% 6%
Silverstone 1999 8% 6% 5%
Tzanakaki 2000 3% 5% 6%
Schatzberg 2006 6% 5% 5%
Nemeroff 2007 6% 8% 9%
Keller 2007 25% 18% 13%
Sheehan 2009 6% 6% 6%
Heller 2009 1% 1% 1%
Chang 2015 4% 5% 5%

Abbreviations: LOCF, last observation carried forward.


	Allowing for uncertainty due to missing and LOCF imputed outcomes in meta-analysis
	Abstract
	INTRODUCTION
	MOTIVATING EXAMPLES
	METHODS
	Notation and model definition
	Accounting for uncertainty and bias due to LOCF and missing outcome data
	Estimating the effect size and its uncertainty for each trial

	INFORMING THE MODEL PARAMETERS
	ANALYSIS OF MOTIVATING EXAMPLE
	DISCUSSION
	REFERENCES
	APPENDIX A 
	Appendix B 
	Appendix C 
	Appendix D 
	Appendix E 


