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Abstract 

There is great practical and scholarly interest in the identification of pigments in works of art. This paper compares the 
effectiveness of the widely used Raman Spectroscopy (RS), with hyperspectral imaging (HSI), a reflectance imaging 
technique, to evaluate the reliability of HSI for the identification of pigments in historic works of art and to ascertain 
if there are any benefits from using HSI or a combination of both. We undertook a case study based on six Armenian 
illuminated manuscripts (eleventh–eighteenth centuries CE) in the Bodleian Library, University of Oxford. RS, and HSI 
(380–1000 nm) were both used to analyse the same 10 folios, with the data then used to test the accuracy and effi-
ciency of HSI against the known results from RS using reflectance spectra reference databases compiled by us for the 
project. HSI over the wavelength range 380–1000 nm agreed with RS at best 93% of the time, and performance was 
enhanced using the SFF algorithm and by using a database with many similarities to the articles under analysis. HSI is 
significantly quicker at scanning large areas, and can be used alongside RS to identify and map large areas of pigment 
more efficiently than RS alone. HSI therefore has potential for improving the speed of pigment identification across 
manuscript folios and artwork but must be used in conjunction with a technique such as RS.
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Introduction
Pigment analysis
Technical investigations of works of art are of great 
value to conservators and researchers. Scientific tech-
niques have been applied to pigment identification as 
part of conservation since the late twentieth century [1, 
2] aiding: characterisation of the palette of an artist or 
workshop [3, 4]; art historical understanding of the art-
ist [5]; identification of restorations or interventions [3, 
6]; monitoring degradation [7]; detailing the conserva-
tion state of an item [3]; revealing preparatory sketches 

[6], underdrawings [3], or palimpsests [8]; segmentation 
of a painting into regions for differential processing such 
as colour retouching [9]. Such knowledge is of value to 
researchers and can also aid in effective conservation 
strategies and restoration [7], and answer questions of 
provenance [3, 4, 6, 7, 10–12]. In the broader sense it can 
also help determine trade routes and cultural interac-
tions [12, 13], and give some idea of the technology of the 
period with respect to pigment manufacture [12, 13].

Sampling-based techniques such as gas-chromatogra-
phy–mass spectrometry (GC–MS) and high performance 
liquid chromatography (HPLC) provide considerable 
data [14] however a combination of non-destructive 
techniques generates desirable data without harming the 
item (an obvious advantage for conservators) [14, 15]. A 
combination of techniques is most often used, as any one 
technique has limitations. For example, Mosca et al. [16] 
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used Raman spectroscopy and X-ray fluorescence spec-
troscopy (XRF) to identify pigments in different layers of 
illuminated manuscripts. Other techniques include: fibre 
optic reflectance spectroscopy (FORS) [14], and Fourier 
transform infra-red spectroscopy (FT-IR) [17].

Access to these techniques and approaches for cul-
tural heritage imaging can be restricted due to their 
cost, availability, and the complex nature of interdiscipli-
nary research [18]. It is therefore useful to assess which 
approaches are most feasible, cost-effective, efficient, and 
accurate for our purpose of pigment identification, as this 
will help scholars understand the affordances of different 
systems and aid in the scoping and management of pro-
grammes of research.

Raman spectroscopy
Raman spectroscopy is a common and relatively acces-
sible method in pigment identification [4, 19–23], it can 
be used as a benchmark when assessing the application of 
HSI to this problem.

Raman spectroscopy has been used to look at signifi-
cant works of art by artists such as Picasso [21, 24] and 
Vermeer [10], and also at high value items such as the 
Lindesfarne Gospels [25] and high profile forgeries [5, 
26]. Raman has proved to be efficient at pigment identi-
fication [5, 7], although there are some exceptions such 
as lakes1 and other organic pigments which have poor 
Raman scattering, making identification difficult [14]. 
Where Raman scattering is poor, useful results have 
been obtained by combining with XRF [3]. RS has also 
been used to investigate the distribution of pigments 
and extent of restoration by looking at cross sections of 
objects [21].

Since its introduction as an analytical technique for the 
study of heritage in the 1970s, RS has become smaller, 
portable, and simple enough to be used by those who are 
not considered experts or analysts [19, 27].

Although accurate, it is also very time consuming to 
use Raman spectroscopy to identify pigments across 
large areas, as sample points are small and have to be 
repeated. Raman mapping has been used to examine 
areas on the micrometre scale over several hours. For 
example, one archaeological study examining rust took 
21  h to image a 52.2 × 46.2  µm rectangle [28], another 
looking at cross sections of a sixteenth century painting 
took 4.5 h to image a 60 × 45 µm rectangle [29]. An area 
can be mapped simultaneously by defocussing the laser 
beam, but this greatly reduces the intensity and as such 

is limited to a field of view on the order of micrometres 
[30]. In general using Raman spectroscopy as a mapping 
tool is unusual [31]. XRF has also been used for mapping 
but is also very slow, with an area of 36 × 34 mm scanned 
in 45  min in one study [16]. In contrast, hyperspec-
tral imaging can image an A4 sheet (210 × 297  mm) in 
roughly 15 min. It is therefore worth considering if other 
techniques such as HSI can be used in conjunction with 
RS to increase efficiency in identifying pigments, particu-
larly across larger areas.

Hyperspectral imaging
Hyperspectral imaging (HSI) is a reflectance technique 
which, for each pixel in an image, produces a reflec-
tance spectrum for the wavelength range detected [1]. 
This holds many potential advantages for pigment iden-
tification on a large scale given that it scans large areas 
quickly, and it is this property (or affordance) that we 
wish to investigate, within the context of pigment identi-
fication. The spectra produced can be used to character-
ise the materials at the surface of the image and produce 
maps of these materials, but hyperspectral imaging has 
also been used to reveal hidden images and text, given its 
ability to detect reflectance at many wavelengths, often 
including wavelengths outside of the visible range [1, 32]. 
Originally a remote sensing technique [32] it has been 
developed over the years for astrophysics, military appli-
cations, medical imaging, and more recently for the non-
destructive investigation of works of cultural heritage [6, 
33–35]. HSI has been successfully applied to a range of 
heritage material including The Declaration of Independ-
ence [36] where alterations to text were revealed, and 
Edvard Munch’s “The Scream” where the pigments used 
were characterised and mapped [37].

Multispectral imaging (MSI) and HSI have both been 
used as the first step in investigations to provide spatial 
and spectral data on the pigments in a manuscript. This 
then allows one to examine and map the entire surface 
of an object [6, 34, 38] and guides the use of techniques 
such as Raman spectroscopy [39, 40], XRF [41, 42], 
and FORS [43] which give a more detailed analysis [14, 
44–46]. This methodology can overcome concerns that 
point-based analyses may not represent the whole and 
may not be sufficient to demonstrate the diversity of col-
ourants in such works [3]. Working with a combination 
of techniques allows for the best results to be generated 
[47, 48] and it is mainly recommended to use HSI as the 
first technique in combination with others [6, 14].

The identification of materials in works of art via HSI 
can be done by comparing the reflectance spectra for the 
relevant pixel to those of a reference database or by the 
creation of false colour images from the hyperspectral 
data as per Haymen-Ghez et  al. [49]. Such false colour 

1 A class of organic pigments made by precipitating a dye with a binder, the 
name derives from lac (a resinous secretion) and so is an interesting misno-
mer, having nothing to do with bodies of water.
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composite images have recently been successfully used 
to aid the identification of watercolour pigments in eight-
eenth century botanical illustrations by Ferdinand Bauer 
[50], this study however focusses on the former identi-
fication method.2 There is no such database suitable for 
the identification of pigments and so one must be man-
ufactured by the analyst for each new study. Ideally this 
would contain all possible combinations of colourants, 
binders, etc. likely to be found in the studied object and 
would also be historically accurate (e.g. using the same 
substrate as found in historic artworks). Such a level of 
detail is required because all of the chemical compo-
nents within the area observed by a pixel contribute to 
the reflectance spectra and is therefore not molecularly 
specific and in mixtures one peak may obscure the char-
acteristic peak of another compound. Despite this the 
differentiation of two colourants which are similar visu-
ally but chemically distinct (metamers) by HSI has been 
demonstrated [14, 21, 47, 51–53].

The question of whether or not the algorithms being 
used in the industry at present to analyse hyperspec-
tral datacubes give the best results has been raised, and 
newer algorithms have been suggested which can take 
full advantage of the increasing information [33]. Doubts 
about the ability of HSI to identify a pigment definitively 
have been raised due to the complications of mixtures or 
degraded pigments [1]. For example, for the identification 
of mixtures, linear spectral unmixing was designed for 
remote sensing (the collection of surface data from afar, 
for example the geological survey of several kilometres of 
land using sensors on an aeroplane) where the signal is a 
combination of the spectral responses of spatially sepa-
rated materials [1]. In such a study a pixel may be several 
metres across and cover both a patch of grass and some 
tarmac, whereas for paint materials this is not the case, 
as pigments are uniformly dispersed in the binding media 
and the spectral response is not a simple linear mixture 
of the reflectance. The Kubelka–Munk (KM) theory is 
more appropriate [1, 9] and is used in the paint industry 
to calculate the ratios of paints to match a given colour 
[1]. The effect of binding medium, particle size, and con-
centration have been systematically studied and dirt and 
varnish can also have an effect [1].

Reflectance spectra of pigments in the UV VIS range 
have relatively few broad bands for use in fingerprinting 

(compared to IR and RS) and cannot therefore always 
provide unambiguous identification especially when two 
or more absorbing species are present in a mixture. It is 
interesting to note that the HSI equipment used in this 
study has a spectral resolution of 0.67 nm which is more 
than sufficient [54, 55] to discern such peaks and troughs 
as may be present in the reflectance spectra involved and 
may even lead to data redundancy [55]. This would slow 
down any computational work done on the reflectance 
spectra (as the computer would carry out calculations on 
all the data regardless of its redundancy). Care must also 
be taken to ensure that relevant analysis is done, tech-
niques used for multispectral image analysis may not be 
appropriate.

Identification can therefore rely on the fact that rela-
tively few colourants could be used in any one piece due 
to limitations of geography, availability, and time period 
[14]. Unusual or unexpected colourants can create a need 
for the use of multi-technique analyses [14]. On the other 
hand, HSI has been shown to successfully differentiate 
between colourants that other techniques find difficult 
[56]. Red lake pigments (madder, for example) are very 
light sensitive and so their characterisation and any data 
on their degradation can be of upmost help [56]. HSI was 
used to discriminate between madder, cochineal, and 
brazilwood however the addition of binding media etc. 
made it more ambiguous. A more comprehensive data-
base was recommended [56].

This study therefore investigates how well HSI can be 
applied to pigment identification given the questions 
raised about the appropriateness of algorithms designed 
for other uses, and databases which are unlikely to be 
complete.

Materials and methods
Armenian manuscripts
Hyperspectral imaging was used here to identify the pig-
ments in a set of Armenian illuminated manuscripts from 
the Bodleian Library, University of Oxford, and the iden-
tifications made were compared to data obtained from 
Raman spectroscopy analysis of the same texts. These 
texts were part of an exhibition entitled “Armenia: Tales 
From an Enduring Culture” [57] which marked the cen-
tenary of the Armenian genocide during WW1 and dis-
played manuscripts felt to be representative of Armenian 
culture [57]. The texts were surveyed prior to exhibition 
and it was desired to learn about the palette used in their 
illumination. As a result of analysis prior to this study the 
exhibition was able to display the raw ingredients for the 
palette alongside the manuscripts in the exhibition hall.

Illuminated manuscripts of Armenia, while visually 
stunning, have not been the subject of many scientific 
studies [58, 59] yet they are historically varied and of 

2 The Mulholland et  al. study used the same hyperspectral equipment as 
ours, but there are key differences between the studies. Firstly Mulholland 
et al. used additional NDT methods namely XRF, and FORS. Secondly Mul-
holland et al. focussed on the use of hyperspectral data to generate false col-
our composites whereas our study focusses on the characterisation of the 
reflectance spectra generated thus the two studies are useful companion 
pieces each demonstrating different functionalities of the data.
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much scholarly interest [60–65]. The Bodleian Library 
has over 140 manuscripts, and over 250 early printed 
books in its Armenian collection with a date range of 
over 1000 years acquired from 1635 onwards [66]. A few 
examples of these, used during this study and displayed 
during the exhibition, are shown below in Fig. 1.

Armenian illuminators have left no written account of 
how they prepared their pigments [60]. One study begun 
in 1979 identified six pigments as the staple Armenian 
palette with differences in recipes and quality account-
ing for differences in locale and era. They are gold, white 
lead, vermillion, orpiment, ultramarine, and red lake.3 
Mixtures of these six pigments are commonly used to cre-
ate different hues and shades [61, 67]. It should be noted 
the study was of 24 manuscripts, which is a small per-
centage of the total known today. Two things may strike 
the art historian as odd about the palette: firstly, the use 
of ultramarine as the standard pigment [68]. In Euro-
pean art, ultramarine is rare [68]. It is made from lapis 

lazuli mined in present day Afghanistan, making it more 
expensive for European artists than for Armenian artists 
where it is thought that the close proximity to the mines 
meant that costs were kept low [68]. Secondly, the lack 
of a natural green pigment (organic or inorganic) such as 
verdigris, which meant the artists had to use a mixture of 
other pigments to achieve the green colour instead [60, 
68]. Mixtures of mineral yellow, orpiment, and blue (either 
ultramarine or an organic blue) with lead white to alter 
the shades were used to produce an olive green which was 
duller than that found in western manuscripts [59, 67–69].

The Bodleian Library’s collection, spanning all of the 
aforementioned periods of production makes it ideal for 
carrying out a study of the palette used. Working with 
a curator, a range of six manuscripts dated between the 
fourteenth and eighteenth centuries, including works by 
well-known artists such as Mezrop (MS. Arm. d.13, Gos-
pels, 1609) were chosen for this study.

The corpus studied is replicated in Table 1 below, and 
ranges from the eleventh to the eighteenth century.

Workflow
To evaluate the utility of HSI with respect to the identi-
fication of pigments using the software ENVI4 and the 
characterisation algorithms contained within in compari-
son to RS it was necessary first to gather the point-based 

Fig. 1 Armenian Manuscripts held by the Bodleian Library. a MS Arm. 
d13 (1609 CE) folio 4r: The adoration of the Magi, b MS Arm. d13 folio 
33r: Eusebian canon table. This manuscript was the work of Mesrop, a 
famous Armenian illuminator, c MS Arm. e34 folio 4r: The first page of 
the Armenian translation of the classical Greek grammar attributed to 
Dionysius Thrax “Concerning Grammar”. Dated eighteenth Century

Table 1 Details of  the  Armenian manuscripts 
from the Bodleian Libraries selected for this study

Shelf mark Page Date Title

MS. Arm. e.34 4r Eighteenth century Grammatical and 
philosophical tracts 
eighteenth century

MS. Arm. d.13 22r 1609 Gospels

MS. Arm. d.3 10r 1304 Gospels

MS. Arm. g.4 N/a 1706–1707 Phylactery

MS. Arm. d.22 8r Late sixteenth century Gospels

MS. Arm. c. 3 1r Sixteenth century Menologium sixteenth 
century

3 Pigments explained:
Gold: Usually gold leaf but also shell gold which is powdered gold mixed 
with a binder, so named because it was traditionally prepared in a shell.
White lead: The oldest white pigment, a by-product of lead production.
Vermillion: A red man-made pigment of mercuric sulfide.
Orpiment: A yellow pigment made from heating and grinding the orpiment 
stone.
Ultramarine: Significantly also called lapis lazuli, made from a semiprecious 
stone of the same name.
Red Lake: A transparent red made from the root of the Madder plant (Rubia 
Tinctoria) hence it is also called madder. http://www.jcspa rks.com/paint ed/
pigme nt-chem.html#Lapis .

4 ENVI: Environment for visualising images (accessed via University of 
Oxford site license), is a software package for remote sensing and dealing 
with hyperspectral datacubes containing a number of statistical and image 
processing algorithms. ENVI is a good choice for this investigation. It does 
not require the operator to code the algorithms prior to use and yet adjust-
ments to the algorithms (in this case SAM, SFF, and BE) can be made to suit 
the user. This ease of use helps to simulate a situation where a non-expert 
might use the equipment, as is likely the case. Further work could have 
included the use of additional algorithms (KM theory for example) but the 
algorithms used in this study, particularly SAM, are commonly used (as has 
been shown in the literature) and there would be little advantage to writing 
our own SAM algorithm when one was readily available to us.

http://www.jcsparks.com/painted/pigment-chem.html%23Lapis
http://www.jcsparks.com/painted/pigment-chem.html%23Lapis
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RS data. HSI could then be carried out on the folios from 
which RS data had been gathered. It was then necessary 
either to compile a database of reflectance spectra or uti-
lise an available one. This database could then be used for 
the identification of the HSI reflectance spectra by way of 
a comparison between the data gathered and the known 
spectra in the database. This comparison is done by way 
of three computer algorithms available in the ENVI soft-
ware [spectral angle mapping (SAM), spectral feature fit-
ting (SFF), and binary encoding (BE)5], which are to be 
compared to each other in order to suggest which one 
is the most applicable to this data. The HSI data could 
then finally be compared to the RS data (which is identi-
fied separately by way of characterising peaks in the RS 
spectra).

Pigments in the manuscripts were identified based on 
their spectral signature from Raman spectroscopy. 90 
sample spots were analysed from 10 folios from the six 
manuscripts (one would normally analyse fewer spots to 
characterise the pigments in the manuscripts but more 
were desired to give this study sufficient data). Setting 
up Raman spectroscopy takes about 10  min and a fur-
ther 5–10 min for analysis of each subsequent spot. Not 
all pigments provide strong Raman scattering signals and 
so this study focused on those which gave good signals 
using the Raman spectroscopy equipment available (see 
below), in order for the HSI setup to be compared to a 
technique known to be accurate. The six pigments the 
study focussed on were vermillion, indigo, lapis lazuli, 

red lead, red lead/vermillion mixture, and indigo/orpi-
ment mixture. Gilded regions of the manuscripts gen-
erated unwanted specular reflectance and so analysis 
was done on regions unaffected by this phenomenon. 
HSI was then performed on the same manuscripts and 
used for the identification of the same pigments as the 
Raman spectroscopy equipment. The two results were 
then compared directly and if a pigment was character-
ised as the same pigment by HSI as it was Raman spec-
troscopy it was considered correct. The percentage of 
the total characterised which were correct (i.e. generated 
the same result as from Raman spectroscopy) was con-
sidered to be the percentage accuracy. In order to classify 
reflectance spectra a comparison to a reference database 
is carried out, as explained below. Raman spectroscopy 
did not require the creation of a database from scratch. 
The workflow is represented diagrammatically below in 
Fig. 2.6 

If these two iden�fica�ons 
are the same, the HSI is 

considered correct, if they 
differ it is incorrect

The Raman spectra are used 
to iden�fy the pigments

Raman spectroscopy is 
performed on a folio, a USB 

microscopy image is taken of 
the Raman spectroscopy 

loca�ons

SAM, SFF, and BE are run on 
the regions of interest giving 
a tenta�ve iden�fica�on of 

the pigment

Using ENVI, a region of 
interest is created at the 

loca�on of the Raman 
spectroscopy analysis

A hyperspectral image is 
taken of the same folio

The percentage of correct 
results is calculated to give 
the percentage accuracy of 

HSI in this paper.

Fig. 2 A flow diagram of the experiment, explaining the origin of the percentage accuracy for HSI

5 Statistical analysis methods: Briefly, SFF, or spectral feature fitting, is a 
least squares technique which uses methodology based on the absorption 
features of the spectra [67]. Spectral angle mapping, or SAM, treats each 
spectrum as a vector and calculates the angle between two spectra, thus 
determining spectral similarity. Smaller angles represent better matches and 
the technique is relatively insensitive to illumination effects [68, 69]. Binary 
encoding (BE) samples the data based on whether a band falls below or 
above the spectrum mean: the greater the number of bands which match 
the reference spectrum, the more likely it is that the spectra match [70].

6 Not all data was collected at first, and not all databases were created ini-
tially, below is a summary of the timeline of the experiment showing in what 
order, and why things were done throughout the experiment. The databases 
are more fully described in “HSI database” section.

1.  An initial study using Raman spectroscopy (34 points from across the 
six manuscripts), carried out by Andrew Beeby (see “Acknowledge-
ments” section), was performed for the purpose of including results in 
the exhibition “Armenia: Masterpieces from an enduring culture” and 
for the purpose of learning more about an infrequently studied set of 
manuscripts.

2.  The data gathered was used to trial the methodology outlined in 
“Workflow” section:
a.  Hyperspectral scans were taken of MS Arm g4, MS Arm e34, and 

MS Arm d13
b.  Reflectance spectra database 1 was created to carry out the identi-

fication of the hyperspectral scans (g4, e34, d13).
c.  Greater agreement between the two techniques was desirable and 

so it was thought that if an improvement were made to the data-
base so the pigment library contained spectra closer to the ones 
taken from Armenian manuscripts.

3.  Databases 2, and 3 were created using reflectance spectra from the 
ROIs in the hyperspectral scans of MS Arm g4, e34, d13 and therefore 
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HSI database
Reference libraries were needed for the characterisa-
tion of the reflectance spectra obtained from hyperspec-
tral imaging. An initial reference library for reflectance 
spectra was therefore made, using 113 colour swatches 
painted using Kremer paints7 (a sample of which are 
shown below in Fig. 3) on a paper thought to be similar 
to an eighteenth-century artist’s in order to replicate as 
closely as possible the spectra expected from the genuine 
manuscripts.

The first database was created from these colour 
swatches taking the most likely pigments to be found 
in Armenian texts based on studies of Armenian 

illuminated manuscripts [60, 68] and eliminating the 
ones which one would not expect to find (synthetic 
pigments for example). This first database was later 
improved upon once some HSI scans had been taken of 
some of the Armenian manuscripts and used to create 
another, more up to date database which included the 
Armenian spectra, and a further database created which 
had exclusively the Armenian spectra in it. These three 
databases were compared with each other in order to see 
the effect of a change in database on the identification 
accuracy. Two further databases were also used. A data-
base was downloaded online [70, 71] to form database 
4, and of these the more likely pigments for Armenian 
illuminated manuscripts were taken to form database 5. 
These were used so that externally made references could 
be compared to those created for the paper. These data-
bases had greater spectral resolution (0.19 nm) and were 
taken using FORS equipment which measured from 360 
to 1000 nm (Table 2).8

Spectra from Kremer paints were of the following pig-
ments: Smalt, gamboge, azurite, verdigris, yellow lake, 
realgar, massicot, orpiment, alizarin crimson, cochineal, 
lac, vermillion, madder, red lead, Chilean lapis, indigo, 
verdigris + indigo, lac + vermillion, red lead + vermillion, 
realgar + indigo, vermillion + cochineal, lead white.

Spectra taken from the manuscripts and used for data-
base 2 (and later 3) were: indigo, indigo + orpiment, red 
lead, lapis lazuli, vermillion, red lead + vermillion.

Database 4 contained burnt umber, raw umber, van-
dyke brown, burnt sienna, raw sienna, red ochre, red 
lead, cadmium red, alizarin, madder lake, lac dye, camine 
lake, vermillion, realgar, yellow lake, massicot, yellow 
ochre, gamboge, naples yellow, lead tin yellow (two vari-
ations), saffron, orpiment, cobalt yellow, cadmium yel-
low, chrome green, cobalt green, cadmium green, green 
earth, viridian, phthalogreen, verdigris, malachite, blue 
bice, cobalt blue, azurite, Egyptian blue, ultramarine, 

Fig. 3 Colour swatches of different pigments including common 
mixtures. These were used to make database 1 (and part of 3)

Table 2 Showing which spectra are in  which database 
and how many spectra each contains

Database 1 2 3 4 5

Spectra from Kremer paints 40 0 40 0 0

Spectra from Armenian manuscripts 0 18 18 0 0

Spectra from online database 0 0 0 55 11

Total number of spectra 40 18 58 55 11

Footnote 6 (continued)
could not be used to test these ROIs again as the spectra is an exact 
match which would cause bias in the results.

4.  Databases 1, 2, and 3 were tested upon hyperspectral data from MS 
Arm g4, e34, d13, d3, d22, and c3 with the exceptions of the use of data-
bases 2, and 3 on the ROIs mentioned above.

5.  Additionally the computational comparison algorithms for reflectance 
spectroscopy were configured using different parameters in order to 
investigate the effect of these changing parameters on the results with a 
view to increasing the frequency with which the hyperspectral identifica-
tion pipeline agreed with Raman spectroscopy.

6.  Additional Raman spectroscopy data was collected (56 additional 
points) in order to expand the corpus.

7.  Additional hyperspectral imaging scans were taken to complement the 
additional Raman spectroscopy data.

8.  Databases 4, and 5 were created using reflectance spectra downloaded 
from an online database (http://e-conse rvati on.org/issue -2/36-FORS-
spect ral-datab ase [65]). Database 4 contains all the spectra in the data-
base, database 5 contains only those most relevant to the Armenian 
manuscripts which was done to demonstrate the difference that a 
change in database such as this can cause to the results obtained from 
the reflectance spectra comparison algorithms. In both cases the “egg 
tempera” database was downloaded for use as this is the binder most 
likely used in the Armenian manuscripts studied.

7 http://www.kreme r-pigme nte.com/en/ Kremer Pigmente is a  manufac-
turer and distributer of historic pigments.

8 No processing was done on the downloaded spectra however the com-
putational analysis does carry out some pre-processing for example ENVI 
documentation reveals that when SFF is carried out the spectra are “scaled 
to match the image spectra” http://www.harri sgeos patia l.com/docs/Spect 
ralFe ature Fitti ng.html.

http://e-conservation.org/issue-2/36-FORS-spectral-database
http://e-conservation.org/issue-2/36-FORS-spectral-database
http://www.kremer-pigmente.com/en/
http://www.harrisgeospatial.com/docs/SpectralFeatureFitting.html
http://www.harrisgeospatial.com/docs/SpectralFeatureFitting.html
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phthaloblue, smalt, indigo, mayablue, Prussian blue, 
cobalt violet, ivory black, vineblack, boneblack, lamp 
black, gypsum, chalk, leadwhite, zinc white, titanium 
white, lithopone, cardboard.

Database 5 contained red lead, madder lake, vermillion, 
realgar, massicot, orpiment, Verdigris, azurite, ultrama-
rine, smalt, indigo.

The databases were made within the ENVI software 
by selecting pixels from the area of the pigment, averag-
ing the spectra, and adding this averaged spectrum to an 
ENVI database file. Databases 4 and 5 were simply down-
loaded and saved in ENVI database file format.

Equipment
Hyperspectral imaging
The hyperspectral camera used was a Headwall Photon-
ics VNIR 1003B—10,147 which detects 972 contiguous 
wavelengths from 380 to 1000  nm and has a spectral 
resolution of 0.64 nm. The lens used is a Schneider XNP 
1.4/17—0303 with a headwall ACOBL—380—49X, 075 
filter.

The setup is a line scanning method, and there are 1600 
pixels per line scanned. The spatial resolution depends on 
the distance between the detector and the subject which 
can be adjusted at the operator’s discretion. A typical 
pixel size during this study was 110 µm across (this is the 
“ground sampling distance” the detector’s pixel size is 
0.65 nm).

The light source is a halogen bulb controlled by a Tech-
niquip 21DC, and cooled by a Minebea Motor Manufac-
turing Corporation 3110KL—04 W—B50 fan.

The detector remains stationary while the subject is 
placed on a stage which moves along only one axis, thus 
scanning the object. The speed of the stage is calculated 
based on the distance between the stage and the detec-
tor in order to ensure firstly that the pixels produced 
represent square sections of the object (i.e. there is no 
stretching or squashing effect produced) and secondly to 
ensure that no part of the object is missed by the scan, 
given that at set intervals a snapshot is taken in order to 
build up the hyperspectral data cube. The stage uses a 
Vexta PK264A2A—SG3.6 stepping motor controlled by 
a Velmex VXM stepping motor controller. All aspects of 
the setup were supplied by Headwall Photonics, includ-
ing the light source and stepping motor.

As HSI gives values of reflectance, calibration is per-
formed by giving the software an example of 100% reflec-
tance, and 0% reflectance, these are the white and dark 
calibrations respectively. White calibration is carried 
out using a piece of  Spectralon®,9 and dark calibration 

is performed by covering the lens with its lens cap. The 
room lights are off during calibration and scanning as the 
fluorescent lights produce unwanted lines in the scan, 
ideally the room would be in darkness so that any fluc-
tuations in light intensity and thus reflectance values are 
eliminated. Equipment calibration (such as signal linear-
ity and accuracy of the wavelength axis) are performed by 
Headwall prior to shipping.

This experimental setup is shown below in Fig. 4. Dur-
ing the scan the manuscript was supported when needed 
by manuscript grade archival book supports.

Data processing
For processing the Hyperspectral data cube (post-acqui-
sition) the software ENVI was used (version 5.3.1). The 
spot scanned by RS had been recorded by taking a pic-
ture using a USB microscope (Veho Discovery VMS-004 
delux, 400×, 2 megapixels magnification) and using the 
ENVI region of interest tool an average spectrum was 
calculated from the pixels in the same area of the RS 
measurement. The RS spot size was 30 µm and the pix-
els of the HSI were ca. 78–130 µm wide (mean pixel size: 
110 µm). The HSI pixel data was analysed using the spec-
tral analyst feature which compared, using SAM, SFF, 
and BE, the average spectrum for each region of interest 
with the spectra held in the HSI reference libraries made 
by us (see “Equipment” section below). Each computa-
tional method produced is a ranking where the high-
est score represents the closest match to the reference 
spectra (example given in Additional file 1). All rankings 
are between 0 and 1, the higher the score the closer the 
match for the spectra. The algorithms match the spectra 
in the database to the spectrum obtained during experi-
mentation. Thus, if a relevant, trustworthy database is 

Fig. 4 The HSI equipment during a scan of MS Arm. d13. For the 
purpose taking this photo of the equipment the room lights have 
been left on, during a scan the room lights are always off

9 Spectralon® is the brand name of a fluoropolymer material which has a 
very high diffuse reflectance (99%) and reflects evenly across the UV–Vis-
NIR range [72].
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used a likely candidate for the identity of the pigment is 
given.

Using the software it was also possible to select the 
wavelength range over which the calculations (SAM, 
SFF, and BE) were performed and this was done in order 
to remove from the calculation either noise, or large 

components which were common to all scans, thus 
improving the agreement between the hyperspectral data 
and the Raman spectroscopy data. For example, some flu-
orescence was seen between 380 and 400 nm and spec-
tra tended to level out after 800  nm. These parts of the 
spectra also coincided with the noisy regions and so the 
wavelength range upon which the calculations were per-
formed was reduced in order to focus on the areas which 
gave identifiable peaks or troughs in the data and elimi-
nate areas which were similar in all spectra, thus aiding 
the computational differentiation process (‘tailored wave-
length range’ in Table 4). This reduction was made on a 
case by case basis in order to account for any variation 
in major peak positions between the different pigments, 
however it was found that this took a very long time as it 
had to be done manually. By way of comparison the com-
putations were run again using the region between 400 
and 800 nm each time to see if results could be improved 
upon without having to tailor the wavelength range to 
each individual spectrum (‘400–800 nm’ in Table 4).

The techniques are included in the software as standard 
as they have been used for the analysis of remote sensing 
data (SFF [73–75], SAM [76–78], BE [79–81]). For the 

Fig. 5 The Raman spectroscopy equipment used during the project

Table 3 A summary of differences between Raman spectroscopy and hyperspectral imaging as used in this study

Raman spectroscopy HSI

Analysed area Spot size: 30 µm diameter Pixel size: 13,000 µm across

Counting time by 
spot or surface 
unit

≈ 5 min ≈ 0.33 mm s−1

Irradiance 0.4 mW ≈ 3.5 lux h

Advantages Identification can be made unequivocally through the 
use of characteristic peaks

Identification relies upon the comparison of reflectance spectra and 
must be backed up by another method of analysis

Disadvantages Limited spots can be analysed in a reasonable time frame Larger areas can be scanned in a reasonable time allowing the user to 
‘map’ important features

Table 4 The results of  the  Raman spectroscopy survey showing the  distribution of  inspection points 
across the manuscripts involved in the study

Not all manuscripts had the same number of illuminations (MS Arm d13 was particularly lavishly decorated). Note the chemical formulas and common names; red 
lead  (Pb3O4, minium), vermillion (HgS, cinnabar), lapis lazuli  (S3, ultramarine (differentiation between synthetic (ultramarine), and natural (lapis) not possible with this 
Raman setup), orpiment  (As2S3), indigo  (C16H10N2O2)

Shelf mark Pigments identified through Raman spectroscopy Total

Red lead Red lead + vermillion Lapis Indigo + orpiment Vermillion indigo

MS Arm g4 1 1 3 0 2 0 7

MS Arm e34 1 0 5 0 2 0 8

MS Arm d3 0 0 0 0 0 5 5

MS Arm d22 0 1 0 0 1 2 4

MS Arm c3 0 0 2 0 3 2 7

MS Arm d13 1 0 0 1 56 1 59

Total 3 2 10 1 64 10 90
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analysis of heritage based hyperspectral data only SAM 
appears to have been used previously [42, 82, 83].

Raman spectroscopy
The Raman spectroscopy equipment used in this study 
has been developed specifically for the identification of 
pigments in objects of cultural heritage, and is unique 
[84]. It differs from commercial equipment primarily in 
that large manuscripts can fit under the detector in situ 
and it is extremely portable. The device shown in Fig. 5 
demonstrates the sensor is attached to a lightweight 
frame which allows the sensor to move along in one 
direction with movement in the other direction being 
achieved through repositioning of the frame. As per HSI 
the manuscript is supported, if needed, by archival grade 
foam book supports.

Light and dark calibration are performed and a refer-
ence sample is used to correct for any shift from true 
peak values. All Raman measurements require a blacked-
out room to minimise interference for this very sensitive 
technique.

The spot size of each measurement is ca. 30  µm and 
a JDSU 1  mW HeNe laser source is used with a wave-
length of 632.8 nm. The detector measures in the range of 
2577.367–91.14842 cm−1 and is a Andor Shamrock 163/
iDus 416 camera CCD spectrograph with a Horiba Ltd 
Superhead sampling accessory. A USB microscope gener-
ates a live image on the laptop, stills of which are used to 
record the exact location of the laser spot measurement.

It may be useful at this point to directly compare the 
two techniques used during the study as summarised in 
Table 3. The advantages and disadvantages given concern 
the specific equipment used in this study. Differences 
in equipment specification may alter the usefulness of a 
technique for example if HSI which produced reflectance 
spectra further into the IR was used instead then the 
identification of pigments could be done more indepen-
dently of a secondary technique.

Results
Table  4 shows the distribution of the Raman spectros-
copy analysis across the six manuscripts and the pig-
ments which were identified using Raman spectroscopy. 
These results are taken as correct and were compared to 
the results generated by the characterisation of reflec-
tance spectra from hyperspectral data cubes by way of 
the three computational algorithms designed to com-
pare experimental spectra to those in a database 5. Such 
databases were used as detailed above in “HSI database” 
section. If the algorithm identified the same pigment as 
Raman spectroscopy then it was considered correct, in 

this way a percentage success was derived for each con-
figuration, as detailed in “Workflow” section.

The results of the Raman spectroscopy survey showing 
the distribution of inspection points across the manu-
scripts involved in the study. Not all manuscripts had the 
same number of illuminations (MS Arm d13 was particu-
larly lavishly decorated). Note the chemical formulas and 
common names; red lead  (Pb3O4, minium), vermillion 
(HgS, cinnabar), lapis lazuli  (S3, ultramarine (differentia-
tion between synthetic (ultramarine), and natural (lapis) 
not possible with this Raman setup), orpiment  (As2S3), 
indigo  (C16H10N2O2).

Table 5 shows the percentage success of the three algo-
rithms with the five databases applied to all the manu-
scripts. The settings and parameters of the algorithms 
could be manipulated to increase the likelihood of a 
match by way of eliminating noise or focussing on char-
acteristics of the spectra, and this was also done. Table 6 
gives the results of the analysis carried out using default 
settings broken down into the different manuscripts.

A comparison of the percentage agreement obtained 
using the different methods, databases, and wavelength 
ranges. The difference between 400 and 800 and default 
was calculated as the percentage success of the 400–
800 nm range minus the percentage success of the default 
wavelength range, similarly difference (tailored and 
default) was %tailored − %default and difference (tailored 
and 400–800) was %tailored − %400–800.

As can be seen the majority of pigment regions identi-
fied were vermillion: this is because Raman spectroscopy 
very easily identifies this pigment but also because the 
Armenian manuscripts analysed here are very red in col-
our, so vermillion is probably the most prolific pigment 
throughout the manuscripts. It can also be seen from 
Table  5 that the majority of pigments were taken from 
MS Arm d13. This is because there were so many illumi-
nations in this manuscript compared to the others, thus 
it provided a wealth of experimental material.

For example focussing on results from Database 1 
(Table  5) we can see that using the algorithms on a 
“tailored” wavelength range increased the accuracy of 
reflectance spectra identification by 38–54%. The best 
algorithm in this case was the most simple algorithm, 
binary encoding (67% success) when used over a tai-
lored wavelength range. SAM was the worst algorithm 
if applied with the default settings (9% success). This is 
true, on the whole, for all the databases with the best per-
centage success being for Database 2, BE, Tailored wave-
lengths (93% success), and the worst being 9% as above. 
Spectral feature fitting (SFF) scored higher than spectral 
angle mapping (SAM) in most cases and is also the one 
most likely to be correct under default settings which 
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suggests that SFF deserves more consideration when ana-
lysing hyperspectral data, presently SAM is the more uti-
lised algorithm.

Database 2 was provided the most matches under all 
parameters: we can also see that Database 5 was provided 
more than Database 4. These results lead us to believe 
that the database most likely to produce a correct char-
acterisation is one which contains spectra obtained from 
material matching the experimental material as closely 
as possible (same binder, same age paper, same age pig-
ments etc.) and containing only the most relevant spectra 
i.e. a database can be too large for the application.

Table  6 shows us the results for all three algorithms 
applied to all six manuscripts, but only for the default 
wavelength range. Here we see as before that on the 
whole BE was the least successful whilst used across the 
full wavelength range available. This trend is expected 
because binary encoding would only really work on data 
in which the peak is the main feature. In this data that 
is not the case however as noted above it does improve 
when the algorithm is focussed on a smaller wavelength 
range. This too is expected from BE because the main 
absorption feature would be focussed upon becoming a 
larger factor in the algorithms’ final result. As before we 
see that SFF is commonly the most successful for the full 
wavelength range. It has achieved 100% in places but it is 
to be noted that these datasets are rather small on their 
own. On the largest dataset, that of MS Arm d13, SFF still 
outperformed the others, but was far from achieving per-
fection. It is interesting then that SAM has become the 
more popular algorithm.

Showing the percentage success of the databases and 
algorithms with the default wavelength range used sepa-
rated out into the different manuscripts’ results. The dif-
ference in sample sizes is due to databases 2 and 3 not 
being used on some folios from MS Arm D13, MS Arm 
e34, and MS Arm g4, this is discussed in the text.

It is interesting to note from Table  6 that seemingly 
the most difficult manuscript to obtain high percentage 
results from is MS Arm g4, one of the later manuscripts. 
It should be remembered though that the best databases 
(as before Databases 2, and 3 outperformed the others) 
could not be used on the ROIs from this manuscript 
because it was from these ROIs that the databases were 
formed, and this perhaps has created challenges. It would 
be interesting to obtain more ROIs for MS Arm g4, and 
MS Arm e34 for application of Databases 2, and 3 to 
these manuscripts. No manuscript consistently provided 
a greater percentage accuracy than others.

Discussion and conclusions
In this paper, we have assessed the ability of HSI to iden-
tify pigments based on their reflectance spectra (380–
1000  nm). Results were compared directly with Raman 
spectroscopy and for the first time an attempt was made 
to provide a percentage accuracy for this use of HSI in 
this application. This percentage accuracy was found to 
vary between 9 and 93% in total dependent upon the 
configuration of the algorithms applied to the data and 
the database used for characterisation. The best use of 
the algorithms required a great deal of manipulation of 
algorithm parameters, thus lending itself not to identi-
fication, but to mapping known pigments. The database 
most likely to provide a high percentage accuracy was 
one that was as close as possible to the pigments studied, 
and contained only relevant spectra. Databases 2, and 3 
were consistently high performers, interestingly their 
data was taken from the most recent manuscripts.

This data highlights some pigment knowledge is 
needed to be certain that HSI is correctly characterising 
data, and that best practice would be to use techniques 
such as Raman to identify pigments, and HSI to map the 
pigments across the surface of the manuscript, or con-
versely for the mapping of areas of interest prior to spot 

Table 6 Showing the  percentage success of  the  databases and  algorithms with  the  default wavelength range used 
separated out into the different manuscripts’ results

The difference in sample sizes is due to databases 2 and 3 not being used on some folios from MS Arm D13, MS Arm e34, and MS Arm g4, this is discussed in the text

Percentage success Default settings

Database 1 2 3 4 5 Sample size

Algorithm SFF SAM BE SFF SAM BE SFF SAM BE SFF SAM BE SFF SAM BE

Total 20 9 13 71 49 37 60 23 22 27 14 18 43 44 44 91 (73 for databases 2 and 3)

MS Arm e34 38 25 13 N/a N/a N/a N/a N/a N/a 38 13 0 38 38 25 8

MS Arm d13 10 7 9 68 45 34 55 13 13 32 20 27 49 47 44 59 (56 for databases 2 and 3)

MS Arm d3 100 20 20 100 60 80 100 60 80 0 0 0 0 80 80 5

MS Arm g4 0 0 0 N/a N/a N/a N/a N/a N/a 0 0 0 43 29 14 7

MS Arm d22 50 0 50 50 50 0 50 50 25 0 0 0 25 25 50 4

MS Arm c3 29 14 43 100 86 57 86 71 57 43 0 0 43 29 71 7
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analysis techniques. Therefore, based on this research, 
HSI should not be used exclusively to give an overview 
of pigments but should be used in conjunction with other 
techniques.

Other studies have used HSI successfully to identify 
pigments but they have always applied another technique 
to aid the identification, and occasionally a larger wave-
length detection range has been used, detecting longer IR 
wavelengths [6, 14]. This study confirms that the visible 
wavelength range is not enough for a characterisation but 
it does offer hope that using hyperspectral data to map 
pigments can be accurate if used in conjunction with 
other techniques, which is our major recommendation. 
One such pigment map is given below in Fig. 6.

From this research HSI appears to not be as accurate 
for pigment analysis as Raman spectroscopy on a point 
by point basis but on the other hand HSI is vastly quicker 
at scanning a large area: we therefore recommend the 
use of the two processes together if a full quantification 
of the surface is required, with Raman for identification 
of pigments, and HSI to map, confirm similarity over a 
large area, or to identify areas for point analysis as has 
been done in the past [39, 40]. For HSI the accuracy of 
pigment identification could be improved by increasing 
the range of wavelengths scanned and by way of a more 
relevant database, again this would require the use of 
additional techniques such as Raman spectroscopy, sug-
gesting that the best results are obtained firstly by making 

sure that the techniques at hand are used for purposes 
suiting their limitations, and secondly that a combination 
of techniques will yield superior results in a more effi-
cient timescale. In general hyperspectral imaging could 
also benefit from greater spatial resolution and increased 
ease of use if it were to be used more frequently in a her-
itage environment.

A possibility for extending the study further would be 
to investigate and compare the accuracy and efficiency 
of other techniques (FTIR for example) and more work 
could be done with the SFF algorithm which gave a 
higher percentage accuracy here than the more popular 
SAM algorithm. This was expected for the reflectance 
data produced. SFF is designed to work best on absorp-
tion features such as those seen. It is perhaps surprising 
that SAM performed so poorly given its popularity but 
this could be explained by a lack of spectral features in 
general and the fact that the default settings in this soft-
ware would be geared towards remote sensing data. 
Binary encoding did better than SAM, and this is perhaps 
because the simplistic algorithm did not require much 
adjustment.

Only one wavelength was used for the excitation 
laser for Raman spectroscopy, 635  nm. Previous stud-
ies [50, 85, 86] have shown that different lasers may 
increase the identifiable range of pigments, with 532 
and 785  nm being other commonly used wavelengths. 
785 nm has proven to be the most effective at pigment 

Fig. 6 Showing the map of vermillion pigment across MS Arm e34, folio 4r using SAM
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identification but requires an increase in the applied 
power [50, 85, 86] (to achieve good S/N ratios) which 
can cause damage to the object of analysis [50]. 532 nm 
has been shown to be better than 635 nm only for the 
identification of blue pigments [50, 85] but in general 
suffers from increased fluorescence [86]. It is therefore 
possible that the use of an excitation laser with a wave-
length of 785 nm would identify more pigments, but it 
may also require the application of more power than we 
are comfortable with for valuable historic documents. 
532 nm would be the logical one to try but could be of 
limited use because it is not as good all round and the 
manuscripts are predominantly red. The study com-
pares HSI to Raman, if more pigments were found 
with Raman then more comparisons could be made, 
this would obviously have an effect on the end result, 
though it is difficult to predict how. In a similar vein a 
study incorporating manuscripts from of a more var-
ied origin would expand the study in terms of pigments 
analysed (Armenian artists used lapis lazuli more pro-
lifically than others for example) but on the whole the 
study results reflect the dynamic between two tech-
niques and is applicable to other investigations, espe-
cially considering similar situations have been shown in 
the literature.

HSI has a great potential to be useful in the analysis of 
pigments. The database used was shown to be the most 
important single factor in increasing the match and a 
larger quantity of spectra but a smaller more focused 
number of pigments i.e. ones relevant to the object of 
study in terms of its chemical composition gives the best 
results. Caution must be used however, and a combina-
tion of analytical techniques is required to properly char-
acterise a pigment and 93% was only possible with prior 
knowledge of the target pigment. Using default settings, 
the percentage accuracy was not sufficient.

When studying such documents HSI is a great advan-
tage, it is a non-destructive technique which is capable 
of efficiently mapping the entire surface of an object. 
When a combination of techniques is used the setup can 
be a very powerful investigative tool and we recommend 
using HSI as a mapping tool prior to other techniques, or 
after them to give a complete picture of the pigment dis-
tribution. On a point by point basis however, point tech-
niques such as RS offer clear advantages.
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