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The phylogenetically ancient, pentraxin family of plasma proteins, comprises C-reactive

protein (CRP) and serum amyloid P component (SAP) in humans and the homologous

proteins in other species. They are composed of five, identical, non-covalently associated

protomers arranged with cyclic pentameric symmetry in a disc-like configuration. Each

protomer has a calcium dependent site that mediates the particular specific ligand

binding responsible for all the rigorously established functional properties of these

proteins. No genetic deficiency of either human CRP or SAP has been reported, nor

even any sequence polymorphism in the proteins themselves. Although their actual

functions in humans are therefore unknown, gene deletion studies in mice demonstrate

that both proteins can contribute to innate immunity. CRP is the classical human acute

phase protein, routinely measured in clinical practice worldwide to monitor disease

activity. Human SAP, which is not an acute phase protein, is a universal constituent of

all human amyloid deposits as a result of its avid specific binding to amyloid fibrils of

all types. SAP thereby contributes to amyloid formation and persistence in vivo. Whole

body radiolabelled SAP scintigraphy safely and non-invasively localizes and quantifies

systemic amyloid deposits, and has transformed understanding of the natural history

of amyloidosis and its response to treatment. Human SAP is also a therapeutic target,

both in amyloidosis and Alzheimer’s disease. Our drug, miridesap, depletes SAP from

the blood and the brain and is currently being tested in the DESPIAD clinical trial in

Alzheimer’s disease. Meanwhile, the obligate therapeutic partnership of miridesap, to

deplete circulating SAP, and dezamizumab, a humanized monoclonal anti-SAP antibody

that targets residual SAP in amyloid deposits, produces unprecedented removal of

amyloid from the tissues and improves organ function. Human CRP binds to dead and

damaged cells in vivo and activates complement and this can exacerbate pre-existing

tissue damage. The adverse effects of CRP are completely abrogated by compounds

that block its binding to autologous ligands and we are developing CRP inhibitor drugs.

The present personal and critical perspective on the pentraxins reports, for the first time,

the key role of serendipity in our work since 1975. (345 words)
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DISCOVERY OF THE PENTRAXINS

When I returned to clinical training at the Royal Postgraduate
Medical School in London in 1973, after my PhD
discovery of the role of complement in induction of antibody
formation (1–5), the Head of Medicine, Professor (later Sir)
Christopher Booth, advised to me to start a more clinical research
project. He suggested that I should “crack Crohn’s disease.” This
led me serendipitously1 to the pentraxins.

In the early 1970s, reduced numbers of circulating T cells
had been reported in many chronic inflammatory diseases of
unknown etiology, including Crohn’s disease. Although this was
actually an artifact caused by differential loss of T cells during
isolation of peripheral blood lymphocytes (6), T cell function
in Crohn’s disease was still of interest in 1975 when Henry
Gewurz reported that C-reactive protein (CRP) bound to antigen
activated T cells and suppressed their functions (7). I assumed
that CRP production would be increased in active Crohn’s disease
and speculated that it could be responsible for suppression
of T cell function. However, to my surprise, in 1975, CRP
measurements had not been reported in either Crohn’s disease
or ulcerative colitis and I set out to do this for the first time.

There were no commercial quantitative immunoassays
for CRP at that time. I therefore isolated some human
CRP and immunized a rabbit to raise my own anti-CRP
antiserum. This “famous” rabbit, known only as R1032, produced
strong precipitating antibodies to CRP, which were excellent
for electroimmunoassay. But it also produced precipitating
antibodies against another, immunochemically distinct, normal
trace plasma protein with fast α-mobility, which was not an acute
phase reactant. None of the available antisera to known human
plasma proteins reacted with this unknown protein; which I
designated “protein X.” I had neither the resources nor the
motivation to attempt amino acid sequencing and, since many
plasma proteins had not been sequenced, it might not have
helped. Indeed, as it transpired, if we had sequenced it then
it would have been the first time for that protein! Meanwhile
I used the antiserum to assay CRP concentrations in clinical
samples using electroimmunoassay (8), and made important
new observations (see section Routine clinical measurement of
CRP), whilst ignoring the immunoprecipitates produced by the
contaminating antibodies to protein X.

My CRP antigen preparation had obviously been
contaminated with protein X and I therefore sought to
improve the isolation procedure. CRP was named for its calcium
dependent binding to pneumococcal C-polysaccharide so
calcium dependent affinity chromatography was an obvious
and attractive possibility (9). CRP from whole serum bound
efficiently, in the presence of calcium, to suitable ligands that
had been covalently immobilized on Sepharose, commercial
beaded agarose, and other serum proteins were then washed
away. The CRP could then be eluted by calcium chelation but,
regardless of the immobilized ligand, protein X was still present.
The obvious control experiment showed that, unlike CRP,

1Serendipity: “making discoveries, by accident and sagacity, of things not sought”

Horace Walpole, 28 Jan 1745.

protein X underwent avid calcium dependent binding to plain
unsubstituted Sepharose, and was eluted by calcium chelation.
This simple one step isolation in pure form of a trace plasma
protein was unique and demanded identification of protein X.
In collaboration with Arnold Feinstein and Ed Munn, who had
first reported negative staining electron microscopy (EM) of
IgM, EM of isolated protein X instantly identified it as amyloid
P component (AP) (10–14) (Figure 1). Unexpectedly, isolated
CRP had a remarkably similar appearance (Figure 1). Both these
homopentameric, calcium dependent, ligand binding, plasma
proteins were composed of globular subunits arranged with
cyclic symmetry in a disc like configuration.

At the same time, two other groups were working on these
two proteins. Robert Painter isolated the C1 component of
complement from whole serum by calcium dependent affinity
chromatography on IgG covalently immobilized on Sepharose
(16). In addition to the known subcomponents, C1q, C1r, and
C1s, he always found a fourth protein that he designated C1t
(17) and which he soon found to resemble AP (18) in the EM.
Meanwhile Alex Osmand and Henry Gewurz observed marked
N-terminal sequence homology between CRP and C1t (AP) and,
together with Painter noted their highly characteristic, similar
EM appearances (19). Osmand coined the name “pentraxin” for
this newly recognized protein family, derived from the Greek
words “penta” (five) and “ragos” (berries), representing the EM
appearance of the molecules2. We confirmed immunochemically
that our protein X was serum amyloid P component (SAP)
(21), and my discovery of its calcium dependent binding to
unsubstituted Sepharose explained its presence in Painter’s C1
preparations, showing that it had nothing to do with C1.

Work on the pentraxins, CRP and SAP, then proceeded
energetically in various directions, albeit with some false starts.
The claims for binding and effects of CRP on lymphocytes, that
had serendipitously introduced me to the field, proved not to
be reproducible. Indeed there have been, and still are, a number
of highly controversial claims about properties, functions and
effects of CRP and SAP. However, the early discovery of classical
pathway complement activation by CRP following its binding to
macromolecular ligands (22, 23) withstood the test of time and
it is unequivocally crucial for the role of CRP in exacerbation of
tissue damage (24).

WHAT ARE PENTRAXINS?

“What’s in a name? That which we call a rose

By any other name would smell as sweet.”

William Shakespeare. Romeo and Juliet (II, ii, 1-2)

The question is both scientific and semantic. The neologism,
pentraxin, was invented by Alex Osmand (19) from the Greek
words meaning five berries, to describe the unique cyclic
pentameric symmetrical appearance of the molecules of human

2Pentraxin is a splendid name but I confess to having misleadingly tried to change

it. In 1983, based on advice by Greek colleague who wrongly thought that the

etymology was from “penta” and “axin,” I suggested, incorrectly, that the name

should be “pentaxin” (20). Alex Osmand corrected me -mea culpa.
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FIGURE 1 | Molecular appearance of the pentraxins. (A) Negatively stained

electron microscopic image of human CRP with the characteristic symmetrical

pentameric ring viewed face on. Inset shows disc-like appearance of single

molecules side on. (B) Negatively stained electron microscopic image of

human SAP with the characteristic symmetrical pentameric ring viewed face

on. Inset shows typical face to face double pentamer forming the decameric

assembly present in calcium free conditions. This was thought to be the

normal assembly of human SAP until the actual physiological native

pentameric structure was demonstrated (15). (C) Cryoelectron microscope

image of our preparations of human CRP (mass 115,135) and of (D) human

SAP (mass 127,310) showing the actual native pentraxin structure with no

staining or artefactual enhancement (courtesy of Dr Richard Henderson).

CRP and SAP. The appearance is shared by the pentraxins from
all the different species that have been visualized, apart from
the hexameric CRP homolog of the horseshoe crab, Limulus
polyphemus (25) and other multimeric invertebrate homologs. In
addition to the numbers of subunits there are other differences
between species. For example, rat CRP differs from the human
CRP in being glycosylated and in having a covalent disulphide
bond between one pair of protomers in each pentamericmolecule

(26). Nevertheless the very high degree of sequence homology,
together with the instantly recognizable pentraxin molecular
appearance, demonstrate that all the different plasma proteins
characterized by calcium dependent binding to the classical
pentraxin ligands are unequivocally members of the same
family. The “long pentraxins” (27) do not have the pentraxin
appearance although they contain a domain with modest
sequence homology to pentraxins. Also calcium binding, which
is required for stability of the secondary, tertiary and quaternary
structures of most actual pentraxins, and is essential for the
specific ligand binding that underlies all robustly reproducible
pentraxin functions, is not a feature of the “long pentraxins.”
An analogous situation exists in relation to the many diverse
non-immunoglobulin proteins which contain immunoglobulin
sequence homology domains but do not share antibody-like
specific epitope binding. They are, accordingly, not called
antibodies but the well-established “long pentraxin” names are
evidently not going to change.

PENTRAXIN STRUCTURE

In 1994, we reported the first pentraxin structure: the 3D
X-ray crystal structure of human SAP alone and of its calcium
dependent complex with the cyclic pyruvate acetal of galactose
(28) (Figure 2). SAP crystallized easily but it followed nearly
17 years of failure to grow reproducible crystals of human
CRP suitable for X-ray crystallography. Eventually I thought of
lowering the calcium concentration to reduce the solubility of
human CRP as it starts to denature. This yielded a batch of poor
and fragile crystals that nonetheless provided a low resolution
structure of partly calcified CRP (30). Then my serendipitous,
inadvertent, “overconcentration” of a batch of isolated human
CRP to more than 20 mg/ml in the presence of physiological
calcium, caused sudden, concentration dependent, reversible
precipitation of the protein that pointed the way to effective
crystallization conditions. Finally, the full physiological structure
of human CRP alone and with bound phosphocholine was solved
(31) (Figure 3).

The tertiary fold of the two human pentraxins is closely
similar, with the main chain forming a flattened β-jellyroll with
closely tethered loops between the antiparallel strands. There is
a short α-helix on one face, the “A” face (29), of each protomer
and calcium tethered loops on the opposite, binding, “B,” face,
forming the shallow ligand binding pocket. Although there is
only about 11% amino acid sequence homology with the human
pentraxins, the proteins with the most similar β-jellyroll tertiary
fold are the legume lectins, pea lectin and concanavalin A (28).
This architecture is apparently an effective support for proteins
that provide calcium dependent binding of carbohydrate and
other non-protein ligands.

The extensively hydrogen bonded antiparallel β-strands
and tightly bound loops make the pentraxins rather
resistant to proteolysis but, in the absence of calcium,
the calcium coordinating loops are disorganized and readily
cleaved (33, 34). Calcium is obviously always present at ∼2mM
in the extracellular environment in vivo but the normally very
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FIGURE 2 | Structure of human SAP. (A) Electron micrograph of negatively

stained human SAP molecules. (B) Ribbon diagram of the 3D X-ray crystal

structure of human SAP face on (“B” face uppermost). (C) Ribbon diagram of

the 3D X-ray crystal structure of human SAP side on. Calcium atoms are

represented as yellow spheres located on the binding, “B” face; the single

small α-helix of each protomer is shown in red, located on the “A” face (29);

β-sheets are in pale blue and loops in dark blue.

stable, albeit non-covalent, native pentameric assembly of
human CRP is notably destabilized in the absence of calcium.
Free protomers are released and the protein readily aggregates.
Use of non-physiological experimental conditions, leading to
artefactual properties of human CRP, has produced misleading
conclusions about properties and effects of the protein. Even
worse, effects caused by sodium azide preservative in CRP
preparations (35) and contamination of recombinant CRP by
bacterial products (36) have been misleadingly attributed to CRP
itself.

Human SAP is also more susceptible to proteolytic cleavage
in the calcium coordinating loops when calcium is absent
(34) but, unlike human CRP, under these non-physiological
conditions human SAP forms stable decameric assemblies of
pairs of pentameric SAP molecules interacting “B” face to “B”
face (37). The interaction is mediated by displacement of the
loop comprising residues 134–151 in each protomer and then
binding of the loop in the inter-subunit groove in the “B” face
of the apposed pentameric ring (37). For a number of years we
believed that this double pentamer was the native state of the
SAP molecule [see for example (28)], in contrast to the single
pentamer of human CRP. However, careful characterization of
the molecular form of native SAP within the milieu of whole
serum showed that human SAP is actually a single pentamer
that is not complexed with any other plasma constituent (15).
These studies are challenging because, as we had discovered very
early on, exposure of isolated pure human SAP to calcium leads
to rapid autoaggregation (38). Aggregated human SAP acquires
novel ligand binding and other properties (39), unfamiliarity
with which produced a number of misleading reports on
possible functions of SAP. We eventually showed that human
SAP autoaggregation is mediated by binding of the exposed
γ-carboxylate of residue Glu167 on one SAP molecule in the
calcium dependent ligand pocket on another (40). This is
prevented by the presence of physiological concentrations of
serum albumin (15), probably, at least in part, by virtue of
calcium binding by the albumin, critically lowering the free
ionisable calcium concentration. In any case, in the presence
of the calcium, that is required for its ligand binding, isolated
human SAP must be stabilized by a sufficient concentration of
serum albumin.

FUNCTIONAL ROLES OF THE
PENTRAXINS in vivo?

Identification of the roles of human CRP and SAP is complicated
by the failure so far to detect any genetic deficiency of either
protein: the ultimately informative “experiment of Nature” has
not been seen. There are also no common structural variants.
Although some extremely rare coding polymorphisms of theCRP
and SAP genes have been noted in genomic studies, the variant
proteins that they might encode have not yet been reported.
This remarkable conservation suggests that both proteins may
have important functions, necessary for survival, presumably
in relation to host defense, since this is a major driver of
natural selection. However, given the ancient phylogeny of the
pentraxins, long antedating acquired immunity, some of these
primitive putative “survival” functions are now likely to be
redundant.

Our early original studies of pentraxins in other species (25,
26, 41–55) showed that the pentraxin family is phylogenetically
ancient with highly conserved sequence homology, secondary,
tertiary and quaternary structure as well as calcium dependent
ligand binding. Nonetheless, there are major differences between
family members in different, even closely related, species. For
example, rat SAP (26) has a similar abundance to human
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FIGURE 3 | Structure of human CRP with bound phosphocholine and bis(phosphocholine)-hexane. (A) Space filling model of “B” face of human CRP with

phosphocholine bound in each of the protomer binding sites. (B) 3D X-ray crystal structure of phosphocholine in the binding pocket of a single CRP protomer within

the native molecule, showing the ligand interactions with calcium and the CRP residues responsible for binding. (C) The structure of bis(phosphocholine)-hexane

(above) and the structure of the complex formed by two CRP molecules cross linked by five bis(phosphocholine)-hexane molecules; face on (left) and side on (right)

[From reference (32) with permission of Macmillan Publishers Ltd].

SAP (56) (mean (SD, range) concentration, women: 21 mg/l
(8. 8-5-5); men: 32 mg/l (7, 12–19, 21–31, 33–52), and neither
is an acute phase protein (57). In contrast, mouse SAP baseline
concentrations are strain dependent with a ∼50-fold range
between C57BL/6 (∼3–5 mg/l) and DBA (>150 mg/l), and it is
a major acute phase reactant rising to >300 mg/l (42). On the
other hand mice have low baseline CRP concentrations, ∼5–9
mg/l, which rise only twofold in the acute phase response (58).
Meanwhile rats have baseline CRP concentrations of ∼300–500

mg/l rising 3- to 4-fold in the acute phase response (26). In
humans, the median baseline CRP concentration is 0.8 mg/l,
with 90% of healthy subjects below 3 mg/l and 99% below
10 mg/l (59). But the concentration can be as low as 50 µg/l
(59) and can rise to >500 mg/l at the peak of the acute
phase response (60). There are many other variations between
species, including behavior as acute phase reactants, precise
ligand specificity and the secondary effects of ligand binding:
precipitation, agglutination and complement activation. In some
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species, the hallmark properties of human CRP and SAP are
variably distributed between the two pentraxins while neither
the dog nor the rabbit even have an SAP gene, although their
respective CRP molecules behave rather similarly to human
CRP. These findings suggest that the various pentraxins may
have different functions in different species and they make
it impossible to extrapolate reliably from experimental animal
studies to possible functional roles of the pentraxins in humans.

THE CHALLENGE OF IDENTIFYING
PHYSIOLOGICAL FUNCTIONS OF THE
PENTRAXINS

There have been wide ranging claims, speculations and many
evidence-free assertions about pentraxin functions. There are
very few robustly definitive observations or experiments. A
major weakness in most studies of putative pentraxin functions
has been lack of information about the provenance, purity
and functional integrity of the CRP and SAP preparations
that have been used. Isolation of structurally and functionally
intact preparations of these trace plasma proteins, and rigorous
demonstration of their quality, are challenging. It is not adequate
to use a commercial product or in house preparation without
comprehensive characterization. For example, among the many
claimed activities is the assertion that the human pentraxins
trigger production and secretion of pro-inflammatory cytokines.
We have never been able to replicate these reports (36).
In order to make definitive observations, we isolated sterile,
endotoxin-free, structurally and functionally intact, clinical Good
Manufacturing Practice (cGMP) grade human CRP and SAP
from pooled normal human plasma of healthy, pathogen free
US donors (61). We showed that neither protein had inherent
pro-inflammatory effects, either on human peripheral blood
mononuclear cells in vitro or when administered parenterally to
mice or healthy human volunteers in vivo (61, 62).

FUNCTIONS OF HUMAN C-REACTIVE
PROTEIN

Human CRP binds avidly to exposed phosphocholine residues on
macromolecules of both autologous and extrinsic origin (22, 63).
It then aggregates particulate ligands and precipitates soluble
ligands and also triggers classical complement pathway activation
(22, 64). Beneficial effects of some of these phenomena may
thus underlie the evolutionary persistence of the protein and the
highly adaptive regulation of its production in response to injury,
infection and inflammation. CRP binds selectively to dead and
damaged cells but not to healthy living cells. Phospholipase action
on plasma membranes of damaged cells disrupts the normal lipid
bilayer, exposing the phosphocholine head groups recognized by
CRP. Co-localization of CRP with fixed complement in areas
of tissue damage suggests a possible role for CRP in removal
of cellular debris from the tissues. However, there is no direct
evidence that this function actually operates.

Injection of human CRP into mice at the time of inoculation
with virulent pneumococci confers efficient protection against

sepsis (65–67). Administration of human CRP after inoculation
of the bacteria does not protect. Indeed, all patients with active
pneumococcal infections have greatly increased plasma CRP
concentrations and abundant circulating human CRP so CRP
evidently does not control established pneumococcal sepsis.

In order to study this question further we created pure-
line Crp gene-deleted C57BL/6 mice using C57BL/6 embryonic
stem cells (58). Normally housed CRP deficient mice had
normal growth, development, fertility and life span. They
did not develop anti-nuclear autoimmunity and responded
normally to endotoxin challenge, two processes in which roles
for CRP had been proposed (68). However, the CRP-deficient
mice were remarkably susceptible to Streptococcus pneumoniae
infection and were protected by reconstitution with isolated
pure human CRP, or by anti-pneumococcal antibodies (58).
Autologousmouse CRP is evidently essential for innate resistance
to pneumococcal infection before antibodies are produced,
probably by clumping the bacteria, limiting their spread and
promoting their phagocytosis and destruction by neutrophils.
Our findings are consistent with the significant association
between clinical pneumococcal infection and non-coding human
CRP gene polymorphisms which reduce CRP expression (69–71).
Deficiency or loss of function variation in CRP may therefore be
lethal at the first early-life encounter with this ubiquitous virulent
pathogen, explaining the invariant presence and structure of CRP
in human adults. Meanwhile, the protective function of mouse
CRP against pneumococcal infection is the only function of any
CRP to be firmly established so far in the same species.

FUNCTIONS OF HUMAN SERUM AMYLOID
P COMPONENT

Continuous treatment for up to several years with the drug,
CPHPC (72) (now called miridesap, see below), that persistently
depletes circulating SAP by over 90% for as long as the drug is
taken, has had no adverse effects (73). Thus, despite its invariant
presence, human SAP probably does not have a necessary
function in adults.

Our discovery of the avid specific binding of human SAP
to DNA (74) and to chromatin (75), where it displaces H1-
type histones, thereby solubilizing native long chromatin under
physiological conditions, strongly suggested a possible function
of human SAP in the in vivo handling of exposed DNA and
chromatin. Indeed, in ex vivo human tissues, both apoptotic
cells, which always bear chromatin fragments on their surface,
and nuclear debris are always coated with SAP (76, 77).
However, our early observation of increased spontaneous anti-
nuclear autoimmunity in SAP knockout mice (78) turned out
to be limited to the autoimmunity susceptible C57BL/6 strain
and not a general effect of SAP deficiency (79). There was
no increased autoimmunity, even after autoantigen challenge,
with SAP knockout in different mouse strain backgrounds
(79). Furthermore, there has been no increased autoantibody
production in patients with SAP depletion produced by
miridesap (73).
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An intriguing possibility is that the avid binding of human
SAP to DNAmay be the mechanism responsible for the failure of
DNA vaccination to be immunogenic in humans. We discovered
that there is complete concordance among species tested so far
(sub-human primates, dog, rabbit, horse, cow, sheep, pig, goat)
between the effectiveness of DNA vaccination and the absence
of SAP binding strongly to DNA (unpublished observations). In
particular, mice respond well to DNA vaccination and mouse
SAP binds DNA very weakly (79). Also transgenic expression
of human SAP in mice blocks immune responses to DNA
vaccination (80) and this inhibition is completely abrogated by
administration of my SAP-depleting drug, CPHPC (miridesap)
(72, 81). We therefore lately conducted a preliminary clinical
trial, HIV-CORE 003, of SAP depletion by CPHPC (miridesap)
in healthy volunteers receiving a DNA vaccine against HIV
(82). The results were largely negative although, compared to
placebo treated controls, the SAP depleted subjects mounted
significantly broader immune responses (82). Further studies of
this important question are needed.

SAP is inherently resistant to proteolysis (34) and is also
a potent anti-opsonin (83). Its binding therefore “protects” its
macromolecular ligands from degradation, whether these are
the amyloid fibrils in local or systemic amyloid deposits, or
pathogenic bacteria. Indeed those bacterial pathogens to which
SAP binds (84), use the bound SAP to shield themselves from the
host’s phagocytic defenses (83). Thus, for example, SAP knockout
mice are more resistant than wild type mice to lethal infection
with Strep. pyogenes and rough Gram negative bacteria (83).
In contrast, SAP deficient mice are more susceptible than wild
type controls to lethal infection with smooth Gram negative
bacteria, to which SAP does not bind (83). Mouse SAP therefore
contributes to innate immunity to some bacterial infections and,
although the mechanism is unknown, this is so far the only
definite in vivo function identified for an autologous SAP.

A host defense role for SAP is potentially consistent with the
fact that human SAP binds avidly to Shiga toxin 2 and neutralizes
it in vitro (85, 86), which led to our demonstration that human
SAP protects against cytotoxicity of E. coli Shiga toxin 2 for
podocytes in vitro (87) and against lethality in mice in vivo (88).
However, we did not find any association between human SAP
concentrations and haemolytic uraemic syndrome or antibody
titres against toxigenic E. coli lipopolysaccharide (88). Although
SAP binds many lipopolysaccharides, there is no reproducible
evidence that either SAP (83) or CRP (68) protect against their
in vivo toxicity in mice.

Interestingly, binding of human SAP to the lipopolysaccharide
of rough Gram negative bacteria blocks classical complement
pathway activation by the endotoxin (89). We had previously
discovered (39) that pairs of aggregated SAP molecules, but not
single soluble SAP molecules, calcium dependently bind C4-
binding protein, a negative regulator protein of the classical
cascade. On the other hand, supraphysiological concentrations of
human SAP, which undergo calcium dependent autoaggregation,
do activate complement. However, the abundant coating of
amyloid fibrils with SAP clearly does not activate complement
and the in vitro observation is therefore probably not relevant
in vivo.

How the anti-opsonin and “ligand protective” properties of
SAP contribute to beneficial functions of the protein remains
a matter for speculation. However, in addition to being a
circulating plasma protein, human SAP is also a normal
constituent of the extracellular matrix; and aggregated human
SAP has a highly specific binding interaction with fibronectin
(39), another universal matrix glycoprotein. Human SAP is
an integral component of the glomerular basement membrane
(90) and of the microfibrillar mantle present on elastic fibers
throughout the body (91). It is therefore conceivable that the
SAP helps to protect the integrity of the structures with which
it is associated. Experimental investigation of this concept is
challenging. Mouse SAP is not detected in the extracellular
matrix of normal mouse tissues and SAP evidently does not
have a specific obligatory function since neither dogs nor rabbits
have an SAP gene, while horses, which do have an SAP gene,
do not express a protein with the same calcium dependent
ligand binding specificity as SAP of other species (unpublished
observations). Our SAP deficient, gene deleted mice have no
phenotype when unchallenged (92), supporting the view that,
despite the evolutionary conservation of SAP, its functions may
well be redundant in normal health.

SAP AND AMYLOIDOSIS

My discovery of calcium dependent ligand binding by SAP to
agarose (9, 21) enabled our demonstration that the analogous
binding of SAP to amyloid fibrils is responsible for the universal
presence of SAP in all amyloid deposits of all types in humans
(93). We formally demonstrated that the circulating SAP is the
precursor of amyloid P component (AP) in amyloid deposits
(94). This led directly to my use of radiolabelled SAP as an
amyloid specific tracer in vivo (95, 96) and the invention of
SAP scintigraphy and metabolic studies (97–99). The ability
to image amyloid throughout the whole body in patients with
systemic amyloidosis and thus, safely and non-invasively, localize
and quantify amyloid deposits, has made major contributions to
understanding the natural history of amyloidosis and its response
to therapy (100) (Figure 4). Once the scan became available,
the Immunological Medicine Unit at the Royal Postgraduate
Medical School soon became the de facto national referral
center for amyloidosis patients in the UK. In 1999, when I
moved with my team to the Royal Free Campus of University
College Hospital, the UK Department of Health funded us as
the NHS National Amyloidosis Centre to provide diagnostic and
management advice for the whole national caseload (www.ucl.
ac.uk/amyloidosis/ and www.amyloidosis.org.uk). The Centre
now sees over 4,000 amyloidosis patients per year, follows the
world’s largest and most diverse cohort of such patients and has
conducted about 40,000 SAP scintigraphy studies since 1988 with
no adverse effects.

The observation of calcium dependent ligand binding by
SAP (9, 21) also led toward potential new treatments. My
serendipitous finding in 1983 that widely differing amounts
of SAP bound to different batches of Sepharose led to the
discovery that SAP binding correlated precisely with the
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FIGURE 4 | Whole-body scintigraphy with 123 I-labeled serum amyloid P

component in systemic amyloidosis. (A) (a) Left: Anterior view of a typical

patient with AL amyloidosis showing massive liver and spleen amyloid and the

pathognomonic deposits throughout the bone marrow that are not seen in any

other type of amyloidosis. Right: Posterior view of a typical patient with AA

amyloidosis showing amyloid in the spleen, kidneys, and adrenal. The left

adrenal is obscured by the overlying spleen, but the right is clearly visible

above the kidney. (b) Posterior scans taken a year apart in a patient with

longstanding rheumatoid arthritis who suddenly developed AA amyloidosis.

The earlier scan (left) is normal; the later one (right) shows heavy splenic and

significant renal amyloidosis. (B) (a) Anterior (left) and posterior (right) views of

a patient with AL amyloid who presented with minor proteinuria and no other

clinical or investigational evidence of disease. There is substantial renal

(Continued)

FIGURE 4 | amyloid but no scintigraphically detectable de- posits elsewhere.

(b) Anterior (left) and posterior (right) views of a different patient with AL

amyloid who also presented with minor proteinuria and no other clinical or

investigational evidence of disease. There is massive amyloid deposition in the

liver and spleen. The kidneys are not visualized, probably because the tracer,

which distributes according to the amount of amyloid, is all taken up

elsewhere. Note that, in contrast to (a), there is no residual tracer in the

circulation, indicating a heavy whole-body amyloid load. This patient did not

tolerate intensive chemotherapy and developed liver failure. (C) (a) Anterior

(left) and posterior (right) views of a patient with AL amyloid who presented

with multiple fractures over 4 years. X-ray and bone scan were normal but

bone biopsy unexpectedly revealed amyloid. No monoclonal gammopathy

was identifiable at that time, but bone amyloid is frequent in AL and may be

the main clinical feature. (b) Serial anterior views showing regression of AA

amyloidosis in a juvenile rheumatoid arthritis patient treated with chlorambucil,

in whom the SAA concentration was suppressed to <10 mg/l. (c) Serial

anterior views showing regression of AL amyloidosis in a patient treated with

high-dose melphalan and stem cell rescue. [From Pepys (100) with permission

of Annual Reviews].

pyruvate content of the agarose. Pyruvate is a variable trace
component present as the cyclic acetal of β-D-galactopyranose
in agarobiose (101). We synthesized the monosaccharide, methyl
4,6-O- (1-carboxyethylidene)-β-D-galactopyranoside (MOβDG)
and showed that it completely blocked and reversed the binding
of SAP to all its known ligands, crucially including pure
protein ligands and amyloid fibrils with no carbohydrate present
(101). These seminal results enabled localisation of the calcium
dependent ligand binding site in SAP when we solved its 3D
X-ray crystal structure (28), and also led to a new therapeutic
approach. Although we did not then know the role, if any, of
SAP in pathogenesis of amyloidosis, the finding that MOβDG
could remove all the SAP bound in amyloid deposits suggested
an approach to disrupting the deposits and promoting their
clearance (102).

We subsequently showed that AP in amyloid is identical to
its SAP precursor in the plasma and remains completely intact
despite very prolonged residence in the tissue deposits (103). The
plasma half-life of SAP in normal healthy subjects is∼24 h whilst
the half-life of SAP in visceral amyloid deposits is∼30 days (99).
Furthermore, binding of SAP to amyloid fibrils in vitromutually
protects the fibrils and the SAP from degradation by proteases
and phagocytic cells (104). SAP, although itself rather resistant to
proteolysis, is not a protease inhibitor. It protects the fibrils only
when it is actually bound to them (104).

Amyloid fibrils are readily digested by proteases and ingested
and degraded by phagocytic cells in vitro. In contrast, in vivo,
systemic amyloid deposits are almost entirely ignored by the
normally highly efficient cellular and molecular mechanisms for
clearance of extracellular debris from the tissues. The reasons for
this are unknown but, in view of our discovery that bound SAP
protects amyloid fibrils from degradation in vitro, I proposed
that it might do the same thing in vivo. I hypothesized that the
universal, ubiquitous coating of SAP on amyloid fibrils in vivo
protects them from clearance and removal (104). I claimed
that stripping of bound SAP, and prevention of SAP binding,
would enable amyloid deposits to be recognized as abnormal
and therefore phagocytosed and degraded, leading to amyloid
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removal (105). We then went on to create the first SAP knockout
mice and to show that, although it was possible to induce
systemic AA amyloidosis in them, it took longer than in wild
type mice and the deposits were smaller (92). SAP was thus
validated as a therapeutic target. Meanwhile SAP was also shown
to promote amyloid fibril formation from soluble precursors
in vitro3, apparently by binding to and stabilizing protofibrillar
aggregates (109–111).

I invented a high throughput screen for inhibitors of SAP
binding to amyloid fibrils (105) and in the late 1990s, I persuaded
Roche to use it to explore their compound library. With the help
of some fortuitous serendipity, this swiftly led to the creation
of a drug candidate, (R)-1-[6-[(R)-2-carboxy-pyrrolidin-1-yl]-6-
oxo-hexanoyl]pyrrolidine-2-carboxylic acid, which I abbreviated
as CPHPC, a palindromic acronym for a palindromic molecule4

(72). Binding of SAP to amyloid fibrils and all its other known
ligands is inhibited by CPHPC because SAP binds to the drug
in a complex composed of two pentameric SAP molecules
cross linked face to face by five of these bivalent hexanoyl
bis(D-proline) molecules (72) (Figure 5). Each D-proline head
group is located in the calcium dependent ligand binding pocket
of a protomer. AlthoughN-acetyl D-proline is only weakly bound
by SAP, with Kd ∼15µM, the cross linking of pairs of SAP
molecules by five CPHPC molecules forms a very stable complex
with Kd ∼10 nM due to the avidity gain of multivalency. In the
SAP-CPHPC complex, all the calcium dependent ligand binding
sites are occupied and the ligand binding “B” face of the disc-like
SAP molecules is also occluded (72, 112) (Figure 5).

Work toward clinical testing in humans proceeded rapidly
but, shortly before the first in human study, Roche stopped
their development and handed the project over to us. Our first
administration of CPHPC to humans immediately revealed that
the drug produced very rapid and almost complete depletion of
SAP from the circulation that persisted for as long as the drug was
given (72, 73) (Figure 6). We showed that this resulted from the
instant clearance of the SAP-CPHPC complex by the liver (72),

3In the artefactual, non-physiological, absence of calcium, SAP inhibits the

formation of Aβ amyloid fibrils in vitro (106). Indeed, we subsequently found that

human SAP has classical chaperone properties in protein refolding assays (37, 107).

The activity is calcium independent, does not involve ligand binding by the SAP

and is apparently mediated by the “A” face of the molecule (37) but it is not clear

whether and how it might operate in vivo.
4The high throughput screen of 100,000 compounds identified a small number of

hits, themost attractive of which was one of the four disastereoisomers of captopril.

Captopril itself and a third isomer were inactive but the fourth was more active

than the original hit. When the actual material being tested was analyzed, it was

found that the active substance was no longer the compound itself, with a free

sulphydryl group, but a disulphide bonded covalent dimer. We had then lately

reported the 3D X-ray crystal structure of the complex of SAP with dAMP, in

which pairs of SAP molecules were cross linked face to face by hydrogen bonding

between each dAMP molecules held in the calcium dependent ligand binding

pockets of each SAP protomer (108). It was therefore obvious that similar cross

linking of SAP molecules by a palindromic covalent structure would be a more

potent inhibitor of SAP binding to other ligands than just single univalent ligands

potentially occupying individual protomer binding sites. The disulphide dimer

of the original hit was then synthesized and, as we had predicted, it was the

most potent inhibitor. Further medicinal chemistry to replace the sulfur atoms

with the hexanoyl chain yielded (R)-1-[6-[(R)-2-carboxy-pyrrolidin-1-yl]-6-oxo-

hexanoyl]pyrrolidine-2-carboxylic acid (CPHPC).

FIGURE 5 | Structure of CPHPC (miridesap) and its complex with human SAP.

The palindromic bivalent structure of (R)-1-[6-[(R)-2-carboxy-pyrrolidin-1-yl]

-6-oxo-hexanoyl]pyrrolidine-2-carboxylic acid (CPHPC), now known by its

WHO INN, miridesap, is shown above. Below is the 3D X-ray crystal structure

of the SAP-drug complex which is also the structure of the complex in solution

(112). [From Pepys et al. (72) with permission of Macmillan Publishers Ltd].

where the SAP was promptly destroyed whilst the CPHPC, which
is not metabolized at all, is released and swiftly excreted, mainly
in the urine and to a smaller extent in the bile. The invention
of CPHPC and the novel, and so far unique, pharmacological
mechanism, by which a small molecule drug produces a targeted
knockout of a pathogenic plasma protein, was recognized by the
American Chemical Society as one of the medicinal chemistry
highlights of 2002. CPHPC itself and prolonged SAP depletion
were both well tolerated with no adverse effects other than
mild transient stinging at sites of subcutaneous injection of the
drug (73). However, the treatment did not promote regression
of amyloid deposits from the tissues of patients with systemic
amyloidosis. Depletion of circulating SAP removed much but
never all SAP from its binding to amyloid, despite months of
CPHPC treatment (73). This reflects a combination of factors that
cannot be overcome: the avidity of binding of SAP to amyloid
fibrils, the continuous production of new SAP by the liver, and the
rapid excretion of CPHPC. In addition, crucially, the avid binding
of SAP to CPHPC requires simultaneous binding of multiple
D-proline head groups by pairs of SAP molecules. Complete
elution of SAP from amyloid deposits therefore requires the
presence of ∼1mM CPHPC, an extremely high concentration
that is not attainable in vivo despite the excellent tolerability of
the drug. Something more was required to clear amyloid.

Phagocytosis and degradation by macrophages is the most
important mechanism for removal of autologous debris and
extrinsic materials from the extracellular space of the tissues. It is
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FIGURE 6 | Depletion of circulating SAP by CPHPC (miridesap) in patients with systemic amyloidosis. (A) Serum concentration of SAP immediately before and 6

weeks after starting daily treatment with CPHPC. (B) Sustained depletion of SAP throughout CPHPC treatment. Each line shows the results of serial measurements in

an individual patient. Note different scale for SAP concentration compared to (A). From Gillmore et al. (73) with permission of Blackwell Publishing Ltd). In patients

without systemic amyloidosis and the associated massive extracellular load of SAP (98), CPHPC (miridesap) treatment reduces plasma SAP concentration to much

lower values, for example, mean (SD) 0.25 (0.16) mg/l, in our 5 patients with Alzheimer’s disease (112).

potently engaged by antibody mediated complement activation.
In 2005, I realized that the residual SAP left in amyloid
deposits, after depletion of the circulating SAP by CPHPC,
could be used as a target for anti-SAP antibodies that would
trigger amyloid removal (113). We tested the idea in human
SAP transgenic mice in which we had induced systemic AA
amyloidosis (114). Circulating human SAP was depleted with
CPHPC and the mice then received a single dose of either
sheep polyclonal anti-human SAP antibody or of normal control
sheep IgG. There were no discernible adverse effects. Within 2
weeks almost no amyloid was detectable in the anti-SAP treated
animals, compared to the unchanged massive amyloid load in
the controls (114). Both classical complement pathway activation
and macrophages were necessary and amyloid clearance was
effected bymultinucleated, macrophage derived, giant cells which
surrounded, engulfed and destroyed the amyloid within days
of antibody administration (114) (Figure 7). Depletion of SAP
from the plasma and extracellular fluid is obviously essential,
before administration of the anti-SAP antibody, so the proposed
treatment is an obligate therapeutic partnership, not just a
combination of two different drugs. Suitable avid, complement
activating mouse monoclonal anti-human SAP antibodies were
as effective as the xenogeneic polyclonal antibody (113), enabling
potential clinical implementation with humanized antibody. In
2009, the invention was licensed to GlaxoSmithKline (GSK) for
clinical drug development.

GSK fully humanized our optimal mouse monoclonal
antibody and the first in human phase 1 study in patients
with different types of systemic amyloidosis, starting in 2013,
demonstrated unprecedented removal of visceral amyloid, with
progressive removal after serial antibody doses (115, 116)
(Figure 8). The antibody caused moderate infusion reactions
and higher antibody doses produced skin rashes but there was

no disturbance of organ function, even in heavily amyloidotic
organs. Indeed abnormal liver function tests returned toward
normal in all patients as their amyloid load was reduced
(115, 116). All amyloid reducing doses of anti-SAP antibody
produced transient early acute phase responses and dramatic
depletion of plasma complement C3 concentration, consistent
with activation of the same mechanism as we characterized
in mice (115, 116). In 2017, the two drugs received their
WHO International Non-proprietary Names (INN), miridesap
for CPHPC and dezamizumab for the humanized monoclonal
anti-SAP antibody, and the encouraging phase 1 results led to the
current GSK phase 2 trial in patients with cardiac amyloidosis.

SAP, ALZHEIMER’S DISEASE AND
CEREBRAL AMYLOID ANGIOPATHY

Miridesap was intended from the outset to target SAP associated
with the Aβ amyloid deposits in the brain and cerebral
vasculature in Alzheimer’s disease, as well as for systemic
amyloidosis. Human SAP is synthesized only by the liver.
As we had predicted, our initial, preliminary, clinical study
in Alzheimer’s disease confirmed that depletion of circulating
SAP also completely removed SAP from the cerebrospinal fluid
(112). Our subsequent study in a triple transgenic, human
SAP expressing, mouse model of human Alzheimer’s disease,
confirmed that miridesap does indeed achieve the desired
“molecular dissection” of Alzheimer’s disease neuropathology by
removing all SAP from cerebral amyloid deposits (117). This
contrasts with the failure of miridesap to removal all SAP from
the enormously more abundant visceral amyloid deposits in
systemic amyloidosis (73), and, encouragingly, should enable
the original SAP removal hypothesis to be tested with respect
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FIGURE 7 | Amyloid clearance mediated by macrophage derived multinucleated giant cells after depletion of circulating SAP followed by treatment with anti-SAP

antibody. Thin sections of liver stained with toluidine blue from AA amyloidotic human SAP transgenic mice treated with CPHPC (miridesap) to deplete circulating SAP

followed by anti-SAP antibody to target residual SAP in the amyloid deposits. Control mouse, not treated with anti-SAP antibody, show abundant amorphous

pink-stained amyloid deposits, with the characteristic absence of any surrounding inflammatory reaction or cellular infiltrate. One day after anti-SAP antibody treatment

there is intense, predominantly mononuclear cell infiltration in and around the amyloid. Five days after anti-SAP-antibody treatment there is fusion of macrophages to

form multinucleated giant cells surrounding and infiltrating the deposits and containing large masses of ingested amyloid undergoing degradation. At 16 days there is

complete elimination of amyloid deposits with no residual cellular infiltrate and restoration of normal tissue architecture. [From Bodin et al. (114) with permission of

Macmillan Publishers Ltd].

to cerebral amyloid. This is one of the goals for our current
“Depletion of serum amyloid P component in Alzheimer’s
disease” (DESPIAD) phase 2b clinical trial of miridesap. We also
hope to study SAP depletion in cerebral amyloid angiopathy
(118), the most prevalent form of clinical amyloidosis.

However, there is another rationale for SAP depletion in these
brain diseases. Human SAP is directly cytotoxic for cerebral
neurones, in vitro and in vivo, causing death by apoptosis (119–
123). The SAP enters the cells, tracks to the nucleus, presumably
via the nuclear localisation sequence present in pentraxins (124),
enters the nucleus and then binds to chromatin, as we first
demonstrated (75, 125). We have lately confirmed and extended
(unpublished observations) an original preliminary report (126)
that individuals with dementia have a higher brain content
of SAP than individuals without dementia, regardless of the
presence of Alzheimer’s disease neuropathology. The results are
consistent with a possible direct pathogenetic role of SAP in
dementia, unrelated to the role of SAP in amyloid. Detection of
potential benefit from abrogation of direct SAP neurotoxicity is
the other major goal of the DESPIAD trial.

ROUTINE CLINICAL MEASUREMENT OF
CRP

My initial measurements of serum CRP concentration in
1975 swiftly showed that CRP was an excellent marker
of Crohn’s disease, closely reflecting extent and activity
much better that any other single measurement (127).
Our subsequent work confirmed and extended the
results (128–130). I also made the striking discovery that
the CRP response in ulcerative colitis, which, in 1975,
also had not previously been reported, was completely
different from Crohn’s disease. Despite even severe,
extensive, active ulcerative colitis, the circulating CRP
concentration was generally modestly increased if at all
(127, 128, 130). The unexpected, surprising, original
observation of a marked difference in the CRP response to
two rather similar disease processes, both with extensive
inflammatory activity and tissue damage, initiated my
lifelong interest in the clinical significance and utility of CRP
assays.
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FIGURE 8 | Whole body scintigraphy with 123 I-labeled serum amyloid P

component in a patient with systemic amyloidosis before and after depletion of

circulating SAP followed by treatment with anti-SAP antibody. (A) Scan

immediately before treatment. (B) Scan 42 days after single dose of

dezamizumab (fully humanized monoclonal anti-human SAP antibody) infused

following depletion of circulating SAP with miridesap. The heavy load of

amyloid in the liver has been dramatically reduced. [From Richards et al. (115)

with permission of Massachusetts Medical Society].

Initially we studied the behavior of CRP as an acute phase
reactant in a very broad range of different conditions, in well
characterized series of patient, thereby establishing the optimal
use of CRP in routine clinical practice (Tables 1, 2). Commercial
instrument based, rapid quantitative CRP immunoassays
emerged in the early 1980s and modern high throughput
automatic clinical chemistry analysers followed. In 1983, the
World Health Organization invited me to create the First
International Reference Standard for Immunoassay of C-reactive
protein 84/506 (131). It remains the primary standard for all
commercial clinical measurement of CRP. I also provided all the
CRP for the major international secondary standards, the IFCC
CRM470 and the ERM DA470 and ERM DA472. By virtue of
my uniquely broad clinical experience with CRP measurement,

TABLE 1 | Human CRP responses in different diseases.

Major CRP acute-phase response

Infections Bacterial

Systemic/Severe fungal,

mycobacterial, viral

Allergic complications of infection Rheumatic fever

Erythema nodosum

Inflammatory disease Rheumatoid arthritis

Juvenile chronic arthritis

Ankylosing spondylitis

Psoriatic arthritis

Systemic vasculitides

Polymyalgia rheumatica

Crohn’s disease

Familial Mediterranean fever

Cryopyrin-associated periodic

syndromes

Necrosis Myocardial infarction

Stroke

Tumor embolisation

Acute pancreatitis

Trauma Surgery

Burns

Fractures

Malignancy Lymphoma

Carcinoma

Sarcoma

Modest or absent CRP acute-phase response

Systemic lupus erythematosus

Scleroderma

Dermatomyositis

Ulcerative colitis

leukemia

Graft-vs.-host disease

and the expertise I had acquired in very large scale isolation
and purification of human CRP to provide standards and
calibrators, I played a substantial role in development of routine
clinical CRP testing worldwide, working closely with major
diagnostics companies. As recently noted by the EU SCIENCE
HUB, the European Commission’s science and knowledge
service, “C-reactive protein (CRP) is one of the most important
analytes in clinical chemistry.” I have comprehensively reviewed
elsewhere the scientific and clinical basis for routine use of CRP
measurements (60, 132) (Tables 1, 2).

CRP AS A THERAPEUTIC TARGET

Our original 1994 report identified for the first time the
association between acute phase responses and adverse prognosis
in acute coronary syndromes (133). Our 1997 epidemiological
work on CRP in patients with angina (134), and studies
by others in general populations, identified an association
between increased baseline values of CRP and future incidence
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TABLE 2 | Routine clinical uses of CRP measurement.

Screening test for organic disease

Assessment of disease activity in inflammatory conditions

Juvenile chronic (rheumatoid) arthritis

Rheumatoid arthritis

Ankylosing spondylitis

Psoriatic arthropathy

Systemic vasculitides

Polymyalgia rheumatica

Crohn’s disease

Rheumatic fever

Familial Mediterranean fever

Cryopyrin-associated periodic syndromes

Acute pancreatitis

Diagnosis and management of infection

Most systemic/severe bacterial, mycobacterial, viral and fungal infections

Response to antimicrobial treatment

Bacterial endocarditis

Neonatal septicaemia and meningitis

Intercurrent infection in systemic lupus erythematosus

Intercurrent infection in leukemia and its treatment

Postoperative complications including infection and thromboembolism

Differential diagnosis/classification of inflammatory disease

Systemic lupus erythematosus vs. rheumatoid arthritis

Crohn’s disease vs. ulcerative colitis

of cardiovascular disease. The association initially seemed
potentially consistent with a pathogenic role for CRP in
atherosclerosis and stimulated very widespread clinical interest
in CRP, particularly as it was so easy to measure. An avalanche
of epidemiological and experimental observations followed,
purporting to show that CRP is a pro-atherogenic risk factor for
cardiovascular disease. We were initially enthusiastic but it was
soon clear that the early observational epidemiology cohorts had
grossly overestimated the significance of the association. They
included large total numbers of subjects but only small numbers
of cardiovascular disease events, and their interpretation was
then flawed by remorseless conflation of the overestimated
association with causality. Poorly controlled experimental work
purporting to show atherogenic activities of CRP was also badly
flawed by use of uncharacterized and often contaminated CRP
preparations. It soon became clear there was no evidence for
causality of CRP in cardiovascular disease, as detailed in our
extensive critical reviews (35, 135, 136). Appropriately large
scale observational epidemiology firmly established that baseline
CRP values are actually only a very modest risk marker for
cardiovascular disease (137, 138) and Mendelian randomization
studies proved that CRP itself is definitely not a causative
risk factor (139). In addition to many unequivocally negative
experimental in vitro and in vivo studies (35, 135, 136), we finally
showed that direct infusion of pharmaceutical grade authentic
cGMP human CRP had no pro-inflammatory effects in healthy
volunteers (62) in contrast to the pro-inflammatory effect of
recombinant CRP made in E. coli!

In contrast to the now discredited idea that CRP is pro-
atherogenic, the evidence for a role of CRP in exacerbation of pre-
existing ischemic and other tissue injury is robust. Complement
has long been known to be responsible for the inflammatory
neutrophil infiltrate that characterizes experimental acute
myocardial infarction (140) and it had been speculated that CRP,
via its capacity to activate complement after binding to its ligands
in vivo, might exacerbate tissue damage (141–145). In 1999 we
were the first to actually demonstrate this in vivo, using the
rat acute myocardial infarction model (24). Although rat CRP
circulates at very high concentration in normal healthy animals,
rat CRP does not activate rat complement whereas human CRP
activates both human and rat complement (26). Rat thus provide
an excellent model for investigation of the effects of human
CRP in humans. Administration of isolated pure human CRP
to rats following ligation of the coronary artery substantially
increased the size of the resulting myocardial infarct and human
CRP was co-deposited with rat complement on and around the
infarcted tissue (24). Crucially, the exacerbation of injury by
human CRP was completely abrogated by prior depletion of C3
using cobra venom factor (24). The CRP effect was thus totally
complement dependent. We subsequently showed that human
CRP also increased cerebral infarct size in the rat middle cerebral
artery occlusion model (146).

Having identified and validated human CRP as a therapeutic
target, we designed novel bis(phosphocholine)-alkanes as
inhibitors of ligand binding by human CRP in vivo. These
ligands for CRP were based on our knowledge of the 3D X-ray
crystal structure of the CRP-phosphocholine complex (31) and
our experience with miridesap, hexanoyl-bis(D-proline), the
SAP inhibitor drug (72). We showed that bis(phosphocholine)-
hexane (32) and bis(phosphocholine)-octane (unpublished)
completely abrogated the enhancement of tissue damage caused
by human CRP in the rat acute myocardial infarction model.
Binding of human CRP to these compounds inhibits CRP
binding to other ligands, though it does not accelerate clearance
of CRP from the circulation as miridesap does with human SAP.

Exacerbation by CRP of ischemic and inflammatory tissue
injury in various different animal models has been independently
confirmed by other groups. Abrogation of the pathogenic
CRP effect has also been replicated with our compound,
bis(phosphocholine)-hexane, and by suppression of CRP
production with antisense oligonucleotides, and by using CRP
apheresis to remove circulating CRP (147–154).

The cross linking of pairs of CRP molecules by five
bis(phosphocholine)-alkane molecules markedly stabilizes the
non-covalent homopentameric assembly of native human CRP,
preventing denaturation and the release of protomers. However,
in the absence of calcium or of calcium dependent ligand
binding, denatured CRP can dissociate in vitro to release free
protomers, so-called monomeric or “mCRP,” that bear specific
neoepitopes. Based on ex vivo immunohistochemical detection
of these epitopes, it has been asserted that mCRP products
of CRP denaturation mediate the pro-inflammatory effects of
CRP in vivo (155). Inhibition by bis(phosphocholine)-hexane of
CRP-mediated inflammation has then been attributed exclusively
to stabilization of native CRP (155), curiously ignoring
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our unequivocal demonstration of the absolute complement
dependence of the pro-inflammatory actions of human CRP
in vivo (24). Fortunately this oversight and mechanistic
disagreement have no practical importance as the avid binding of
our palindromic CRP inhibitor ligands, designed to prevent CRP-
mediated complement activation in vivo, inevitably also robustly
stabilizes the native pentameric CRP structure.

The bis(phosphocholine)-alkanes are well tolerated and
would have been suitable for development as infusional drugs
but it was not possible to synthesize and purify them at
scale. We have therefore designed new, different and more
potent inhibitors of CRP binding and are currently working
toward candidate selection for clinical development. Clinical
observations are consistent with the experimental evidence
that high circulating CRP concentrations exacerbate pre-
existing tissue damage. For example, higher CRP values
during and after acute myocardial infarction are strongly
associated with poor prognosis overall, including more extensive
myocardial injury, impaired cardiac function and progression
to heart failure (156). The same is true in a wide range
of other tissue damaging ischaemic, inflammatory, infective,
traumatic and malignant conditions. There are thus likely to
be many indications for therapeutic use of CRP inhibitor
drugs.

CONCLUSIONS

The range of physiological and pathophysiological roles of
the pentraxins remains incompletely understood. Their gene
and amino acid sequences, and very characteristic molecular
assembly, are highly conserved in phylogeny and there are no
human genetic deficiencies or even isoforms, and yet there are
major differences in behavior and properties between even closely
related species. The pentraxins thus display a fascinating, and so
far unexplained, mixture of conservation and plasticity in a single
protein family. However, regardless of their normal roles, both
human CRP and SAP have become extremely useful in clinical
diagnosis and monitoring of disease. CRP assay is one of the
most widely used clinical chemistry tests and SAP scintigraphy
has transformed understanding and optimal management of
systemic amyloidosis. Importantly, human CRP and SAP are

also therapeutic targets for which the design and development of
potential new medicines are making exciting progress.
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