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Abstract 15 

Structure-from-motion (SfM) photogrammetry is revolutionising the collection of 16 

detailed topographic data, but insight into geomorphological processes is currently 17 

restricted by our limited understanding of SfM survey uncertainties. Here, we present 18 

an approach that, for the first time, specifically accounts for the spatially variable 19 

precision inherent to photo-based surveys, and enables confidence-bounded 20 

quantification of 3-D topographic change. The method uses novel 3-D precision 21 

maps that describe the 3-D photogrammetric and georeferencing uncertainty, and 22 

determines change through an adapted state-of-the-art fully 3-D point-cloud 23 

comparison (M3C2; Lague, et al., 2013), which is particularly valuable for complex 24 

topography. We introduce this method by: (1) using simulated UAV surveys, 25 
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processed in photogrammetric software, to illustrate the spatial variability of precision 26 

and the relative influences of photogrammetric (e.g. image network geometry, tie 27 

point quality) and georeferencing (e.g. control measurement) considerations; (2) we 28 

then present a new Monte Carlo procedure for deriving this information using 29 

standard SfM software and integrate it into confidence-bounded change detection; 30 

before (3) demonstrating geomorphological application in which we use benchmark 31 

TLS data for validation and then estimate sediment budgets through differencing 32 

annual SfM surveys of an eroding badland. We show how 3-D precision maps 33 

enable more probable erosion patterns to be identified than existing analyses, and 34 

how a similar overall survey precision could have been achieved with direct survey 35 

georeferencing for camera position data with precision half as good as the GCPs’. 36 

Where precision is limited by weak georeferencing (e.g. camera positions with multi-37 

metre precision, such as from a consumer UAV), then overall survey precision can 38 

scale as n-½ of the control precision (n = number of images). Our method also 39 

provides variance-covariance information for all parameters. Thus, we now open the 40 

door for SfM practitioners to use the comprehensive analyses that have underpinned 41 

rigorous photogrammetric approaches over the last half-century. 42 

 43 

Keywords: precision maps, DEM uncertainty, structure-from-motion, 44 

georeferencing, UAV  45 
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Introduction 46 

Detailed digital elevation models (DEMs) produced by high resolution 47 

topography (HiRT) measurement techniques are accelerating our understanding of 48 

geomorphological processes. Increasingly, digital photographs are being used to 49 

generate such topographic data (particularly from consumer cameras and unmanned 50 

aerial vehicles (UAVs)), supported by processing software based on structure from 51 

motion (SfM). Such techniques are being used to, for example, model fluvial 52 

processes and drive hydraulic models (Dietrich, 2016; Javernick, et al., 2016; 53 

Woodget, et al., 2015), reconstruct the propagation of glacial outburst floods 54 

(Westoby, et al., 2015), understand wave run-up and coastal cliff erosion (Casella, et 55 

al., 2014; James and Robson, 2012), quantify eroded soil and gully volumes 56 

(Castillo, et al., 2012; Eltner, et al., 2015; Gomez-Gutierrez, et al., 2014), examine 57 

landslide and glacier movement (Lucieer, et al., 2014; Ryan, et al., 2015), 58 

characterise ice surface roughness to parameterise surface melt models (Smith, et 59 

al., 2016) and determine the evolution of active lava flows and domes (James and 60 

Robson, 2014b; James and Varley, 2012). The flexibility of SfM-processing enables 61 

a wide range of imagery and imaging geometries to be used and is central to the 62 

widespread adoption of HiRT techniques. However, this flexibility can result in 63 

substantial variations in data quality, both between and, crucially, within surveys 64 

(Smith and Vericat, 2015), which is often poorly quantified. Here, we derive and 65 

demonstrate a novel approach to enable rigorous and confidence-bounded change 66 

detection in complex topography from photo-based surveys, based on precision 67 

maps which characterise the 3-D survey quality and its spatial variability. Whilst we 68 

focus on airborne surveys, the approach is of equal value for terrestrially-acquired 69 

data. 70 
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DEM uncertainty 71 

 Understanding survey uncertainties is critical for appropriate error propagation 72 

into downstream topographic analyses, and the importance of DEM uncertainty 73 

when deriving geomorphological parameters and associated process models has 74 

been widely demonstrated (e.g. Lallias-Tacon, et al., 2014; Milan, et al., 2011; 75 

Wheaton, et al., 2010). When determining topographic change (e.g. for estimating 76 

sediment budgets), vertical uncertainty can be considered for conventional DEMs of 77 

difference (DoDs) to enable the significance of changes to be estimated (Brasington, 78 

et al., 2003; Lane, et al., 2003). Changes smaller than a specified ‘level of detection’ 79 

(LoD) can then be disregarded where, for two DEMs with vertical standard deviations 80 

of error, ıZ1 and ıZ2, 81 

 LoD = ଵଶߪ)ݐ +  ଶଶ)½ 1), 82ߪ

and t is an appropriate value for the required confidence level. LoD values are 83 

typically calculated to represent a 95% confidence level (i.e. LoD95%), for which, 84 

under the t distribution, t = 1·96. 85 

Single LoD values for use across entire DoDs can be estimated from relatively 86 

standard error assessments such as the root mean square error (RMSE) on 87 

independently surveyed check points for the constituent DEMs (e.g. Milan, et al., 88 

2007). Although such RMSE values can provide valuable insight into overall survey 89 

performance, they do not expose the spatial variability that can be highly relevant for 90 

detailed DEM analyses (Chu, et al., 2014; Gonga-Saholiariliva, et al., 2011; Oksanen 91 

and Sarjakoski, 2006; Weng, 2002) and their use can result in issues such as 92 

significant volumes from small elevation changes over large areas being neglected 93 

(e.g. overbank deposition, Brasington, et al., 2003). More challengingly, spatially 94 

variable LoD values can be determined, either manually, via classification from other 95 

information, or through using underlying data to estimate parameters such as sub-96 
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grid roughness (Brasington, et al., 2003; Lane, et al., 2003; Wheaton, et al., 2010). 97 

However, by disregarding horizontal error through conventional use of (2.5-D) DEMs, 98 

uncertainty estimates for topographic change detection (which include precision and 99 

accuracy components) can lose validity in regions of steep topography (Lague, et al., 100 

2013).  101 

3-D analysis and photo-based surveys 102 

Consequently, and to take full advantage of large and fully 3-D datasets such as 103 

from terrestrial laser scanners (TLSs), multiple methods for directly comparing point 104 

clouds have been derived (see Lague, et al. (2013) for a useful summary). One 105 

approach, Multiscale Model to Model Cloud Comparison (M3C2; Lague, et al., 2013) 106 

is of particular use in geomorphology because it incorporates a confidence interval 107 

and thus provides 3-D analysis of topographic change constrained by spatially 108 

variable LoD95% values, and is applicable in any type of terrain. Within the M3C2 109 

algorithm, measurement precision is estimated from local surface roughness, which 110 

is highly appropriate for the TLS data for which it was primarily designed. However, 111 

the smoothing or filtering commonly incorporated into image matching algorithms 112 

(e.g. Furukawa and Ponce, 2007; Hirschmuller, 2008) can strongly mute the 113 

representation of small-scale roughness in photo-derived point clouds. Furthermore, 114 

the complex photogrammetric and georeferencing processes result in point 115 

coordinate precision being a function of survey characteristics such as image 116 

network geometry and the quality, quantity and distribution of control, leading to point 117 

position errors that are spatially variable but locally highly correlated (due to 118 

neighbouring points generally being derived from the same images and thus subject 119 

to similar error). Thus, purely roughness-based precision estimates are unlikely to be 120 

representative of uncertainty in photogrammetric point clouds. 121 
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As for all topographic measurement techniques, the georeferencing process is 122 

central to achieving data with suitable repeatability (i.e. good spatial precision) for 123 

detecting change and, for photo-based surveys, georeferencing is usually carried out 124 

by measuring ground control points (GCPs). However, the deployment and precise 125 

ground survey of GCP arrays can require considerable effort, as well as the 126 

availability of relatively expensive survey equipment (e.g. dGPS or total station), and 127 

this can offset the otherwise cost-effective combination of UAV and SfM-MVS 128 

processing. An alternative is ‘direct georeferencing’, in which control is provided 129 

through measurements of camera orientations only (e.g. Cramer, et al., 2000; 130 

Förstner, et al., 2013). By not requiring ground-based measurements, the direct 131 

approach has a critical advantage for aerial survey over hazardous terrain, and has 132 

been shown capable of measurement precisions of order 0·1 m for piloted SfM-133 

based surveys with survey-grade GPS synchronised with image capture (Nolan and 134 

DesLauriers, 2016; Nolan, et al., 2015). However, for most current consumer UAVs, 135 

precise directly georeferenced work is prevented by their use of low-quality, multi-136 

metre precision, on board GPS (Carbonneau and Dietrich, 2016) but survey-grade 137 

GPS is being increasingly installed (e.g. Bláha, et al., 2011; Chiang, et al., 2012; 138 

Eling, et al., 2015; Gabrlik, 2015; Hugenholtz, et al., 2016; Mian, et al., 2015; Rehak, 139 

et al., 2013; Turner, et al., 2014) and such systems are likely to develop into 140 

widespread, invaluable tools for geomorphological research. Consequently, 141 

understanding the differences in survey performance between using GCPs or direct 142 

georeferencing will be integral to optimising future survey strategies aimed at 143 

quantifying topography and topographic change. 144 

Here, we have the overall aims of enabling uncertainty-bounded analysis of 145 

topographic change using SfM and exploring the implications of different 146 

georeferencing styles. Our approach is based on deriving maps of 3-D precision 147 
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from the precision estimates that are integral to rigorous photogrammetric 148 

processing, and which capture the variation of both photogrammetric and 149 

georeferencing uncertainties across the full extent of surveys. Within the paper, we 150 

initially summarise how precision estimates are derived during photogrammetric 151 

processing and then (1), we introduce the insight that precision maps provide into 152 

spatial variability and sensitivity to survey and georeferencing parameters, using 153 

simulated UAV surveys processed with rigorous close-range photogrammetric 154 

software. Unfortunately, the current range of SfM-based software commonly used to 155 

process most geomorphological surveys does not yet offer detailed precision 156 

information. Thus (2), we implement a novel Monte Carlo approach that enables 157 

precision maps to be produced when using SfM-based software, and we integrate 158 

the resulting precision estimates with the M3C2 algorithm to enable confidence-159 

bounded 3-D change measurement for photo-based surveys. Finally (3), we 160 

demonstrate our method on an eroding badlands catchment where erosion 161 

assessments over ~4,700 m2 require sub-decimetre level precision (Smith and 162 

Vericat, 2015). 163 

Photogrammetric precision estimates 164 

Precision estimates are an integral component of rigorous photogrammetric 165 

processing and result from the optimisation procedures used when deriving 3-D 166 

information from photographs (Cooper and Robson, 1996; Förstner and Wrobel, 167 

2013). Here, and throughout, we use ‘precision’ to refer to the expected one 168 

standard deviation of an estimated or measured value. Image processing comprises 169 

the automatic identification of ‘tie point’ features (often tens of thousands) in the 170 

images, matching them across multiple images, and making initial estimates of their 171 

3-D point coordinates from the two-dimensional image observations. In 172 
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geomorphological surveys, the tie points within this image network usually represent 173 

distinct features on the ground (such as, depending on image scale, grains, 174 

boulders, the edges of rills) and thus their positions map the topographic surface 175 

(Figure 1a). Subsequent photogrammetric processing is based on ‘bundle 176 

adjustment’, a least-squares global optimisation which minimises the total residual 177 

error on image observations by simultaneously adjusting camera parameters and 178 

orientations, and the 3-D point positions (Granshaw, 1980). Just as when applying a 179 

linear model to multiple measurements of two variables, the observational 180 

redundancy within the bundle adjustment (due to the large number of tie points) and 181 

the use of a least-squares approach enables precision estimates to be derived for all 182 

adjusted model parameters. These parameters include camera models and the 3-D 183 

point positions and, by also considering variances and covariances, correlations 184 

between camera parameters can be identified, and each tie point can be 185 

accompanied by a 3-D measurement precision ellipsoid (Figure 1a). The point 186 

precision estimates can be used to define the repeatability of measurements made 187 

within the results (e.g. relative distances between points), given the error associated 188 

with the input measurements (i.e. the tie point image observations). Our precision 189 

maps are based on the 3-D precision estimates made for the tie point coordinates, 190 

and are thus most effective for dense distributions of tie points. 191 

Control measurements are included within an adjustment to introduce an 192 

external coordinate system in which the precision estimates are reported and the 193 

survey is georeferenced (Figure 1b). Typically, to ensure geometric coverage over 194 

the entire survey area, more control measurements are used than the minimum 195 

required to uniquely define the coordinate datum and, thus, the relative shape of the 196 

survey can also be influenced. Each control measurement (e.g. a dGPS ground 197 

survey measurement of a control point position, or a camera position) is 198 
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characterised by a defined measurement precision that is included within the 199 

adjustment calculations; consequently, if control is only given to poor precision, then 200 

this propagates through to, and can dominate, the derived 3-D topographic point 201 

coordinate precision values (Figure 1c). In this case, although the overall precision of 202 

point locations within the external coordinate system is degraded by the poor control 203 

measurement precision, relative distances between points within the survey may 204 

remain precise (i.e. with the ‘internal’ precision of the survey controlled by the quality 205 

of the tie points, Figure 1a). 206 

Another way of considering this is that the relative shape of the topographic 207 

surface derived internally within the photogrammetric network may be good, but its 208 

overall georeferencing to an external coordinate system (as defined by a best-fit 209 

Helmert transform, comprising scale, rotation and translation components (Förstner, 210 

et al., 2013)) is weakly constrained. Thus, the final surface model precision can be 211 

separated into components of the external coordinate system georeference, and the 212 

shape of the model (e.g. Förstner, et al. (2013); a concept also used recently for 213 

DEM error (Carbonneau and Dietrich, 2016)). Through separating the georeference 214 

and the surface shape components of the precision estimates, insight can be gained 215 

into the relative contributions of control measurements and tie points – i.e. how 216 

important the control measurements are in influencing the shape of a survey as well 217 

as for overall georeferencing. 218 

Within a photogrammetric workflow, precision estimation precedes, and is 219 

independent from, the dense image matching from which DEMs are ultimately 220 

derived. However, the dense matching process does not optimise any aspects of the 221 

image network and, therefore, does not affect the underlying precision estimates. 222 

Additional error can be introduced by the dense matching itself, but work on early 223 

stereo-matching algorithms (Lane, et al., 2000) found this to be less important for 224 
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resulting DEMs than issues such as the presence of vegetation and data resolution. 225 

With error from modern multi-image dense matching algorithms likely to be less than 226 

from early stereo-matchers, in this work, we consider that tie point precision can be 227 

used to represent the main measurement contribution to surface model precision. 228 

Thus, in our approach, we ascribe precision values to the dense cloud points 229 

based on the precision of their underlying sparse tie points. Note that, because 230 

precision estimates are derived from the least-squares minimisation of image 231 

residuals, some systematic errors inherent in photogrammetric processing (such as 232 

doming deformation of the surface), which are not detectable in image residuals, are 233 

not included in the precision estimates. Such errors represent internal accuracy 234 

problems that can be identified by using check points (Chandler, 1999), and have to 235 

be mitigated by the use of suitably precise and well-distributed control, an accurate 236 

camera model or appropriately strong imaging geometries (James and Robson, 237 

2014a; Wackrow and Chandler, 2011). Thus, care needs to be taken to avoid 238 

interpreting precision maps as a guarantee of accuracy, which can only be validated 239 

through independent check points. 240 

Methodology and case study field site 241 

Precision maps for survey design: simulated UAV surveys 242 

To demonstrate how precision can vary spatially and with survey characteristics, 243 

we first generated precision maps using rigorous photogrammetry software, for 244 

simulated UAV surveys with different georeferencing conditions and imaging 245 

geometries. The simulated surveys were constructed by initially defining camera 246 

models and positions over a virtual surface represented by a grid of 3-D tie points 247 

and GCPs. Image observations, including pseudo-random measurement noise to 248 

represent image residuals, were then generated for the tie points and GCPs, to 249 
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complete the image network. Survey flight plans (based on those used in James and 250 

Robson (2014a)) were generated with two mutually inclined sets of parallel flight 251 

lines, which were augmented for some scenarios by twin gently banked turns in 252 

order to include convergent imagery, and hence add strength, to the image network 253 

(Figure 2, Table 1). The image networks were then processed by self-calibrating 254 

bundle adjustment using the close-range photogrammetry software ‘Vision 255 

Measurement System’ (VMS; http://www.geomsoft.com) which provides point 256 

precision as a standard output. The simulations were carried out for eight scenarios 257 

which covered the combinations of ‘weak’ or ‘strong’ control, for both GCPs or direct 258 

georeferencing using camera positions, and ‘weak’ (parallel-only) or ‘strong’ 259 

(augmented with oblique images taken with the same camera, from gently banked 260 

turns) image network geometries (Table 1). For the GCP-based simulations, the 261 

difference between ‘weak’ and ‘strong’ control scenarios was emphasised by also 262 

varying the image measurement precision of the tie points and GCPs (Table 1). 263 

As well as measurement precision, the results enabled the actual surface error 264 

realised in each simulation to be assessed through direct comparison of the 265 

processed point positions with their known initial coordinates. Error in the overall 266 

georeferencing of surveys was determined by deriving the Helmert transform (the 267 

seven-parameter transformation for translation, rotation and scale) that best-fit the 268 

processed points to their initial positions. Applying the transform then allowed the 269 

residual surface shape error to be given by the remaining discrepancies with the 270 

initial coordinates (e.g. Carbonneau and Dietrich, 2016). Note that, in each instance, 271 

the errors calculated reflect the particular random offsets applied to the control and 272 

tie point measurements for that particular simulation. The errors realised thus 273 

represent a specific sampling from the distributions of likely error characterised by 274 

the precision values. Consequently, if a simulation was repeatedly processed with 275 
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different random offsets each time, the distributions of error produced would reflect 276 

the precision estimates. Thus, when using SfM software that does not provide 277 

detailed precision information (but enables rapid and repeated bundle adjustment), 278 

precision estimates can be derived through such a Monte Carlo approach. 279 

Implementing precision maps with SfM surveys 280 

PhotoScan is currently the most commonly used SfM-based software for 281 

geomorphological surveys (Eltner, et al., 2016) and supports automated analyses 282 

through Python scripts. In order to derive precision maps when using PhotoScan Pro 283 

(v. 1.2.3) we implemented a Monte Carlo-based approach (Figure 3, and see 284 

electronic supporting information for the Python script and instructions), with post-285 

processing tools integrated into sfm_georef software (tinyurl.com/sfmgeoref; James 286 

and Robson, 2012). In summary, the method is founded on repeated bundle 287 

adjustments, in which pseudo-random error offsets are used to simulate observation 288 

measurement precision within the adjustment. Precision estimates for each 289 

optimised model parameter (e.g. each point coordinate or camera parameter value) 290 

are then derived by characterising the variance for each particular parameter in the 291 

outputs from a suitably large number of adjustments. 292 

To start the analysis, images are processed as normal in PhotoScan: image 293 

alignment derives camera models, positions and orientations, and a sparse point 294 

cloud of 3-D tie points. During the alignment process, georeferencing can be 295 

achieved by either including ground control points or camera orientation data as 296 

control measurements, with (in version 1.2.3 of PhotoScan) all points or cameras 297 

accompanied by individual X, Y and Z components of measurement precision. The 298 

photogrammetric network is refined by identifying and removing outlier points, and 299 

ensuring that image observations of tie and control point measurements are 300 
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appropriately weighted (i.e. appropriate values for the ‘tie point accuracy’ and 301 

‘marker accuracy’ settings (James, et al., 2017)). The resulting processed image 302 

network represents the geometry from which the dense image matching would be 303 

subsequently carried out to derive the DEM (a step that is not required within the 304 

Monte Carlo iterations, Figure 3). 305 

The Monte Carlo analysis is underpinned by making a simulation copy of the 306 

image network which is internally error-free and, from which, each Monte Carlo 307 

iteration is then constructed by adding appropriate random error. The error-free 308 

network is derived by replacing all control measurements (e.g. surveyed GCP 309 

coordinates, or GPS-based camera positions and orientations if using direct 310 

georeferencing) with their network-estimated values, and by replacing all image 311 

observations with equivalents of zero-magnitude image residual by projecting the 3-312 

D points into the cameras. For each iteration of the analysis, this error-free 313 

simulation copy is retrieved and offsets (error) are added to the observations and 314 

control measurements. The offsets appropriately represent the measurement 315 

precision by being derived from pseudo-random normal distributions with standard 316 

deviations given by the corresponding survey measurement precision or the RMS of 317 

the original image residuals. A bundle adjustment is carried out and the results 318 

exported to file before the next iteration is initiated. 319 

The number of iterations to use can be determined by sequentially calculating 320 

the variance of the derived point coordinates, and carrying out sufficient iterations for 321 

variance estimates to stabilise. Finally, the results from all iterations are compiled to 322 

give distributions of determined values for all estimated parameters (e.g. coordinate 323 

values for each sparse point, camera model parameters and camera orientation 324 

parameters). To construct 3-D precision maps, point coordinate standard deviations 325 

(in X, Y and Z) are calculated for each point and interpolated onto a grid, resulting in 326 
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three raster maps, representing the spatially variable precision in X, Y and Z 327 

directions. The influence of outliers (e.g. individual points that may be very poorly 328 

matched) is minimised by using a moving median filter for the interpolation, which 329 

determines the local median value over a defined radial distance. This is a 330 

reasonable first-order approach but certainly not the only possibility, and we leave 331 

exploration of alternatives to further work. 332 

The Monte Carlo iterations not only enable precision values to be calculated but 333 

also the associated covariance. Thus, full point coordinate error ellipsoids can be 334 

derived for tie points, and correlation between camera parameters assessed 335 

(facilitating valuable checks for over-parameterisation of camera models). 336 

Furthermore, by considering the results of each iteration together as an entire 337 

surface model, the survey’s overall georeferencing precision can be estimated – i.e. 338 

how precisely the surface is georeferenced in terms of its scale, translation and 339 

rotation. Interpretation of scale and translational precision is relatively 340 

straightforward, but rotational transformations are conventionally described by three 341 

angles that represent rotations applied sequentially around the X, Y and Z axes as 342 

the coordinate system is transformed (e.g. Förstner, et al., 2013). However, their 343 

sequential application makes their values (Euler angles) difficult to interpret in field-344 

geomorphological terms such as the resulting uncertainty in topographic slope. Thus, 345 

we calculate rotational precision directly in terms of the resulting slope uncertainty 346 

from the fixed X and Y axes of the geographic coordinate system (i.e. to give the 347 

precision of ground slope measurements in north-south and east-west directions), 348 

and a rotation around the Z axis. Finally, the precision estimates enable scale-349 

independent estimates of overall survey quality to be calculated which, by reflecting 350 

conventional photogrammetric metrics, strongly facilitate inter-survey comparisons. 351 

We provide three such dimensionless relative precision ratios (for alternative 352 
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suggestions see Eltner, et al. (2016) and Mosbrucker, et al. (2017)); firstly, mean 353 

point precision against the largest dimension in the survey (i.e. the distance between 354 

the furthest points), secondly, mean point precision against the mean viewing 355 

distance (e.g. James and Robson, 2012) and, lastly, mean point precision (as either 356 

the horizontal or vertical component) expressed in pixels. 357 

Change detection with 3-D precision maps 358 

With the spatially variable measurement precision given by maps of 3-D 359 

precision, confidence intervals for the detection of change between surveys can be 360 

determined. To maintain rigour when analysing complex topography, planimetric as 361 

well as vertical precision must be considered, and thus we compare dense 3-D point 362 

clouds directly, rather than using DEM products. Building on the current state-of-the-363 

art, we base our approach on the full 3-D comparison of point cloud data 364 

implemented in the M3C2 algorithm (Lague, et al., 2013). A detailed explanation of 365 

M3C2 is given by Lague, et al. (2013), but we summarise the method here in order 366 

to detail our precision map variant, M3C2-PM. 367 

In M3C2, a local mean cloud-to-cloud distance is calculated for each selected 368 

point in the reference cloud. For speed, these ‘core points’ can be a subset of the 369 

original cloud. For each core point, i, the direction of the local surface normal, N, is 370 

determined by fitting a plane to all its neighbours within a distance D/2 (Step 1, 371 

Figure 4). The position of the local surfaces in each point cloud is then calculated as 372 

the mean position of the cloud points that lie within a cylinder of diameter, d (Step 2, 373 

Figure 4), oriented along the normal direction, N, giving two mean positions i1 and i2, 374 

separated by a distance LM3C2(i, d, D). For each cloud, the M3C2 algorithm uses the 375 

positional variability along N within these points (i.e. the local roughness in the 376 

normal direction) as a measure of uncertainty in their mean position, enabling a 377 
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confidence interval (LoD) to be determined for the distance measurement. However, 378 

this assumes that the error in each point coordinate measurement is uncorrelated to 379 

that in nearby points and this will not be the case for photogrammetric point clouds, 380 

where error in adjacent point positions will be highly correlated due to the bundle 381 

adjustment process. 382 

Thus, we adapt the M3C2 approach for use with photogrammetric point clouds 383 

by using M3C2 to determine local normal distances as usual, then incorporating 3-D 384 

precision estimates from associated precision maps (Step 3, Figure 4). Precision 385 

values (in X, Y and Z) are ascertained directly from the maps for the i1 – i2 point 386 

pairs, representing one-sigma axially-aligned error ellipsoids around each point 387 

(Figure 4). Based on established error analysis (Lane, et al., 2003), and equivalent to 388 

Equation 1 in Lague, et al. (2013), LoD95% can then be estimated by combining the 389 

precision components in the direction of the local surface normal, ıN1 and ıN2, 390 

 LoDଽହΨ(݀) = ±1 · 96൫ඥߪଵଶ + ଶଶߪ +  ൯  2), 391݃݁ݎ

where reg is the relative overall registration error between the surveys, assumed 392 

isotropic and spatially uniform (Lague, et al., 2013). Note that Lague, et al. (2013) 393 

took a conservative approach by adding reg directly (as a potential systematic bias), 394 

which we retain here. Nevertheless, with the photogrammetric basis of ıN1 and ıN2 395 

including georeferencing considerations, reg would be zero if both surveys were 396 

defined from the same datum. However, if there was uncertainty in the relative 397 

datum measurement between the different surveys, a non-zero value could be used. 398 

The output from M3C2-PM thus represents 3-D change between point clouds along 399 

local normal directions, along with an assessment of whether that change exceeds 400 

the local LoD95% values, derived from the 3-D spatially variable photogrammetric and 401 

georeferencing precision. 402 
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Case study: Badlands site and data collection 403 

To demonstrate precision maps and M3C2-PM for determining surface change 404 

in complex topography, we use a badlands case study from the River Cinca, Central 405 

Pyrenees, Spain (Smith and Vericat, 2015). Oblique images were captured of a 406 

~4,700 m2 catchment, during two surveys carried out from a piloted gyrocopter flown 407 

at ~50 m above ground level, in 2014 and 2015 (Table 2, Figure 5) and processed 408 

using GCPs for control (e.g. Figure 5b inset). 409 

In 2014, GCP positions were measured by GNSS (a Leica Viva GS15 in RTK 410 

mode) to give absolute positions and associated precisions (ranging between ±7 mm 411 

to ±29 mm in the horizontal, and ±14 m to ±41 m in the vertical) which were 412 

converted into ED50 UTM (Zone 31 N) coordinates. In 2015, GCP positions were 413 

measured with a Leica TPS1200 total station, giving coordinate precision estimates 414 

relative to the instrument position. Thus, when converting these into UTM, the 415 

uncertainty in the absolute position of the instrument had to be accounted for: the 416 

total station position was derived by resection to a primary control network 417 

comprising four permanent targets, giving an RMSE of 9 mm (although note that 418 

such few targets make reliable RMSE estimation difficult due to comprising only one 419 

redundant point). With the primary control network having a mean absolute 3-D 420 

quality of 6 mm (see Smith and Vericat (2015) for details), we use an overall value of 421 

11 mm for the absolute precision of the total station position in UTM coordinates. 422 

In 2014, benchmark TLS data were acquired for comparison (Smith and Vericat, 423 

2015) using a Leica C10 with a maximum measurement range of 300 m and 424 

manufacturer-stated precisions of 6 mm for position, 4 mm for distance, and 60 ȝrad 425 

for angle. To minimise gaps caused by occlusion, data from twelve different stations 426 

were combined using target-based registration (with 2 mm mean error), based on a 427 

floating network of tripod-mounted Leica targets. The target coordinates were 428 
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measured with the total station which, in turn was registered to the primary control 429 

network as in 2015. Thus, UTM precision estimates for the TLS survey were not 430 

straightforward, and we use 11 mm for uncertainty in the datum (as for the total 431 

station) and a conservative 10 mm for within-survey precision, to cover all instrument 432 

measurement and relative scan registration components. 433 

Data processing and analysis 434 

Images were processed in PhotoScan (v.1.2.3). Image observations of the GCPs 435 

were collected using a semi-automated oriented patch cross-correlation approach 436 

(James, et al., 2017) and network quality checks during initial processing (James, et 437 

al., 2017) suggested that three GCPs needed to be rejected from the 2014 network 438 

as outliers. For both surveys, initial tests for camera model over-parameterisation 439 

were carried out based on GCP analysis (James, et al., 2017), and suggested that 440 

the optimal camera model comprised focal length, principal point and three radial 441 

distortion components (denoted as Model A). To ensure appropriately balanced 442 

optimisation within the surveys, the ‘marker accuracy’ and ‘tie point accuracy’ 443 

processing settings were given the values of the RMS image residual magnitudes on 444 

GCPs and tie points respectively (James, et al., 2017). Other PhotoScan processing 445 

settings used were: photos aligned with accuracy ‘high’, pair preselection ‘generic’, a 446 

tie point limit set to 5000 (to help give a dense distribution of tie points for precision 447 

analysis), and the coordinate system set to ED50 UTM (Zone 31 N). The Monte 448 

Carlo processing comprised 4,000 iterations for each survey (taking ~3·5 hrs per 449 

survey on a desktop PC), and the resulting point precision estimates were 450 

interpolated over a 1100 × 700 m, 1-m-resolution grid to cover the catchment of 451 

interest. Following the precision analysis, dense cloud generation was carried out at 452 

‘high’ quality, with ‘aggressive’ depth filtering to minimise surface noise. 453 
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The 2014 SfM survey data were used initially to validate the Monte Carlo 454 

approach by comparing the resulting precision estimates with values generated 455 

directly by reprocessing the PhotoScan survey in VMS. The survey was also 456 

processed using a more complex camera model (Model B, that additionally included 457 

two tangential distortion parameters) to verify the choice of camera model and to 458 

check for over-parameterisation through assessing the camera parameter 459 

correlations and precision information delivered by the Monte Carlo analysis. 460 

The SfM survey was then compared to the benchmark TLS survey over the 461 

extent of the TLS data, and with areas of denser vegetation cover removed. As an 462 

initial assessment of the M3C2-PM approach, four comparisons were carried out: a 463 

straightforward DoD, a DoD using a survey-wide LoD95% and then 3-D cloud-to-cloud 464 

comparisons using M3C2 and M3C2-PM. For the DoD comparisons, 0·1-m-465 

resolution DEMs were derived from the dense point clouds using average elevation 466 

values in CloudCompare v.2.7.0 (cloudcompare.org). The survey-wide LoD95% was 467 

introduced by conventionally estimating the overall vertical measurement precision of 468 

the surveys as 14.9 mm for TLS (the datum uncertainty and within-survey precision 469 

added in quadrature) and 36.8 mm for the SfM (based on the Z-RMSE on control 470 

points, Table 2), giving LoD95% = 78 mm (Equation 1). To consider 3-D differences, 471 

the native M3C2 analysis was run on the underlying point clouds in CloudCompare. 472 

Throughout this work, D and d (Figure 4) values of 0.3 m were used to provide areas 473 

sufficiently large for good calculation of surface normal but not too large to be 474 

adversely affected at slope-scale (the roughness scales of the badland topography 475 

can be considered from Figure 5). A reg value of 80 mm was used, based on 476 

combining the 3-D RMSE on the SfM control points (79 mm) and the TLS instrument 477 

position precision (11 mm), in quadrature. When using M3C2-PM, the 478 

photogrammetric and georeferencing precision of the SfM survey was integral within 479 
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the precision maps, so reg only represented the uncertainty in the TLS instrument 480 

position (11 mm). The TLS data did not have associated precision maps, so a 481 

constant value of 10 mm was used to represent their precision within the survey.  482 

The potential for future SfM surveys to be directly georeferenced was 483 

investigated by removing the GCPs from the survey processing and using the 484 

estimated camera positions as control measurements. Survey precision was then 485 

evaluated by carrying out bundle adjustments in VMS with different precision values 486 

assigned to the camera position values. Equivalent analyses were also carried out in 487 

PhotoScan using the Monte Carlo approach, by applying offsets from pseudo-488 

random distributions (of appropriate standard deviations) to the camera position 489 

control data for each Monte Carlo iteration. The results were compared with those 490 

from GCP-based georeferencing, with the influence of measurement precision also 491 

assessed by varying the precision assigned to the GCPs. 492 

Finally, sediment budgets between 2014 and 2015 were derived from the SfM 493 

surveys using the same four analyses as the SfM-TLS comparison. A single survey-494 

wide LoD95% of 80 mm was determined by adding in quadrature the vertical RMS 495 

discrepancies on GCPs (on either check or control points, whichever was the 496 

greater), and the 11 mm uncertainty in total station instrument position for the 2015 497 

survey. For M3C2 processing, using the 3-D RMS discrepancies on GCPs (79 mm 498 

for 2014, and 27 mm for 2015, including the total station instrument position 499 

precision) as estimates of georeferencing precision resulted in reg = 83 mm. Finally, 500 

for our M3C2-PM approach, with point precision estimates explicitly including survey 501 

georeferencing, reg comprised only the total station instrument position precision for 502 

the 2015 survey (11 mm). 503 
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Results 504 

Simulated surveys: precision maps and spatial variation 505 

For a simulated UAV survey with weak image network geometry, but strongly 506 

georeferenced using GCPs measured to a precision representative of dGPS 507 

measurement (Table 1), 3-D point coordinate precisions showed correlations with 508 

changes in image overlap (Figure 6a), indicating that precision was being limited by 509 

photogrammetric considerations (i.e. the image network geometry, Figure 1b). Error 510 

analysis demonstrated the network geometry weakness by identifying systematic 511 

doming as surface shape error, which was present despite the use of ground control 512 

in the bundle adjustment (Figure 6a). Strengthening the network geometry by 513 

including oblique imagery mitigated the doming (James and Robson, 2014a) and 514 

generally improved precision through increasing image overlap (Figure 6b). In this 515 

case, the well-distributed and precise GCPs provided a strong overall georeferencing 516 

of the survey; error in horizontal position was <3 mm and ground slope error 517 

(reflecting systematically varying height error) was <0·005° (Figure 6b), representing 518 

height errors of <6 mm at the GCPs furthest from the survey centre.  519 

If GCPs were only surveyed to relatively poor precision (e.g. 50 mm in X and Y, 520 

and 100 mm in Z, Figure 6c) then the weak control would limit overall survey 521 

precision (i.e. just as illustrated in the schematic Figure 1c), even if high-quality tie 522 

points and strong network geometry mean that the overall surface shape showed 523 

little error (Figure 6d). In this case, the strong photogrammetry would provide high 524 

precision internal measurements, such as relative line lengths, but the surface was 525 

weakly georeferenced within the external coordinate system (e.g. with systematic 526 

error in horizontal position of up to 14 mm and slope error of 0·04° shown in Figure 527 

6d, which could be critical when estimating changes of sediment distribution in areas 528 

of steep terrain, or flow directions in flat terrain). The symmetric radial degradation of 529 
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precision away from the centroid of GCP control (Figure 6c, d) reflects this 530 

uncertainty in overall georeferencing, and is a combination of scale, translational and 531 

rotational uncertainty about the centroid of the control measurements (Figure 1c), 532 

which is where the datum is defined during the bundle adjustment. 533 

Similar relationships were demonstrated for surveys directly georeferenced using 534 

knowledge of camera positions – i.e. without the use of GCPs as control points. If 535 

on-board dGPS could provide relatively precise camera position data (e.g. 20 mm in 536 

the horizontal and 40 mm in the vertical, and carefully synchronised with image 537 

acquisition), then survey precision and overall georeferencing error achieved levels 538 

equivalent to those given when using the GCPs (Figure 7a, b), although note that 539 

this is strongly dependent on the number and spatial distribution of images. 540 

However, currently, UAV camera positions are not generally known to such precision 541 

(e.g. the GPS on a consumer UAV may provide position at a precision closer to ~2 m 542 

in the horizontal and ~4 m in the vertical (Chiang, et al., 2012), in which case 3-D 543 

point precision is strongly limited (Figure 7c, d), with weak network geometries 544 

developing systematic error in surface shape (Figure 7c). Overall georeferencing 545 

errors were represented by horizontal translations and slopes of up to ~0·5 m and 546 

0·5° respectively.  547 

Thus, precision maps enable valuable insight into predicted survey performance, 548 

and therefore represent a useful survey planning tool that highlights the relative 549 

influence of photogrammetric (e.g. tie points, imaging geometry) and georeferencing 550 

(e.g. control points) aspects in overall survey quality.  551 

Badlands surveys: Precision maps and TLS comparison 552 

For the 2014 SfM badlands survey, the Monte Carlo results showed that 4,000 553 

iterations were sufficient to ensure that uncertainty in the point coordinate precision 554 
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estimates was of order 1 mm (Figure 8a). The coordinate precision values for all tie 555 

points were up to ~0·5 m, and demonstrated strong correspondence with the 556 

precision estimates made by rigorous bundle adjustment in VMS (Figure 8b), 557 

validating the SfM-Monte Carlo approach. The large values were generally located at 558 

the survey extents (i.e. similar to the simulations in Figure 6), and far from the 559 

catchment of interest and region of GCP deployment (Figure 5d). Over the region 560 

immediately surrounding the catchment (i.e. Figure 5e), mean point precisions were 561 

~23 and 26 mm in the horizontal and vertical respectively, with overall survey 562 

georeferencing determined to precisions of <6 mm in translation and <0·02° in 563 

topographic slope (Table 3) – note that such slope uncertainty represents a vertical 564 

precision of 16 mm at a distance of 50 m from the centroid of control. 565 

Precision estimates for the camera parameters showed that all parameter values 566 

were well resolved (i.e. their magnitudes were much greater than their precisions, 567 

Table 3). Assessing correlations between parameters to give insight into any self-568 

calibration problems indicated that, with one exception, parameter correlations were 569 

in line with expectations of a good network, with generally small magnitudes, 570 

excluding between the radial distortion terms (Table 4, Camera model A). The block 571 

of high-magnitude correlations between radial terms is usual, and results directly 572 

from the polynomial representation of the radial distortion model (Clarke and Fryer, 573 

1998; Tang and Fritsch, 2013). The exception was the abnormally high correlation 574 

between the principal point offset in y and the principal distance. This suggests a 575 

slight network weakness that is usually associated with the absence of large camera 576 

rotations (i.e. a lack of images taken from similar positions, with ‘portrait’ as well as 577 

‘landscape’ orientations, which is often omitted in UAV surveys); a detailed analysis 578 

is out of scope of this paper but see Luhmann, et al. (2006) for further information on 579 

camera calibration. When the more complex camera model was used (Table 4, 580 
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Model B), the correlation analysis clearly demonstrated that the increased number of 581 

parameters was not appropriate; when tangential distortion terms were included, 582 

they showed high correlations with principal point and principal distance terms and 583 

no improvements to tie point RMSE or fit to check points were observed. Thus, 584 

Model B was deemed over-parameterised and Model A was retained, supporting the 585 

initial GCP-based assessment. 586 

The relative precision estimates for the full survey indicated that, in comparison 587 

with previously published SfM work, it was towards the high-quality end, with a ratio 588 

of mean precision against mean observation distance of 1:4,100 (Table 3). The 589 

geometric combination of oblique views from the gyrocopter also resulted in vertical 590 

precision being slightly better than the horizontal component. Over the region of 591 

interest, the interpolated precision maps showed point precision magnitudes <0·15 m 592 

(Figure 9) and strong local variability that dominated any broader structural survey 593 

variations. The areas of poor precision correspond to areas of vegetation (compare 594 

Figure 9a and b), and resulted from the fewer observations made for points in these 595 

areas (Figure 9c and f). 596 

With the 2014 SfM and TLS surveys being effectively simultaneously acquired, 597 

differences between them should fall appropriately within the estimated confidence 598 

bounds. Straightforward DoD comparison shows systematic differences which 599 

highlight east to north-east facing steep gully walls, and are indicative of horizontal 600 

error in the relative georeferencing of the surveys (Figure 10a). Using a survey-wide 601 

LoD95% retained these systematic significant differences, due to horizontal error 602 

remaining neglected (Figure 10b). 603 

With 3-D analysis using native M3C2 algorithm, nearly all the differences 604 

between the surfaces fall within the large uncertainty dominated by the rather 605 

conservative reg term (Figure 10c). Using the precision maps adaptation, M3C2-PM, 606 
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more regions of significant difference were highlighted (Figure 9d), but nevertheless, 607 

the approach substantially reduced the effects of horizontal error (c.f. Figure 10b). 608 

Many of the areas where differences exceeded the local 3-D LoD95% are located at 609 

the bottoms of gullies and their tributaries, and have been previously identified as the 610 

least accurate in the SfM survey (Smith and Vericat, 2015), and could potentially 611 

have been affected by smoothing during the dense image matching stage. 612 

Predicted survey performance under direct georeferencing 613 

Reprocessing the 2014 SfM survey to simulate direct georeferencing showed 614 

that, over the area of interest, similar point precisions could be achieved when the 615 

prescribed camera position precision was similar to that of the GCP field 616 

measurements (Figure 11). However, knowing camera positions more precisely geve 617 

little gain, because photogrammetric considerations, such as image measurement 618 

precision of tie points, were the limiting factor (i.e. just as in Figure 1b). To 619 

understand the best possible precision that could be achieved with the images, the 620 

survey was also processed by removing all control data prior to a bundle adjustment, 621 

to give an ‘inner constraints’ adjustment which provides precision values within a 622 

local coordinate system defined by the initial coordinate values of the tie points 623 

alone, (i.e. Figure 1a). This resulted in a mean vertical point precision of 23 mm, with 624 

10% and 90% bounds of 8 and 50 mm (the grey band, Figure 11). Thus, when 625 

including control measurements in order to georeference the survey, deviations from 626 

this optimum can be considered as dilution of the achievable precision due to the 627 

introduction of control that is weaker than the underlying tie point photogrammetry 628 

(i.e. as in Figure 1c). 629 

Weakening the camera position precision led to degraded 3-D point precision, 630 

reflecting a weak overall georeferencing (Figure 11, in the same manner as 631 
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illustrated in Figures 1c and 7c, d). The same effect was shown for GCP-based 632 

georeferencing (Figure 11) but, with more camera positions (and more broadly 633 

distributed) than GCPs, then overall point precision was less sensitive to control 634 

measurement precision under direct georeferencing. For direct georeferencing, 635 

control measurement precision became an overall limiting factor at weaker control 636 

precision values than for GCP georeferencing. Furthermore, once point precision 637 

was limited by control measurement, point precision was approximately three times 638 

better from direct georeferencing than from using GCPs (Figure 11). 639 

Change detection with 3-D precision maps 640 

Changes between the 2014 and 2015 surveys (Figure 12, Table 5) were greatest 641 

when calculated by straightforward DoD (Figure 12a), which showed a general sub-642 

decimetre lowering of the surface between 2014 and 2015, but with some systematic 643 

height increases associated with steeper slopes, indicative of error in the relative 644 

horizontal registration of the two surveys. Using a single survey-wide LoD95% 645 

accommodated much of the overall lowering within the estimate of measurement 646 

precision, but notable areas of systematic height increase remained (Figure 12b). 647 

In contrast, the native M3C2 algorithm identified only a very few areas where 648 

change exceeded the local 3-D LoD95% value (Figure 12c), giving results that are out 649 

of step with field observations of active sediment transport through the main 650 

thalwegs of the study area. Finally, the M3C2-PM approach (Figure 12d) delivered 651 

the most plausible distribution of topographic change of the methods tested, with 652 

minimal areas of apparent upward change resulting from unaccounted-for horizontal 653 

error on steep slopes, and volume losses dominantly restricted to gully bottoms and 654 

tributaries. 655 
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Discussion 656 

Our results have indicated that considering 3-D precision improves change 657 

detection in areas of complex topography. The detected pattern of sediment loss 658 

within the badland catchment is very similar to that observed in TLS data over the 659 

previous year (i.e. between 2013 and 2014, see Smith and Vericat, 2015); however, 660 

the calculated average topographic change of -18·2 mm a-1 (Table 5) is far greater 661 

than that calculated for 2013 to 2014 (-1·44 mm a-1). With sediment erosion and 662 

transport in badlands known to be concentrated in individual high-magnitude rainfall 663 

events (e.g. Cantón, et al., 2001), analysis of the rainfall record confirms that the 664 

2014 to 2015 monitoring period exhibited six storms of a greater intensity (~40 mm 665 

hr-1 over a 15 minute interval) than any in the previous year. Moreover, when 666 

converted to sediment yield (272 t ha-1a-1 over a 0·471 ha area) it is in line with 667 

erosion rates measured elsewhere in Mediterranean badlands (Nadal-Romero, et al., 668 

2011). Thus, 3-D precision maps facilitate robust geomorphological analysis and 669 

could be used to design survey campaigns that achieve specific LoD95% values 670 

across an area. They also provide insight into the factors behind precision variability 671 

between and within surveys, and can indicate whether photogrammetric or 672 

georeferencing aspects are overall limiting factors. 673 

Interpreting precision maps 674 

Point precision is affected by range of factors that we have considered as either 675 

‘photogrammetric’ (i.e. internal to the photogrammetric network, such as imaging 676 

geometry and the quality of the tie point identification within the images, Figure 1a) 677 

or related to the georeferencing (e.g. the external control measurements which limit 678 

precision in Figure 1c).  679 
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Precision maps showing broad, systematic variations (e.g. Figure 6c, d) indicate 680 

weakness in overall survey georeferencing (i.e. as Figure 1c), symptomatic of weak 681 

control. This can either be due to the poor precision of control measurements, or 682 

because control is poorly distributed (e.g. too few, or insufficiently spaced, control 683 

measurements). For an imaging geometry appropriate to aerial surveys, the 684 

degradation in precision away from the centroid of control measurements (Figure 6c, 685 

d) is likely to dominantly reflect uncertainty in the rotational component of overall 686 

georeferencing, and indicate the probability of slope error in a DEM (e.g. 687 

Carbonneau and Dietrich, 2016). More control, or control more widely distributed or 688 

measured to better precision, will improve overall rotational georeferencing precision, 689 

and may result in uncertainty in scale and translational components dominating point 690 

precision estimates. Forecasting improvements in rotation and scale will not be 691 

straightforward and will depend on the quality, locations and number of additional 692 

measurements. In contrast, and based on straightforward error statistics (e.g. 693 

Borradaile, 2003), translational precision should approximate to n-½ of the control 694 

measurement precision, where n is the number of control measurements.  695 

If precision maps indicate strong localised variations, then photogrammetric 696 

factors are being expressed, e.g. differences in image measurement quality for 697 

individual tie points, and image network geometry aspects such as image overlap 698 

and convergence (e.g. Figure 6a, and badlands survey, Figure 9b). Weak precision 699 

will result from small numbers of observations for a point, from similar positions (i.e. 700 

narrow angles of ray convergence); image matching can be hindered by too large 701 

separation of images. Thus, such variations can highlight areas of poor image 702 

coverage (e.g. resulting from partial occlusions in complex terrain), or regions of 703 

more challenging image matching, such as due to vegetation (Figure 9a, b). 704 

Identifying these areas through carrying out a preliminary survey would enable 705 
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enhanced survey designs to ensure precision requirements can be met across the 706 

full area. 707 

For the badlands survey, overall point precision over the full extent of the sparse 708 

point cloud was limited by the control, due to GCP deployment being spatially 709 

restricted to the central region of interest (Figure 5). However, within the area of 710 

interest, the GCPs provided strong constraints, and variations in point precision 711 

reflected local differences in the number (and probably quality) of image 712 

observations per point. Weak matching in zones of vegetation resulted in the areas 713 

of worst precision, and error ellipses indicated precision differences due to the 714 

complex topography being viewed from different directions. With the control 715 

measurements not being the limiting factor over the region of interest, fewer GCPs 716 

could have been used without substantial effect on overall point precisions. Using 717 

the Monte Carlo analysis of James, et al. (2017), specifically aimed at analysing 718 

GCP performance and identifying minimum numbers, indicated that survey quality 719 

would be maintained with only 8 GCPs. This figure is in line with the current work 720 

where, for a mean GCP measurement precision of 26 mm, 8 GCPs would provide a 721 

translational precision of <10 mm, so (assuming the GCPs were suitably distributed) 722 

overall survey precision would remain limited by photogrammetric considerations 723 

(Figure 11).  724 

Direct georeferencing versus GCPs 725 

Photogrammetric best practice recommends that control measurements are 726 

distributed across and surrounding the volume encompassing the survey area 727 

(Luhmann, et al., 2006). When using GCPs, tie and control points are ground-based 728 

and the influence of control on the interpretation of precision maps is relatively 729 

straightforward to consider (as described above) because the control is in close 730 



30 
 

proximity to the surveyed points. Note that the effects of GCP precision and 731 

distribution on survey quality have been well studied within conventional aerial 732 

photogrammetry (Krauss, 1993).  For direct georeferencing of typical aerial surveys, 733 

the use of camera positions as control displaces the control measurements above 734 

the survey volume. In this case, positional error can be effectively magnified within 735 

the survey region due to the effects of angular uncertainty in overall georeferencing 736 

being enhanced along the observation distance. This issue reduces as the span over 737 

which images are acquired increases with respect to the observation distance, i.e. as 738 

the distance along or across imaging flight paths increases, with respect to the flying 739 

height. Thus, for direct georeferencing, with all other things equal, wider flight 740 

patterns, capturing convergent imaging of a central, localised region (as in the 741 

badlands case study, Figure 5d) would be recommended (Figure 13). 742 

To improve precision when direct georeferencing, capturing more images 743 

represents an efficient way to acquire more control measurements. In the 744 

simulations and case study here, there were ~4–8 times more images than GCPs. 745 

Thus, in line with the n-½ argument and for equally precise control measurements, 746 

survey precision under direct georeferencing could be 2–3 times better than from 747 

GCP-control (e.g. Figure 11). Alternatively, camera positions could be measured to 748 

approximately only half to a third of the quality of the GCPs, to achieve a similar 749 

overall point precision. This could be diluted further if more images were acquired, 750 

albeit with diminishing returns; it may be feasible to improve precision by an order of 751 

magnitude through capturing 100 rather than 10 images, but the ~1000 images 752 

required for another order of magnitude improvement could have disadvantages for 753 

practical image acquisition and rapid data processing. Nevertheless, in most cases, 754 

camera position cannot be measured as precisely as a ground point due to the 755 

specific GPS (or other) measurement technologies involved, thus, acquiring more 756 
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images is likely to be a useful strategy for direct georeferencing deployments. 757 

Improving the georeferencing will enable the overall survey precision to be enhanced 758 

up to the point that precision becomes limited by the photogrammetric considerations 759 

(i.e. imaging geometry, quality of the tie points etc.) rather than the control 760 

measurements (such as for the GCP-case illustrated in Figure 1b). 761 

In this work, the use of only camera positions in direct georeferencing has been 762 

explored, but measurements of camera orientation can also be included in the 763 

process (e.g. Cramer, et al., 2000). However, in the GCP-georeferenced badlands 764 

survey, the processed image network provided camera rotations with precision 765 

estimates of order 10-2 degrees (Table 3), which is approximately two orders of 766 

magnitude better than delivered by current UAV-suitable orientation sensors 767 

(Gabrlik, 2015; Pfeifer, et al., 2012). Thus, first indications are that practical 768 

measurements of camera orientation may not currently be able to add to the quality 769 

of the results. Nevertheless, due to the interdependencies between camera position 770 

and orientation within photogrammetric processing, the precision of derived values is 771 

no guarantee of the effectiveness of using measurements as control, and including 772 

orientation data could be an area for further research. As an example of such 773 

complexity, it is interesting to note that using camera positions as control appeared 774 

more effective at mitigating the doming error than GCPs, even when the GCPs were 775 

measured with twice as good precision (compare the ‘Shape’ plots in Figure 6a and 776 

7a). 777 

For the badlands survey, the camera locations widely bracketed the region of 778 

interest (Figure 5), reducing the influence of rotational components of overall 779 

georeferencing uncertainty on point precision. Thus, for direct georeferencing using 780 

poor precision camera positions, point precision may be expected to reflect 781 

translational uncertainty, with magnitudes approximating to n-½ × camera position 782 
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precision. This is shown for camera position precision values exceeding ~200 mm 783 

(Figure 11), where (for 104 images) mean point precisions approach ~0·1 × camera 784 

position precision. Thus, directly georeferencing the survey using multi-metre 785 

precision camera position measurements (typical of a consumer UAV) would have 786 

resulted in multi-decimetre point precision, but using camera position observations 787 

known to ~0·1 m would be expected to achieve similar overall precision as from the 788 

GCP array. 789 

In contrast, for GCP-based georeferencing under sufficiently weak control that it 790 

limited overall survey precision, then rotational georeferencing components formed 791 

an import contribution to dilute point precision, due to the GCP distribution being 792 

more spatially restricted than the camera positions. Consequently, mean point 793 

precision values did not approach the n-½ × control precision limit (the uppermost 794 

dashed line for 19 control points in Figure 11). 795 

 796 

Camera models, parameter correlations and quality control 797 

The additional camera parameter precision and correlation information provided 798 

either by the Monte Carlo approach (or now directly available within the most recent 799 

version of PhotoScan v.1.2.6) promotes rigorous quality assessment of self-800 

calibrating image networks through enabling good practice checks. For topographic 801 

surveys, these checks should be carried out before the dense matching (MVS) in an 802 

SfM-based workflow: 803 

1) All camera parameters included in the camera model should improve the results 804 

(i.e. their use in the camera model should reduce RMS image residuals and check 805 

point discrepancies).  806 
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2) All camera parameter magnitudes should exceed the precision to which they are 807 

determined. Parameters that fail this test, or have a magnitude of the same order 808 

as their precision, should have their value fixed at zero (i.e. the parameter is 809 

inactive and removed from optimisation) and the self-calibration analysis run again 810 

(e.g. Granshaw, 1980).  811 

3) Camera parameters should be checked for high magnitude correlations between 812 

them (i.e. Table 4). Strong correlations between camera parameters are likely to 813 

indicate weakness in the image network that result in the relative effects of the 814 

different parameters being inseparable. Where such strong correlations exist, the 815 

importance of the parameter pair can be tested by observing whether results 816 

deteriorate if one of the parameters is removed from the optimisation. If they do, 817 

the parameter can be reinstated, but if not, then it can be fixed at zero to avoid 818 

over-parameterisation of the camera model. Note that radial distortion parameters 819 

are expected to be strongly correlated (Clarke and Fryer, 1998; Tang and Fritsch, 820 

2013); nevertheless, two are likely to be useful for most consumer cameras (for a 821 

detailed analysis, see Wackrow, et al. (2007)). 822 

4) Alongside checks for images with systematic or large magnitude tie point image 823 

residuals (James, et al., 2017), camera orientation (precision in position and 824 

direction) can be used to test for poorly constrained images. Photographs that 825 

show anomalously weak orientations can be considered for removal from the 826 

network, because they will not be adding to the strength of the network, and may 827 

be contributing to surface error. 828 

Integrating precision into DEM uncertainty processing 829 

Precision maps represent a valuable tool for propagating spatially variable 830 

precision in modern SfM surveys forward into established uncertainty-based DEM 831 
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workflows. Although we use a fully 3-D method for change detection, our interpolated 832 

precision maps are also well placed for direct integration with conventional 2.5-D 833 

DEM processing. Such an approach may be suitable in areas where topography is 834 

sufficiently flat that horizontal precision components may be neglected. However, 835 

with precision estimates underpinned by Gaussian statistics, they could be optimistic 836 

in some difficult field scenarios. In these cases, precision information can be 837 

considered within existing approaches based on fuzzy inference, along with other 838 

information such as orthoimage colour or texture to enhance the spatial context (e.g. 839 

Wheaton, et al., 2010). Thus, precision maps should form a first step from which 840 

other uncertainties inherent within DEM processing (e.g. Wechsler, 2007) can also 841 

be considered. 842 

Conclusions 843 

SfM-based surveys are increasingly facilitating routine acquisition of high 844 

resolution topographic models, and are transforming data collection practices across 845 

environmental and geomorphological research. However, with this, and with 846 

photogrammetric processing usually concealed within ‘black box’ software, the 847 

requirement for greater understanding of the associated uncertainties becomes more 848 

pressing. Our robust 3-D detection of topographic change is built on precision maps 849 

that also facilitate understanding of the fundamental survey characteristics that affect 850 

measurements. Such understanding is vital for optimising future work through 851 

improving survey planning and for more informed decision-making for GCP 852 

deployment or the use of direct georeferencing. By providing access to the metrics 853 

that are routinely used for network quality control in metric photogrammetry (such as 854 

camera parameter precisions, correlations and point error ellipsoids), our Monte 855 

Carlo approach offers a substantial advance for rigorous topographic measurement 856 
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using SfM. Although the Monte Carlo analysis requires several thousand bundle 857 

adjustments, the subsequent dense matching is likely to remain the slowest stage 858 

within a complete workflow. Hopefully, future SfM software will both integrate and 859 

expose rigorous precision analysis (as PhotoScan v.1.2.6 now does for camera 860 

parameters), and precision maps will become a standard component of topographic 861 

models and subsequent processing. By applying our method, we show that: 862 

1) In areas of complex topography and steep slopes, estimates of sediment budget 863 

from photo-based surveys can be substantially improved by considering the 3-D 864 

and spatially variable survey precision, when deriving confidence intervals for 865 

change detection. 866 

2) Such analyses are enabled by 3-D precision maps which integrate the 867 

photogrammetric and georeferencing contributions to photo-based survey 868 

precision. The interpretation of precision maps gives insight into the precision-869 

limiting factors, thus, a simulation or analysis of a preliminary survey is 870 

recommended to optimise survey design. 871 

3) Precision estimates that vary smoothly across a survey (e.g. Figure 6c, d and 7c, 872 

d) indicate that control measurements are the dominant factor (Figure 1c) and 873 

that survey precision could be improved through enhanced survey control (e.g. 874 

more GCPs or better measured camera positions, Figure 13b, c). When 875 

rotational components of georeferencing are not contributing substantially to 876 

point precisions, then overall point precision may be estimated as n-½ × control 877 

precision (Figure 11). 878 

4) If precision maps show details that reflect characteristics such as changes in 879 

image overlap (e.g. Figure 6c, d and 7c, d) or surface features such as 880 

vegetation (e.g. Figure 5) then survey precision is being dominated by 881 
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photogrammetric considerations. In this case, improving control is unlikely to be 882 

worthwhile, but gains are likely to be made by improving image measurements 883 

(e.g. removing tie points with few observations or with large image residuals) or 884 

by strengthening the image network geometry (Figure 13a).  885 

As the use of SfM-based techniques in geomorphology matures, there will be 886 

increased demand for the characteristic ease of data capture and flexibility of SfM 887 

software to be combined with the rigorous uncertainty estimates exemplified by 888 

traditional photogrammetry. Precision maps and 3-D confidence-bounded surface 889 

change detection through M3C2-PM facilitate the use of such photogrammetric 890 

uncertainty estimates in a geomorphology context, and our Monte Carlo approach 891 

provides this capability for current SfM workflows. 892 
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Figures 902 

 903 

Figure 1. Survey precision and georeferencing; all panels are purely illustrative 2-D 904 

sketches only. (a) Processing photo-based surveys enables the positions of tie 905 

points (black circles) to be determined on the topographic surface (dark grey line) 906 

through observing the points in different images. Uncertainty in the tie point positions 907 

can be represented by error ellipsoids (enlarged for visibility) which, through their 908 

size and orientation, reflect the different contributions to photogrammetric 909 

uncertainty, such as the network geometry and image measurement precision. 910 

Overall, the tie point uncertainties result in uncertainty within the shape of the 911 

derived surface, as illustrated by the light grey bands surrounding the darker grey 912 

line. (b) When the survey is georeferenced (e.g. through the inclusion of GCPs as 913 

control measurements, shown by black ellipses) precision is given in the geographic 914 

coordinate system. If control precision is better than the precision from the 915 

photogrammetry (i.e. better than in (a)), then precision estimates retain the variations 916 

due to the underlying photogrammetric considerations. (c) However, if control is 917 

weak (e.g. GCPs are measured to poor precision) then precision in the geographic 918 

coordinate system can become limited by the control measurements. The surface 919 

will retain the shape derived by the tie point photogrammetry (i.e. in (a)), but its 920 

transform into geographic coordinates will effectively be subject to large uncertainties 921 

in scale, translation and rotation. 922 

 923 

Figure 2. Schematics of the flight path and image footprints for the simulated UAV 924 

surveys. (a) Flight paths are illustrated using dark blue cones to show the locations 925 

of image acquisitions along twin sets of parallel flight lines. Red cones show the 926 

positions of additional acquisitions for simulations that involved two gently banked 927 
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turns to include oblique (20° to the vertical) imagery (see Table 1 and James and 928 

Robson (2014a) for details). (b) Corresponding image footprints, with black triangles 929 

indicating GCP locations. 930 

 931 

Figure 3. Workflow for confidence-bounded 3-D change detection with SfM surveys 932 

and precision maps. See Figure 4 for further details on the M3C2-PM approach. 933 

 934 

Figure 4. Change detection in photogrammetric point clouds with M3C2-PM. Steps 1 935 

and 2 represent use of the M3C2 algorithm (Lague, et al., 2013) to identify local 936 

normal directions between point clouds and determine the local mean separation 937 

distance in this direction, LM3C2. In Step 3, the adapted M3C2-PM approach uses 938 

photogrammetric precision estimates to derive a confidence interval (or LoD) for this 939 

distance measurement. Each mean point, i1 and i2, is associated with precision 940 

estimates in the X, Y and Z directions, representing an error ellipsoid. The 941 

confidence interval for distance measured in the normal direction, N, is then 942 

determined using the components of precision in that direction, ıN1 and ıN2 943 

(Equation 2). Redrawn in part from Lague, et al. (2013). 944 

 945 

Figure 5. The 2014 badlands survey. (a, b) Examples of the aerial images captured 946 

with the inset (80 × 50 pixels) showing a GCP target. From the ground, an example 947 

eroding headcut (c) shows the high local relief and steep slopes, with the influence of 948 

differing compactness within the structured Eocene marl sequence being apparent 949 

on the surface form (for scale, the square red targets are 200 × 200 mm). (d) A 950 

perspective view of the rendered topographic model and camera positions, showing 951 

the wider distribution of tie points. (e) The associated DEM visualised by hill-shade 952 
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and overlaid with GCP positions (note that 4 GCPs were outside this extent); 953 

triangles for control points, and circles for check points. 954 

 955 

Figure 6. Precision and vertical error maps for simulated UAV surveys 956 

georeferenced using GCPs. Four survey scenarios, represented by the rows, are 957 

characterised by strong (a, b) or weak (c, d) ground control (Table 1, with ‘strong’ 958 

control representative of using dGPS-measured targets as GCPs), and the inclusion 959 

(b, d) or not (a, c) of banked turns in the flight plan (Figure 2). GCP locations are 960 

indicated by the triangle symbols and the inset value in the top right of each 961 

precision plot gives the mean tie point precision (in mm) within the region 962 

encompassed by the dashed line in (a). Error contributions were determined by 963 

deriving, then applying the Helmert transform that best-fitted the processed points to 964 

their initial, simulated positions. The overall georeferencing error component is then 965 

the change in point coordinates given by the Helmert transform, and the surface 966 

shape error is given by the remaining discrepancies. Note that only vertical 967 

components are shown. 968 

 969 

Figure 7. Precision and vertical error maps for simulated UAV surveys directly 970 

georeferenced using camera position coordinates. The four survey scenarios, 971 

represented by the rows, are characterised by strong (a, b) or weak (c, d) 972 

georeferencing (as determined by the simulated precision of camera position 973 

measurements, with ‘weak’ representative of data from a consumer-grade UAV, 974 

Table 1), and the inclusion (b, d) or not (a, c) of banked turns in the flight plan 975 

(Figure 2). Note the one to two orders of magnitude differences between the colour 976 

scales of the weak and strong scenarios. The value inset in the top right of each 977 

precision plot gives the mean tie point precision (in mm) within the region 978 
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encompassed by the dashed line in (a), for comparison with Figure 6. Surface error 979 

was calculated just as for Figure 6. 980 

 981 

Figure 8. (a) Variability in SfM-Monte Carlo tie point precision estimates as a 982 

function of the number of iterations in the Monte Carlo analysis. Each plotted line 983 

shows the difference in estimated precision for a tie point, from the final estimate for 984 

that point made after 4,000 iterations. (b) Estimates of point coordinate precision 985 

components in X, Y and Z, as determined from the SfM-Monte Carlo approach (with 986 

4,000 iterations) are validated by their correspondence with those provided directly 987 

by least squares bundle adjustment in VMS (each plotted symbol represents the 988 

precision estimate for one tie point). Grey lines represent 1:1 ratios for visual 989 

reference. 990 

 991 

Figure 9. Precision maps for the 2014 badlands survey. The survey orthomosaic (a) 992 

gives spatial reference for the summary map of precision magnitude (b), as 993 

interpolated from tie points (the inset text gives the mean value). Excerpts of typical 994 

image texture (300 × 300 pix) show that bare topography can provide good precision 995 

(blue) and that areas of weakest precision (yellow) mostly reflect vegetation cover. 996 

(c) The tie point locations used for map construction, coloured by the number of 997 

images in which each point has been observed (note the log10 colour scale). The 998 

underlying point precision data can be provided as X, Y and Z components, shown 999 

by histograms (d, with inset mean values), precision maps (e), or by a 3-D error 1000 

ellipsoid for each point. Projecting error ellipsoids on a cross section (f, for points 1001 

within 1 m of the section A-A' in (a-c)), underscores that the weakest points are 1002 

derived from few, and generally oblique, observations. 1003 

  1004 



41 
 

Figure 10. Vertical differences between the 2014 TLS and SfM-based surveys 1005 

determined using different methods for comparison. All plots are cropped to remove 1006 

areas of vegetation and are given at a horizontal resolution of 0·1 m, overlying a hill 1007 

shade image. In areas where change is determined to be significant, vertical change 1008 

is overlain in colour. (a) Straightforward DEM of difference. (b) As (a), but 1009 

transparent where DoD values are smaller than an LoD95% of 78 mm. (c and d) As 1010 

(a), but showing only areas where the original point clouds were detected to be 1011 

significantly different by M3C2 (c) or M3C2-PM (d). 1012 

 1013 

Figure 11. Tie point precision statistics for the region of interest of the badlands 1014 

survey, for different assumed values of mean control measurement precision. Mean 1015 

point precision values (symbols) are bracketed by 10th and 90th percentile bars.  For 1016 

direct georeferencing (using camera positions as control measurement), the 1017 

overlying symbols illustrate that the PhotoScan results are almost indistinguishable 1018 

from those from VMS. All results for GCP-georeferencing were processed with 1019 

PhotoScan only, using the selected GCPs indicated in the underlying distribution 1020 

maps as control. The results associated with dashed bars are for the GCP precision 1021 

values of the field data. The dashed horizontal line (mean) and grey band (10th and 1022 

90th percentiles) give the point precision derived in the absence of any control 1023 

measurements (i.e. Figure 1a). This ‘inner constraints’ bundle adjustment indicates 1024 

the best point coordinate precision that could be achieved with this survey’s tie point 1025 

image measurements and image network geometry. The inclined long-dashed lines 1026 

represent point position precisions of n-½ × control measurement precision, for n = 19 1027 

(upper line, reflecting 19 GCPs) and n = 104 (lower line, reflecting the number of 1028 

camera positions). 1029 

 1030 
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Figure 12. Vertical change between the 2014 and 2015 SfM-based surveys 1031 

determined using different methods for comparison. All plots are cropped to remove 1032 

areas of vegetation and are given at a horizontal resolution of 0·1 m, overlying a hill 1033 

shade image. In areas where change is determined to be significant, vertical change 1034 

is overlain in colour. (a) Straightforward DEM of difference. (b) As (a), but 1035 

transparent where DoD values are smaller than an LoD95% of 80 mm. (c and d) As 1036 

(a), but showing only areas where the original point clouds were detected to be 1037 

significantly different by M3C2 (c) or M3C2-PM (d). 1038 

 1039 

Figure 13. Schematic illustration of factors in precision-based planning of UAV 1040 

missions based on (a) photogrammetric considerations, or control (georeferencing) 1041 

characteristics for (b) GCP-georeferenced and (c) directly georeferenced surveys. 1042 

Triangles represent camera positions and orientations, above a grey-shaded 1043 

topography. Ellipses indicate control measurements, either of GCPs or camera 1044 

positions, with their relative size indicative of the relative precision magnitude.  1045 

 1046 

1047 
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Tables 1249 

 1250 
 1251 

 1252 
Table 1. Characteristics of the simulated surveys shown in Figure 2. 1253 

 1254 
Survey detail  Values and characteristics 

Camera 
Principal dist. 50 mm 

Image size 4000 × 3000 pix. (pixel pitch 5 ȝm) 
   

Flight plan 
(Figure 2) 

Altitude  50 m  
Ground pix. size  12·5 mm (nominal) 

Image overlap 60% forward 30% sidelap (within each parallel set) 

N
et

w
or

k 
ge

om
et

ry
 

Weak 80 images, collected from two sets of parallel flight 
lines, oriented at 20° (Fig ure 6/7 a, c) 

Strong An additional 18 images, in two gently banked 
turns (Figure 6/7 b, d) 

 

 
Georeferencing scenarios 

Control survey precision 
(GCPs or camera pos.) 

Image measurement 
precision (pix) 

horizontal vertical GCPs Tie points 

Using GCPs 
Strong (Fig. 6a, b) 10 mm 20 mm 0·1 1·0 

Weak (Fig. 6c, d) 50 mm 100 mm 1·0 0·1 
      

Direct 
georeferencing 

Strong (Fig. 7a, b) 20 mm 40 mm - 0·5 
Weak (Fig. 7c, d) 2 m 4 m - 0·5 

 1255 
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 1257 
 1258 
 1259 
 1260 
 1261 

Table 2. Characteristics of the 2014 and 2015 badlands surveys. 1262 

 2014 2015 
Camera   

Model Nikon D3100 Nikon D75 
Focal length (35-mm equiv.; mm) 28 28 

Image size (pix) 4608 × 3584 6016 × 4016 
Pixel pitch (ȝm) 5·0 6·0 

Survey   

Overflight design 
7–10 oblique overpasses, mutually inclined, nominal 

altitude of 50 m (Figure 5d) 

GCP coordination 

dGPS, absolute quality 
available per-point, 
means: XY: 14 mm,           

Z: 26 mm 

total station, 3-D quality 
relative to instrumenta:    
XY: 10 mm, Z: 5 mm 

Processing   
Number of images processed 104 99 

GCPs (as control, [as check] pts.) 19 [7] 20 [7] 
GCP image precision (pix) 0·50 1·55 

Tie point image precision (pix) 0·89 1·26 

RMS discrepancies on GCPs : 
Control points (X, Y, Z; mm) 

 
55·6, 

 
42·4, 

 
36·8 

 
13·8 

 
14·1 

 
14·3 

Check points (X, Y, Z; mm) 47·5, 54·8, 24·4 5·7 13·4 11·9 
a Measurement precision reported by the instrument was ~1 mm, values given here 1263 

account for additional uncertainty due to locating the prism over the GCP. 1264 
  1265 
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 1267 

Table 3. Parameters and survey precision characteristics for the 2014 badlands 1268 

survey, processed with GCPs as control. 1269 

Parameter or characteristic PhotoScana VMSb 

Camera model (Model A) Value ± precision 
Principal distance (P.D.; pix) 3786·42 ± 0·16 3786·40 ± 0·12 

Principal point 
coords. (pix) 

CCx 2295·45 ± 0·08 2296·06 ± 0·04 
CCy 1570·16 ± 0·13 1569·72 ± 0·08 

Radial 
distortion 

K1 -9·2484×10-2 ± 8·52×10-5 -9·2265×10-2 ± 7·43×10-5 
K2   3·5033×10-2 ± 3·57×10-4  3·4263×10-2 ± 3·09×10-4 
K3   3·1925×10-3 ± 4·51×10-4  4·3945×10-3 ± 3·62×10-4 

Camera orientations Mean precision across all cameras 
Position (X, Y, Z; mm) 16·4,  26·2, 30·5 14·4,  22·3, 26·7 

Rotation (roll, pitch, yaw; mdeg.) 21·1,  9·0,  9·1 18·2,  8·0,  8·2 

Survey overall georeferencing Precision 
Translation (X, Y, Z; mm) 2·6,  2·4,   5·6  n./a.  

Slope (angles to X, Y, Z axes; mdeg.) 7·5,  17·4,   0·3  n./a.  
Scale (%)    0·0072  n./a. 

3-D topographic point coordinates Mean precision across all points in region of interest 
Precision (X, Y, Z; mm) 18·6,   14·5,   26·1 18·2,   14·2,  25·2 

Shape onlyc (X, Y, Z; mm) 18·3,   13·9,   23·3 17·9,   13·8,  23·0 

 Dimensionless relative precision ratios (full survey) 
Mean precision : max. survey extent 1 : 29,600 1 : 29,600 

Mean precision : mean obs. distance 1 : 4,100 1 : 4,100 
Mean precision in pixels (XY, Z; pix.) 1·3,   1·1 1·2,   1·1 

a Precision values determined using Monte Carlo analysis. 1270 
b VMS used only to run a bundle adjustment on the image network derived by 1271 

PhotoScan. Camera parameter values are given in the convention used in 1272 
PhotoScan. 1273 

c ‘Shape only’ precision is determined after accounting for uncertainty in overall 1274 
georeferencing. 1275 
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 1278 

Table 4. Parameter correlations for the two camera models tested for the 2014 1279 

badlands survey. CCx and CCy are the principal point coordinates, P.D. is the 1280 

principal distance (focal length), K1-3 are radial distortion parameters and P1, 2 are 1281 

tangential distortion parameters. Underscores highlight correlation magnitudes that 1282 

exceed 0·10 (except those from self-correlation). 1283 

 Camera model A Camera model B 
 CCx CCy P.D. K1 K2 K3  CCx CCy P.D. K1 K2 K3 P1 P2 

CCx 1·00       1·00        
CCy -0·05 1·00      -0·05 1·00       
P.D. -0·09 -0·62 1·00     -0·41 -0·17 1·00      

K1 -0·03 -0·09 -0·03 1·00    -0·04 0·00 -0·10 1·00     
K2 0·03 0·08 0·10 -0·96 1·00   0·10 0·01 0·09 -0·96 1·00    
K3 -0·03 -0·09 -0·07 0·91 -0·98 1·00  -0·07 -0·02 -0·09 0·91 -0·98 1·00   
P1        0·27 0·19 0·45 -0·06 0·04 -0·03 1·00  
P2        -0·04 -0·89 0·18 0·02 -0·01 0·00 0·14 1·00 

  1284 
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 1286 

Table 5. Sediment budget between 2014 and 2015, calculated using different 1287 

methods to determine the regions of detectable change. Average topographic 1288 

change was determined using a catchment of 4710 m2 and a 1·12 a inter-survey 1289 

interval. 1290 

Calculation 
method used 

Total 
erosion 

(m3) 

Total 
deposition 

(m3) 
Net 
(m3) 

Average topographic 
change 
(mm a

-1) 
DoD -210·49 17·87 -192·61 -36·5 

DoD LoD95% -142·54 8·76 -133·78 -25·4 
M3C2 -18·89 0·21 -18·68 -3·5 

M3C2-PM -98·65 2·82 -95·83 -18·2  

 1291 



Figure 01
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3-D tie points

on surface
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model scale, translation and rotation

‘Strong’ georeferencing
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model scale, translation and rotation
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surface model has shape, but arbitrary scale, translation and 

rotation with respect to a geographic coordinate system



50 m

Figure 02

xy
z

a

b



 

CloudCompare and SfM_georef
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calculate 3-D distance between surveys with M3C2
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Figure 04
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To improve survey precision...

Control considerations: Georeferencing with GCPs

more GCPs, more widely distributed

more precise ground survey and image observations of GCPs

Photogrammetric considerations

more image observations per point, from wider angles (include convergent imagery)

more precise image observations (e.g. avoid areas of vegetation cover) 

Control considerations: Direct georeferencing

more images, collected over a wider survey span

increased ratio of survey span to viewing distance (height above ground)

more precisely measured camera positions

Figure 13

a

b

c


	James et al 2016 DEM uncertainty v11_all_changes_accepted
	3-D uncertainty-based topographic change detection with structure-from-motion photogrammetry: precision maps for ground control and directly georeferenced surveys
	Introduction
	DEM uncertainty
	3-D analysis and photo-based surveys

	Photogrammetric precision estimates
	Methodology and case study field site
	Precision maps for survey design: simulated UAV surveys
	Implementing precision maps with SfM surveys
	Change detection with 3-D precision maps
	Case study: Badlands site and data collection
	Data processing and analysis

	Results
	Simulated surveys: precision maps and spatial variation
	Badlands surveys: Precision maps and TLS comparison
	Predicted survey performance under direct georeferencing
	Change detection with 3-D precision maps

	Discussion
	Interpreting precision maps
	Direct georeferencing versus GCPs
	Camera models, parameter correlations and quality control
	Integrating precision into DEM uncertainty processing

	Conclusions
	Acknowledgements

	Figures_sml
	Figure 01 Precision theory
	Figure 02 sims_flighpaths
	Figure 03 Workflow
	Figure 04 M3C2_method
	Figure 05 badlands
	Figure 06 sims_GCP
	Figure 07 sims_DG
	Figure 08 MC vs VMS
	Figure 09 Precision maps
	Figure 10 Discrepancy maps
	Figure 11 Camera control precisions
	Figure 12 Change maps
	Figure 13 Precision surveys


