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Abstract: We demonstrate a radio-over-fiber link based on the Kramers-Kronig receiver for the 

first time. Using this technique, we recover an 11 GBd single sideband signal with a net spectral 

efficiency of 3.4 (bit/s)/Hz at W-band. 
OCIS codes: (060.2330) Fiber optics communications; (060.5625) Radio frequency photonics; (130.0250) Optoelectronics  

1. Introduction  

Radio-over-fiber (RoF) techniques based on heterodyning two lasers in a photodiode offer great prospects, in terms 

of cost and power consumption, for the development of future backhaul wireless links [1]. A drawback of photonic 

mixing is that the resulting wireless signal exhibits a phase noise equal to the sum of the two laser linewidths. While 

external cavity lasers (ECLs) can offer narrow linewidths, they are significantly bulky and quite expensive, and are 

best suited for laboratory use exclusively. For industrial deployment, low cost free running lasers (with linewidths > 

1 MHz) are preferable. In this case, the phase noise can prevent the coherent receiver (Rx) from recovering the 

transmitted signal [2]. A potential solution to this is the use of phase noise-robust modulation formats, such as single 

sideband (SSB) modulation, together with envelope detection. 

In a recent paper, we have demonstrated the phase noise insensitivity of this scheme in a RoF system using two 

broad-linewidth free-running lasers [3]. Apart from enabling the use of low cost lasers, this scheme also relaxes the 

complexity of the digital signal processing (DSP) operations aimed at recovering the phase of the transmitted signal. 

Furthermore, a receiver based on envelope detection, unlike those based on mixing, does not require a local 

oscillator, further simplifying the system architecture. 

One of the issues with SSB envelope detected signals, is the guard band they require between carrier and 

sideband to combat the signal-signal beat interference (SSBI), which results from the overlap of the direct detection 

(DD) terms and the signal. This guard band reduces the spectral efficiency and may prevent the use of this scheme in 

situations where limited spectrum is available and high data rates are required. To enable the use of narrow guard 

bands, a number of DSP algorithms have been proposed that try to estimate and eliminate the DD products.  

Recently, a scheme based on the Kramers-Kronig (KK) relations has been proposed for DD optical networks as a 

means to combat the SSBI [4]. As long as the SSB transmitted signal has a sufficiently high carrier-to-sideband 

power ratio (CSPR), this scheme can reconstruct the optical phase of the signal reaching the envelope detector, 

effectively eliminating the DD terms. It has been demonstrated that this technique has the best SSBI cancellation 

performance in optical systems [5]. In this paper we use, for the first time, the KK scheme in a RoF system working 

at 100 GHz. First, we compare its performance with the case where no KK algorithm is used. Then, we study the 

performance of both schemes with increasing guard band, and finally we use the KK receiver to transmit and detect 

an 11 GBd 16 QAM signal with no guard band. 

2.  Experimental arrangement 

The complete experimental arrangement is shown in Fig. 1. In the receiver, we used a harmonic mixer instead of an 

envelope detector in order to measure the CSPR, which is a critical parameter in the SSB modulation format. The 

envelope detection is here implemented in the digital domain after analog-to-digital conversion. We expect, 

nevertheless, the results obtained here to be applicable to systems using an analog envelope detector.  

For digital signal generation, four 211 de Bruijn bit sequences were mapped into 16-QAM symbols at a symbol 

rate of 7.5 GBd. After bit-to-symbol mapping, a root raised cosine (RRC) filter with a roll-off factor of 0.1 was 

applied to the I and Q components. This baseband signal was then digitally up-converted to a frequency equal to 

4.125 GHz (0.55 times the symbol rate) to achieve a SSB signal with no guard band. Finally, to remove the lower 

sideband, a Hilbert transform (HT) was applied to the resultant waveform. To ensure identical time delay in both I 

and Q paths, two phase shifters were placed after the arbitrary waveform generator (AWG) and before the electrical 

amplifiers, as shown in Fig. 1.  



 

 

On the transmitter side, an ECL was used for data modulation. The optical signal was then combined with a 

second ECL after transmission through 10 km of optical fiber. The two optical tones, set at a frequency difference of 

100 GHz, were sent to a uni-travelling carrier photodiode (UTC-PD) after optical amplification and filtering. Fig. 1 

inset (a) shows the combined optical signals before the UTC-PD. 

 

 

Fig. 1. Experimental system depicting the arrangement expected in wireless backhaul links based on RoF. Insets: (a) combined optical signals 

before the UTC-PD, (b) received SSB signal at intermediate frequency, and (c) signal after KK receiver. 

After wireless propagation of 0.5 m the received signal was down-converted to an IF of around 11 GHz by 

mixing it with the output of an RF synthesizer in a second-harmonic mixer (SHM). The down-converted signal was 

then sampled by an 80 GSa/s oscilloscope. Following analog-to-digital conversion, envelope detection and down 

sampling to 5 Sa/symbol, the KK algorithm was performed by applying a HT to the sampled signal (for a detailed 

description of the algorithm see [5]). Finally, a typical coherent DSP routine consisting of IQ down-conversion, 

matched filtering, resampling, normalization, and equalization was carried out. The equalizer was initialized using 

the radius directed algorithm (RDE). Then the Viterbi-Viterbi algorithm and a block averaging filter of 600 samples 

in length was applied for phase corrections before switching to a decision-directed (DD) mode equalizer. Finally, 

symbol decision and bit error counting were performed after grey decoding. 

3.  Results 

In direct-detection SSB systems using small guard bands, there is a trade-off between the SSBI and the additive 

white Gaussian noise (AWGN). Signals with low CSPR ratio suffer from high SSBI, while high CSPR leads to large 

AWGN penalties. Due to their ability to suppress the SSBI products, cancelation techniques allow operation at 

lower values of CSPR (ideally at 0 dB, which is the optimum CSPR when the SSBI products do not overlap with the 

desired signal [6]). To assess the reduction of CSPR enabled by the KK receiver, the bit error rate (BER) was 

measured for different values of the CSPR (which was varied by adjusting the IQ modulator biasing points) for the 

cases with and without the KK receiver. For this and the subsequent comparisons, 7.5 GBd signals were used, giving 

a gross rate of 30 Gbit/s. As can be seen in Fig. 2 (a), a reduction in the optimum CSPR of more than 7 dB was 

measured with the KK technique, confirming its ability to suppress the SSBI.  

Next, to measure the improvement in receiver sensitivity, the BER was measured as a function of the square of 

the average photocurrent generated in the UTC-PD (this parameter being proportional to the generated RF power). 

As can be seen in Fig. 2 (b), only with the KK receiver, a BER below the hard-decision forward error correction 

(HD-FEC) threshold (BER of 3.8·10-3) could be achieved.   

We also characterized the performance of the system for different guard bands. In Fig. 2 (c) the BER is plotted 

against the normalized gap (the guard band divided by the signal bandwidth). With the KK receiver, a slight 

improvement was observed when the normalized gap was increased up to approximately 0.3. On the other hand, 

without the KK receiver, a clear improvement of the BER performance together with a reduction of the optimum 

CSPR were observed for increasing guard bands. However, even for the highest value of guard band tested in this 



 

 

paper (limited by transmitter bandwidth), the system without the KK receiver could not match the performance of 

the KK receiver.  

Finally, we transmitted an 11 GBd 16 QAM signal (gross bit rate of 44 Gbit/s) with no guard band and a roll-off 

factor of 0.1, achieving a net spectral efficiency of 3.4 (bit/s)/Hz (taking into account the 7% overhead of the HD-

FEC). A BER of 3.1·10-3, which is below the HD-FEC limit, was obtained. The received constellation diagram is 

shown in Fig. 3. 
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Fig. 2. (a) BER versus CSPR with and without the KK receiver; (b) BER vs. photocurrent squared with and without the KK receiver (the received 

constellation diagrams for the lowest value of BER in each case are shown at the right); (c) the BER as a function of the ratio between the guard 

band and the signal bandwidth (labels for each point indicate the optimum CSPR value). 

 

Fig. 3. The received constellation diagram for the 11 GBd 16 QAM signal. 

4. Conclusions 

We have demonstrated a SSB RoF link using a KK receiver for the first time. Compared with the conventional SSB 

receiver, the KK reduces the optimum CSPR by more than 7 dB and allows successful recovery of a 16 QAM 7.5 

GBd SSB signal, which was not possible without this technique. Furthermore, we found that this scheme 

outperforms the system without KK for all normalized gaps tested in this paper (up to 0.4 approximately). Using the 

KK receiver, we have also transmitted an 11 GBd 16 QAM (44 Gbit/s) SSB signal with a net spectral efficiency of 

3.4 (bit/s)/Hz. All this is done using a simple system based on two free-running lasers and envelope detection. 
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