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Abstract 

This paper describes the application of a novel deep neural 

network architecture to the classification of infant 

vocalisations as part of the Interspeech 2018 Computational 

Paralinguistics Challenge. Previous approaches to infant cry 

classification have either applied a statistical classifier to 

summative features of the whole cry, or applied a syntactic 

pattern recognition technique to a temporal sequence of 

features. In this work we explore a deep neural network 

architecture that exploits both temporal and summative 

features to make a joint classification. The temporal input 

comprises centi-second frames of low-level signal features 

which are input to LSTM nodes, while the summative vector 

comprises a large set of statistical functionals of the same 

frames that are input to MLP nodes. The combined network is 

jointly optimized and evaluated using leave-one-speaker-out 

cross-validation on the challenge training set. Results are 

compared to independently-trained temporal and summative 

networks and to a baseline SVM classifier. The combined 

model outperforms the other models and the challenge 

baseline on the training set. While problems remain in finding 

the best configuration and training protocol for such networks, 

the approach seems promising for future signal classification 

tasks. 

Index Terms: computational paralinguistics, infant cry, deep 

neural networks, time series 

1. Introduction 

1.1. Task 

The goal of the Interspeech 2018 Cry Challenge was to 

classify vocalisations of infants from short audio recordings. 

The training and testing corpus (CRIED) was provided by the 

Department of Phoniatrics, Medical University of Graz [1]. It 

consists of 5587 vocalisations made by 20 infants while lying 

unattended in their cots. First recordings were made when the 

infants were 4 weeks old, and the last when they were 16 

weeks. Selected excerpts of the recordings were classified by 

two experts in the field of early language development into 

three classes: (i) neutral or positive mood sounds, (ii) fussing 

sounds, and (iii) crying sounds. For further details of the 

corpus and the challenge, please see [2]. 

In this paper, we develop and evaluate some neural-

network architectures for infant cry classification. In this we 

have built on our previous investigations into the classification 

of other paralinguistic properties of the voice: for Cognitive 

Load [3], for Fatigue [4], and for the Common Cold [5]. The 

strategy in these previous studies has been to create well-

motivated feature sets that capture temporal, spectral and 

modulational properties of each audio token relevant for the 

task, and then summarize those features over each token using 

a number of statistical functions. These summative features 

then describe each token in terms of a fixed-length vector 

which may be used to train support-vector machine (SVM) or 

deep-neural network (DNN) classifiers.  

A disadvantage of the use of summative feature vectors 

for classification is that the choice of summarizing functions is 

made a priori, before any analysis of the classification 

problem, and these may be irrelevant, redundant or less than 

optimal for the task. The summarizing functions also make 

assumptions about the distribution of useful information 

within the temporal sequence, for example that all frames of 

data are equally important. 

An alternative to summarising the time series would be to 

use a statistical pattern recognition technique on the temporal 

sequence itself. However the token labels describe the whole 

sequence rather than its parts, so the problem then is to create 

appropriate training labels for each part of the sequence. An 

approach presented in the Interspeech 2017 challenge [6] was 

to divide the time sequence into overlapping fixed length 

sections, and build a classifier to label each section with the 

sequence label. The resulting time sequence of class 

probabilities was then summed and input to an SVM classifier 

to make an overall classification. 

In this article we develop this temporal sequence 

classification approach further and apply it to infant cry 

classification. We replace the fixed length temporal feature 

windows used in [6] with a bidirectional LSTM (long short-

term memory) network over the whole sequence. We evaluate 

the temporal sequence classifier against one trained on 

summative features. Finally we construct a neural network 

architecture that inputs both temporal and summative features 

to make best use of both. 

Section 2 of this paper looks at the typical acoustic 

characteristics of infant cry, and how the problem of infant cry 

recognition has been approached in previous studies. Section 3 

describes the methods by which features are extracted and 

classifiers are trained and evaluated, while section 4 presents 

the performance of the classifiers on the challenge corpus and 

discusses the outcomes with respect to baseline scores. The 

paper concludes with a discussion of the promise for the new 

approach to temporal sequence classification. 



 

 

2. Infant Cry Classification 

The automatic classification of infant vocalisations has a long 

history, going back over 20 years; see [7] for a review of 

supervised machine learning approaches. Some studies have 

simply tried to classify vocalisations into basic types such as 

hunger, discomfort and pain, while others have sought to make 

early diagnosis of significant medical conditions such as brain 

haemorrhage, asphyxia, deafness or Down syndrome.  

The different studies vary considerably in many ways: the 

nature of the cry corpus and labels, the choice of acoustic 

features, and the choice of classifier. This makes it hard to 

compare the performance of different systems. However some 

common patterns can be seen. Many systems are based on a 

summative feature vector generated by applying statistical 

functions to a time-series of acoustic features [7]. Acoustic 

features usually include spectral envelope information, 

sometimes together with information about fundamental 

frequency, voicing, and voice quality. A few studies have 

exploited syntactic pattern recognition systems, such as HMM 

[8] or GMM [9], based on MFCC and F0 time-series. 

Previous studies that have simply tried to characterise 

infant cry rather than build a classifier (e.g. [10]) often 

describe a richer set of acoustic features.  For example they 

describe different cries using features related to the temporal 

development of the vocalisation, such as the duration and 

intervals between cries, the occurrence of discontinuities in 

pitch or in voicing, or of the timing of vocalisations with 

respect to breathing. These studies suggest that there may be 

additional information about the nature of the cry to be found 

in the temporal pattern than has been used so far for automatic 

classification. 

As a preliminary to our study we explored the essential 

acoustic properties of the cries in the CRIED corpus as a 

function of labelled category. Fig.1 shows variation in 

duration, pitch height, pitch range, pitch perturbation, energy 

and voicing for the neutral, fussing and crying labels over all 

tokens for all speakers in the training set.  

 

Figure 1. Variation in basic acoustic parameters with 

infant vocalisation class 

Duration was calculated from an automatic end-pointing 

based on energy, pitch height was calculated from median F0, 

pitch range was median absolute dispersion of F0, pitch 

perturbation was mean absolute % change in F0 across frames, 

energy was calculated from the amplitude envelope smoothed 

with 50ms hamming window, voicing degree was a composite 

measure of periodicity based on measures of energy, 

autocorrelation and zero-crossing rate. All measures were 

calculated with the SFS toolkit [11]. 

There are clear differences across categories for these 

simple summative features. Fitting a linear mixed effects 

model with speaker as a random factor shows significant 

differences (p<0.05) in mean duration, pitch height, pitch 

range and pitch perturbation across all three categories, while 

energy is only different for the fussing category. Voicing 

degree is not significantly different across categories. These 

six features alone have moderate success in discriminating 

categories of cry. A CART model on these acoustic 

parameters achieves an unweighted accuracy of 60.7% on the 

training set using leave-one-speaker-out cross-validation. 

Using these acoustic measures as guide, we are now able 

to identify typical vocalisations of each class, see Fig 2. What 

is noticeable is that there are differences in the temporal 

development of the cries as well as in their spectral properties. 

This suggests that an approach that is sensitive to temporal 

patterning might provide additional useful information for 

recognition. 

 

Figure 2. Spectrograms of typical Neutral, Fussing and 

Crying vocalisations. 

3. Methods 

3.1. Feature extraction and normalisation 

The acoustic features used in the experiments were generated 

using the OpenSMILE toolkit [12] and the ComParE_2016 

configuration as used in the challenge baseline [2]. The 

temporal feature set comprised the low-level-descriptor (LLD) 

frames generated by the toolkit for each recording. The LLD 

frames contain 126 parameters every 10ms, and describe 

information about pitch, voicing, voice quality and spectral 

features along with their temporal derivatives. The summative 

feature set is the result of applying a large number of statistical 

functions to the LLDs of a recording, such as measures of 
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central tendency, range, maximum, minimum, etc. The 

summative feature set contains 6373 parameters. 

Two-types of feature normalisation were investigated: 

global z-score normalisation is performed across all speakers 

(i.e. speaker independent), while personal z-score 

normalisation is applied separately to each speaker (speaker 

dependent). For global normalisation within leave-one-

speaker-out cross validation, the means and standard 

deviations are calculated using the training speakers only, and 

then used to normalise the left-out speaker. 

3.2. Feature selection 

To investigate whether recognition on the basis of summative 

features is improved by feature selection, the utility of each 

feature for classification is assessed using the F-statistic. The 

F-ratio for each feature was used to rank the utility of that 

feature for each individual speaker. The average rank of each 

feature over all speakers in the training set was then used to 

obtain a final best feature ranking. The idea was to find 

features which had stable high ranks over different speakers. 

For leave-one-speaker-out cross-validation, the feature ranks 

were computed using only the training speakers and the best 

ranked features were applied to the left-out speaker. 

3.3. SVM classification 

A Support Vector Machine (SVM) was used as a baseline 

classifier to compare against the neural-network approaches. 

We use the e1071 package [13] as implemented in the R 

statistics system [14]. For all experiments, a linear kernel was 

used and the cost parameter was set to 10-5 – the best value 

found in the baseline. 

3.4. Neural networks 

The neural networks were built using the Keras toolkit [15] 

operating with the TensorFlow back-end [16]. All networks 

had softmax output layers and were trained using RMSProp 

[17] with a categorical cross-entropy loss function. The same 

training regime was used for all networks. Sample weighting 

was used to compensate for class imbalance in the training set. 

Dropout layers with 25% dropout were used to improve 

generalisation. Three networks were constructed and trained: 

one operating on the summative features set, one operating on 

the temporal feature set, and one operating on both feature sets 

jointly. 

The Summative classifier consisted of two layers of 

densely connected nodes with tanh activations. Output is the 

3-way class probability. The layers were 6373 (input) -64-64-3 

(output). 

The Temporal classifier consisted of two layers of 

bidirectional LSTM nodes, feeding a time distributed dense 

layer. Input temporal sequences of LLD frames were either 

padded or truncated into 500 frames (i.e. 5s). The LLD frames 

were right aligned in the input window, and any padding 

consisted of frames with all zero values. Output labelling was 

the same 3-way class label applied to every frame including 

padding frames. The layers were 126x500(input)-2x32x500-

2x32x500-3x500(output). For final classification, the outputs 

were averaged over the 500 time steps to derive class 

probability scores per token. 

The Combined classifier is a combination of the Temporal 

and Summative classifiers within one neural network model. 

The two classifiers are joined at the output of their second 

layers: the output of the second dense layer in the summative 

classifier and the averaged output of the second LSTM layer 

in the temporal classifier, see Fig.3. The network has two sets 

of outputs: the main output is a three-way softmax 

classification of class probabilities based on the concatenation 

of the 64-way outputs of the two second layers. The auxiliary 

output is the temporally distributed class labels as used to train 

the temporal classifier. Both outputs are used during training, 

this ensures that the temporal classifier generates appropriate 

representations for the classification task within the second 

layer LSTM. However the training weight associated with the 

auxiliary output is set to be only 0.25 of the weight given to 

the main output. 

 

Figure 3. Combined temporal and summative neural-

network architecture 

3.5. Performance measure 

The challenge performance measure is specified as 

unweighted-average recall (UAR). This is the average of the 

accuracies of a classifier on each class taken separately. This 

measure is chosen because the corpus is imbalanced for the 

different cry labels. The training partition has 2292 neutral, 

368 fussing and only 178 crying tokens. 

The class imbalance makes the UAR measure rather 

sensitive to small changes in classifier performance on tokens 

in the minority classes. Large fluctuations in UAR occur 

across different classifier configurations even when overall 

accuracy is relatively stable. This sensitivity makes it hard to 

find the optimum hyper-parameters for the classifier 

configurations. 

To aid optimisation of the classifiers, a measure UARmax 

was introduced. This figure represents the best obtainable 

UAR for a given set of class scores generated by a classifier. 

To obtain UARmax, the probability of class j for token i is 

transformed using weights aj and bj as: 

�′�� = �������
	


 

where the weights {aj} and {bj} are found by functional 

optimization across all tokens to maximise UAR. This is 

effectively the “calibration” step of the multi-class FOCAL 

toolkit [18]. While UARmax is not necessarily a good measure 

of how a classifier will perform on unseen data, it does 

provide a better means to compare classifiers on the same data 

when searching for their best training hyper-parameters. 



 

 

4. Results 

4.1. Effect of Normalisation and feature selection 

We first use the SVM classifier to determine the best form of 

normalisation and the best number of features suited to this 

classification task. Fig 4 summarises the effect of feature 

selection and normalisation on UAR and UARmax estimated 

using leave-one-speaker-out cross-validation on the training 

set. For feature selection, best ranked features of size 100, 

200, 500, 1000, 2000, 5000 and 6373 were tested. In all cases 

more features gave higher performance, that is, there seems no 

benefit in performing feature selection on these data. For 

normalisation, global and personal z-score normalisation 

approaches were compared. Global normalisation gave higher 

performance. This may have been because some speakers did 

not have any cry vocalisations, so that per-speaker 

normalisation did not appropriately describe the range of 

features used by the speaker. Lastly, UARmax is seen to be less 

sensitive to configuration change than UAR, confirming its 

utility in comparing classifiers. The fact that the SVM 

decision shows on occasions a UAR slightly greater than 

UARmax, may be due to the approximations within the SVM 

that are used to generate class probabilities. 

As a consequence of these findings, global normalisation 

without feature selection were used for the main investigation. 

 

 

Figure 4. UAR and UARmax on training set for SVM 

with varying number of selected features and global 

versus personal z-score normalisation. 

4.2. Neural network classification performance 

The performance of the neural-network models compared to 

the SVM baseline on training and test partitions of the CRIED 

corpus are shown in Table 1. For the training set these are 

UARmax figures calculated with leave-one-speaker-out cross-

validation. For the test set, these are UAR figures for class 

scores that were transformed using the best weightings found 

when calculating UARmax on the training set. 

The summative classifier, operating on the same features 

as the SVM gave similar performance on the training set and 

better performance on the test set, showing that the DNN 

approach works well. The temporal classifier operating on the 

LLD frames gave the same test set performance but was 

slightly worse on the training set, showing that useful 

information can be extracted from the LLD sequence by this 

architecture. The combined summative and temporal classifier 

performed best of all on both corpus partitions, showing that 

temporal processing was able to extract useful information not 

present in the openSMILE functionals. Overall performance of 

the models on the training set matched or exceeded the simple 

classifiers used in the challenge baseline. However test set 

performance is worse than the best challenge baseline system 

(UAR=73.2%). However it should be noted that all neural 

network scores are sensitive to the configuration and training 

hyper-parameters, which might still be sub-optimal. 

Table 1. Performance of different classifiers on the 

challenge corpus. Training score is UARmax obtained 

from leave-one-speaker-out cross-validation. 

Classifier Features Train 

UARmax% 

Test 

UAR% 

SVM 6373 77.15 66.27 

Summative NN 6373 77.34 68.28 

Temporal NN 126x500 76.27 68.28 

Combined NN 126x500+6373 79.26 68.72 

5. Discussion 

In this paper we have presented three neural-network 

architectures for infant cry classification: one based on 

temporal features, one based on summative features, and one 

based on both simultaneously. We have shown that all give 

performance scores that are similar to or exceed the challenge 

baseline on the training data. Although differences are small, 

there are encouraging signs that the combined model benefits 

from having access to both temporal and summative features. 

Two areas are still in need of improvement: (i) the 

necessity of using fixed length temporal sequences in DNN 

training is a limitation of the Keras toolkit, and could be 

removed with further algorithm development; (ii) it is still 

difficult to find the optimal configurations and training 

protocol for the DNN classifiers. Although we have made 

steps to improve the evaluation of classifiers through leave-

one-speaker-out cross-validation and through the introduction 

of UARmax, there are likely other strategies that will ensure 

that test set performance more closely matches that obtained 

on the training set, particularly in the case of highly 

imbalanced classes.  

In this experiment the summative vector was computed 

from the same LLD frames as were presented to the temporal 

classifier. This might seem to be redundant, since surely the 

temporal classifier has the ability to recreate any statistical 

functional used to generate the summative vector. However 

the summative vector allows the researcher to add prior 

knowledge about useful global characteristics of the temporal 

sequence, without simply hoping that these will be 

rediscovered by the model. Future work might determine 

which statistical functionals add most value to the temporal 

feature analysis. 
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