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Distributed Fault Detection for Interconnected Large-Scale Systems:
a Scalable Plug & Play Approach

Francesca Boem, Ruggero Carli, Marcello Farina, Giancarlo Ferrari-Trecate, Thomas Parisini

Abstract—In this paper, we propose a novel distributed fault
detection method to monitor the state of a – possibly large-
scale – linear system, partitioned into interconnected subsystems.
The approach hinges on the definition of a partition-based
distributed Luenberger-like estimator, based on the local model
of the subsystems and that takes into account the dynamic
coupling between the subsystems. The proposed methodology
computes – in a distributed way – a bound on the variance
of a properly defined residual signal. This bound depends on
the uncertainty affecting the state estimates computed by the
neighboring subsystems and it allows the computation of local
fault detection thresholds, as well as the maximum false-alarms
rate. The implementation of the proposed estimation and fault
detection method is scalable, allowing Plug & Play operations
and the possibility to disconnect the faulty subsystem after fault
detection. Theoretical conditions on the convergence properties of
the estimates and of the estimation error bounds are provided.
Simulation results on a power network benchmark show the
effectiveness of the proposed method.

I. INTRODUCTION

In recent years, a growing interest concerned research activ-
ities dealing with the design of systems which are reliable and
robust with respect to uncertainties, changing environment and
communication failures. Methodological developments have
been promoted by the new technological paradigm of the Inter-
net of Things [8], [12], which hinges on the massive intercon-
nection of communication networks, sensors, and actuators.
Requirements of the Internet of Things in terms of system
size and flexibility call for distributed control, monitoring, and
fault diagnosis approaches that are well adapted to networked
and Large-Scale Systems (LSSs) [24]. In this connection,
estimating the state in a distributed way is certainly a key
issue to be addressed.

The problem dealt with in the paper consists in estimating
the state of a LSS, characterized by interconnected subsystems,
and taking decisions about the health status of the system,
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using a network of local state estimation and fault detection
units equipped with sensing, communication and computation
capabilities. Differently from many contributions in the lit-
erature, where the full state of the system is estimated by all
subsystems, (e.g., techniques based on consensus and diffusion
strategies [13], [26], [27], [28], [29], [39]), in this paper each
local unit only estimates a part of the global state vector. In
more specific terms, a partition-based distributed estimation
technique is designed in which each local estimation and
detection unit exchanges information with the neighboring
units thus allowing to estimate the state of the associated local
subsystem only.

Recently, several different partition-based approaches have
been proposed: for example, [30], [11], [40], [23], [6] propose
Kalman-filter-based estimation schemes for discrete-time sys-
tems affected by stochastic noise, while [7], [19] assume that
the system is affected by bounded noise, and the unperturbed
case is considered in [20], [21].

Linear discrete-time large-scale interconnected systems af-
fected by stochastic noises are considered in this paper. The
partition-based distributed estimation method introduced in
[6] in order to compute an estimate of the local state is
significantly extended to address the distributed fault detection
problem by proposing a different definition of the correction
gains. Then, a consistent upper bound is locally computed for
the covariance matrix of the estimation error (see [22] for
the formal definition of consistency of covariance estimates)
and this bound is used to derive a suitable fault detection
threshold for a local residual signal, aiming at guaranteeing
a low false-alarm rate. A notable feature of the proposed
method is that an upper bound on the false-alarm rate can
be set depending on design parameters. A novel distributed
fault detection procedure is thus obtained.

In the past few years, several distributed model-based fault
detection schemes have been proposed, addressing rather
different problems. For instance, the reader is referred to
[38], [33], [25], [31], [32], [14], [34], [35], [36], [37], [15],
[2], where coupled or dynamically independent agents are in
charge of detecting faults locally and collectively by means
of a set of local detection units, and using either absolute or
relative measurements. In [38] faults are explicitly modeled as
additive inputs to the state equation with unknown amplitude
and a distributed, iterative, and fully connected implementation
of a moving horizon estimator is used for fault detection and
isolation. On the other hand, most of the mentioned methods
consider deterministic bounds for noises and uncertainties in
order to suitably determine detection thresholds. Instead, with
the aim of achieving a less conservative detection performance,
a stochastic characterization of the noises and the definition
of time-varying bounds is considered (see also the preliminary
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works [3], [41]). Moreover, instead of using a sensor network
to monitor a system characterized by stochastic uncertainties,
where each sensor takes noisy measurements of the entire
state [41], in this paper only a part of the state is considered
by each local estimation and detection unit thus significantly
broadening the applicability of the proposed approach.

When dealing with LSSs, the scalability and Plug & Play
(PnP) properties have a key role [24]. In this respect, an
important feature of the proposed methodology is the pos-
sibility of unplugging a faulty subsystems in order to avoid or
reduce the propagation of faults in the interconnected system,
and the possible plug-in of the disconnected subsystem (once
the issue has been solved), without the need of a global re-
design of the estimators but only resorting to local operations.
Compared with [3], in this paper the knowledge of the mean
and the variance of the coupling uncertainty is not assumed to
be known and the computation of a bound for the influence
on the uncertainty of the neighboring estimates is presented.
Furthermore, the assumption used in [3] that the state is fully
measurable is here removed.

To sum up, the main contributions of the paper1 are:

• The design of a distributed estimation and fault detection
scheme able to address the dynamic coupling between
subsystems.

• A recursive equation for computing – in a distributed way
– an upper bound on the true covariance matrix of the
estimation error, thus allowing the design of a distributed
fault detection threshold from which a maximum proba-
bility of false alarms can be evaluated at each time step.
We also guarantee that this time-varying upper bound
converges to a stationary value, under suitable conditions
that can be checked in a scalable fashion.

• The PnP feature enabled by the limited amount of in-
formation exchanged between neighboring subsystems.
More specifically, when a new subsystems issues a plug-
in request, (i) the possibility of adding it without spoiling
convergence of the estimation scheme is automatically
checked and (ii) only subsystems that are at most two-
hops-away from the new unit need to update local esti-
mators and fault detectors.

The paper is structured as follows. In Section I, we introduce
the distributed estimation and fault detection method. In Sec-
tion III we propose a bound for the estimation error covariance
matrix and we provide some convergence conditions. The scal-
ability features are analyzed in Section IV. Finally, extensive
simulation results showing the effectiveness of the distributed
fault detection methodology are presented in Section V using
a multi-area power network use-case.

Notation. Given a stochastic variable x, we represent as
E[x] its expected value. The symbols ≥ and > are used to
denote positive semi-definite matrices and positive definite
matrices, respectively. The spectral radius of a square matrix A
is σ(A). Finally, a square matrix is Schur stable if σ(A) < 1.

1Preliminary results have been presented in the very recent paper [1].
Compared with [1], a more comprehensive theoretical analysis is provided
and extensive numerical results are given. For example, the conservativeness
of the bound on the error covariance matrix is analyzed.

II. DISTRIBUTED FAULT DETECTION: PROBLEM
FORMULATION AND PROPOSED SOLUTION

A. Problem setup

The monitored large-scale discrete-time system is composed
of (or can be decomposed in) M interconnected subsystems.
Each subsystem Σi, with i = 1, . . . ,M , is described by the
following equations:

Σi :

 xi(k + 1) = Aiixi(k) +
∑
j 6=i

Aijxj(k) + wi(k),

yi(k) = Cixi(k) + vi(k),

(1)

where xi(k), wi(k) ∈ Rni and yi(k), vi(k) ∈ Rpi . We assume
that wi(k) and vi(k) are zero-mean white noises, for all i =
1, . . . ,M , and E{wi(k)w>j (k)} = Qiδij (with Qi ≥ 0 for
all i = 1, . . . ,M ), E{vi(k)vj(k)} = Riδij (with Ri > 0
for all i = 1, . . . ,M ), and that E{wi(k)v>j (h)} = 0 for all
i, j = 1, . . . ,M and h, k ≥ 0. Moreover, we assume that the
initial condition xi(0) is generated according to a Gaussian
distribution with mean x̄i and covariance Σi.

For each i ∈ {1, . . . ,M}, we define the set of neighbors of
subsystem i as Ñi = {j |Aij 6= 0, j 6= i} while S̃i is the set
of successors of subsystem i defined as S̃i =

{
j | i ∈ Ñj

}
.

For later use, we also define the sets Ni = Ñi ∪ {i} and
Si = S̃i ∪ {i}.

Each subsystem is monitored by a local fault diagnoser.
We assume that each diagnoser knows the local dynamic
model and can communicate with neighboring subsystems
some information that will be defined later on. The goal of
each diagnoser is to compute in a distributed and scalable
fashion a local residual which is then compared with a properly
designed local threshold in order to take decisions about the
healthy status of the subsystem. Specifically, by distributed
we mean that each diagnoser needs only local and neighbors’
information, requiring communication only with neighboring
subsystems. Furthermore, also the design needs only local
computations, allowing a scalable evolution of the LSS over
time, where some subsystems may be plugged-in and others
may be unplugged, without requiring the reconfiguration of
the entire LSS, but only of the neighboring subsystems.

To compute the local residual each diagnoser implements a
local estimator which is described in next Subsection, while
the design of the local threshold is discussed in Subsection
II-C.

B. Computing the local residuals

We assume each diagnoser locally implements a Luenberger
observer to estimate the local state vector: x̂i(k + 1) =

∑
j∈Ni

{Aij x̂j(k) + Lij [yj(k)− ŷj(k)]}

ŷi(k) = Cix̂i(k)

(2)

Observe that, in the linear model (1), inputs have been
discarded. This is not a limitation because the observer (2)
is also linear and the effect of inputs in (1) and (2) cancels
out in the dynamics of residuals (defined next) used for fault
detection.
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We also highlight that the estimator algorithm (2) is dis-
tributed, as each local estimator only needs variables from
neighboring subsystems in order to update the state estimate.
Each local diagnoser computes the local residual vector

ri(k) := yi(k)− ŷi(k)

and uses it to monitor the corresponding subsystem. In our
setup, we assume that x̂i(0) = x̄i and, hence, the expecta-
tion of the residuals is equal to zero at each iteration, i.e.,
E[ri(k)] = 0, at each time k.
C. Designing the local thresholds

Given α > 1 and taking advantage of the Chebyshev
inequalities, for each l-th component ri,l of the residual ri
we can write

Pr(E[ri,l]− α
√
Var[ri,l] ≤ ri,l ≤ E[ri,l] + α

√
Var[ri,l])

≥ 1− 1

α2
.

Using Chebyshev inequalities could lead to conservative
results in terms of time to achieve fault detection and/or missed
detection. Less conservative properties can be exploited by
requiring further assumptions on the noises distribution. For
example, in the Gaussian case the following property could be
used:

Pr(E[ri,l]− α
√
Var[ri,l] ≤ ri,l ≤ E[ri,l] + α

√
Var[ri,l])

= F (α)− F (−α), (3)

where

F (n) =

∫ n

−∞

1√
2πVar[ri,l]

exp
−(ri,l−E[ri,l])

2

2Var[ri,l] dri,l

is the cumulative distribution function of the Gaussian stochas-
tic variable ri,l at a certain time step k.

We define the time-varying component-wise threshold

r̄i,l(k) = α
√
Var[ri,l(k)]. (4)

Therefore, since E[ri(k)] = 0, at each time k and for each
component l, in healthy conditions it follows that

|ri,l(k)| ≤ r̄i,l(k),

with probability greater than 1− 1
α2 in the general case with

no further assumptions on the noises distribution.
It is now of interest to compute the upper bound r̄i(k),

which will be used as a local fault detection threshold for
the residual ri(k) in order to monitor the i-th subsystem. The
objective is to design a fault detection threshold that can be
computed in a distributed and scalable fashion. As it will be
clearer in the following, this is possible at the price of using a
suitable upper bound for the variance of the estimation error.

We start our analysis by observing that the local residual
can be written as

ri(k) = Ciei(k) + vi(k),

where ei(k) = xi(k) − x̂i(k) is the local estimation error,

whose dynamics is given by

ei(k + 1) =
∑
j∈Ni

{(Aij − LijCj)ej(k)− Lijvj(k)}+ wi(k).

(5)
Now, we introduce the following extended vectors

e := col(ei, i = 1, . . . ,M),

v := col(vi, i = 1, . . . ,M),

w := col(wi, i = 1, . . . ,M).

Moreover, we define the extended matrices A and L, as block-
matrices having the (i, j)-th element equal to Aij and Lij ,
respectively:

A := [Aij , i = 1, . . . ,M, j = 1, . . . ,M ] .

Finally, C is a block-matrix collecting on the main diagonal
the matrices Ci:

C := diag(Ci, i = 1, . . . ,M).

Therefore, the dynamics of the extended estimation error can
be described as

e(k + 1) = (A− LC)e(k)− Lv(k) + w(k). (6)

The covariance matrix of the extended estimation error

Π(k + 1) := E[e(k + 1)e>(k + 1)]

obeys the recursive equation:

Π(k + 1) = (A− LC)Π(k)(A− LC)> + LRL> +Q, (7)

with Π(0) = Σi. Note that, since the residual for the diagnoser
is ri(k) = Ciei(k) + vi(k), its covariance matrix (in healthy
mode of behavior) is given by

E[ri(k)ri(k)>] = CiΠi(k)C>i +Ri, (8)

where Πi(k) ∈ Rni×ni is the i-th diagonal block of matrix
Π(k). However, equation (7) does not allow for a recursive
distributed update, because Πi(k + 1) does not depend in
general only on the local and neighbors‘ dynamics, but may
be influenced by all the subsystems in the LSS. To overcome
this issue, we introduce the time-varying matrices Bi(k),
i = 1, . . . ,M , defined using the following distributed recursive
update scheme

Bi(k + 1) =
∑
j∈Ni

[
(Ãij − LijC̃j)Bj(k)(Ãij − LijC̃j)>

+LijR̃jL
>
ij

]
+Qi , (9)

where, for all i, j = 1, . . . ,M , Ãij =
√
ςjAij , C̃i =

√
ςiCi,

and R̃i = ςiRi, and ςi = card(Si) is the cardinality of the set
Si.

In next Section, we show that, provided a proper initializa-
tion is adopted, Bi(k) is an upper bound to the local estimation
error covariance Πi(k) for any time k. This bound can be used



4

for the computation of the local thresholds as follows:

r̄i,l(k) = α
√[

CiBi(k)C>i +Ri
]
ll
, (10)

where we denote as [M ]ij the (i, j)-th element of matrix M .
Moreover, as a by-product, we will see in Section IV that
the computation of the local bound for the estimation error
variance leads to a scalable design procedure for the estimation
gains Lij allowing for PnP operations.
D. The fault detection algorithm

In Algorithm 1, the proposed distributed fault detection
method is summarized.

Algorithm 1 Fault detection for subsystem Σi
Set α
Design Lij , j ∈ Ni (Algorithm 2)
Acquire Cj , Rj , j ∈ Ñi
Initialize the estimate x̂i(0)
Compute output estimate ŷi(0) = Cix̂i(0)
Initialize Bi(0)
Measurements yj(0) and estimates x̂j(0), ŷj(0), j ∈ Ñi are
acquired
Bound matrices Bj(0), j ∈ Ñi are acquired
Set k = 1
while A fault is not detected do

Compute the estimates x̂i(k) and ŷi(k) (Eq. (2))
Update the bound Bi(k) (Eq. (9))
Measurements yi(k) are acquired
Compute ri(k) = yi(k)− ŷi(k)
Compute the threshold r̄i(k) (Eq. (10))
Compare ri(k) with r̄i(k)
if ri,l(k) > r̄i,l(k) for at least one l then

Fault detection
end if
if Ñi(k) 6= Ñi(k − 1) then

Update Aij , Lij , j ∈ Ni(k) if needed (see Section
IV-A)
Acquire new Cj , Rj , j ∈ Ñi(k) if new plug-in

end if
Measurements yj(k) and estimates x̂j(k), ŷj(k), j ∈ Ñi
are acquired
Bound matrices Bj(k), j ∈ Ni are acquired
k = k + 1

end while

III. UPPER BOUND TO THE ERROR COVARIANCE MATRIX
AND CONVERGENCE PROPERTIES

We start by showing that Bi(k) can be used as an upper
bound to Πi(k), for all i = 1, . . . ,M and for all k ≥ 1. As a
consequence, the proposed Bi(k) is suitable for the definition
of a bound for the local fault residual ri. We have the following
result (the proof is reported in the Appendix).

Theorem 1: If we set Bi(0) ≥ Σi, then, for all i =
1, . . . ,M , it holds that Bi(k) ≥ Πi(k), for all k ≥ 0. �

Furthermore, in order to define appropriate fault detection
thresholds, we need to analyze the stability properties of the
estimation error and of the proposed covariance bound. Next,
we give a centralized condition guaranteeing that, at the same
time, the error dynamics (6) is asymptotically stable and Bi(k)
is bounded for all k.

Some definitions are now in place. We define, for all i, j,
F̃ij = (Ãij − LijC̃j) and the matrix F̃ as the matrix whose
blocks are F̃ij . Also, we define the following further matrix.

F = F̃ � F̃ =

 F̃11 ⊗ F̃11 . . . F̃1M ⊗ F̃1M

...
. . .

...
F̃M1 ⊗ F̃M1 . . . F̃MM ⊗ F̃MM

 (11)

where � denotes the Khatri-Rao product, while ⊗ denotes the
Kronecker product [9].

Now we are in a position to state the second main result
(see the Appendix for the proof).

Theorem 2: If matrix F is Schur stable, then
(i) There exists, for all i = 1, . . . ,M , a matrix B̄i ≥ 0, inde-
pendent of the initial conditions of (9), such that Bi(k)→ B̄i
as k → +∞;
(ii) A− LC is Schur stable. �

IV. SCALABLE DESIGN OF LOCAL ESTIMATORS

The results illustrated in the previous section show that the
key condition guaranteeing the effectiveness of the proposed
estimation/fault detection scheme is the Schur stability of the
matrix F. This condition can be checked in a scalable way via
the next result, which follows from Proposition 2 in [19].

Proposition 1: For matrices Lii such that F̃ii is Schur
stable, if the following conditions are fulfilled

βi =
∑
j∈Ñi

∞∑
k=0

||F̃ kiiF̃ij ||2∞ < 1, ∀i = 1, . . . ,M (12)

then F is Schur stable. �
The proof can be found in the Appendix.
The scalar βi in (12) depends only on local information.

More specifically, it requires some knowledge about the sub-
system Σi (matrices Ãii, C̃i and Aij , j ∈ Ni), the i-th
estimator (matrices Lii and Lij , j ∈ Ni), and about neighbors
j ∈ Ni (matrices C̃j and parameters ςj , where the latter
are needed for computing matrices Ãij). In particular, no
information about Σj j 6= Ni is required. Therefore, βi can
be computed locally by subsystem i, after having exchanged
information with its neighbors. Similarly, the following design
problem can be solved locally and independently of Σj ,
j 6∈ Ni:

Problem 1: Compute matrices Lij , j ∈ Ni such that F̃ii is
Schur stable and (12) holds.

As proposed in [19] for PnP state estimation, instead of
computing Lii and Lij , j ∈ Ñi simultaneously, one can follow
the more conservative (but simplified) procedure described
in Algorithm 2. This can be easily implemented using the
PnPMPC toolbox for Matlab (see [18]).
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Algorithm 2 Design of a local estimator for subsystem Σi
(Problem 1)

Input: C̃i, Ni, {Ãij}j∈Ni

(i) ∀j ∈ Ñi, compute the matrix Lij solving the optimiza-
tion problem

min
Lij

||F̃ij ||∞. (13)

(ii) Compute Lii such that F̃ii is Schur stable and βi < 1.
If it does not exist stop.

This approach is justified by the fact that βi can be bounded
from above as

βi =
∑
j∈Ñi

∞∑
k=0

||F̃ kiiF̃ij ||2∞ ≤
∞∑
k=0

||F̃ii||
2k

∞

∑
j∈Ñi

||F̃ij ||2∞.

(14)
Therefore, matrices Lij in step (i) of Algorithm 2 minimize
the upper bound. It should be noted that (13) can be cast into
a linear programming problem, as shown in [4]. According to
step (ii) of Algorithm 2, the computation of Lii can be carried
out by solving a nonlinear optimization problem. We refer the
reader to [16] for a discussion about some numerical aspects.

A. PnP operations

After the addition or the removal of a subsystem, the update
of the local state estimators and dynamics (9) might be needed
for some subsystems. Next, we detail these changes, showing
that they may impact at most on subsystems that are two-hops
away from the entering/leaving unit.

In both cases, the starting point is a network of subsystems
equipped with observers produced by Algorithm 2. We denote
with TPnP the plug-in/unplugging time and use “+” for
quantities that must be used after the plug-in/unplugging event
(if it takes place).
For each subsystem i, we define

ρ+
i =

ς+i
ςi
,

where ς+i = card(S+
i ). We start noting that once a matrix

Lij has been computed using (13), it never changes. Indeed,
Lij minimizes ||Ãij − LijC̃j ||∞ and, since Ã+

ij =
√
ρ+
j Ãij

and C̃+
j =

√
ρ+
j C̃j , it also minimizes ||Ã+

ij − LijC̃
+
j ||∞,

irrespectively of ρ+
i .

1) Plug-in: Let us assume that subsystem ΣM+1 needs to
be plugged-in and be connected with neighbors ÑM+1 and
successors S̃M+1 (Figure 1 provides an example with M+1 =
8, Ñ8 = {3} and S̃8 = {1, 2}).

First, each subsystem j ∈ NM+1 sends ς+j to its successors.
In order to preserve properties (i) and (ii) of Theorem 2,
one must design new estimators through Algorithm 2 for
subsystem M + 1 and for
• all subsystems in S̃M+1, as they will be affected by new

coupling terms (see the dashed blue edges in Figure 1);

8
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Fig. 1. Plug-in of Σ8 at time TPnP in a network composed by 7 subsystems.
Solid edges: coupling graph of the original network induced by sets Ni and
Si, i = 1, ..., 7. Dashed blue edges: new coupling links given by Ñ8 = {3}
and S̃8 = {1, 2}. Dashed blue nodes: subsystems that must successfully run
Algorithm 2 (in order to allow the plug-in of Σ8) and use new estimators
from time TPnP . Red nodes: subsystems that must update the dynamics (9)
from time TPnP .

• all subsystems j ∈ NM+1 because, without changing the
gain Ljj , one would have

F̃+
jj =

√
ρ+
j F̃jj (15)

and, since ρ+
j > 1, neither Schur stability of F̃+

jj nor
α+
j < 1 is guaranteed.

If a single instance of the optimization problem in step (ii)
of Algorithm 2 is infeasible, the plug-in of ΣM+1 is denied.
Otherwise it is allowed and new estimators are activated at
time TPnP . Subsystems that must update dynamics (9) and
use it from time TPnP , are, besides ΣM+1:

• subsystems in S̃M+1, as they must include new coupling
terms;

• subsystems j ∈ ÑM+1 as ρ+
j > 1 and (9) must use the

matrix F̃+
jj in (15);

• subsystems in UM+1 = ∪j∈ÑM+1
S̃j . Indeed, for each

j ∈ ÑM+1, the quantity ρ+
j > 1 has been sent to

all subsystems ` ∈ S̃j and matrices Ã`j , C̃j and R̃j ,
used in (9) by subsystems ` ∈ S̃j , must be updated by
multiplying them by

√
ρ+
j .

Summarizing the above points, all subsystems in the set

NM+1 ∪ S̃M+1 ∪ UM+1

must update dynamics (9) (see the red nodes in Figure 1).
We highlight that no other subsystem in the network need to
change the corresponding local estimators or dynamics (9).
This motivates the scalability of the plug-in operation.

2) Unplugging: We discuss now the unplugging of a sub-
system Σu at time TPnP . First, each subsystem j ∈ Ñu, hav-
ing fewer successors after Σu unplugging, sends the updated
ς+j to its successors. Then,

• subsystems i ∈ S̃u can update the local estimator (2) by
using the new set Ñ+

i and without changing gains Lii
and Lij . Indeed, Ñ+

i will have one element less. As a
consequence, the sum in (12) is lower. Moreover, in (12),
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matrices F̃+
ij = Ã+

ij − LijC̃
+
j verify

F̃+
ij =

√
ρ+
j F̃ij (16)

with
√
ρ+
j ≤ 1. The above conditions guarantee that

β+
i < 1. Finally, by using the matrix Lii previously

designed, matrix F̃+
ii depends on F̃ii according to (15)

with ρ+
i ≤ 1. This shows that Schur stability of F̃+

ii is
guaranteed.

• the number of successors for subsystems j ∈ Ñu is
decreased. Therefore, as shown in the previous point,
without changing gains Ljj and L`j , ` ∈ S+

j , the matrices
F̃+
jj are Schur stable and α+

` < 1.
It follows that the unplugging of Σu can be always performed
without spoiling properties (i) and (ii) of Theorem 2, and,
similarly to the plug-in operation, subsystems in Ñu∪S̃u∪Uu
will have to update dynamics (9) from time TPnP .

V. SIMULATION RESULTS

Fig. 2. Power network system of Scenario 2 in [17].

In this section, we provide some simulation results illustrat-
ing the effectiveness of the proposed distributed fault detection
technique.

As a quite significant case-study, we consider the model
of a power network system including a number of power
generation areas coupled through tie-lines. In this section we
consider scenario 2 in [17], where M = 5 and the neighboring
relationships between areas are as the ones illustrated in
Figure 2. In this example, neighboring relations are induced by
electric lines and they are symmetric since electric power flows
in both directions. The dynamics of each power generation
area, equipped with primary control and linearized around
the equilibrium value for all variables, is described by the
following continuous time LTI model [17]:

ẋi(t) = Aciixi(t) +Bci ui + Lci∆PLi
+
∑
j∈Ñi

Acijxj , (17)

where xi = (∆θi,∆ωi,∆Pmi
,∆Pvi) is the state2, ui =

∆Prefi is the control input of each area (the deviation of the

2∆θi is the deviation of the angular displacement of the rotor with respect
to the stationary reference axis on the stator, ∆ωi is the speed deviation
of rotating mass from nominal value, ∆Pmi represents the deviation of the
mechanical power from nominal value, and ∆Pvi the deviation of the steam
valve position from nominal value.

reference set power from nominal value), and ∆PLi is the
local power load. Note that the letter ∆ is used to denote the
deviation from the equilibrium. The matrices of system (17)
are

A
c
ii =


0 1 0 0

−
∑

j∈Ñi
Pij

2Hi
− Di

2Hi

1
2Hi

0

0 0 − 1
Tti

1
Tti

0 − 1
RiTgi

0 − 1
Tgi

 ,

B
c
i =


0
0
0
1

Tgi

 , Ac
ij =


0 0 0 0

Pij
2Hi

0 0 0

0 0 0 0
0 0 0 0

 , Lc
i =


0

− 1
2Hi
0
0



where the parameters and their numerical values are defined in
[17]. They include the definition of the coupling coefficients
Pi, defining the power transferred from area j to area i
through Pij(∆θj −∆θi), where ∆θj and ∆θi are the angular
displacements of the rotors in area j and i.

We consider the local power load profiles reported in Table
I.

The AGC control layer design is out of the scope of this
paper, so for the sake of simplicity, we set ∆Prefi = ∆PLi .

We discretize the process (17) with a sampling interval T =
1 sec leading to the discrete-time model (1) where the matrices
Aii, Aij can be easily constructed from (17). The matrix Ci
is

Ci =

[
1 0 0 0
0 1 0 0

]
For i ∈ {1, . . . ,M}, E

[
wiw

>
i

]
= Qi = 10−6 I4 and

E
[
viv
>
i

]
= Ri = 10−6I2 where Ik is the identity matrix

of order k, representing an approximate Signal to Noise Ratio
of 10dB for the output variables.

The state vector is initialized to 0. The gains Lij of the
Luenberger observer proposed in (2), have been computed
using Algorithm 2. At the beginning of the simulation only
4 subsystems Σ1 −Σ4 are connected to the network. At time
instant k = 30, a fifth subsystem is plugged-in, connected
to Σ2 and Σ4. The feasibility of the plug-in is checked by
means of Algorithm 2 in the neighboring subsystems Σ2 and
Σ4 and gains and bound dynamics are updated in the involved
subsystems.

At time instant k = 45, the following fault occurs in area
4: the speed governor time constant Tg4 is reduced from 0.1s
to 1s, which corresponds to a slower frequency regulation,
both in the primary and secondary control layers. After fault
detection, subsystem Σ4 is disconnected from the network.

At time instant k = 100, the following fault occurs in area
5: the inertia constant H5 is reduced from 10 to 2, which
means, from an electrical point of view, that there is a fault in
a local generator and hence the faulty area must be isolated
for safety reasons, not to propagate faults in the PNS. In
order to define the threshold, we set α = 2.57, which means
that we guarantee that the false-alarms rate is lower than 1%,
based on Eq. (3). Again, after fault detection, subsystem Σ5

is disconnected from the network.
In Figure 3 we can see residuals and thresholds signals for

each measured variable for each area of the PNS. We can
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Area 1 1 2 2 3 3 4 4 5 5 5
Time 5 20 15 20 20 30 42 50 50 100 105
∆PLi 0.1 -0.22 -0.16 0.12 -0.1 0.1 0.08 -0.22 -0.1 0.2 -0.15

TABLE I
LOAD PROFILE

see that the local diagnosers are able to detect the fault in
Area 4 first, and in Area 5 after, and that the false-alarms
are rare events. The fault alarm decision is taken after the
residual crosses the corresponding threshold for at least two
consecutive time instants and therefore the unplugging of the
faulty subsystem is performed. We can see from the figure
that, as described in Section IV-A, the bounds and therefore the
detection thresholds are updated in the neighboring subsystems
after plug-in or unplugging operations.

A. Detection delay and false alarms

In this subsection we analyze the detection delay, that is
the number of steps required by the proposed algorithm to
detected a fault, and the False-Alarms Rate. We consider the
same power network system scenario as before, without PnP
operations, and with M = 5 connected subsystems. A fault
occurs at time kf = 82s in area 4: the speed governor time
constant Tg4 is increased from 0.1s to 2s. We perform 500
experiments characterized by the same noise variance features
as before. Figure 4 shows the distribution of the detection
delays for the 500 experiments. From the Figure we can see
that in most of the cases, detection happens within kf +1 and
kf + 3. Due to the specific considered application example,
in few cases (last column on the right), the system reaches a
steady state where the considered faults can hardly be detected.
We define the False-Alarms Rate (FAR) indicator as follows:

FAR =
number of false alarms

500×M× p× Tmax
× 100% .

where p = 2 is the number of residual signals for each
diagnoser and Tmax = 81 is the duration of the simulation
before the occurrence of the fault. From simulations, we
obtain an empirical FAR = 0.37%, which is lower than the
theoretical guaranteed maximum false-alarms probability of
1%, computed from Eq.(3) using α = 2.57.

B. Analysis on the conservativeness of the proposed bound

We now analyze the conservativeness of the proposed local
estimation error covariance matrix Bi defined in (9) on an
application example. We consider the same power network
system scenario as before, without the occurrence of faults,
and with 5 connected subsystems. We compare the proposed
bound with the covariance matrix estimate Pi proposed in
[6], and the centralized Kalman Filter error covariance matrix
Π defined in (7). In Figure 5 the values of the trace of the
considered estimation error covariance matrices are illustrated
over time until convergence. It is possible to see that the

proposed bound is conservative with respect to the centralized
estimation error covariance3. With respect to the covariance
matrix Pi proposed in [6], the proposed bound is comparable
in terms of trace. With respect to Pi, in this paper we have
furthermore shown that Bi represents a bound for the real
estimation error covariance at any time step and we have
proved its convergence properties.

VI. CONCLUDING REMARKS

In this paper, we propose a novel distributed fault detection
method for interconnected linear systems, allowing the compu-
tation of suitable local thresholds guaranteeing that the false-
alarms rate is lower than a settable bound. This is achieved
by a partition-based distributed estimation method that takes
into account the dynamic coupling terms between subsystems.
Moreover, a bound on the variance of the estimation error that
is computed in a distributed way. Notably, the proposed esti-
mation and fault detection method enjoys scalability features,
allowing to remove subsystems and add new ones, provided
that suitable plug-in conditions are fulfilled.

As a future work, we are going to analyze the problem of the
decomposition of the LSS into subsystems, in order to reduce
the conservativeness of the proposed fault detection method
and improve the detectability performance. Furthermore, we
will investigate the fault isolation problem.

APPENDIX

The following technical lemma is fundamental for the proofs
of the main results of the paper.

Lemma 1: Define matrix M as the matrix whose blocks are
Mij ∈ Rni×nj and its sparsity structure is defined as follows:
Mij = 0 if j 6∈ Ni. Also, consider the block-diagonal matrix
∆ =diag(∆1, . . . ,∆M ) where, for all i = 1, . . . ,M , ∆i ≥ 0
is symmetric. Then, if we define ∆+ =diag(∆+

1 , . . . ,∆
+
M )

where, for all i = 1, . . . ,M

∆+
i =

∑
j∈Ni

M̃ij∆jM̃
>
ij , (18)

and M̃ij =
√
ςjMij , then ∆+ ≥M∆M>.

Proof of Lemma 1

Define a vector v = [v>1 , . . . , v
>
M ]>, where vi ∈ Rni for all

3It is worth noting that the centralized estimation error covariance, which
cannot be computed in a distributed way, is not adequate to compute the fault
detection threshold of the designed residual, because it may not represent a
bound for the distributed estimation error covariance.
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Fig. 3. For each subsystem and each output variable, residual signals (in blue) and thresholds (in red).

i = 1, . . . ,M . We have

v>M∆M>v =

=
[∑M

i=1 v
>
i Mi1 . . .

∑M
i=1 v

>
i MiM

]
∆


∑M

i=1 M
>
i1vi

...∑M
i=1 M

>
iMvi


=

∑M
j=1

(∑M
i=1 w

>
ij

∑M
i=1 wij

)
(19)

where wij =
√

∆jM
>
ij vi. Note that wij = 0 if Mij = 0.

Moreover, for any fixed j, the number of nonzero vectors
wij , i = 1, . . . ,M , is at most equal to ςj . We also have∑M
i=1 w

>
ij

∑M
i=1 wij =

∑
r,s∈Sj w

>
rjwsj . Note that, since

‖wsj − wrj‖2 ≥ 0, w>rjwsj ≤ 1
2 (w>rjwrj + w>sjwsj). There-

fore
∑
r,s∈Sj w

>
rjwsj ≤ 1

2

∑
r,s∈Sj (‖wrj‖2 + ‖wsj‖2) =

ςj
∑
i∈Sj ‖wij‖

2 =
∑
i∈Sj ‖vi‖

2
ςjMij∆jM>ij

.

From this, it follows that∑M
j=1

(∑M
i=1 w

>
ij

∑M
i=1 wij

)
≤
∑M
j=1

∑M
i=1 ‖vi‖2ςjMij∆jM

>
ij

=
∑M
i=1 ‖vi‖2

∑M
j=1 ςjMij∆jM

>
ij

= v>diag(
∑M
j=1 ςjM1j∆jM

>
1j , . . .

. . . ,
∑M
j=1 ςjMMj∆jM

>
Mj)v

from which (18) readily follows. �

Proof of Theorem 1
The proof uses an induction argument. Assume that, for a
given k ≥ 0, BD(k)=diag(B1(k), . . . , BM (k)) ≥ Π(k). Note
that, in view of the definition of Lij and of the fact that C is
block-diagonal, both A−LC and L exhibit the same sparsity
structure of A.
Also (A−LC)Π(k)(A−LC)> ≤ (A−LC)BD(k)(A−LC)>.
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Fig. 4. Distribution of the detection delay for 500 experiments.

Fig. 5. For each subsystem i = 1, . . . , 5, trace of the estimation error covariance matrices Bi defined in (9), Pi (see [6]), and Π defined in (7).

Since BD(k) is block-diagonal we obtain, from Lemma 1, that

(A− LC)BD(k)(A− LC)> ≤ diag(BF1 (k), . . . , BFM (k)),

where BFi (k) =
∑
j∈Ni

(Ãij−LijC̃ij)Bj(k)(Ãij−LijC̃ij)>.

Since also R is block-diagonal we obtain, from Lemma 1, that
LRL> ≤diag(RL1 , . . . , R

L
M ), where RLi =

∑
j∈Ni

LijR̃jL
>
ij .

Overall, recalling (7), we obtain that Π(k + 1) = (A −
LC)Π(k)(A − LC)> + LRL> + Q ≤diag(BF1 (k) +
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RL1 , . . . , B
F
M (k) + RLM ) + Q, from which we obtain that

BD(k + 1) ≥ Π(k + 1). Since BD(0) ≥ Π(0), by in-
duction we obtain that BD(k) ≥ Π(k) for all k > 0.
Finally, the fact that Bi(k) ≥ Πi(k) for all i = 1, . . . ,M
follows from the fact that Bi(k) = HiBD(k)H>i and that
Πi(k) = HiΠ(k)H>i , for a suitable matrix Hi. Therefore
Bi(k)−Πi(k) = Hi(BD(k)−Π(k))H>i ≥ 0. �

Proof of Theorem 2
Proof of (i).

If we define Q̃i = Qi +
∑
j∈Ni

LijR̃jL
>
ij we can write (9)

as
Bi(k + 1) =

∑
j∈Ni

F̃ijBj(k)F̃>ij + Q̃i. (20)

Let Bvi (k) = vec(Bi(k)) and Q̃vi = vec(Q̃i), where vec(X)
denotes the vectorization of the matrix X obtained stacking
the columns of X into a single column vector. By recalling
the property that, given the matrices Y,X,Z, vec(Y XZ) =
(Y ⊗ Z>)vec(X) (see [10]), it follows that

Bvi (k + 1) =
∑
j∈Ni

(F̃ij ⊗ F̃ij)Bvj (k) + Q̃vi (21)

Overall, we can write (21) in centralized form as

Bv(k + 1) = FBv(k) + Q̃v (22)

where Bv(k) and Q̃v are the column vector with blocks
Bv1 (k), . . . , BvM (k) and Q̃v1, . . . , Q̃

v
M , respectively. Note that

(21) is a standard linear discrete-time system. Therefore, if
F is Schur stable, then Bv(k) → B̄v = (I − F)−1Q̃v

as k → +∞. Moreover, the matrix B̄v is independent of
the initial conditions of (22). The entries of matrices B̄i,
i = 1, . . . ,M are the elements of vector B̄v . The fact that B̄i
are semi positive definite and symmetric for all i = 1, . . . ,M ,
is guaranteed by construction (9).
Proof of (ii). This proof is carried out first in case the pair
(A,G) is stabilizable (where GG> = Q). From (9) and in
view of Lemma 1

B̄ ≥ (A− LC)B̄(A− LC)> + LRL> +Q (23)

where B̄ =diag(B̄1, . . . , B̄M ). Assume, by contradiction, that
(A − LC) is not Schur stable. Therefore, there is at least
an eigenvalue/eigenvector pair λ, v of (A − LC)> such that
(A− LC)>v = λv and |λ| ≥ 1. From (23)

v>B̄v ≥ v>(A− LC)B̄(A− LC)>v + v>Qv + v>LRL>v

from which it follows that (1 − |λ|2)v>B̄v ≥ v>Qv +
v>LRL>v. Since the right hand side of the latter inequality
is ≥ 0 and |λ| ≥ 1, the only possibility is that |λ| = 1,
v>Qv = 0, and L>v = 0. In view of this, A>v = λv and
G>v = 0 should hold at the same time which, recalling the
PBH test [5], is in contradiction with the assumption that the
pair (A,G) is stabilizable.
In case the pair (A,G) is not stabilizable, we can apply a
similar argument by defining a new matrix sequence B∗i (k),

i = 1, . . . ,M , according to

B∗i (k + 1) =
∑
j∈Ni

{
(Ãij − LijC̃j)B∗j (k)(Ãij − LijC̃j)>

+LijR̃jL
>
ij

}
+Q∗i (24)

where Q∗i > 0 are arbitrary matrices for all i = 1, . . . ,M .
Similarly to step (i) of the proof, if F is Schur stable
then, for all i = 1, . . . ,M , B∗i (k) → B̄∗i ≥ 0. Defining
B̄∗ =diag(B̄∗1 , . . . , B̄

∗
M ), the former matrix verifies

B̄∗ ≥ (A− LC)B̄∗(A− LC)> + LRL> +Q∗ (25)

Since Q∗ =diag(Q∗1, . . . , Q
∗
M ) > 0, its square root G∗ (i.e.,

defined such that G∗(G∗)> = Q∗) is full rank n, and therefore
the pair (A,G∗) is stabilizable. Hence the matrix A− LC is
Schur stable in view of the arguments described right after
(23). This concludes the proof of (ii). �

Proof of Proposition 1
Using some properties of the Kronecker products (see [9]),
one has

||F̃ kiiF̃ij ||2∞ = ||(F̃ kiiF̃ij)⊗ (F̃ kiiF̃ij)||∞ =

= ||(F̃ kii ⊗ F̃ kii)(F̃ij ⊗ F̃ij)||∞ =

= ||(F̃ii ⊗ F̃ii)k(F̃ij ⊗ F̃ij)||∞ = ||FkiiFij ||∞

where Fii = F̃ii ⊗ F̃ii and Fij = F̃ij ⊗ F̃ij denote the blocks
composing the matrix F in (11). Then, conditions (12) can be
written as∑

j∈Ñi

∞∑
k=0

||FkiiFij ||∞ < 1, ∀i = 1, . . . ,M . (26)

Since F̃ii is Schur stable, Fii has the same property, because
each eigenvalue of Fii is the product of two eigenvalues of
F̃ii [9]. Proposition 1 in [19] then shows that conditions (26)
imply the Schur stability of F. �
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