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Abstract 1 

Pediatric gastrointestinal motility disorders represent a range of severe developmental 2 

or acquired conditions that disrupt enteric neuromuscular function. Current medical and 3 

surgical therapeutic options are very limited but recent advances have highlighted the 4 

possibility of improved or curative stem cell-based treatments. Not only has the ability 5 

to harvest, propagate and transplant human-derived enteric neural stem cells (ENSCs) 6 

been demonstrated but recent in vivo transplantation studies have confirmed that 7 

ENSCs are capable of engraftment within recipient intestine of animal models of enteric 8 

neuropathy and effecting functional rescue. Pluripotent stem cell-derived cells and 9 

pharmacological modulation of both endogenous and transplanted neural stem cells 10 

have further enhanced the exciting prospect of clinical application of such stem cell-11 

based therapies in the near future. 12 
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Pediatric gastrointestinal motility disorders exist as a wide range of diseases, which can 1 

affect nearly every region of the gastrointestinal (GI) tract, including disorders of the 2 

esophagus, stomach and intestine such as achalasia,[1,2] gastroparesis,[3,4] pseudo 3 

obstruction,[5] slow transit constipation,[6-8] and Hirschsprung disease (HSCR).[9,10] 4 

Such conditions can arise from disruption of the neuromuscular syncytium through 5 

aberrant development or through acquired processes, which ultimately lead to loss of 6 

specific cell populations or disturbances in neuromuscular signaling.  7 

Current therapeutic interventions for pediatric motility disorders are very limited and, 8 

apart from those designed to ameliorate immune-mediated or inflammatory aetiologies, 9 

can be considered palliative rather than curative. Available interventions comprise 10 

medical management such as pharmacotherapy and/or specialized (including 11 

parenteral) nutrition and surgery aimed to minimize complications, improve quality of 12 

life as well as allow growth and development. Surgical interventions, applied in the 13 

majority of severe cases include manipulation (e.g. myotomy) of affected gut segments 14 

to facilitate flow of luminal comments and/or decompress the bowel or resection of the 15 

affected gut region. Unfortunately, such management strategies are associated with 16 

significant morbidity and poor outcomes in the pediatric population, with patients often 17 

requiring further surgical management through early childhood and beyond. Hence, 18 

there is a real need for alternative approaches to treat these devastating diseases. Recent 19 

advances in our understanding of gut development, the identification of gut stem cells 20 

and tremendous progress in pluripotent stem cell manipulation have driven 21 

investigations into the potential of stem cell-based therapies for the treatment pediatric 22 

motility disorders. 23 

 24 

Enteric Neural Stem Cell Treatment for Enteric Neuropathies 25 



Whilst pediatric motility disorders may result from disruption or loss any cell type 1 

(enteric neurons, interstitial cells of Cajal, PDGFR+ cells or smooth muscle cells) 2 

involved in gastrointestinal neuromuscular signaling, investigations, to date, have 3 

centered on the identification and application of neural stem cells for the treatment of 4 

neuropathology within the enteric nervous system (ENS).  5 

The ENS, the largest branch of the peripheral nervous system, is composed primarily 6 

of vagal neural crest-derived cells with a smaller contribution of sacral neural crest cells 7 

(NCC).  During embryonic development NCC delaminate from the dorsal aspect of the 8 

neural tube and migrate extensively throughout the embryo to their final anatomical 9 

location. Vagally derived enteric neural crest cells (ENCC) enter the foregut at 10 

approximately embryonic day 9.5 (E9.5) in mice and in humans at approximately 11 

gestational week 4.[11,12] These ENCC proceed to colonize the entire gut in a rostro-12 

caudal fashion by approximately E13.5 in mice[13] or embryonic week 7 in 13 

humans[12] with failure of this process leading to severe developmental diseases. 14 

Indeed failure of rostro-caudal ENCC colonization of the developing GI tract results in 15 

an absence of ENS formation in variable regions of the gut termed “Hirschsprung 16 

disease” (HSCR).[9] This incomplete formation of the ENS, in HSCR, leads to severe 17 

motility issues with constriction of the aganglionic intestine causing functional 18 

blockage of the terminal intestine and subsequent distention of the proximal intestine. 19 

HSCR is often diagnosed early in post-natal life with failure to pass meconium within 20 

the first 24 hours after birth[14] and the obstruction can be life-threatening without 21 

surgical intervention.[10] Given the well-characterized loss of enteric neurons within 22 

the aganglionic segment, stem cell-based replacement, of enteric neurons, is an 23 

attractive therapy for the treatment of HSCR.  24 



 Early studies of ENS development highlighted the critical need of ENCC to 1 

proliferate extensively, in embryonic life, to allow for colonization of the expanding 2 

gastrointestinal tract and the generation of the approximately 200-600 million enteric 3 

neurons and glia which make up the ENS.[15]  Such studies have highlighted the role 4 

of SOX10+ multi-lineage ENS progenitors (termed here as Enteric Neural Stem Cells - 5 

ENSCs) which are maintained as a progenitor pool via endothelin 3 signalling[16] with 6 

critical roles of Ret/GDNF signalling[17] in expansion and migration of ENCC along 7 

the length of the developing gut.[18] Furthermore, studies of the potential of post 8 

migratory ENCC have demonstrated the presence of multipotent p75+ or RET+ 9 

progenitors,[19,20] which can differentiate towards ENS lineages, suggesting the 10 

presence of enteric “stem-like” cells within the ENS after colonization. Multipotent 11 

ENSCs have subsequently been identified in fetal and postnatal gut tissues from rodent 12 

models.[21-23] Moreover, human gut samples, both fetal and post-natal, have been 13 

similarly shown to contain ENSC,[24,25] suggesting that a pool of multipotent ENSC 14 

are maintained through life, raising the possibility harvesting autologous ENSC for the 15 

treatment of ENS disorders. More recently, clinical studies have crucially demonstrated 16 

that it may be possible to isolate human ENSC from routine mucosal biopsies, at 17 

endoscopy, providing an accessible and routinely practiced method for harvesting 18 

autologous ENSC.[24] 19 

 20 

Transplantation of Enteric Neural Stem Cells 21 

A number of preliminary and preparatory studies have established the potential for in 22 

vivo transplantation of ENSC in wild-type colonic segments as a proof-of-principle.   In 23 

vivo transplantation of ENSC (both embryonic and postnatal) sourced from various 24 

transgenic reporter models has been shown to lead to the engraftment of donor-derived 25 



cells within recipient colonic muscularis.[23,26] Comparative studies have shown that, 1 

transplanted ENSC can generate enteric neurons in transplanted colonic tissues at a 2 

greater efficiency than CNS derived neural stem cells.[27] These studies additionally 3 

demonstrate that ENSC-derived neurons adopt the appropriate localization within the 4 

gut muscularis, and can give rise to various enteric neurons including the main 5 

excitatory (ChAT, VAChT, Calretinin and Calbindin) and relaxatory (nNOS  and VIP) 6 

neuronal subtypes.[23,26] Immunohistochemical analysis, in the wildtype colon, has 7 

also suggested a close anatomical link between transplanted neuronal networks and the 8 

endogenous ENS suggesting possible functional integration of donor derived neurons. 9 

Physiological studies of both mouse and human transplanted ENSC-derived 10 

neurons have shown the functional integration of individual neurons and/or multiple 11 

neurons within the transplanted neural network after in vivo transplantation.[22,23,26] 12 

These functional studies critically demonstrate that transplanted ENSC-derived 13 

neurons integrate with the endogenous circuitry post-transplantation. Furthermore, 14 

stimulation of donor ENSC, expressing an optogenetic reporter, has recently been 15 

shown to elicit excitatory and inhibitory junction potentials in recipient colonic muscle 16 

cells demonstrating the ability of transplanted ENSC-derived neurons to integrate 17 

within the gut neuromusculature and mediate motor control.[28] These fundamental 18 

preclinical transplantation studies, in wildtype models, provide proof-of-principle data 19 

regarding the potential of ENSC transplantation as a possible therapeutic application. 20 

However, as the majority of pediatric motility disorders present with neuropathic loss 21 

or disruption, further studies were required to demonstrate the potential of stem cell-22 

based strategies to replace lost neurons and rescue functional behavior in models of gut 23 

pathophysiology. 24 



Preliminary studies of the effects of ENSC transplantation in “diseased” settings 1 

have utilized a range of model systems including aneural or chemically ablated gut 2 

segments, and neuropathic animal models. Using these models, murine and human 3 

ENSCs have been shown to engraft within aneural chick gut segments or aganglionic 4 

gut segments ex vivo and within chemically ablated mouse gut after in vivo 5 

transplantation. [24],[29],[26,30],[31] Similarly, it has been shown that p75+ ENSC can 6 

be isolated from ganglionated human HSCR colon and that after expansion in culture, 7 

these autologous ENSCs could integrate and form neurons in aneuronal sections 8 

resected from the same patient.[32] Critically this study demonstrates that an 9 

autologous human cell replacement strategy based on ENSC isolation is possible in an 10 

ex vivo setting. 11 

In vivo transplantation of murine derived ENSCs within aganglionic models has 12 

been shown to lead to successful integration and appropriate differentiation to ENS 13 

lineages providing further evidence that donor ENSCs survive within aganglionic gut 14 

segments. [33],[34] Furthermore, unsorted ENSCs harvested from ganglionated human 15 

HSCR bowel has been shown to colonize aganglionic (Ednrb-/-) colonic segments after 16 

in vivo transplantation giving rise to both neurons and glia.[29] 17 

Unfortunately, such in vivo transplantation studies have, to date, been hampered 18 

by short survival times of aganglionic transgenic mouse lines, which has essentially 19 

precluded in-depth studies to determine the degree of functional rescue, which is 20 

imparted by the development of donor ENSC-derived neurons. Recent in vivo 21 

transplantation studies in less severe phenotypes such as the neuronal nitric oxide 22 

knockout (nNOS-/-) mouse model, which displays slow colonic transit,[35] have shown 23 

that transplantation of ENSCs is able to lead to the development of nNOS+ neurons and 24 

the restoration of nitrergic responses in the distal bowel.[36] Moreover, ENSC 25 



transplantation within this model led to non cell-autonomous effects increases in 1 

interstitial cells of Cajal (ICC) numbers and rescue of colonic motility, providing the 2 

first direct evidence that in vivo ENSC transplantation can restore function, in a 3 

pathophysiological disease model.  4 

 5 

Transplantation of Pluripotent Stem Cell Derived Cells 6 

While these studies demonstrate the potential of an autologous ENSC-based 7 

therapy for the treatment of neuropathic motility disorders, recent advances in the 8 

manipulation of pluripotent cell sources have led to the exciting prospect of pluripotent 9 

cells for the treatment motility disorders.  10 

Similarly, due to the well characterized neuropathic models of dysmotility, significant 11 

early investigations have focused on the derivation of nervous system cell types from 12 

pluripotent sources as a treatment strategy. In vivo transplantation of neural stem cells 13 

derived from amniotic fluid has been shown to lead to increased improvement in 14 

colonic transit as assessed by bead expulsion ex vivo.[37] Moreover, transplantation of 15 

ENCC from human pluripotent stem cells, including both human ES and iPSCs has 16 

been recently shown rescue a Hirschsprung phenotype with 100% survival of Ednrbs-17 

l/s-l (SSL/LEJ) mice demonstrating the potential use of pluripotent stem cell derived 18 

neurons in the treatment of neuropathic motility disorders.[38] However, as several 19 

questions remain as to the safety of pluripotent cell sources for therapeutic treatment it 20 

will be necessary to fully characterize the fate of transplanted pluripotent derived-donor 21 

cells and the mechanisms by which they appear to rescue diseased gut. 22 

 23 

Pharmacological modulation of stem cells for the treatment of severe motility 24 

disorders 25 



Interestingly, studies targeting pluripotent stem cells as potential therapeutic 1 

tools have provided key insights as to the ability to pharmacologically modulate cell 2 

fate and behavior in order to maximize therapeutic impact. Thorough molecular 3 

characterization studies of ENCC-derived from human ES and iPSC sources have 4 

demonstrated the ability to drive pluripotent stem cells towards an ENCC fate using 5 

various pharmacological protocols.[38,39]  Further pharmacological targeting has been 6 

shown to promote derivation of terminal neuronal subtypes from pluripotent sources 7 

including nNOS, ChAT, calretinin, tyrosine hydroxylase VIP and 5-HT neurons both 8 

in vitro and in ex vivo culture conditions.[38,40-42]  Furthermore, the vast numbers of 9 

ENCC which can be derived from pluripotent stem cell sources provide an excellent 10 

model for drug discovery. Using a high throughput approach, pluripotent stem cells 11 

have been used to model HSCR to serve as a screening platform for molecules which 12 

may modulate the migratory behavior of ENCC, in vitro. Interestingly, pretreatment 13 

with validated compounds, such as Pepstatin A, Endothelin 3 or EDNRB inhibitor (BQ-14 

778) where found to modify migratory behavior.[38] Similarly, the behavior of 15 

autologously derived ENSC, including migratory and neurogenic potential, has been 16 

found to be enhanced via exposure to GDNF both in vitro and after in vivo 17 

transplantation, providing further evidence that pre-transplantation pharmaceutical 18 

modulation of ENSC or pluripotent stem cell-derived ENS cells may be possible as a 19 

therapeutic strategy.[43],[44]  20 

 21 

Conclusions 22 

Recent preclinical investigations have provided significant steps towards the application of a stem cell-23 

based therapy for the treatment of severe pediatric motility disorders. Such studies have critically shown 24 

significant progress in the ability to isolate and manipulate stem cells for the treatment of enteric 25 



neuropathies. However, in order to transition to first-in-human studies an improved 1 

understanding and enhanced diagnostics of gut motility disorders is required, in terms 2 

of cellular or functional pathology, before application of stem cell treatment can be 3 

applied. For example, in disease states where enteric neuropathy is immune or virus 4 

mediated a stem cell-based transplantation strategy may not be beneficial as any 5 

transplanted cells may be themselves targeted by the underlying disease process. 6 

Furthermore, where enteric neuropathy is driven by genetic mutation autologous 7 

transplantation without genetic manipulation would result in the transplantation of 8 

“defective” cells which may not provide a therapeutic benefit. In such cases enhanced 9 

understanding of the causative features of individual disease mechanisms combined 10 

with advances in gene therapy may provide avenues to provide a “personalized” stem 11 

cell transplantation strategy to overcome such complications.  12 

To this end, researchers in the field have recently compiled a key white paper 13 

summarizing the key methodologies and strategies as well as the obstacles that must be 14 

overcome in order to progress from successful preclinical studies in animal models to 15 

ENS stem cell therapies in the clinic.[45] 16 

Moreover, despite considerable strides in the application of a stem cell treatment for 17 

neuropathic motility disorders, little work has been provided to investigate applications 18 

for myopathic or combined neuropathic/myopathic disorders. Hence, significant further 19 

work will be required in order to demonstrate the ability to treat these challenging 20 

diseases with stem cell therapeutics.  21 

 22 

 23 
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