
Deeper Image Quality Transfer: Training
Low-Memory Neural Networks for 3D Images

Stefano B. Blumberg2, Ryutaro Tanno2,
Iasonas Kokkinos2, Daniel C. Alexander1,2

1 Clinical Imaging Research Centre, National University of Singapore
2 Department of Computer Science and Centre for Medical Image Computing,

University College London (UCL)

Abstract. In this paper we address the memory demands that come
with the processing of 3-dimensional, high-resolution, multi-channeled
medical images in deep learning. We exploit memory-efficient backprop-
agation techniques, to reduce the memory complexity of network train-
ing from being linear in the network’s depth, to being roughly constant
– permitting us to elongate deep architectures with negligible memory
increase. We evaluate our methodology in the paradigm of Image Quality
Transfer, whilst noting its potential application to various tasks that use
deep learning. We study the impact of depth on accuracy and show that
deeper models have more predictive power, which may exploit larger
training sets. We obtain substantially better results than the previous
state-of-the-art model with a slight memory increase, reducing the root-
mean-squared-error by 13%. Our code is publicly available.

1 Introduction

Medical imaging tasks require processing high-resolution (HR), multi-channeled,
volumetric data, which produces a large memory footprint. Current graphics pro-
cessing unit (GPU) hardware limitations, constrain the range of models that can
be used for medical imaging, since only moderately deep 3D networks can fit on
common GPU cards during training. Even with moderately deep networks, cur-
rent practice in medical imaging involves several compromises, such as utilising
a small input volume e.g. patches [1], that forces the network to perform local
predictions, or by using a small minibatch size [2], which can destabilise train-
ing. Whilst the impact of network depth has been extensively demonstrated to
produce improved results in computer vision [3,4], this issue has attracted scant
attention in medical image computing, due to the aforementioned limitations.

We introduce memory-efficient backpropagation techniques into medical imag-
ing, where elongating a network produces a negligible memory increase, thus
facilitating the training of deeper and more accurate networks. We combine two
memory-efficient learning techniques: checkpointing [5] and reversible networks
(RevNets) [6,7], that exchange training speed with memory usage. Deepening an
existing architecture, we systematically demonstrate that elongating a network
increases its capacity, unleashing the potential of deep learning.

ar
X

iv
:1

80
8.

05
57

7v
1 

 [
cs

.C
V

] 
 1

6 
A

ug
 2

01
8



We demonstrate the effectiveness of this technique within the context of Im-
age Quality Transfer (IQT) [8]. IQT is a paradigm for propagating information
from rare or expensive high quality images (e.g. from a unique high-powered
MRI scanner) to lower quality but more readily available images (e.g. from a
standard hospital scanner). We consider the application of IQT to enhance the
resolution of diffusion magnetic resonance imaging (dMRI) scans – which has
substantial downstream benefits to brain connectivity mapping [1,8].

By studying the impact of network depth on accuracy, we demonstrate that
deeper models have substantially more modelling power and by employing larger
training sets, we demonstrate that increased model capacity produces significant
improvements (Fig.4). We surpass the previous state-of-the-art model of [1], re-
ducing the root-mean-squared-error (RMSE) by 13% (Fig.4) – with negligible
memory increase (Fig.6).

We expect that our methods will transfer to other medical imaging tasks that
involve volume processing or large inputs, e.g. image segmentation [9], synthesis
[10] and registration [11] – therefore our implementation is publicly available at
http://mig.cs.ucl.ac.uk/.

2 Memory-Efficient Deep Learning

In this section, we use the concept of a computational graph to explain how the
memory consumption of backpropagation increases with deeper networks. We
present RevNets and illustrate how to insert them in a pre-defined architecture.
Finally we combine checkpointing with this elongated system, to perform manual
forward and backward propagation, allowing us to trade memory consumption
with computational cost during training.

Memory Usage in Backpropagation We consider a chain-structured network
with sets of neurons organized in consecutive layers X1, X2, . . . , XN , related in
terms of non-linear functions, Xi+1 = f i(Xi, θi), with parameters θi specific to
layer i. Training aims at minimizing a loss function, L(XN , Y ), where Y is the
target output – in the setting of IQT, the high-quality patch.

Backpropagation recursively computes the gradient of the loss with respect
to the parameters θi and neuronal activations Xi

0, at layer i. Its computa-

tion at layer i takes inputs dfi

dXi ,
dL

dXi+1 , X
i
0 to compute dL

dθi |Xi
0
, dLdXi |Xi

0
. There-

fore backpropagating from XN to X1 requires all intermediate layer activations
X1

0 , . . . , X
N
0 . This means that memory complexity can scale linearly in the net-

work’s depth, which is the case in standard implementations.
Memory-efficient variants of backpropagation trade computational time for

training speed without sacrificing accuracy. As an example, when backpropagat-
ing at layer i, one can compute Xi

0 from scratch, by re-running a forward pass
from the input X0

0 to Xi
0. The memory usage is constant in network depth, but

the computational cost is now quadratic in depth. Checkpointing [5] – a method
that applies to general graphs, allows the memory cost to scale at square root
of the network’s depth, whilst increasing the computational cost by a factor of

http://mig.cs.ucl.ac.uk/


3
2 . RevNets [6,7], also increase the computational cost by a similar factor, via
their invertibility, we may keep the memory consumption constant in the net-
work’s depth. In our implementation we use a combination of the two methods,
as detailed below.

Fig. 1: A RevNet (top) and architecture elongation (bottom). Top: Flowcharts of
a RevNet block [6,7], with input and output feature maps respectively X,Y in (a)
forward pass and (b) backward pass. Black dotted lines are identity operations,
red dotted lines are concatenation and splitting operations, F1,F2 are non-linear
functions. Bottom: We elongate a network by inserting N RevNet blocks between
layers n, n + 1 of a neural network. First, as in (c) we split the intermediate
activation between layers n, n+1 into two computational nodes Y n, Xn+1; then,
as in (d), we insert N RevNet blocks between Y n, Xn+1.

Reversible Networks A RevNet [6,7] is a neural network block containing
convolutional layers, where its input activations can be computed from its out-
put activations (Fig.1b). We use two residual function bottlenecks F1,F2 [4]
as its convolutional blocks. When stacking RevNet blocks, we only cache final
activations of the entire stack. During backpropagation, we compute intermedi-
ate stack activations on-the-fly, via the inversion property. The formulae for the
forward and backward (inversion) are:

Forward Pass Inversion

X = [xα, xβ ] Y = [yα, yβ ]

z = xα + F1(xβ) z = yα

yβ = xβ + F2(z) xβ = yβ −F2(z)

yα = z xα = z −F1(xβ)

Y = [yα, yβ ] X = [xα, xβ ]

Augmenting Deep Neural Networks Suppose we wish to improve the per-
formance of a neural network architecture by making it deeper [3]. We propose



to pick two layers of the architecture and add a stack of RevNets between them
(Fig.1c,d). This refines the intra-layer connection and facilitates a more compli-
cated mapping to be learnt between them.

Fig. 2: 2D illustration of the baseline network: 3D ESPCN [1].

Augmenting the ESPCN We evaluate our procedure with the ESPCN net-
work, which holds the benchmark for HCP data super-resolution (IQT) [1].
The ESPCN (Fig.2) is a simple four-layer convolutional neural network, fol-
lowed by a shuffling operation from low-to-high-resolution space: a mapping
H ×W ×D× r3C → rH × rW × rD×C, with spatial and channel dimensions
respectively H,W,D and C.

We augment the ESPCN (Fig.3a), by adding N RevNet blocks in a stack,
preceding each ESPCN layer. When optimising network weights, we can either
perform the forward and backward pass (backpropagation) via the standard
implementation i.e. a single computational graph, which we denote as ESPCN-
RN-N-Naive; or utilise the reversibility property of RevNets with a variant of
checkpointing, denoted by ESPCN-RN-N and illustrated in Fig.3. Note ESPCN-
RN-N-Naive, ESPCN-RN-N have identical predictions and performance (e.g. in
Fig.4), only the computational cost and memory usage differ (Fig.6). We finally
note that this technique is not restricted to the ESPCN or to super-resolution,
but may be employed in other neural networks.

3 Experiments and Results

IQT We formulate super-resolution as a patch-regression, to deal with its large
volume, where the input low-resolution (LR) volume is split into overlapping
smaller sub-volumes and the resolution of each is sequentially enhanced [1,8].
The HR prediction of the entire 3D brain is obtained by stitching together all
the corresponding output patches (Fig.5).

HCP Data We follow [1,8] and utilise a set of subjects from the Human Con-
nectome Project (HCP) cohort [12]. This involves healthy adults (22-36 years
old), where we specifically vary race, gender and handedness, which effects brain
structure. Each subject’s scan contains 90 diffusion weighted images (DWIs) of



Fig. 3: We augment the ESPCN (Fig.2) and illustrate (a) the global forward pass,
(b,c) the backward pass on part of the network. (a) Augment the ESPCN (1c,d).
In the forward pass, we cache (purple squares) activations A0, A1, A2 and create
no computational graphs. (b,c) We illustrate backpropagation in the section
between the activations A1, A2: (b) Load A2 from the cache (purple dotted
square) and receive the loss gradient A2 := ∂L

∂A2 from ESPCN Layer 3 (dotted
arrow). Iteratively we pass the activation and gradient backwards per block,
deleting redundant values. The final gradient X0 is passed to ESPCN Layer 2
(dotted arrow). (c) Backpropagation on ESPCN Layer 2. (ci) Load activation
A1 from the cache (purple dotted square) and X0 is passed from RevNet Block
2-1 (dotted arrow) (cii) Create a computational graph through ESPCN Layer 2.
(ciii) Combine the computational graph with X0 to backpropagate backwards
on the ESPCN Layer 2. Finally pass the gradient A1 to RevNet Stack 1 (dotted
arrow).

voxel size 1.253mm3 with b = 1000s/mm
2
. We create the training-and-validation-

set (TVS) by sampling HR sub-volumes from the ground truth diffusion tensor
images (DTIs, obtained from DWIs) and then down-sampling to generate the LR
counterparts. Down-sampling is performed in the raw DWI by a factor of r = 2
in each dimension by taking a block-wise mean, where r = 2 is the up-sampling
rate and then the diffusion tensors are subsequently computed. Lastly all the
patch pairs are normalised so the pixel-and-channel-wise mean and variance are
0 and 1. We divide the TVS patches 80%−20% to produce, respectively, training
and validation sets. We follow [1,8] in having 8 independent subjects as the test
set. As in [1], we evaluate our model separately on the interior region RMSE and
exterior (peripheral) region RMSE, of the brain. Furthermore we compare total
brain-wise RMSE.



Implementation As in [1], we extract 2250 patches per subject for TVS, where
the central voxel lies within its brain-mask. We utilise PyTorch [13], He pa-
rameter initialisation [14], ADAM optimiser [15] with RMSE loss (between the
prediction and the inversely-shuffled HR images), decaying learning rate starting
at 10−4, ending training either at 100 epochs or when validation set performance
fails to improve. Given that results vary due to the random initialisation, we train
4 models for each set of hyperparameters, select the best model from the valida-
tion score, to then evaluate on the test set. All our experiments are conducted
on a single NVidia Pascal GPU.

Model Subjects (TVS) RMSE Interior RMSE Exterior RMSE Total

ESPCN 8 6.33 (±0.30) 14.01 (±1.12) 9.72 (±0.64)
ESPCN-best-[1] 8 6.29 (±0.29) 13.82 (±0.31) 9.76 (±0.51)

ESPCN-RN2 8 5.78 (±0.28) 13.17 (±1.16) 9.06 (±0.66)
ESPCN-RN4 8 5.71 (±0.24) 12.84 (±1.18) 8.86 (±0.66)
ESPCN-RN6 8 7.33 (±1.43) 13.03 (±1.19) 9.76 (±0.88)
ESPCN-RN8 8 9.54 (±4.38) 12.78 (±1.25) 11.08 (±2.66)

ESPCN 16 6.12 (±0.29) 13.42 (±1.15) 9.33 (±0.65)
ESPCN-RN4 16 5.51 (±0.25) 12.40 (±1.23) 8.56 (±0.68)

ESPCN 32 6.12 (±0.29) 13.42 (±1.15) 9.33 (±0.65)
ESPCN-RN4 32 5.58 (±0.25) 12.13 (±1.24) 8.46 (±0.67)

Fig. 4: Comparing mean and std RMSE on 8 test subjects, where we first vary
number of RevNet blocks per stack, then size of training-validation set (TVS).
Network input size 113, upsampling rate r = 2.

IQT Performance In Fig.4, increasing network depth improves accuracy, until
the models overfit. Since implementing regularisation deteriorates our results due
to the bias-variance tradeoff, we instead utilise larger TVS. Unlike the ESPCN,
our extended model registers improvements on both interior and the exterior (pe-
ripheral) brain regions, with additional data. To assess statistical significance of
our results, we employed a non-parametric Wilcoxon signed-rank test (W statis-
tic) for paired RMSE values of our 8 test subjects, comparing our best model
(ESPCN-RN4) over state-of-the-art [1] (Fig.4), produces W=0, significant with
p=0.0117 (critical value for W is 3 at N=8, at significance level alpha=0.05), im-
provement of the ESPCN-RN4 over ESPCN at 32 subjects also produces W=0,
p=0.0117, which is significant as before. We note this improvement occurs with
almost identical memory usage (Fig.6). Comparing the image quality enhance-
ment due to our results in Fig.4, we observe from Fig.5 that our augmentation
produces sharper recovery of anatomical boundaries between white matter and
grey matter, whilst better capturing high-frequency details such as textures on
white matter.



Fig. 5: A visualisation of mean diffusivity maps on an axial slice on a test HCP
subject, estimated from: low-resolution input, ground-truth, high-resolution re-
construction from best ESPCN-RN4 (Fig.4), ESPCN [1].

Memory Comparison Despite significantly elongating the ESPCN, our novel
procedure performs very well with respect to memory usage – an increase of just
4.0% in Fig.6 – which also includes caching extra RevNet parameters. Memory
consumption is more than halved when using a low memory scheme (ESPCN-
RN4), with respect to naively performing backpropagation from a single compu-
tational graph and ignoring both checkpointing and the reversibility property of
RevNets (ESPCN-RN4 Naive). Although the computational time tradeoff of the
low-memory system is significant, training for each model in Fig.4 was obtained
in under 24 hours.

Model Memory Usage (MB) Computational Time (s)

ESPCN 523 20
ESPCN-RN4 541 309

ESPCN-RN4 Naive 1091 231

Fig. 6: Comparing the memory usage and computational time on a single epoch
with 8 TVS subjects: the original ESPCN, our augmented ESPCN-RN4 and
ESPCN-RN4 Naive (ESPCN-RN4 without the low-memory optimisation).



4 Conclusion

Attempts to merge cutting-edge techniques in deep learning with medical imag-
ing data often encounter memory bottlenecks, due to limited GPU memory and
large data sets. In this paper, we present how combining checkpointing with
RevNets allow us to train long convolutional neural networks with modest com-
putational and memory requirements. Our example – dMRI super-resolution in
the paradigm of IQT – illustrates how to improve performance via neural net-
work augmentation, with a negligible increase in memory requirements. However
the benefits of this technique extend to many other applications which use deep
neural networks, particularly in medical imaging, where large image volumes are
the predominant data type.

Acknowledgements

This work was supported by an EPRSC scholarship and EPSRC grants M020533
R006032 R014019. We thank: Adeyemi Akintonde, Tristan Clark, Marco Palombo
and Emiliano Rodriguez. Data were provided by the Human Connectome Project,
WU-Minn Consortium (PIs: D. V Essen and K. Ugurbil) funded by NiH and
Wash. U.

References

1. Tanno, R., et al.: Bayesian image quality transfer with cnns: exploring uncertainty
in dmri super-resolution. In: MICCAI (2017)

2. Milletari, F., et al.: V-net: Fully convolutional neural networks for volumetric
medical image segmentation. In: 3DV (2016) 565-571

3. Choromanska, A., et al.: The loss surfaces of multilayer networks. In: AISTATS,
(2015)

4. He, K., et al.: Deep residual learning for image recognition. In: CVPR (2016)
5. Chen, T., et al.: Training deep nets with sublinear memory cost. arXiv preprint

arXiv:1604.06174 (2016)
6. Chang, B., et al.: Reversible architectures for arbitrarily deep residual neural

networks. In: AAAI, (2018)
7. Gomez, A., Ren, M., et al.: The reversible residual network: Backpropagation

without storing activation. In: NIPS, (2017)
8. Alexander, D., et al.: Image quality transfer and applications in diffusion mri. In:

NeuroImage 152, (2017) 283-298
9. Kamnitsas, K., et al.: Efficient multi-scale 3d cnn with fully connected crf for

accurate brain lesion segmentation. In: Medical Image Analysis 36, (2017) 61-78
10. Wolterink, J., et al.: Deep mr to ct synthesis using unpaired data. In: SASHIMI.

(2017) 14–22
11. Yang, X., et al.: Fast predictive image registration. In: DLMIA (2016)
12. Sotiropoulos, S., et al.: Advances in diffusion mri acquisition and processing in the

human connectome project. Neuroimage 80, (2013), 125–143
13. Paszke, A., et al.: Automatic differentiation in pytorch. (2017)
14. He, K., et al.: Delving deep into rectifiers: surpassing human-level performance on

imagenet classification. In: ICCV (2015)
15. Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: ICLR (2015)


	Deeper Image Quality Transfer: Training Low-Memory Neural Networks for 3D Images

