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Abstract

Humans build models of their environments and act according to what they have learnt. In

simple experimental environments, such model-based behaviour is often well accounted for

as if subjects are ideal Bayesian observers. However, more complex probabilistic tasks

require more sophisticated forms of inference that are sufficiently computationally and sta-

tistically taxing as to demand approximation. Here, we study properties of two approximation

schemes in the context of a serial reaction time task in which stimuli were generated from a

hierarchical Markov chain. One, pre-existing, scheme was a generically powerful variational

method for hierarchical inference which has recently become popular as an account of psy-

chological and neural data across a wide swathe of probabilistic tasks. A second, novel,

scheme was more specifically tailored to the task at hand. We show that the latter model fit

significantly better than the former. This suggests that our subjects were sensitive to many

of the particular constraints of a complex behavioural task. Further, the tailored model pro-

vided a different perspective on the effects of cholinergic manipulations in the task. Neither

model fit the behaviour on more complex contingencies that competently. These results

illustrate the benefits and challenges that come with the general and special purpose model-

ling approaches and raise important questions of how they can advance our current under-

standing of learning mechanisms in the brain.

1 Introduction

Humans are remarkably good at adapting to statistical structure in their environment by effi-

ciently turning stochastic observations into both actions and expectations over future experi-

ences. In simple cases, such as enduringly popular forms of probabilistic binary sequences,

predictions appear to be consistent with the precepts of optimal Bayesian reasoning [1–6].

Though such feats are impressive, their very optimality makes it hard to probe the underlying

mechanisms, since algorithms are usually revealed by their idiosyncratic flaws.
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When sequences become more complicated, optimal methods become computationally

challenging, and more substantial and revealing approximations can arise. Previous work

[7–9] suggests that this may be because subjects do not recover the true models of the tasks if

they display some level of complexity. Thus, ideal observer models assuming knowledge of the

true model and optimal learning within it fail in these contexts. Indeed, learning the structure

of the task is a difficult problem [10–12], and it appears more likely that humans employ good

approximate solutions. In the realm of such nearly normative characterisations, a particular

distinction arises between assuming that subjects employ rather powerful generic reasoning

models which then require potent approximation methods, versus assuming more narrowly

specific, simplified, models that are tailored to the problems at hand.

Generic models are appealing because they offer a unified framework that can be applied to

a variety of learning conditions. Subjects might apply them as a default when first required to

perform a task. More tactically, from the perspective of experimenters, they make it straight-

forward to compare and interpret results across datasets and tasks. However, generalisability

usually comes at the cost of accuracy. Thus, we can expect subjects to be able to tune their

inferential apparatuses to particular tasks, capturing aspects that general approximation

schemes miss. To the extent that this is the case, it becomes important to interrogate closely

conclusions drawn on the basis of generic models.

In this paper, we examine in detail a test case for this contrast coming from a richly complex

sequential problem administered by some of the current authors [13]. Subjects carried out a

probabilistic serial reaction time task (pSRTT) involving three particular dimensions of com-

plexity: four stimuli rather than the more conventional two [14–17]; Markov rather than only

memoryless sequential dependencies [16, 17]; and unsignalled changes in these dependencies

[18, 19]. Behaviour was examined under placebo, and under antagonists of the neuromodula-

tors acetylcholine (ACh), noradrenaline (NA) and dopamine (DA); the former two of which

have been implicated in reporting forms of uncertainty associated with learning [20, 21]; and

the last in exerting influence over response vigour or speed [16, 22–26].

Previous studies of learning in hierarchical tasks manipulating the stability of the environ-

ment have shown that ideal observer models fail to accurately account for subjects’ behaviour.

Summerfield et al. [8] observe that hierarchical structure was not recovered by subjects in envi-

ronments being highly volatile, and that optimal inference only occurred over periods of great

stability. Similarly, Norton et al. [9] reported that a model with simple exponential weighing of

experience can outperform an ideal Bayesian learner in static and dynamic environments. Fur-

thermore, Fusi et al. [7] identified that monkeys show trial-and-error behaviour after cue-

reversals before undergoing slow relearning of the association showing that the animals did

not learn to adapt optimally to the switching process. This strongly suggests that models

employing approximations will be necessary to account for the data from our complex pSRTT

too.

In the previous work, it was assumed that subjects’ behaviour would be best described by a

paradigmatic generic method called the Hierarchical Gaussian Filter, HGF; [27]. This model

is a predictive coding model [28], and has been applied to a wealth of different problems

[13, 29–36]. The parameters of the HGF were fit in placebo and drug conditions and system-

atic differences were examined.

Here, we address the question of whether a more specific, non-general model could capture

subjects’ behaviour more proficiently. After describing the task, we use a subset of the pSRTT

data, namely simple sequences in which the appearance of one symbol was independent of the

previously observed symbol (memoryless or 0th-order sequence), to show lacunæ in the HGF’s

characterisation of subjects’ behaviour. Then, we consider a simple, specific model (the Forget-

ful Observer Model; FOM; [37]), which assumes that subjects used limited memory to adjust
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to environmental requirements on the fly rather than capturing them with successively higher

hierarchical levels of a probabilistic characterisation. This simpler model turns out to fit signif-

icantly better. We then use the new account to reanalyse the behaviour under the various phar-

macological conditions. Finally, we turn to the more complex temporal sequences.

In sum, we demonstrate some of the difficulties of making inferences about learning in

hierarchical tasks and discuss the benefits and challenges of general and special purpose mod-

els in the light of these results.

2 Methods

2.1 The task

We characterise the results of a probabilistic serial reaction time task (pSRTT) that had been

designed to investigate online learning under multiple forms of uncertainty. Full details of the

experimental procedures are available in [13].

In brief, subjects saw a sequence of four different symbols, each of which was associated

with its own required keypress according to a mapping that subjects had previously learned.

Stimuli were presented for 200 ms, followed by an interstimulus interval (ITI) of 1200 ms.

Missing responses and anticipatory button presses (< 80 ms) were recorded as being

incorrect.

The order in which the symbols were presented reflected a probabilistic dependency struc-

ture involving two hierarchical levels. At the lower level were blocks of 50 trials, each associ-

ated with a simple Markov chain. That is, the symbol sequence in a block was generated in a

pseudo-random order from a 4 × 4 transition matrix T determining the transition probability

from one stimulus to the next (Fig 1). There were three classes of T , characterised by 0th-order

(4 matrices), 1st-order (2 matrices) or alternating dynamics (2 matrices); Fig 1.

At the upper level of the probabilistic structure, the eight Markov chains were presented

three times each in a pseudo random order (without any immediate repeat). The probabilistic

relationships between stimuli in successive trials and changes between blocks were unknown

to the subjects.

Finally, subjects were randomly allocated in a double-blind design to one of four experi-

mental groups, receiving a placebo or an antagonist of either DA, ACh or NA in order to assess

the effects of the respective neuromodulator on the inference process. Data from a total of 124

subjects were analysed.

2.2 Model fitting

In this paper, we report the results of fitting two different classes of models to the data of the

subjects. The different types of transition matrix lead to characteristically different results for

both models. Therefore, we evaluate the models in two steps. For the bulk of the analyses, we

fit the models to the entire sequence of data, but place a special emphasis on qualitative and

quantitative fits of only the data coming from the the simplest and most prevalent matrix type:

the 0th-order sequences. In section 3.5, we separately fit our model to the sequences from the

different matrix types in order to validate the conclusions drawn from the full model and to

highlight the difficulties of modelling higher-order matrices. For these models we assume that

the statistics associated with the transitions were reset at the beginning of each block. This is

purely for illustrative purposes—the subjects received no direct information about block

boundaries.

The models were fit in Matlab R2015a and were compared according to their BIC values

(the lower the better), which trade off model fit (likelihood of the data) and model complexity

(number of fitted parameters).
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3 Results

We fit two characteristic trial-by-trial learning models to subjects’ behaviour. The models dif-

fer in their assumptions about the underlying mechanisms of learning. The first model, the

Hierarchical Gaussian Filter (HGF; [27, 38]), was used by Marshall et al. [13] in a first treat-

ment of the data. The HGF is designed to generalise over a variety of learning tasks, and so

starts minimally fashioned to the actual task at hand. This inevitably limits its ability to encom-

pass the data for particular tasks, and motivates an alternative, forgetful observer model (FOM;

[37]), that is more closely adapted to the task.

Both models have two components: a perceptual component that captures the latent or

unobservable inference process assumed to be employed by the subject to produce a probabil-

ity distribution over the next symbol; and a response component that turns this distribution,

plus features of past responses, into a distribution over the single, observable, quantity, namely

the time it takes the subject to make the key press [39]. We fit these components jointly, and

thus infer states and parameters in the proposed perceptual components. We consider qualita-

tive and quantitative features of the fits of the two models.

After analysing 0th-order sequences in detail, we more briefly discuss the rather substantial

underfitting of both models to the higher order transition matrices.

Fig 1. Transition matrices T ’s used to generate stimulus sequences within contextual blocks. Over the course of

the experiment, four 0th-order sequences, two 1st-order sequences and two alternating sequences occurred, three times

each. Here, as is conventional for Markov chains, we show each T ij as p(st =j|st−1 = i) (which is the transpose of the way

the transitions were shown in [13]). The different dynamics of the matrices are illustrated by example sequences

generated from each of the three matrix types (i.e. from matrices 1, 3 and 4 in the upper row).

https://doi.org/10.1371/journal.pone.0205974.g001
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3.1 Hierarchical Gaussian Filter

The Hierarchical Gaussian Filter (HGF, [27, 38]) is a recursive filter that approximates Bayes-

ian recognition for a hierarchical generative model. It casts online learning as a broadly appli-

cable inference algorithm [29–36] and requires attractively little adjustment for a particular

task environment. Learning about the statistical structure of the environment is characterised

as a hierarchical inference scheme in which each level is modelled by a Gaussian random walk.

In the generative aspect of this scheme, the state at one level determines the lability of the level

below. Thus, in the recognition aspect of the scheme, which underpins the perceptual model,

the chains are coupled such that the learning rate at one level is influenced by the state at the

next higher level. According to an approximate variational inference scheme, precision-

weighted prediction errors propagate between levels to modify states.

In the previous work, a three level version of the HGF was employed as the perceptual com-

ponent. The lowest level of the model involved a collection of 4 × 4 = 16 independent Gaussian

random walks governing the propensity of each of the 16 possible transitions. The middle level

was a set of evolving 4 × 4 = 16 numbers governing these transition contingencies. Finally, the

top level captured the volatility of the latter dependencies. In the response component of the

model, RTs were predicted from a linear combination of a model-agnostic variable (the effect

of coming straight after an error trial), and model-dependent variables, including precision-

weighted prediction errors and volatility.

It is important to note that the full formulation of the HGF itself is not limited to the partic-

ular version discussed here. However, for convenience, in the following, we will refer to the

particular treatment in [13] as just ‘the’ HGF.

This version of the HGF had a total of 10 subject-specific parameters: parameters of the

prior over the initial state of volatility (m
ð0Þ

3 and s
ð0Þ

3 ), a metavolitility parameter controlling the

step size of the Gaussian walk at the third level (ϑ), a tonic learning parameter controlling

the step size of Gaussian walks at the second level (ω), coefficients in the response component

(β0−4) and the response variance in the response component (z). Additional restrictions on the

parameter space were introduced by a pre-specified upper bound on ϑ, priors on the response

coefficients, and a strong prior on z; we consider the effects of these below.

The model was fit to the RTs of each subject in a stepwise manner. First, the perceptual

component was fit to the actual sequence of symbols presented (i.e., independent of what a

subject did) to create prior distributions over the parameters consistent with approximately

optimal inference. Prior means for parameters in the subsequent data analysis were obtained

from these optimal posterior estimates and prior variances were specified by hand. Then, the

parameters of the perceptual and response components were jointly fit to the RTs using these

priors for the former, and the restrictions mentioned above. The effects of drugs were esti-

mated in a between-subjects manner by assessing the parameters for each group of subjects,

taking body weight and alertness into account via a linear model. A recovery analysis was per-

formed for the parameters controlling the step size of the Gaussians on the second (ω) and

third level (ϑ) of the HGF’s perceptual component. The results show that the former was well

recovered while the estimates of the metavolitility showed substantial deviations from the

true parameter value limiting the interpretability of quantities on the top level of the HGF (see

S1 Fig).

In terms of the present study, the HGF was inherently approximate as a generative model.

First, discrete changes (between T ’s) were modelled by continuously evolving Gaussian ran-

dom walks, thus eliminating actual transitions. Second, the estimates of the elements of a well-

founded transition matrix T were replaced by independent Gaussian random walks that were

not normalised by starting state (i.e., by row). Amongst other consequences, this implies a lack
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of competition between the different possible symbols. Equivalently, subjects were implicitly

assumed to be allowing more than one symbol to appear on a trial. Inference in the HGF,

which is variational, was also an approximation to full Bayesian calculations.

Fig 2 provides a representative illustration of the power and problems of the HGF. This

shows the actual and modelled RTs averaged over subjects in the placebo group during an

example sequence of symbols during a 0th-order matrix (for which symbol 2 is most common).

The black line shows average data from the placebo group. It is apparent that the subjects

greatly increased their speed over periods in which only the high probability symbols were

shown (shaded in grey), and then slowed down markedly for every lower probability stimulus.

By contrast, the purple line shows the result of fitting the HGF to these data, again averaged

across predictions for individual subjects in the placebo group. It is apparent that the HGF

failed to capture the large degree of modulation during the epochs of higher probability,

although it was appropriately affected by the low probability interjections.

As mentioned above, a restrictive prior was specified on the variance z of the response com-

ponent of the HGF in order to strengthen the contribution of the data during model optimisa-

tion. However, this narrowed the distribution predicted by the model so much that log

likelihoods could not be compared to models with unaffected variance estimates. Thus, for our

purposes, we fitted the HGF with a relaxed prior (z � N ð� 3; 100Þ), which allowed a wider

predictive distribution and consequently a substantially increased log likelihood (LL; Table 1).

Fig 2. Example sequences for the 0th-order sequences: Experimental data (black), and predictions for the original

(purple) and relaxed HGF (blue) and the FOM (red) averaged over subjects in the placebo group. High probability

transitions from stimulus 2 to 2 are shaded in grey. The stimulus sequence is shown underneath the lines.

https://doi.org/10.1371/journal.pone.0205974.g002

Table 1. Model summary. Statistical models with number of parameters per subject, average log likelihood and BIC value. Details on the fit for the different drug groups

are given for the favoured HGF and FOM. These values concern all the sequences of trials.

Model Parameters average LL ×104 BIC

HGF (restrictive prior) 10 65 6936

HGF (relaxed prior) 10 218 2888

Placebo 68 1766

DA -50 2578

ACh 785 -2769

NA 129 1313

FOM (stable beliefs, γ = 0) 4 84 1234

FOM (converging beliefs, γ = 1) 4 602 -12469

Placebo 458 -2277

DA 267 -938

ACh 1233 -6714

NA 518 -2540

FOM (unconstrained beliefs) 4 584 -11979

https://doi.org/10.1371/journal.pone.0205974.t001
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Since the fit to the data remained essentially identical (shown by the blue line in Fig 2) and the

same conclusions about differences in the parameters of the groups could be drawn from this

model, we based all further analyses and comparisons on this adjusted HGF.

The dependence between the goodness of fit measure and the (hand-crafted) prior is excep-

tionally severe in this case. This is because a prior on the response variance directly influences

the reference distribution to which the data are compared as implemented in the log likelihood

measure, and consequently the BIC value. However, it should be noted that the impact of pri-

ors on the log likelihood score does not transfer to the rest of the HGF’s priors which affect the

posterior response distribution less directly.

Fig 3 shows the problems of the HGF fit in three different ways. First, Fig 3a shows a histo-

gram representation of the full distribution of predicted (blue) and actual (black) RTs. The

underestimation of the way the subjects sped up is apparent as a compression in the range,

with an overly frequent prediction of moderate RTs.

Second, Fig 3b shows the perceptual model’s inference about the probability of the most fre-

quent transition during the sequence in Fig 2. It is apparent that the HGF learned this proba-

bility rather quickly—even exceeding the true probability value of 0.7. However, it was then

left unable to fit the successive speeding of the subjects during the high probability periods, as

its beliefs did not decline substantially during low probability trials. To put this another way,

the HGF underestimated the lability of the subjects’ beliefs, having too large a window of inte-

gration. Indeed, it seems that subjects changed their beliefs significantly even within blocks.

Thus the subjects readily re-learnt probabilities after unexpected transitions, whereas the HGF

did not.

Fig 3c provides a different view of the same issue. This shows the speeding curves averaged

over all high probability sequences and separated over the first and second half of the blocks,

for the data and the HGF. Again, the HGF appeared insufficiently labile. Fig 3c also suggests

another limitation of the HGF. One key characteristic of the task is the discrete changes to the

transition matrices T . There are various ways to capture changepoints in Bayesian models

Fig 3. Model fits to the 0th-order sequences. RTs in the placebo group are shown in black and predictions of the HGF

in blue and FOM in red. (a) Distribution of average RTs and predictions. (b) Estimates of the probability for transition

from stimulus 2 to 2 (shaded grey) in the sequence shown in Fig 2 simulated from the average parameters inferred

from the placebo group. The horizontal lines indicate uniform belief (0.25) and the transition probability of the

predominant transition (0.7) of the transition from stimulus 2 to the next stimulus. (c) RTs and model predictions

averaged over all uninterrupted sequences of the high probability stimulus separated according to whether they started

in the first or second half of blocks. Trials on which the speeding curve was significantly shallower during the second

half compared to the first are marked by asterisks.

https://doi.org/10.1371/journal.pone.0205974.g003
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[18–20, 40]. However, before fitting these, we conducted some model-agnostic analyses to

determine whether subjects showed any sensitivity to the changes. An obvious signature

would be that the RTs following high probability transitions in the second half of a block

would not only be faster than those in the first half, but, crucially, would also change less over a

high probability sequence. That is, the speeding curve in the second half of a block would be

shallower. Both of these phenomena would arise because of learning.

We therefore analysed the speeding curves of subjects in the placebo group during in the

0th-order blocks. We sought to compare RTs between the first and second halves of blocks on

unbroken sequences of the predominant stimulus to investigate any differences in the degree

to which subjects increased their speed from one trial to another. Since the speeding curves

were somewhat idiosyncratic, we separately compared speeding on successive trials for each

trial t within a high probability sequence (i.e. comparing (zlogRTt+1 − zlogRTt) between block

halves where zlogRT denote log RTs, and predicted log RTs respectively, that were z-scored for

individual subjects with mean and standard deviation based only on the trials from unbroken

0th-order sequences). We constructed permutation tests by shuffling between block halves the

(zlogRTt+1 − zlogRTt) within subjects (10000 iterations) for each trial. As expected, the extent

by which the subjects sped up on unbroken sequences did not significantly differ between first

and second half of a 0th-order block (all p-values� 0.2). That is, the speeding curves were

parallel.

In contrast, the HGF predicted a significantly shallower speeding curve for responses in the

second than the first half of blocks on trials 2-4 (p2,3 < 0.001, p3,4 = 0.01). This would have

implied that subjects would have been sensitive to the predictive failure consequent on a block

change, allowing them to rely in the second half of a block on the knowledge about transitions

acquired in the first half.

Thus, the data suggest that the chain of observations were perceived more as coming

from an inherently unstable environment with only short periods of predictability, than

from a sequence of separable probabilistic contexts (as considered, for instance, in work on

unexpected uncertainty; [20]). Even though the HGF lacked the discrete change process

which is actually true of the data, its hierarchical structure allows for variable learning rates

that provide an approximate alternative model to rapid changes. However, the parameters of

the HGF were set into a range (potentially further restricted by the upper bound on the

meta-volatility ϑ) in which there is insufficient echo of the quickly changing beliefs observed

in this task. Indeed even only a few unexpected observations led to substantial slowing, fol-

lowed by the observed re-learning within contextual blocks. To put it another way, the block

structure apparently had less impact on subjects’ learning than predicted. These results echo

previous observations that learners fail to exploit the hierarchical nature of volatile environ-

ments [7–9].

3.2 Forgetful Observer Model

These various findings suggest that the generality of the HGF may have impacted its ability to

fit the data. Instead, the fact that subjects’ responses are so labile to changes in the symbols sug-

gests that a model based on ready forgetting, rather than an extra layer of an inferential hierar-

chy as in the HGF, might fit more accurately. A wealth of models employing the idea that the

impact of past experience decays with time have been proposed on different levels of analysis

in the past, such as models for neural integration [41–45], computations of neural populations

[7], and models accounting for behaviour in tasks of stimulus-response, probabilistic contin-

gency, and reinforcement learning [9, 37, 46–48]. Equally, a model could be built that correctly

reflects the subjects’ knowledge that only a single symbol would be presented at any time.
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Fig 4 shows the perceptual component of the new, forgetful observer model (FOM). While

differing in its general mathematical formulation, our specific choices of parameters for this

task render the FOM a version of the model suggested by Harrison et al. [37]. The first level of

this component is based on the true process that generated the data that the subjects observed.

Stimuli (s 2 {1, 2, 3, 4}) are drawn at each trial t from a categorical distribution parameterised

by transition probabilities (U ij for the transition from stimulus i to j). This is exactly how the

stimuli were actually generated from transition matrix T (Eq 2). Then, at the second level, the

rows U i� of U are assumed to be drawn from the conjugate of this categorical distribution, i.e.,

a Dirichlet distribution. The parameters of the four Dirichlet distributions (Uij) can be inter-

preted as the number of effective observed transitions. In total, this implies:

PðU t
i:jU

t
i:Þ ¼ DirichletðUt

i:Þ ð1Þ

Pðstjst� 1 ¼ iÞ ¼ CategoricalðU t
i:Þ ð2Þ

If the environment is known to be constant, then the analytical update equation in this

model involves adding counts to the parameter of the Dirichlet distribution that corresponds

Fig 4. Forgetful Observer Model (FOM). The perceptual component tracks the observers’ learning over just two

levels. The lower level represents transition probabilities analogous to the generating transition matrices T ’s. The top

level represents the parameters of a (forgetful) Dirichlet distribution. These can be interpreted as counting numbers of

effective transitions, which are incremented by experience, and decremented to an asymptotic prior γ by a forgetting

rate λ. The response component predicts subjects’ responses according to a linear combination (with weights β) of

quantities in the perceptual component and model-agnostic factors.

https://doi.org/10.1371/journal.pone.0205974.g004
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to the observation. Rather than modelling the details of the process by which the transition

matrices actually change (something that the subjects did not know), we adopt the simpler

approximate strategy of using a forgetting process as has been used by Harrison et al. [37] to

model a similar, 1st-order Markov, 4-alternative forced-choice task. This involves two parame-

ters, a forgetting rate λ 2 [0, 1], which is conceptually related to the tonic learning rate ω in the

HGF, and an asymptotic prior g 2 R�0, which is the target of the forgetting process, given no

new observation. We discuss the effect of γ below.

The update equation for each parameter of the Dirichlet distribution Uij after observing

stimulus s at time t is then:

Utþ1
ij ¼ ð1 � lÞðU

t
ij � gÞ þ gþ dððs

t� 1; stÞ; ði; jÞÞ ð3Þ

where δ is the Kronecker-delta (δ(a, b) = 1 iff a = b). The Dirichlet distribution is initialised as

Uð0Þij ¼ g.

The coupling between perceptual and response components was then closely related to that

for the HGF. We characterised log RTs as being linearly related to a model-agnostic term

(quantifying the effect of post-error slowing) and model-dependent quantities (the probabilis-

tic surprise at the symbol). By comparison with the HGF, we used a flat prior over these

parameters since there was no evidence for any specific parameter values prior to this study. In

particular, no informative prior was placed over the response variance (which underlay prob-

lems in model comparison with the HGF).

According to the model:

log ðRTÞt ¼ b0 þ b1
�U t

st� 1st þ b2wðet� 1Þ ð4Þ

where �U t
st� 1st is the mean of the posterior distribution for the actual transition from st−1 to st,

and χ(et−1) is 1 if the subject pressed the wrong button on trial t − 1 or 0 otherwise. The for-

getting rate was optimised using the Matlab function fminsearch, while regression coeffi-

cients for the response component of the model were obtained from standard least squares.

We validated this procedure by showing excellent parameter recovery based on data generated

from the model (see S1 Fig).

Under this model, parameter γ has a qualitative effect on the predictions made by the per-

ceptual component, as well as a quantitative one. If γ = 0, forgetting is characterised by an

increase in uncertainty (coming from the diminishing counts), but stable relative belief esti-

mates (as the ratio of the counts remains stable). Stable relative beliefs are also inherent to the

HGF, and this results in qualitatively similar belief trajectories (not shown). However, if γ> 0,

then beliefs instead asymptote towards uniform expectations about all possible transitions.

This allows the model to re-learn transition probabilities continually, not only after context

changes but equally strongly within blocks as information from previous trials in a block

depreciates.

Figs 2 and 3 show that the FOM could capture the 0th-order sequences far more proficiently

than the HGF. It provided a particularly good fit for the speeding during the high probability

periods. Nevertheless, Fig 3c shows that the FOM predicts significantly shallower speeding

from trial 2 to 3 during the second half of a block (p = 0.01); while all other comparisons were

statistically insignificant.

In the HGF, the deviation from the data arises from its overconfident beliefs. By contrast, in

the FOM, the deviation arises from the forgetting process: Since transitions from rare stimuli

to the predominant stimulus initialising each high probability sequence are forgotten rapidly,

the FOM predicts similar RTs on the first trial of each sequence, wherever it appears in a

block, whereas the data shows a clear offset between those RTs in the first versus second half of
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a block (see Fig 3c at Trial 1). Consequently, the speeding curve predicted by the FOM opti-

mised on the full data is slightly differently scaled in the first and second block.

3.3 Model comparison

In order to put the FOM on an equal footing with the HGF for the sake of comparison, indi-

vidual values of λ and β were fit to the RT data for each subject. By contrast, γ was fixed to 1

for all subjects as in [37] since BIC values did not favour an extra parameter spent per subject,

but provided compelling evidence for γ> 0 (as discussed below). Note that while the FOM is

more general in its hierarchical structure and the additional parameter for the asymptotic

prior, the choice of belief measure and value of γ renders its behaviour essentially identical to

that implied by the exponential forgetting kernel in [37].

The placebo group forgot at an average rate of λ = 0.303 ± 0.222. Furthermore, across

this group, all the β parameters of the response model were significantly different from zero

(β0 = 6.671, β1 = −1.248, β2 = 0.0445 with all p-values < 0.001). These coefficients imply that

higher values of inferred transition probabilities ubiquitously resulted in speeding across all

models (negative β1). Furthermore, post-error slowing was present (positive β2).

The bold rows in Table 1 report the log likelihood and BIC values for the fits of the HGF

and the FOM on the entire data. It is evident that the FOM substantially outperformed the

HGF in terms of both scores. A confusion analysis was performed to ensure the efficacy of the

model selection procedure. This revealed that the log likelihood measure provided a firm

ground for selection between the two model classes (confusion was less than 1% in either

direction; see S1 Table). Indeed, that the FOM outperformed the HGF in terms of the log like-

lihood is a stronger result than the equivalent based on the BIC score, since the HGF is a far

more complex model, with many more parameters.

One of the main differences between the FOM and the HGF is the use of normalised rather

than unnormalised belief measures at the lowest level (i.e., exploiting the subjects’ knowledge

that only a single stimulus could appear). To assess the importance of this, we considered

using the count Ut
st stþ1 rather than the normalised �U t

st stþ1 as a factor in the response component

of the model. This removes the constraint that there can only be a single symbol st+1. The bot-

tom row of Table 1 shows that the unnormalised model was significantly out-performed by

the normalised version, implying that subjects’ responses were indeed better described as

being constrained to and by the task-relevant events.

Furthermore, the difference in log likelihood (and BIC value) between the FOM with stable

beliefs (γ = 0) and converging beliefs (γ = 1) suggests that the modified belief trajectories of the

latter had a significant impact on the model fit. This supports the choice of prior beliefs.

As a final test, we considered the speeding in the first and second half of the blocks (as in

Fig 3c) to assess the magnitude of the observed mismatches between data and models. We

compared the relative magnitudes of the differences between the HGF and the FOM and the

data, and between the FOM and the data, again using permutation tests (for trials 2-3 and 3-4).

We found that the HGF’s differences in speeding curves were significantly greater in magni-

tude to those of the FOM (p2,3 < 0.001, p3,4 = 0.03), and also to those of the data on trial 2 to 3

(p2,3 = 0.006). By contrast, comparing the FOM against the data in the same way revealed no

significant difference in magnitude (all p-values� 0.4).

3.4 Drug groups

Since the FOM was significantly more consistent with the data across all the groups of pharma-

cologically-manipulated subjects than the HGF (see Table 1), we compared its parameter fits

with those for the placebo group to assess the effects of the drugs. Statistical tests were
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Bonferroni corrected for the three groups; and were corrected for differences in alertness and

body weight.

We found no evidence for significant group differences between the placebo group and sub-

jects in the DA and NA condition; thus our analyses are focused on the ACh group. In particu-

lar, we did not find this group to be significantly slower than the placebo group, and neither

did the cholinergic compound significantly influence the effect of surprise on RTs (i.e., β0 and

β1 were not significantly different from placebo). Instead, we found that the ACh group forgot

significantly faster than the placebo group.

That the forgetting rate λ was higher for the ACh than the placebo group in the 0th-order

contexts implies that learning was based more strongly on recent observations and reached

asymptote more quickly. This result stands in contrast to the lower learning rate that was

found when fitting the HGF, which implies more stability and less flexible adaptation to the

environment.

3.5 First-order and alternating matrices

The contingencies associated with the 0th-order matrices are particularly simple—with one

single response becoming greatly over-represented. Quantifying the performance of these

models for data coming from the other matrix types (Table 2) reveals that the FOM better fit

the data in all three block types, albeit with a particularly large margin for 0th-order matrices.

Nevertheless, Fig 5 shows the equivalent of Fig 2 for the alternating and 1st-order matrix

types in which different patterns of response have high probability. It is apparent that the HGF

and the FOM are similarly incapable of capturing the nuances of the speeding in these cases.

Fig 6 provides some insight into the issues for the models, showing what happens with the

high probability sequences for the other matrix types. Again, the HGF is too rigid to fit them

well at all. The FOM fit the early speeding well, but then reaches an asymptote, rather than

speeding further to match the subjects.

The obvious possibility is that the FOM’s simple model of forgetting may only be an

approximation to the actual intricate mechanisms of adaptation and change. Fig 7 shows two

examples of log RTs on particular high probability sequences that provide extra evidence for

this. Here, subjects modulated their responses markedly, even though every transition was

highly likely and continuous speeding might have been expected. The qualitative pattern of

changes in log RTs is initially well-captured, albeit with a reduced amplitude. However, for-

getting makes these expected variations flatten out over time—whereas they are, if anything,

magnified in the data. One possible explanation is a form of chunking of behavioural patterns

(requiring n-gram models for n> 1): for example, a sequence of high transition probabilities

Table 2. Model summary split by matrix type. Number of parameters per subject, average log likelihood and BIC val-

ues for data observed in different block types for the favoured HGF and FOM fit on the entire data sequence.

Model Parameters average LL ×104 BIC

HGF (relaxed prior) 10

0th-order 642 52

1sth-order -510 11967

alternating 75 8154

FOM (converging beliefs, γ = 1) 4

0th-order 1277 -13629

1st-order -390 5999

alternating 211 2075

https://doi.org/10.1371/journal.pone.0205974.t002
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in 0th-order matrices is a simple repetition of one stimulus, whereas all four stimuli occur dur-

ing such sequences in a 1st-order matrices.

Note that half of all trials belonged to 0th-order matrices, thus favouring fits of these con-

texts and thereby shifting parameter estimates to those appropriate in matrices with simple

behavioural dynamics. Therefore we fitted individual FOM’s to data from the different matrix

types in order to validate the parameter values for the drug groups obtained from the full

model. Due to the disruption of the sequence of T ’s, the FOM’s beliefs were set to be uniform

Fig 5. Example sequences for the 1st-order and alternating sequences. Shown are the data (black), and predictions

for the HGF (blue) and the FOM (red) averaged over subjects in the placebo group. High probability transitions are

shaded in grey.

https://doi.org/10.1371/journal.pone.0205974.g005

Fig 6. Speeding on high probability sequences for different matrix types. RTs (grey) and predictions of the HGF

(blue) and FOM (red) averaged over subjects in the placebo group for all uniterrupted sequences of high probability

transitions for the three matrix types.

https://doi.org/10.1371/journal.pone.0205974.g006
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at the beginning of each block. Even though the log likelihood associated with FOM’s fitted to

individual transition dynamics were greater, the qualitative underfit remained (data not

shown).

Drug groups. We evaluated the differences between drug groups based on the parameters

inferred by FOM’s fitted to data from the different matrix types. This confirmed the higher for-

getting rate in case of 0th-order matrices and average RT for ACh group that we reported for

fits of the full model (Fig 8). However, when fitting the FOM to 1st-order and alternating

matrices, we found no significant difference in forgetting rates and average RT when

Fig 7. Response variability in sequences of high probability transitions. Average RTs in placebo group (grey) for a

single example sequence of high probability transitions in a 1st-order and alternating context, and predictions of the

FOM (red).

https://doi.org/10.1371/journal.pone.0205974.g007

Fig 8. Differences in parameter values of ACh groups versus placebo for different matrix types. ACh group shows

a significantly higher forgetting rate and average response time for FOM fitted on 0th-order matrices only, whereas

FOM fitted to either 1st or alternating matrices show significantly less response modulation. Error bars indicate 95%-

confidence intervals; significance stars indicate significance from zero after Bonferroni correction.

https://doi.org/10.1371/journal.pone.0205974.g008
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comparing ACh group to placebo. Instead, we observed a more limited modulation of

responses based on beliefs about transitions (i.e., a reduced magnitude of β1).

Of course, interpreting the parameter values in Fig 8 for 1st-order and alternating matrices

is tricky because neither the HGF nor the FOM fit the data satisfyingly well. Fig 9 depicts this

more starkly. It shows that the behaviour of the ACh group was strongly influenced by the

complexity of the probabilistic context. While in the 0th-order contexts the ACh group

appeared to learn to a similar degree as the placebo group, modulation of their RTs was signifi-

cantly shallower in the alternating contexts and almost absent in 1st-order matrices. The

behaviour in the 1st-order matrices suggests that the ACh group, instead of forgetting rapidly,

might actually have learned less from their observations. In order to test this, we included an

extra learning parameter in the FOM which weighted the count added to the Dirichlet parame-

ters on each trial (i.e. allowing for weaker or stronger learning by changing the number of

counts added). However, the improved fit associated with this additional parameter did not

justify the increase in complexity (as assessed by the BIC score).

4 Discussion

We considered the characteristics of two Bayesian-inspired models of learning and their

match to human behaviour on a probabilistic serial reaction time task. Both models are

approximate in their characterisation of the task, reflecting the assumption that subjects did

not acquire the true generative model thus rendering their behaviour sub-optimal. However,

the models made different assumptions about the way that learning in a particular task can

best be characterised. The HGF implements a rather generic inference method that is assumed

to be able to govern learning in any task environment—it therefore faces the risk of underfit-

ting performance in any particular task. By contrast, the FOM is more narrowly tailored to the

task requirements and statistics, and so might overfit the task in the sense of not advancing the

general understanding of learning.

Fig 9. Comparison of actual and predicted responses between placebo and ACh group. Average RTs in placebo and

ACh group (grey) for one example block from each of the three types and average predictions of HGF (blue) and FOM

(red).

https://doi.org/10.1371/journal.pone.0205974.g009
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In sum, the FOM generally accounted for the data in a more accurate and more parsimoni-

ous way. In particular, there was clear evidence that subjects were sensitive to the competition

between stimuli at the output (i.e., that only one could appear at once). Furthermore, the anal-

yses suggest that learning was characterised not only by a trialwise accumulation of evidence

in favour of observed transitions but also by an additional blurring of these beliefs which we

approximated by our continuous forgetting process with beliefs converging to a uniform dis-

tribution over time.

While the FOM was designed to capture those parts of the task design that were available to

subjects (e.g., the expectation that there would be exactly one possible outcome per trial), for-

getting is perhaps best seen as an approximation to the way that subjects dealt with the hidden

hierarchical structure in the task about which they were not informed. That subjects were

indeed unaware of the task structure and did not recover it during the experiment was revealed

by their short window of integration that led to re-learning of transition probabilities within

contextual blocks. We provided evidence that, rather than being treated hierarchically, subjects

treated the observations as a mixture of short predictable sequences interrupted by random

events. This led to sub-optimal behaviour under the true model of the task. These results are in

line with previous findings demonstrating failings of ideal observer models in environments

with changing contingencies [7–9] in which learners did not recover the task structure either.

The HGF’s approximate learning scheme proved to be too inflexible to fit this data. This was

reflected, for instance, in too large a window of integration. The results challenge a hope that

the HGF might be a ubiquitous general-purpose inference model employed by humans. Along

similar lines, it is straightforward to conceive of other tasks in which the generic algorithm

implemented by the HGF is likely to deviate from human behavior, such as learning experi-

ments in which the features of the stimuli have different degrees of predictive power [49, 50],

and so may involve selective attentional mechanisms [48, 51].

The FOM captured subjects’ sub-optimal behaviour well in the simple probabilistic contexts

with only one predominant outcome (the 0th-order matrices). This finding joins a range of

work providing empirical support of behavioural models including a forgetting process [9, 37,

46–48].

Two distinct mechanism have been suggested to give rise to forgetting one in which new

observations overrides past experiences, and another that creates a novel model that competes

with the model acquired in the past (and with which it can be ‘switched’) (e.g. [52]). In our

study we have concentrated on modelling the former type of forgetting since we found no evi-

dence to support the mechanism of the latter (despite the design of the task explicitly encour-

aging this). This absence was reflected in subjects not detecting the abrupt context changes

selectively, but rather displaying frequent relearning even within contextual blocks.

Thus, in our characterisation, learning and forgetting are closely related processes that are

tied to each other through time. Learning about the current statistics of the world inevitably

implies reduced impact of past experiences. Typically, models of this type of forgetting operate

with only one time constant, however evidence suggests that multiple timescales may exist in

the brain [41, 53, 54] and how they may be used to achieve flexible behaviour [7, 55]. While

this is certainly an interesting possibility, we did not have enough data to investigate this fur-

ther in an appropriately careful manner.

Furthermore, Fusi et al.’s [7] work suggests a potential mechanism of how forgetting could

be realised on a neural level. The authors suggest that synaptic plasticity alone can give rise to

many of their observed behaviours in monkeys, especially when including multiple learning

rates. Other work suggests that neurons may have different temporal receptive fields which

have been found predictive of behaviour [43–45].
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Both the HGF and the FOM failed to describe the nature of response patterns sufficiently in

more complex dynamics. This shortcoming stresses the importance of more sophisticated

models of learning in order to unravel the interactions of representations and computations

underlying behaviour. One possible cause is chunking, which has been demonstrated to play a

significant role in motor learning of sequences [56–59]. Another possibility is that predictions

have longer history dependence, i.e. not only the current stimulus predicts the next, but pre-

dictions are based on the past two trials or more (counterfactually, except around boundaries

between matrices). Both such approaches would require n-gram models for n> 1 or perhaps

learning/forgetting processes with multiple time constants. Along the latter lines is the model

of Jones et al. [60] which proposes that different statistics are tracked in parallel such as stimu-

lus base rate and probability of change. It would be interesting to modify the experimental

design specifically to test these potential contributions. Moreover, the shortcomings of the

FOM and HGF also limit our confidence in interpreting either model as providing complete

constraints over the neural processes concerned.

However, based on its fit to the simple 0th-order dynamics, our model suggests that block-

ing ACh receptors led to increased adaptability. This was reflected in stronger unlearning of

expectations over the most likely transitions and consequently stronger re-learning during

predictable sequences captured by a higher forgetting rate in our model. This finding stands in

contrast to prior results obtained from analyses using the HGF reporting a lower learning rate

if receptors are blocked [13] and conversely, higher learning rate when ACh receptors are

stimulated [31]. This discrepancy raises two questions: Why do the HGF and FOM result in

opposite interpretations? How could higher adaptability during receptor blockade fit with

existing theories on the neuromodulatory systems?

To the first question: the HGF’s parameter estimates are likely compromised by the

restricted space of possible solutions under its model, which do not well encompass the

dynamics even of the 0th-order dynamics.

To the second question: one possibility is that the effect comes from the interaction between

different sorts of uncertainty postulated by Yu and Dayan [20, 61]. According to that account,

ACh reports expected uncertainty; and other systems unexpected uncertainty (noradrenaline

in that paper; the dorsal anterior cingulate cortex in [18]; a structure with projections to the

noradrenergic locus coeruleus). The result of compromising expected uncertainty (ACh) is

that subjects would more frequently be in a state of unexpected uncertainty, leading to the per-

ception of even greater instability of the environment. A shorter window of integration in

highly volatile environments can thus be viewed as a beneficial result of the learning

mechanics.

We showed that even in the placebo group, the sequence of observations might not have

been perceived in the hierarchical manner that was originally intended. Rather, the environ-

ment appeared very labile. The lack of effect following manipulations of NA could potentially

have resulted from this, with an environment perceived as inherently unstable failing to trigger

signals from this system. More detailed examination of the interaction between ACh and NA

with a task in which the transitions are more salient would be interesting.

Of course, parameter interpretability is always limited by a model’s ability to account for

the data as mechanisms might lie outside the scope of its workings, or simply because the data

provides little signal. While the FOM appeared to provide a sufficiently close account of behav-

iour in simple dynamics, the particularly shallow response pattern of the ACh group in the

complex contexts posed a significant challenge to both the models. A flat, or very noisy, learn-

ing curve might be equally well approximated by a particularly high (immediate forgetting) or

low (no learning at all) learning rate, or, as reported by individually fitted FOMs, belief updat-

ing matching that found under placebo, but with a reduced weighting of top-down knowledge.
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In the same way, the absence of any significant overall slowing of the ACh group in the 0th-

order blocks could be explained by the high forgetting rate, as the reduced expectations that

result ultimately predict slower RTs in the linear response model. Even though an additional

parameter in the FOM to explicitly adjust the speed of learning in addition to forgetting was

not supported by the data, this might be a result of the model’s inability to fit higher order

response features in these contexts.

The discrepancy between interpretations of parameters in the drug groups in the HGF and

FOM stresses the importance of comparisons between models implementing different

assumptions about the underlying process, especially when the assumptions of the models

remain speculative. While it is appealing to compare results within a single over-arching

modelling framework (like the HGF) since it provides a consistent ground across data sets, we

have shown that this is not without challenges. Of course, inference in special-purpose models

based on instructions or experience may itself be mysterious and it might actually be that sub-

jects start off using something akin to the HGF, and build a more specific model in the light of

predictive failure. However, the task here was not designed to examine this possibility.

Furthermore, our finding that a change in the prior on the response variance in the HGF

had a major effect on the log likelihood and BIC score even though posterior predictions

remained unchanged, draws attention to a more general issue that can arise when performing

model comparison. The fact that priors are part of the statistical model that is being evaluated

on the basis of goodness of fit measures, like the BIC value, stresses the importance of paying

great attention to these modelling choices whose subjectivity have been put forward as criti-

cism of the Bayesian framework ever since it came into fashion. Furthermore, it highlights the

need to assess a model’s fit in direct comparison with the raw data which may reveal properties

of the model that cannot be detected solely based on a one-dimensional scale.

In summary, our results show some of the potential pitfalls of using powerful, generic,

inference methods to characterise human behaviour in relatively complex circumstances. They

also show both the power and problems of using more specific inference methods. In terms of

the latter: our subjects were more inefficient than expected in apparently ignoring a significant

part of the hierarchical structure of the domain; by contrast, their behaviour suggested that

they could chunk sequences of high probability actions in a way that our perceptual and

response models were not readily able to capture. Nevertheless, even though interpretations of

the behaviour on the full data remain speculative, our close fit to responses in the simple

dynamical cases provides a window onto subjects’ processing. The results stress the impor-

tance of model comparison and provide examples of how models based on different assump-

tions can collectively enrich our understanding of powerful psychological mechanisms.

Supporting information

S1 Table. Confusion analysis. We performed a confusion analysis for the FOM and HGF in

order to test the efficacy of our model selection procedure. For each subject in the experiment

we sampled a dataset based on the parameter values estimated under either model. This

resulted in 124 simulations from each model. Subsequently, we fit the FOM and HGF on both

sampled datasets and recorded whether the model that generated the data was indeed sup-

ported by a higher log likelihood score. The results show that a model comparison based on

the log likelihood is near perfect in telling apart FOM and HGF for the particular task of our

study.

(PDF)

S1 Fig. Parameter recovery. We used the same sampled datasets as in the confusion analysis

to investigate the reliability of parameter estimates for the perceptual components of the FOM
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and HGF. For this we compared the parameters used for sampling the data with those recov-

ered by each model. It can be obtained that the forgetting rate (λ) of the FOM was estimated

accurately. Similarly, the tonic learning rate (ω) on the second level of the HGF was well recov-

ered. However, the HGF’s metavolatility estimates (ϑ) on the third level were considerably cor-

rupted limiting the degree to which conclusions can be drawn based on quantities from the

top level of the HGF. Diagonal lines indicate optimal recovery.

(PDF)
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