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Razi3, Carla Semedo1, Jonathan Schott2, Sébastien Ourselin1,2,4, Jason D.
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Abstract. Most neurodegenerative diseases are caused by pathogenic
proteins. Pathogenic protein behaviour is governed by neurobiological
mechanisms which cause them to spread and accumulate in the brain,
leading to cellular death and eventually atrophy. Patient data suggests
atrophy loosely follows a number of spatiotemporal patterns, with differ-
ent patterns associated with each neurodegenerative disease variant. It
is hypothesised that the behaviour of different pathogenic protein vari-
ants is governed by different mechanisms, which could explain the pat-
tern variety. Machine learning approaches take advantage of the pattern
predictability for differential diagnosis and prognosis, but are unable to
reveal new information on the underlying mechanisms, which are still
poorly understood. We propose a framework where computational mod-
els of these mechanisms were created based on neurobiological literature.
Competing hypotheses regarding the mechanisms were modelled and the
outcomes evaluated against empirical data of Alzheimer’s disease. With
this approach, we are able to characterise the impact of each mecha-
nism on the neurodegenerative process. We also demonstrate how our
framework could evaluate candidate therapies.
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1 Introduction

Most neurodegenerative diseases are caused by the accumulation of pathogenic
proteins whose behaviour is governed by neurobiological mechanisms. The in-
terplay among these mechanisms cause pathogenic proteins to accumulate and
spread in the brain network, leading to loss of function and brain atrophy. How-
ever, these mechanisms are still poorly understood and there are many hypothe-
ses regarding what mechanisms govern pathogenic protein behaviour [14, 16].
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Brain imaging of patients suggests that atrophy loosely follows a number of spa-
tiotemporal patterns, with different patterns associated with each neurodegen-
erative disease variant [14]. It is hypothesised that different pathogenic protein
variants are governed by different mechanisms, which would explain the variety
of patterns [14]. A better understanding of these mechanisms is key for the de-
velopment of therapies that directly influence them and thus disease progression.

Conventional machine learning can perform differential diagnosis and prog-
nosis [10, 15] in neurodegenerative diseases. An fMRI study determined disease-
specific regions as epicentres, whose functional connectivity extracted in healthy
subjects correlated with atrophy progression [16, 7], suggesting functional con-
nectivity impacts disease progression. In addition, hub regions and regions with
shorter functional paths to the syndrome-specific epicentre showed greater vul-
nerability. Despite their usefulness, such approaches and correlation studies do
not provide information on the protein-behaviour governing mechanisms.

A computational modelling study of amyloid-beta and tau aggregation in AD
evaluated candidate therapies [9], but on a more abstract level. Simulations and
computational modelling of pathogenic protein behaviour governing mechanisms
have previously been applied, but only to a small artificial neural network [5]. A
model of brain network mediated trans-synaptic diffusion [10] achieved a strong
correlation with atrophy of follow-up scans, however these were limited to four
year follow-ups. In contrast to these works, we model many additional protein
behaviour governing mechanisms, using a brain network and simulations and we
predict disease progression in its entirety.

We propose that computational models of pathogenic protein behaviour gov-
erning mechanisms be created based on neurobiological literature and then used
in simulations to predict atrophy. We evaluate models by comparing a sim-
ulation’s atrophy prediction to the prediction of an event based model fitted
to APOE4 positive AD patient data [15]. The models that best fit empirical
data provide evidence in favour of the related hypotheses behind them. Thus,
our framework can suggest which hypotheses warrant further investigation in
neurobiological research. We also demonstrate how suggestions regarding the ef-
fectiveness of candidate therapies that directly target the mechanisms can be
made by modelling their influence into the simulations.

2 Methodology

Structural, functional and diffusion-weighted MR images from 10 healthy sub-
jects were used to generate a graph representation of a healthy brain network,
consisting of 27 regions. We modelled multiple pathogenic protein mechanisms.
After initialising the network and seeding pathogenic protein into it, we ran
simulations, using our modelled mechanisms to update the network state.

2.1 Image Dataset and Processing

T1-weighted (T1w) MR images were parcellated into 208 regions [1]. We kept 27
symmetric grey matter regions (Fig. 1), denoted as r ∈ {1, ..., 27}. Each region



3

has associated coordinates cr and volume Vr(t) at timestep t. Subject volumes
were normalised by their total intracranial volume, then for each region Vr(0)
was set to the population averaged regional volume.

Resting-state functional scans were motion and EPI corrected and high-pass
filtered (0.01Hz). Time courses were extracted, then centered and variance-
normalised. The parcellations were affinely registered from the T1w to the fMRI
image space. We computed the per region and per subject synaptic signals based
on the methodology of Karahanoğlu et al. [6] (activity inducing signals), which
were averaged over subjects to get the population regional synaptic signals Sigr.
The per region, per subject synaptic signals were also used to compute the synap-
tic activity’s power spectrum, which were averaged over subjects. Using the per
region power spectrums, we computed the mean frequency per region fr(t).

Diffusion data were corrected for motion, eddy-currents and EPI distortion
using field maps before tensors were fitted. Tractography was then performed [13]
and filtered using the approach porposed by Smith et al. [11]. We denote as
DTIr1,r2 the connectivity matrix extracted from the tractography and defined
using the brain parcellation of the T1w images.

Resting state fMRI scans were used to compute each subject’s effective con-
nectivity [2] where the structural connectivity DTIr1,r2 was incorporated as prior
information [12] with hyperparameters α = 4, β = 12. The population effective
connectivity ECr1,r2 was calculated by performing Bayesian model reduction [3].

2.2 Modelling of Protein Behaviour Governing Mechanisms

We modelled the mechanisms of protein production, clearance, misfolding, extra-
cellular diffusion, network-mediated diffusion, frequency-related spread and at-
rophy. Brain regions had associated atrophy Ar(t), radius Radr(t) (we assumed
spherical regions), pathogenic protein concentration Pr(t) and non-pathogenic
protein concentration Nr(t). Pathogenic protein is hypothesised to interact with
non-pathogenic protein through the mechanism of misfolding, requiring the need
for a non-pathogenic protein concentration. We denote Dr1,r2 as the Euclidean
distance between the barycentric coordinates of brain regions. We calculated the
correlation matrix Corrr1,r2 between all pairs of synaptic signals Sigr1 ,Sigr2 .
Regional atrophy was initialised to Ar(0) = 0 and increases as a function of the
regional protein concentration (Eq. 1), with At defining the protein concentra-
tion threshold below which no additional atrophy occurs and Am controlling the
atrophy magnitude. Once Ar(t) = 1, then the region has fully atrophied. As
atrophy increases, it linearly decreases volumes Vr(t) (Eq. 2, also requiring an
updating of radii), as well as the regional synaptic frequency fr(t) (Eq. 3), as
we assumed that as brain regions atrophy, less synaptic activity will occur.

Ar(t) = Ar(t− 1) + max
[
0, Am

(
e10(Nr(t)+Pr(t)−At) − 1

)]
(1)

Vr(t) = (1−Ar(t))Vr(0) (2)

fr(t) = (1−Ar(t)) fr(0) (3)
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All modelled mechanisms are applied similarly to non-pathogenic and pathoge-
nic protein, except for misfolding. Therefore, we only display equations for
pathogenic protein except for Eq. 14. Production rates of non-pathogenic RProdN

and pathogenic RProdP protein model transcription and translation, the bio-
logical process through which new protein molecules are created in cells. Our
model of clearance [8] summarises all the processes through which the brain
removes protein molecules to be replaced by new ones. We modelled clear-
ance ClearNr(t),ClearPr(t) (Eq. 4) such that when concentrations diverge from
the equilibrium of normal protein concentration levels NEquilibrium, PEquilibrium,
where clearance rates RClearN, RClearP are typically equal to production rates,
the clearance rates adjust to compensate. We assumed pathogenic protein be-
haves in a ”prion-like” manner [14, 4], meaning that when pathogenic protein
and non-pathogenic protein come in close proximity, the non-pathogenic protein
misfolds and converts to the pathogenic state. Given a misfolding rate of RMis

a concentration of non-pathogenic protein Misfoldr(t) misfolds to pathogenic
(Eq. 5).

ClearPr(t) = RP log

(
1 + (e− 1)

Pr(t)

PEquilibrium

)
(4)

Misfoldr(t) = RMisNr(t)Pr(t) (5)

Many candidate mechanisms are hypothesised to spread protein [4] (e.g. dif-
fusion, exocytosis, etc). We modelled extracellular diffusion EDr1,r2(t) (Eq. 7),
network-mediated diffusion NDr1,r2(t) (Eq. 9) and frequency-related spread
FSr1,r2(t) (Eq. 10), with the elements of these matrices indicating the prob-
ability of protein spreading from region r2 to r1. Extracellular diffusion models
Brownian motion in the extracellular space. The probability of protein spreading
through extracellular diffusion to a region is given by the integral of a one dimen-
sional (we assumed isotropic diffusion) normal distribution which is based on the
region’s radius, its Euclidean distance from the origin region and the standard de-
viation σED, which controls the extracellular diffusion speed. Network-mediated
diffusion models Brownian motion adjusted to the strengths of network connec-
tions. The probability of protein spreading out of region r2 is given by CLr2
(Eq. 8) and is based on the integral of a one dimensional normal distribution,
with the standard deviation σND controlling the speed, as well as a term for the
relative connection strength per unit of volume. The probability to spread into
a region r1 also depends on the regions’ normalised connection strength wr1,r2 .
Frequency-related spread assumes that the more frequent synaptic activity is,
the more protein spreads out of a region. The probability of protein spreading
from region r2 to region r1 is based on the general strength of frequency-related
spread RFS, frequencies fr2(t) and on the normalised connection strengths wr1,r2
(Eq. 10).
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NEDr2(t) =
∑
r1

1√
2π

∫ Dr1,r2+Radr1
(t)

σED

Dr1,r2−Radr1 (t)

σED

e
x2

2 dx (6)

EDr1,r2(t) =
1

NEDr2(t)
√

2π

∫ Dr1,r2+Radr1
(t)

σED

Dr1,r2−Radr1
(t)

σED

e
x2

2 dx (7)

CLr2 = 2

 1√
2π

∫ −Radr2
(t)

σND

−∞
e
x2

2 dx

∑
r1

wr1,r2
minr3 Vr3(0)

Vr2(0)
(8)

NDr1,r2(t) =

{
CLr2wr1,r2 , if r1 6= r2

CLr2wr1,r2 + (1− CLr2) , if r1 = r2
(9)

FSr1,r2(t) =

RFS
fr2 (t)

maxr3fr3 (0)
wr1,r2 , if r1 6= r2

RFS
fr2 (t)

maxr3fr3 (0)
wr1,r2 + 1−RFS

fr2 (t)

maxr3fr3 (0)
, if r1 = r2

(10)

The connection strengths for network-mediated diffusion and frequency-related
spread can be based on any related metric. We explored the following pos-
sibilities: connection strengths based on the correlation coefficients wr1,r2 =
|Corrr1,r2 | between synaptic signals or based on the fibre tract connectivities
wr1,r2 = |DTIr1,r2 | or based on the effective connectivity strengths wr1,r2 =
|ECr1,r2 |. Respectively they create the network-mediated diffusion matrices-

NDC
r1,r2(t) with speed σND-C, NDD

r1,r2(t) with speed σND-D and NDE
r1,r2(t) with

speed σND-E and the frequency-related spread matrices FSCr1,r2(t) with strength

RFS-C, FSDr1,r2(t) with strength RFS-D and FSEr1,r2(t) with strength RFS-E.
Each timestep, we update atrophyAr(t), volumes Vr(t), radii Radr(t) and fre-

quencies fr(t). Production, misfolding and clearance update the concentrations,
which are then transformed to quantities (Eq. 14). After spreading through the
network (Eq. 15) they are transformed back to concentrations (Eq. 16).

FS(t) = FSC(t)× FSD(t)× FSE(t) (11)

ND(t) = NDC(t)×NDD(t)×NDE(t) (12)

QNr(t) = (Nr(t) +RProdN − ClearNr(t)−Misfoldr(t))Vr(t) (13)

QPr(t) = (Pr(t) +RProdP − ClearPr(t) + Misfoldr(t))Vr(t) (14)

QNP(t) = FS(t)×ND(t)×ED(t)×QP(t) (15)

Pr(t+ 1) = QNPr(t)/Vr(t) (16)

3 Results

We set: Nr(0) = 0.01, RProdN = RClearN = 2e− 4, At = 0.04. We varied whether
pathogenic protein was soluble (RClearP = 2e − 5) or insoluble (RClearP = 0),
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whether there was pathogenic protein production (Pr(0) = 0.01, RProdP = 2e−5)
or not (Pr(0) = 0, RProdP = 0) and whether there was pathogenic protein seeding
of concentration Pseed at the hippocampus, parahippocampal gyrus or entorhinal
area (e.g. for seeding the hippocampus: Pr=hippocampus(t = 0) = Pseed).

We evaluated our models by comparing simulation atrophy prediction against
the prediction of an event based model (EBM) [15] which computed the uncer-
tainty matrix UMr,i (Fig. 1), similar to Figure 1 of Young et al. [15], but using
empirical data of APOE4 positive AD patients, MCI patients and healthy con-
trols. The EBM assumes brain regional volumes are probabilistically healthy or
abnormal, fitting a normal and a uniform distribution to each brain region’s
volume data, which calculate the probability of health and abnormality respec-
tively. Volume abnormality threshold Vthresr for a brain region is defined as the
largest volume value such that the probability of health is equal to the probabil-
ity of abnormality. We kept track of the exact timestep that each region’s volume
became abnormal during a simulation. We denote OSr as the event position that
brain region r became abnormal during a simulation (e.g. if OSr=hippocampus = 5
then hippocampal volume became abnormal fifth, after four other brain regional
volumes became abnormal). The element UMr,i is the probability of region r
being i-th in the order of brain regional volumes becoming abnormal based on
the EBM. We used the following metric to determine the goodness of fit of each
model and to optimise the parameter set θ (Eq. 18):

θ? = min
θ

∑
r

log(UMr,OSr ) (17)

θ = {RMis, Am, Pseed, σED, σND-C, σND-D, σND-E, RFS-C, RFS-D, RFS-E} (18)

A model of pathogenic protein without production or clearance and with
hippocampus seeding best fitted the empirical data (Fig. 1) with parameters
{R?Mis = 0.297, A?m = 0.00152, P ?seed = 0.0969, σ?ED = 0.000243, σ?ND-C = 0,
σ?ND-D = 0.0829, σ?ND-E = 0.00276, R?FS-C = 0, R?FS-D = 0, R?FS-E = 0}.

4 Discussion and Future Work

The simulation with the optimal parameters predicted the early stages of atrophy
progression well, whereas later stages had a higher variance from the diagonal
sequence given by the EBM (Fig. 1). All other parameters being equal, simula-
tions with pathogenic protein without production or clearance better fitted the
data, evidence in favour of the prion-like spread hypothesis [14, 4]. Spread was
primarily driven by the fibre tract connectivity, whereas functional correlations,
(σ?ND-C = 0) extracellular diffusion (σ?ED = 0.000243) and effective connectiv-
ity (σ?ND-E = 0.00276) only had small contributions. Frequency-related spread
(R?FS-C = 0, R?FS-D = 0, R?FS-E = 0) also did not contribute to the spread. This
evidence suggests protein spread is driven by structural fibre tract connectivity
and not by synaptic activity, in agreement with the modelling of Raj et al. [10].

If we assume that our modelling with the optimal parameters θ? is an ac-
curate and sufficiently complex model of AD progression, then hypothetically
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

Event Position

Parahippocampal Gyrus

Hippocampus

Amygdala

Entorhinal Area

Inferior Temporal Gyrus

Middle Temporal Gyrus

Superior Temporal Gyrus

Fusiform Gyrus

Planum Polare

Thalamus Proper

Occipital Fusiform Gyrus

Inferior Occipital Gyrus

Accumbens Area

Posterior Cingulate Gyrus

Posterior Insula

Anterior Insula

Middle Occipital Gyrus

Angular Gyrus

Frontal Operculum

Superior Frontal Gyrus Medial Segment

Precuneus

Supramarginal Gyrus

Superior Frontal Gyrus

Middle Frontal Gyrus

Superior Parietal Lobule

Planum Temporale

Temporal Pole

Fig. 1. The matrix UM, indicating in grey the event position uncertainty for each
region, with the sequence OSr with the optimal parameters θ? overlayed as red crosses.

our framework could easily evaluate candidate therapies by simulating therapies
that have an effect on one or more of the models. For example, altering the
speed of extracellular diffusion had little effect on atrophy progression, whereas
decreasing the speed of network-mediated diffusion significantly slowed down at-
rophy progression. Despite this example’s oversimplification, it is clear how our
framework can suggest potential therapy targets.

We presented a proof-of-concept of our methodology, where we aimed at in-
ferring plausible physiological properties from empirical data with a more com-
plicated model than proposed by Raj et al. [10]. Most modelling approaches rely
on mathematical properties and are effective at capturing atrophy patterns (e.g.
classification task), but are unable to elucidate the underlying mechanisms. The
proposed approach, instead, aims at gaining an understanding of these mecha-
nisms through simulation of pathogenic protein spread within the brain network.
To achieve this goal, we had to make multiple assumptions, which are difficult
to validate, since many neurobiological properties are still unknown.

In future work additional mechanisms (e.g. protein homeostasis, amyloid
and tau interaction, etc.) will be modelled and their contribution to disease
progression will be assessed for a variety of neurodegenerative diseases, under
the hypothesis that different parameter values will be linked to different diseases.
Adding appropriate regularisation terms to the cost function and estimating
the structural and functional connectivity from a larger population of healthy
controls would also be desirable. In this work, connectivity metrics were assumed
to remain constant under atrophy, which is an assumption that should be relaxed
in future work.



8

Acknowlegments

This work received funding from the Engineering and Physical Sciences Research
Council (EP/L016478/1), the UCL Leonard Wolfson Experimental Neurology
Centre (PR/ylr/18575), the Alzheimer’s Society UK (AS-PG-15-025), the Aus-
tralian Research Council Discovery Early Career Research Award (DE170100128),
the MRC (CSUB19166), the ARUK (ARUK-Network 2012-6-ICE; ARUK-PG2014-
1946; ARUK-PG2017-1946), the Brain Research Trust (UCC14191), the Euro-
pean Union’s Horizon 2020 research and innovation programme (Grant 666992),
the NIHR UCL/H Biomedical Research Centre and a Wellcome Trust Senior
Clinical Fellowship [091673/Z/10/Z].

References

1. Cardoso, M.J., et al.: Geodesic information flows: spatially-variant graphs and their
application to segmentation and fusion. IEEE transactions on medical imaging
34(9), 1976–1988 (2015)

2. Friston, K.J., Kahan, J., Biswal, B., Razi, A.: A DCM for resting state fMRI.
Neuroimage 94, 396–407 (2014)

3. Friston, K.J., et al.: Bayesian model reduction and empirical Bayes for group
(DCM) studies. Neuroimage 128, 413–431 (2016)

4. Frost, B., Diamond, M.I.: Prion-like mechanisms in neurodegenerative diseases.
Nature Reviews Neuroscience 11(3), 155–159 (2010)

5. Georgiadis, K., et al.: Computational modelling of pathogenic protein spread in
neurodegenerative diseases. PLoS one 13(2), e0192518 (2018)
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