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1. Introduction 
 

Limit state design (LSD), such as ultimate limit state 
(ULS), fatigue limit state (FLS), accident limit state (ALS), 
and serviceability limit state (SLS) (Paik 2018), has been 
growing in emphasis of its importance in recent times. With 
regards to ULS based design of ships and offshore 
structures, a number of studies have been conducted in 
terms of plate element (Paik et al. 2008a, ISSC 2012), 
stiffened panel (Paik et al. 2008b, Kim et al. 2017, 2018a, 
Ozdemir et al. 2018), and hull girder (Paik et al. 2008c, 
2013, Park et al. 2015a, 2015b). In addition, several 
researches on ultimate strength of damaged structures by 
collision (Hogstrom and Ringberg 2012, Jiang et al. 2014, 
Youssef et al. 2016), grounding (Paik et al. 1998, 2012, 
Hong and Amdahl 2012, Kim et al. 2013a), fire (Guedes 
Soares et al. 2000, Paik et al. 2010, Gordon et al. 2011), 
explosion (Wijaya and Kim 2011, Sohn et al. 2013, Czujko 
and Paik 2015, Kim et al. 2018b, 2018c), dent and local 
damages (Paik et al. 2003, Raviprakash et al. 2012, Xu and 
Guedes Soares 2013, 2015, Witkowska and Guedes Soares 
2015), initial imperfection and deformation (Dow and 
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Smith 1984, Guedes Soares 1988, Teixeira et al. 2013, 
Saad-Eldeen et al. 2016, Cerik 2018) are also conducted. A 
wide review of the previous works related to ultimate 
strength and buckling may be referred to Yao and Fujikubo 
(2016) and Paik (2018). The more recent studies may also 
be referred in ISSC (2012, 2015) reports and Paik (2018). 

Since the late 19th century, several approaches with 
various empirical formulations have been proposed. In the 
early stage, the key concept, called effective width which is 
used when the deflection occurs by buckling subjected to 
longitudinal compression, for the plate was raised by John 
(1987) and approximation technique was adopted by 
Bortsch (1921). Basically, they tried to evaluate 
effectiveness of the deflected plate by applied action 
causing normal stresses corresponding to the identification 
of plate breadth or width.  

In the 20th century, von Karman (1924) proposed the 
advanced effective width concept by adopting theoretical 
approaches and effective flange width or effective breadth 
of simple beams. The von Karman’s method was also 
conducted by Metzer (1929), but for continuous beams 
instead. A large series of plate testing under compression 
were also performed by several researchers (Schuman and 
Back 1930) As of today, several empirical formulations 
(Box 1883, von Karman 1924, Schnadel 1930, Sechler 
1933, Cox 1933, Timoshenko 1936, Marguerre 1937, 
Frankland 1940, Winter 1940, Chilver 1953, Gerard 1957, 
BS499 1961, AISC 1964, BS153 1966, Dwight and 
Moxham 1969, Faulkner 1975, Ueda et al. 1975, Carlsen 
1977, Ivanov and Rousev 1979, Sereide and Czujko 1983, 
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Abstract. In this study (Part I), an advanced empirical formulation was proposed to predict the ultimate strength of initially deflected steel 
plate subjected to longitudinal compression. An advanced empirical formulation was proposed by adopting Initial Deflection Index (IDI) 
concept for plate element which is a function of plate slenderness ratio ( ) and coefficient of initial deflection. In case of initial deflection, 
buckling mode shape, which is mostly assumed type in the ships and offshore industry, was adopted. For the numerical simulation by 
ANSYS nonlinear finite element method (NLFEM), with a total of seven hundred 700 plate scenarios, including the combination of one 
hundred (100) cases of plate slenderness ratios with seven (7) representative initial deflection coefficients, were selected based on obtained 
probability density distributions of plate element from collected commercial ships. The obtained empirical formulation showed good 
agreement (R2 = 0.99) with numerical simulation results. The obtained outcome with proposed procedure will be very useful in predicting 
the ultimate strength performance of plate element subjected to longitudinal compression. 
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Hughes 1983, DNV 1987, Smith et al. 1988, Ueda et al. 
1992, Cui and Mansour 1998, Paik et al. 2004) have been 
proposed, which will be covered in Part II (Kim and Poh 
2018), with technical review and sensitivity analysis 
between existing formulations and the obtained advanced 
formulation based on FE simulation results.  

There is, however, still the possibility to improve the 
accuracy of empirical formulation in predicting ultimate 
strength of initially deflected plate element subjected to 
longitudinal compression. Especially, in the range covered 
by circle shown in Fig. 1, once the ultimate strength 
performance of plate element by typical empirical 
formulation, which may be obtained by approximation 
approach, is suddenly decreased due to the limitation of 
ultimate strength at material yield strength. However, the 
behaviour of ultimate strength of plate element tends to 
decrease smoothly which was obtained by finite element 
method (FEM) shown in Fig. 1. In addition, the effect of the 
amount of initial deflection may also affect the ultimate 
strength of the plate element. 
 

 
Fig.1 Schematic view of ultimate strength of plate element 

subjected to longitudinal compression 
 
In this regard, a procedure to propose an advanced 

empirical formulation is documented in the present paper 
and the proposed concept was verified by applied example 
in the present paper (Part I). In addition, an in-depth 
analysis of the effect of initial deflection on ultimate 
strength performance of plate element is also taken into 
account by adopting initial deflection index (IDI) concept 
proposed in this study. 

For the details, a longitudinal compression, which 
causes the buckling phenomenon due to hull girder bending 
moment, and different levels of initial deflection are 
considered in proposing the advanced empirical 
formulation. For the selection of reliable plate scenarios, 
three (3) representative midship sections from oil tanker, 
bulk carrier, and container ships in four (4) different sizes 
were investigated. In total, twelve (12) midship section data 
were analysed by probabilistic approaches. Through those 
probabilistic approaches, reliable plate slenderness ratio, 
plate width, thickness, and length were obtained. The 
selected one hundred (100) cases of plate scenarios with 
seven (7) types of initial plate deflections were employed 

for the ultimate strength analysis subjected to longitudinal 
compression. The accuracy of obtained formulation by 
ANSYS (2014) nonlinear finite element analysis (FEA) was 
compared with the existing equations. 

The complex relation between plate slenderness ratio (
 ) and coefficient of initial deflection considering buckling 

mode was also investigated. Throughout the proposed 
advanced empirical formulation including the technique, 
structural engineer may easily predict the ultimate strength 
performance of initially deflected plate element subjected to 
longitudinal compression. 

 
 
2. Procedure for the development of empirical 
formulation 
 

The procedure for the development of advanced 
empirical formulation, as summarised in Fig. 2, can be 
directly applied in the prediction of ultimate strength of 
initially deflected plate element. First, plate data were 
collected from the representative commercial ships, before 
the structural characteristics of the plate can be defined in 
terms of material properties (i.e., plate length, breadth, and 
thickness) and geometrical properties (i.e., yield strength, 
Poison ratio, Elastic modulus, etc.). Based on obtained plate 
information, the plate slenderness ratio (  ) can be 
calculated for all the collected plates. In order to select 
reliable plate scenarios, the probabilistic identification of 
selected   is required to be performed as shown in Figs. 
3(a) and 3(b). For the efficient and reliable way to select the 
plate scenarios presented in green coloured box (3rd box 
from the top) in Fig. 2, the following steps may be 
recommended to the readers. 

 

 
Fig.2 Proposed procedure for the development of empirical 

formulation 
 
For the selection of the best-fit probability density 

function (PDF), the goodness-of-fit test for plate 
slenderness ratio is recommended to be conducted, as 
shown in Fig. 3(a). Once the best-fit PDF is selected, the 
best interval can also be found as shown in Fig. 3(b) and 
3(c). The area under PDF can then be divided into the 
required number of plate scenarios. As illustrated in Fig. 

0.0

1.0

Plate slenderness ratio (β)

Schematic view of ultimate strength of plate
(FEM vs. Typical empirical formulation)

σ x
u

/ σ
Y

Problem statement

FEM (ANSYS)
Existing empirical formulation

Definition of plate 
structure characteristics

Calculation of ultimate 
strength for selected scenarios

Identification of initial 
deflection effect 

Development of 
advanced empirical formula

Selection of plate scenario Sampling

Collection of plate data

Probabilistic 
identification of 

parameter

Material 
properties

Geometrical 
properties

Initial 
deflection 
index (IDI) 

concept



 
Ultimate strength of initially deflected plate under longitudinal compression: Part I = An advanced empirical formulation 

3(d), area under the obtained PDF can be divided into ten 
(10) equal areas if we require ten (10) beta values for the 
selection of plate scenarios. From each area, beta can also 
be calculated based on the calculation of centroid into 
horizontal axis as shown in Fig. 3(d). 

The ultimate strength of plate element for the selected 
scenarios can be calculated by analytical, numerical, and 
experimental methods. In order to compare the accuracy of 
the existing methods, especially for the nonlinear FE 
method, a number of studies with verifications have been 
conducted by several researchers (ISSC 2012, 2015). In this 
study, the ANSYS nonlinear finite element method 
(NLFEM) which is one of the famous numerical simulation 
codes, is applied to compute the ultimate strength of plate 
element subjected to longitudinal compression. It is to 
ensure that other methods may also be applied for the 
ultimate strength analysis of plate element. 

Once the plate scenarios and analysis method are 
confirmed, the model size and considerable boundary 
condition should be defined. In general, one-bay and one-
span plate model with simply supported condition resulting 
in slight overestimated outcome is assumed to optimise the 
computational cost. The detail comparison results on the 
effect of plate size can be referred to ISSC (2012). In case 
of initial imperfections, initial deflection and weld-induced 
residual strength are mostly considered for the numerical 
simulation. In this study, only the effect of initial deflection 
by applying buckling mode shape is considered. 

Once the ultimate strength analysis is done for the 
selected reliable plate scenarios, the effect of initial 
deflection on ultimate strength of plate element can then be 
established throughout initial deflection index (IDI) 
concept. Here, initial deflection of the plate was considered 
as one of the initial damage. The damage index (DI) 
concept was previously proposed by Paik et al. (2012) and 
has been applied for assessing the safety of oil tankers 
damaged by grounding by their researcher group. In 
addition, the concept was also verified by applying on the 
grounding damaged container ships (Kim et al. 2013b) and 
bulk carriers (Kim et al. 2013c) named as a grounding 
damage index (GDI). Recently, GDI concept was slightly 
modified to consider the effect of aging-phenomenon by 
Kim et al. (2014). In this study, the initial deflection index 
(IDI) concept, which can be considered as one of the initial 
imperfection damage of the plate, is proposed to predict 
ultimate strength of initially deflected plate element. 

The IDI consists of four (4) sub-coefficients; 1c to 4c  

as shown in Eq. (1). In order to consider the effect of initial 
deflection, an initial deflection coefficient ( IDC ) with 

additional three (3) coefficients (= correction coefficient), 
i.e.,  ,  ,  , are required to be adopted, as presented in 

Eq. (2). Once the ultimate strength analyses of the selected 
plate are done, three (3) correction coefficients ( , , ) 

can then be achieved by curve-fitting method. Further 
details are illustrated in the applied example presented in 
the next section. 

 
(a) goodness of fit test 

 

 
(b) selection of best-interval 

 

 
(c) best-fit PDF 

 

 
(d) selection of reliable scenarios 

Fig.3 Schematic view of probabilistic identification and 
sampling of selected plate (Note: A = area under PDF,  = 

plate slenderness ratio, i = selected beta) 
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In the case of initial deflection coefficient ( IDC ), it can 

be explained by Eqs. (3) and (4). There are many types of 
initial deflection shape to be applied to plate element. One 
of the famous shapes is buckling mode shown in Eq. (3). 
Previously, Smith et al. (1988) proposed three levels of 
maximum amount of initial deflection such as slight, 
average, and severe level by assuming hungry horse mode 
presented. In applying the initial deflection to the plate, 
buckling mode shape shown in Eq. (3) and (4) is adopted in 
this study. 
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where, IDI = initial deflection index, Yb

t E


  , a

= plate length, b = plate breadth, t = plate thickness, Y = 

yield strength, E = elastic modulus, omA = amplitude of 

the buckling mode initial deflection for longitudinal 
compressive loading, m = buckling mode half-wave number 
of the plate in the longitudinal (x) direction which is defined 

as a minimum integer satisfying ( 1)a b m m  , x = 

longitudinal direction axis, y = transverse direction axis,   
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= initial deflection 
amount of plate 

proposed by  
Smith et al. (1988). 

Based on the obtained ultimate strength performance of 
plate under longitudinal compression and computed initial 
deflection index for selected plate scenarios, the ultimate 
strength versus plate slenderness ratio including the effect 
of initial deflection, which is called the advanced empirical 
formulation, can then be proposed as a shape of Eq. (5). The 
proposed concept will be verified by an applied example in 
the next section. 
 
Proposed advanced empirical formulation 

 

IDIxu

Y

1 e


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(5)

where the IDI is initial deflection index defined in Eq. (1). 
 

 
3. Applied example 
 

3.1. Collection of plate data & definition of plate 
structure characteristics 

 
The applicability of the proposed method is verified by 

an applied example. In total, 3,077 plates with details such 
as geometrical (plate length, plate breadth, and plate 
thickness) and material properties (yield strength, elastic 
modulus, Poison’s ratio, etc.) were collected from the 12 
representative commercial ship’s midship section such as 
oil tankers (VLCC, Suezmax class, Aframax class, and 
Panamax class), bulk carriers (181K, 82K, 57K, and 37K) 
and container ships (13,000TEU, 7,500TEU, 5,000TEU, 
and 3500TEU) as shown in Figs. 4(a) to (d). 

Based on obtained plate information, reliable set of the 
plate input, i.e., plate length, plate breadth, plate thickness, 
and plate slenderness ratio are generated in Figs 4(a) to (d) 
for the investigation of probabilistic characteristics. 
 

3.2. Selection of plate scenario 
 
For the selection of reliable plate scenarios as a prior 

step, plate slenderness ratio (  ), shown in Eq. (6), 

considered as an important parameter to distinguish plate 
properties, is computed as presented in Fig. 4(d).  
 

Yb

t E

   (6)

where, b = plate breadth, t = plate thickness, Y = 

plate yield strength, E = Young’s modulus. 
 
Then, probabilistic identification of each parameter is 

performed to achieve best-fit probability density functions 
(PDF) by Goodness of fit test as shown in Figs. 5(a) to (d). 
In this study, Anderson-Darling test is adopted. Table 1 and 
Fig. 5 show goodness-of-fit test results for each parameter. 
In the case of the Anderson-Darling (A-D) test, lowest 
number represents best-fit probability density function as 
highlighted in Table 1. 
 
Table 1 Goodness-of-fit test (Anderson-Darling test) for 
each parameter 
 Goodness of fit test (Anderson-Darling) 

Distribution 
Function 

Length
(mm)

Breadth 
(mm) 

Thickness
(mm)


Normal       94.85 632.64 260.02 320.00
Lognormal    149.57 374.44 56.51 112.13
3-Parameter 
Lognormal    

95.12 368.04 25.45 86.51

Exponential    945.93 1043.02 846.55 821.45
2-Parameter 
Exponential  

846.02 1000.19 229.80 754.04

Weibull       98.45 688.07 320.77 380.06
3-Parameter 
Weibull      

94.98 662.83 98.82 346.50

Smallest 
Extreme Value  

286.89 1036.15 654.08 922.95

Largest 
Extreme Value  

176.41 403.23 23.62 116.27

Gamma       128.58 417.86 105.50 118.19
3-Parameter 
Gamma       

105.02 417.28 49.28 116.71

Logistic       83.26
(Min.)

234.57 51.05 29.59

Loglogistic    113.76 197.88 13.41 18.09
3-Parameter 
Loglogistic  

83.47 194.43 
(Min.) 

8.906
(Min.)

13.724
(Min.)
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(a) plate length 

 

 
(b) plate breadth 

 

 
(c) plate thickness 

 

 
(d) plate slenderness ratio 
Fig.4 Collected plate data  

(Kim et al. 2012a, b, 2013, 2014) 

 
(a) plate length 

 

 
(b) plate breadth 

 

 
(c) plate thickness 

 

 
(d) plate slenderness ratio 

Fig.5 Goodness of fit test (Anderson-Darling test) for the 
selection of best-fit probability density functions 
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(a) plate length 

 

 
(b) plate breadth 

 

 
(c) plate thickness 

 

 
(d) plate slenderness ratio 

Fig.6 Selection of best intervals 

 
(a) plate length 

 

 
(b) plate breadth 

 

 
(c) plate thickness 

 

 
(d) plate slenderness ratio 

Fig.7 Obtained best-fit probability density functions 
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Table 2 Selected plate scenarios 

No 
a 

(mm) 
b 

(mm) 
t  

(mm) 
 Y  

(MPa) 
E  

(GPa) 
  

1 4150 830 44.50 315 205.8 0.73
2 4150 830 38.50 315 205.8 0.84
3 4150 830 36.00 315 205.8 0.90
4 4150 830 34.00 315 205.8 0.96
5 4150 830 32.50 315 205.8 1.00
6 4150 830 31.50 315 205.8 1.03
7 4150 830 31.00 315 205.8 1.05
8 4150 830 30.00 315 205.8 1.08
9 4150 830 29.50 315 205.8 1.10

10 4150 830 29.00 315 205.8 1.12
11 4150 830 28.50 315 205.8 1.14
12 4150 830 28.00 315 205.8 1.16
13 4150 830 27.50 315 205.8 1.18
14 4150 830 27.00 315 205.8 1.20
15 4150 830 26.50 315 205.8 1.23
16 4150 830 26.00 315 205.8 1.25
17 4150 830 25.50 315 205.8 1.27
18 4150 830 25.00 315 205.8 1.30
19 4150 830 24.50 315 205.8 1.33
20 4150 830 24.00 315 205.8 1.35
21 4150 830 23.50 315 205.8 1.38
22 4150 830 23.00 315 205.8 1.41
23 4150 830 22.50 315 205.8 1.44
24 4150 830 22.00 315 205.8 1.48
25 4150 830 21.50 315 205.8 1.51
26 4150 830 21.00 315 205.8 1.55
27 4150 830 20.50 315 205.8 1.58
28 4150 830 20.00 315 205.8 1.62
29 4150 830 19.50 315 205.8 1.67
30 4150 830 19.00 315 205.8 1.71
31 4150 830 18.50 315 205.8 1.76
32 4150 830 18.00 315 205.8 1.80
33 4150 830 17.50 315 205.8 1.86
34 4150 830 17.00 315 205.8 1.91
35 4150 830 16.50 315 205.8 1.97
36 4150 830 16.00 315 205.8 2.03
37 4150 830 15.50 315 205.8 2.09
38 4150 830 15.00 315 205.8 2.16
39 4150 830 14.50 315 205.8 2.24
40 4150 830 14.00 315 205.8 2.32
41 4150 830 13.50 315 205.8 2.41
42 4150 830 13.00 315 205.8 2.50
43 4150 830 12.50 315 205.8 2.60
44 4150 830 12.00 315 205.8 2.71
45 4150 830 11.50 315 205.8 2.82
46 4150 830 11.00 315 205.8 2.95
47 4150 830 10.50 315 205.8 3.09
48 4150 830 10.00 315 205.8 3.25
49 4150 830 9.50 315 205.8 3.42
50 4150 830 8.50 315 205.8 3.82
51 4150 830 42.00 235 205.8 0.67
52 4150 830 36.50 235 205.8 0.77
53 4150 830 34.00 235 205.8 0.82
54 4150 830 32.00 235 205.8 0.88
55 4150 830 30.50 235 205.8 0.92

56 4150 830 29.50 235 205.8 0.95
57 4150 830 29.00 235 205.8 0.97
58 4150 830 28.50 235 205.8 0.98
59 4150 830 27.50 235 205.8 1.02
60 4150 830 27.00 235 205.8 1.04
61 4150 830 26.50 235 205.8 1.06
62 4150 830 26.00 235 205.8 1.08
63 4150 830 25.50 235 205.8 1.10
64 4150 830 25.00 235 205.8 1.12
65 4150 830 24.50 235 205.8 1.14
66 4150 830 24.00 235 205.8 1.17
67 4150 830 23.50 235 205.8 1.19
68 4150 830 23.00 235 205.8 1.22
69 4150 830 22.50 235 205.8 1.25
70 4150 830 22.00 235 205.8 1.27
71 4150 830 21.50 235 205.8 1.30
72 4150 830 21.00 235 205.8 1.34
73 4150 830 20.50 235 205.8 1.37
74 4150 830 20.00 235 205.8 1.40
75 4150 830 19.50 235 205.8 1.44
76 4150 830 19.00 235 205.8 1.48
77 4150 830 18.50 235 205.8 1.52
78 4150 830 18.00 235 205.8 1.56
79 4150 830 17.50 235 205.8 1.60
80 4150 830 17.00 235 205.8 1.65
81 4150 830 16.50 235 205.8 1.70
82 4150 830 16.00 235 205.8 1.75
83 4150 830 15.50 235 205.8 1.81
84 4150 830 15.00 235 205.8 1.87
85 4150 830 14.50 235 205.8 1.93
86 4150 830 14.00 235 205.8 2.00
87 4150 830 13.50 235 205.8 2.08
88 4150 830 13.00 235 205.8 2.16
89 4150 830 12.50 235 205.8 2.24
90 4150 830 12.00 235 205.8 2.34
91 4150 830 11.50 235 205.8 2.44
92 4150 830 11.00 235 205.8 2.55
93 4150 830 10.50 235 205.8 2.67
94 4150 830 10.00 235 205.8 2.80
95 4150 830 9.50 235 205.8 2.95
96 4150 830 9.00 235 205.8 3.12
97 4150 830 8.50 235 205.8 3.30
98 4150 830 8.00 235 205.8 3.51
99 4150 830 7.50 235 205.8 3.74

100 4150 830 7.00 235 205.8 4.01
 

Once the best-fit PDF is selected from the A-D test, it is 
requested to decide the best-interval of histogram which can 
be calculated from the value satisfying the maximum mean 
and minimum COV as shown in Fig. 6. The best-fit PDF 
with histogram can then be plotted together as shown in 
Fig. 7.  

In this study, plate slenderness ratio (  ) is set as a 

reference parameter. In addition, fixed mean values of plate 
length (= 4,150mm) and breadth (= 830mm) which gives 
representative half-wave number (m) of 5 were adopted 
from Fig. 6(a) and (b). In the case of material yield strength, 
two representative values such as 235MPa (Mild steel, 
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MS24) and 315MPa (High tensile steel, HT32) were used. 
In the case of PDF of plate slenderness ratio, 3-Parameter 
Loglogistic function was selected for the best-fit PDF based 
on the Anderson-Darling test as shown in Fig. 6(d) and 
Table 1. 

One hundred (100) cases of reliable plate scenarios were 
selected based on the calculation of area under PDF of plate 
slenderness ratio as presented in Fig. 2(d). Once an 
expected number of   is selected, plate thickness can be 

recalculated. In this process,   values can slightly be 

adjusted due to limitation of thickness based on product 
standard available in the industry. The selected plate 
scenarios are summarized in Table 2.  

 
3.3. Calculation of ultimate strength for selected 

scenarios 
 
The ultimate strength analysis was conducted by 

ANSYS nonlinear FE simulation code for the selected 
reliable plate scenarios. In the modelling of the plate, there 
are few things to be considered such as effect of boundary 
condition, range of model (= model size), initial 
imperfections, applied loading, and many others. All those 
important considerations should be confirmed before FE 
simulation is conducted. Previously, a number of studies 
have been conducted to determine reliable range of the plate 
modelling by FEM (ISSC 2012, 2015) In this study, one -
bay and one-span plate model is adopted for FE simulation.  

Figures 8(a) and (b) show applied plate initial deflection 
and boundary conditions, respectively. In Fig. 8(a), 
agreement between applied initial deflection formulation in 
Eq. (3) and node coordinates in FE model are compared. 
Those two were perfectly matched which means that the 
geometry of initially deflected plate is well-modelled. 
Based on the mesh convergence study in Fig. 8(b), 0.1 of 
mesh size and plate breadth ratio was selected for the 
numerical simulation. 

This plate (or unstiffened panel) is considered as the 
main structural component of ships and offshore structures 
together with stiffener structures. For the safe design of 
plate, simply supported boundary condition is assumed in 
this study to produce maximum deflection of the plate with 
higher stress values for the pessimistic design. In the case of 
a model range, one-bay and one-span plate model 
surrounded by longitudinal stiffener and transverse frames 
are adopted based on ISSC (2012). 

During the fabrication, initial imperfection naturally 
occurs in steel structure, especially for initial deflection and 
welding-induced residual stress which are taken into 
account in the ship and offshore construction. In this study, 
three different levels of initial deflection which includes 
slight level ( IDC 0.025 ), average level ( IDC 0.10 ) and 

severe level ( IDC 0.30 ), proposed by Smith et al. (1988), 

were considered as illustrated in Eq. (4). For the research 
purpose, additional four initial deflection coefficients ( IDC  

= 0.05, 0.15, 0.20 and 0.25) were also considered. In total, 
seven (7) IDC  values were applied to identify the effect of 

initial deflection on the ultimate strength of plate element 
which will be covered in the next section. A typical example 

of the ultimate strength analysis result (Scenario No. 31) is 
presented in Fig. 8(c). 
 

 
(a) Initial deflection 

 

 
(b) boundary condition & mesh size 

 

 
(c) ultimate strength analysis 

Fig.8 Typical example of FE modelling and verification 
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(a) IDC = 0.025 (slight level) 

 

 
(b) IDC = 0.05 

 

 
(c) IDC = 0.1 (average level) 

 

 
(d) IDC = 0.15  

 
(e) IDC = 0.20  

 

 
(f) IDC = 0.25  

 

 
(g) IDC = 0.30 (severe level)  

Fig.9 Developed empirical formulation 
 
Once numerical simulations are done by the ANSYS 

NLFEM for selected seven hundred (700) plate scenarios, it 
can be plotted in the relationship between plate slenderness 
ratio versus ultimate strength performance as shown in Fig. 
9. It is well presented that all of the cases show good-
agreement with proposed formulation (R2 = 0.99). In the 
figure, the proposed empirical formulation is also presented 
together with determined sub-coefficients of IDI such as 

1c , 2c , 3c , and 4c  as illustrated in Eq. (2) and Figs. 9(a) to 

(g). Details may be referred in the next section. 
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Empirical formulation of plate with CID = 0.30 
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3.4. Identification of initial deflection effect on ultimate 
strength of plate 

 
Once plate is collected, the structure characteristics can 

be analysed in terms of geometrical properties (plate length, 
plate breadth, plate thickness) and material properties 
(Elastic modulus, Poisson’s ratio, Yield strength, Ultimate 
strength, etc.) for the modelling of the plate element. 

Once calculations of ultimate strength for the selected 
scenarios are finished, the effect of initial deflection on 
ultimate strength of plate element can be identified. Figure 
10 shows obtained best-fit empirical formulation based on 
numerical simulation results by ANSYS NLFEM. As 
expected, the effect of initial deflection could be expressed 
by Eq. (1) and those obtained equations showed good 
agreement with analysis results (R2 = 0.99) as shown in Fig. 
9.  

 

 
Fig.10 Numerical simulation results with obtained best-fit 

lines (C1 - C4 values can be referred to Table 3) 
 

 

Fig.11 Relationship between IDC  and sub-coefficients for 
the identification of initial deflection effect 

 
In order to predict the ultimate strength of plate with 

other values of initial deflection coefficient ( IDC ), 

relationship between IDC  and sub-coefficients of IDI ( 1c ,

2c , 3c , 4c ) were investigated in Fig. 11. This may be 

considered as the highlight of this study. It means that 
prediction of ultimate strength of initially deflected plate 
can be done by simplified empirical formulation based on 
the following procedure. 

 
[Step 1] Determine IDC  value based on (1) measurement, 

or (2) assumption based on historical data. 
[Step 2] Calculate sub-coefficients ( 1c , 2c , 3c , and 4c ) by 

following Eq. (2) and Table 4. 
[Step 3] Calculate initial deflection index from Eq. (1). 
[Step 4] Prediction of ultimate strength of plate by 

proposed empirical formulation in Eq. (5). 
 

Table 3 Obtained sub-coefficients of IDI from Fig. 9 

IDC  1c  2c  3c  4c  

0.025  -10.749 31.246 -37.009 0.480

0.05 -2.948 8.138 -13.839 -0.368

0.10  -0.029 0.322 -4.680 -0.745

0.15 0.735 -1.554 -2.172 -0.859

0.20 1.064 -2.321 -1.060 -0.912

0.25 1.241 -2.719 -0.448 -0.943

0.30  1.349 -2.956 -0.068 -0.963

 
Table 4 Relationship between IDC  and sub-coefficients of 

initial deflection index (IDI) 

 i, i 1 to 4 IDc C   

from Eq. (2) 
1c  
 

2c  3c  4c  

  -0.06668 0.1090 -0.2743 0.0203
  -1.418 -1.564 -1.339 -1.171
  1.717 -3.672 1.307 -1.046

R2 0.9981 0.9993 0.9998 0.9943
 

3.5. Development of advanced empirical formulation 
& verification 

 
Once advanced empirical formulation is developed, 

verification with numerical analysis result may be required 
to determine its reliability. Fig. 12 shows comparison of 
results between calculated ultimate strength performance by 
ANSYS NLFEM and obtained results by proposed 
empirical formulation. Mean and coefficient of variation 
(COV) values are also presented for seven (7) cases of 
initial deflections as considered for our calculation. 

In case of mean and COV values, it shows nearly 1.0 
and 0.0, in respectively. It means that proposed empirical 
formulation can be considered as reliable solution and 
numerical simulation can be replaced by proposed empirical 
formulation with effective computation cost. 
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Ultimate strength of initially deflected plate under longitudinal compression: Part I = An advanced empirical formulation 

 
Fig.12 Trend of the deviation in ultimate strength of plate 

between proposed empirical formulation and ANSYS 
nonlinear finite element method (NLFEM) 

 
 

4. Concluding remarks 
 

In this study (Part I), an advanced empirical formulation 
was proposed by applying the initial deflection index (IDI) 
concept to predict the ultimate strength performance of 
plate under longitudinal compression. The proposed 
concept and whole procedure to develop advanced 
empirical formulation were verified by numerical 
simulations conducted by the ANSYS nonlinear FEM for 
seven hundred (700) selected plate scenarios. The obtained 
empirical formulation was well-fitted with all of the 
numerical simulation results (R2= 0.99) and will be useful 
for structural engineers to predict ultimate strength 
behaviour of the plate element. 

 In the case of initial deflection of the plate, basically 
three different levels such as slight, average, and severe 
were considered and general trends were formulated to 
predict other values of initial deflection. Other types of 
plate range and boundary condition may be considered for 
further study. In Part II, historical review and detailed 
benchmark study of the plate element will be conducted 
based on the comparison between obtained FE results and 
existing design and empirical formulations. 
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