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Abstract—Non-invasive brain stimulation, such as transcranial
alternating current stimulation (tACS) provides a powerful tool
to directly modulate brain oscillations that mediate complex
cognitive processes. While the body of evidence about the effect
of tACS on behavioral and cognitive performance is constantly
growing, those studies fail to address the importance of subject-
specific stimulation protocols. With this study here, we set the
foundation to combine tACS with a recently presented framework
that utilizes real-time fRMI and Bayesian optimization in order to
identify the most optimal tACS protocol for a given individual.
While Bayesian optimization is particularly relevant to such a
scenario, its success depends on two fundamental choices: the
choice of covariance kernel for the Gaussian process prior as
well as the choice of acquisition function that guides the search.
Using empirical (functional neuroimaging) as well as simulation
data, we identified the squared exponential kernel and the upper
confidence bound acquisition function to work best for our
problem. These results will be used to inform our upcoming real-
time experiments.
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I. INTRODUCTION

Studies involving non-invasive brain stimulation have re-
ported remarkable changes in cognitive and behavioral perfor-
mance [1]. Among those techniques, transcranial alternating
current stimulation (tACS) is particularly promising as it
directly allows for the modulation of physiologically relevant
brain oscillations that subserve cognitive operations [2]. The
effects of tACS are highly dependent on the frequency and
phase of stimulation [3]. The conventional tACS approach
involves defining the frequency and phase of stimulation ad
hoc and testing them on a cohort of subjects. However, this
approach exhibits two limitations: (1) the brain networks
targeted by the stimulation cannot be verified without si-
multaneous fMRI; (2) those stimulation parameters may vary
across subjects due to difference in anatomy or heterogeneity
in disease. Yet, there is a combinatorial explosion in the
biologically plausible range of stimulation frequencies (1-100
Hz) and phases (0-359◦), resulting in up to thousands of
possibilities. Identifying the optimal stimulation protocol for a
given individual is like “finding a needle in a haystack”. There-
fore, using conventional methodology makes tailoring tACS to
an individual highly unfeasible. To address this fundamental
challenge in the clinical use of tACS, we aim to combine tACS
with a recently presented framework that behavior real-time
functional magnetic resonance imaging (fMRI) and Bayesian
optimization: The Automatic Neuroscientist [4]. Employing

Fig. 1. High-level overview of the Automatic Neuroscientist combined with
tACS. (1) The experiment starts with applying a random combination of
tACS parameters to the subject in the scanner. (2) Whole-brain functional
images are acquired and analyzed in real-time in response to the block of
stimulation. (3) Information about the current brain state is extracted and (4)
compared to the pre-defined target brain state. This result is then fed into the
Bayesian optimization approach. (5) Based on this, the algorithm chooses a
new combination of tACS parameters that optimizes for the target brain state.
This closed-loop cycle continues until the optimal tACS parameters are found.

such a framework allows us to start with a target brain state
and find a set of tACS parameters (frequency and phase of
stimulation) for each individual that maximally activates it
(Fig. 1).

Bayesian optimization is particularly relevant to such a
problem as it provides a powerful strategy for finding maxima
of objective functions that are expensive to evaluate and might
contain noisy measurements (both criteria are met with func-
tional neuroimaging data). Moreover, Bayesian optimization is
suited in situations where we do not have an analytical expres-
sion of the objective function nor can make formal statements
regarding its properties [5], [6]. However, the implementation
of Bayesian optimization requires several fundamental choices
that are paramount to the success of the technique; such as
(1) the choice of covariance function for the Gaussian process
(GP) prior and (2) the choice of acquisition function which
determines the manner in which the space of parameters is
explored.

The aim of this study is to objectively compare the per-
formance of a variety of distinct kernel functions (resulting in
distinct GP priors) and acquisitions functions. Offline fMRI
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data from eight healthy volunteers receiving blocks of non-
invasive tACS stimulation over left frontoparietal brain regions
as well as simulation data were employed. The results obtained
will be used to propose a combination of kernel and acquisition
functions for upcoming real-time experiments.

II. METHODS

The objective of this work is to obtain a better under-
standing of the relationship between various combinations of
tACS parameters (i.e., frequency and phase) and each subject’s
neural response. In the framework of Bayesian optimization,
such a relationship is summarized by a latent objective function
which we wish to infer. With this in mind, a small neuroimag-
ing study was conducted where healthy participants received
tACS consisting of various combinations of frequency and
phase. This data was subsequently employed to perform model
selection on the GP covariance function. In addition to this,
simulation analyses were carried out to compare two popular
acquisition functions.

A. Empirical Data

1) Subjects and Experimental Design: Eight healthy volun-
teers (5 female, 24.75 ± 3.49 years) took part in our study. The
study was approved by the Hammersmith Hospital (London,
UK) research ethics committee. Each participant performed
three runs of a switch task [7] in the MR scanner. Each run
consisted of task blocks (36 s) interleaved with rest blocks
(24 s). During task blocks, tACS was applied via a pair of
MR-compatible conductive rubber electrodes over left frontal
(F3) and left parietal (P3) regions (as determined by the
International 10-20 EEG system). Both return electrodes were
placed on the ipsilateral shoulder. The current was fixed to
1 mA (peak-to peak). The experiment parameter space was
limited to ten different frequencies (0,1,5,8,12,16,20,26,40 and
80 Hz) and five different phases (0, 60, 90, 180 and 270◦),
resulting in 50 different frequency-and-phase combinations
(see Fig. 2). For each run and each subject, we tested a subset
of 14 identical frequency-and-phase combinations (grey shaded
squares in Fig. 2). The order of those frequency-and-phase
combinations was random for each run in order to eliminate
any order effect of the stimulation on the subject’s neural
response. The condition without any stimulation (0 Hz with
0◦) was the only condition that was repeated two (n=4) to
four (n=4) times within each run.

2) Target brain state extraction: Whole-brain coverage
images were acquired by a Siemens Verio 3T scanner using
an EPI sequence (TR: 1.5s). Data was minimally preprocessed
by applying motion-correction, high-pass filtering (100s) and
spatial smoothing (5mm FWHM Gaussian kernel). We than ex-
tracted 20 regions of interest (ROIs) that have been previously
shown to predict trial-by-trial performance in task switching
(for ROI definition we created 8mm spheres around the peak
coordinates reported in [8]). The extracted timecourses were
further cleaned by removing high-frequency noise and large
signal spikes using a modified Kalman filter [9]. We then
assessed changes in functional connectivity between those
regions for blocks of tACS using psychophysiological inter-
action (PPI) analyses [10] (whilst also including six motion
parameters as confounds). For the analyses presented here,

Fig. 2. Exhaustive two-dimensional tACS parameter space with each
dimension corresponding to the frequency or phase of non-invasive brain
stimulation, respectively. Grey shaded squares are combinations sampled in
our (offline) fMRI study.

we selected the two regions that exhibited the highest inter-
run robustness across all subjects (assessed using Spearman’s
rank correlation coefficient): the left inferior parietal lobule
and the posterior cingulate gyrus. In order to assess how
likely the pattern of results between those regions could have
occurred by chance, we performed non-parametric permutation
testing (10,000 permutations) and found the result to be highly
significant (z=3.71, p<.001).

B. Bayesian optimization

The underlying intuition behind the method of Lorenz et al.
[4] is that the target brain pattern is a function of experimental
conditions. As such, the authors propose to learn the relation-
ship by modelling the observed brain state as a sample from a
Gaussian process (GP). This facilitates the use of a Bayesian
optimization framework [5], [6] in a closed-loop form where
subjects are presented with an experimental condition and
real-time fMRI provides instantaneous information about the
subject’s brain state. Based on this, we can iteratively update
our beliefs about the unknown objective function, captured in
the posterior distribution of the GP. While Lorenz et al. [4]
used simple perceptual stimuli in their original experiment, our
study here involves blocks of non-invasive brain stimulation
with different combinations of frequency and phase. This can
be considered as a far more challenging problem as only a
handful of studies exist investigating the effects of tACS on
the blood oxygenation level dependent (BOLD). Beyond that,
high inter-subject variability can be expected as outlined in the
Introduction.

In contrast to the fMRI setting employed in [4], there is
far less prior knowledge regarding the properties of the latent
objective function which can be leveraged in this context.
Therefore, data was collected over a cohort of eight subjects
(see previous section). Using this empirical data we begin by
studying the choice of kernel function in Section II-B1. Given
a choice of kernel and by carrying out simulation analyses,
the effects of various acquisition functions are subsequently
assessed in Section II-B2.

1) Covariance function: The choice of kernel function in
GP regression is fundamental [11]. The kernel directly spec-
ifies a measure of similarity across various inputs and there-
fore determines the generalization properties of the estimated
model. Model selection in the context of GPs is often posed



as a parameter estimation task whereby the hyper-parameters
for a specific choice of kernel can be learnt [11]. However,
comparing the performance of potentially many distinct kernels
is a challenging problem. Recently, [12], [13] have proposed
a method for automatically searching over the space of kernel
structures in a principled manner.

Briefly, the proposed approach proceeds by considering
compositional structures (either addition or multiplication)
over four base kernels; squared exponential (as employed in
[4]), periodic, linear or rational quadratic. When comparing
various distinct kernel structures the Bayesian Information Cri-
terion (BIC) is employed to score the various models (where
type-2 maximum likelihood estimates of parameters are used).
Initially, each of the base kernels is proposed. Thereafter,
the selected kernel can be extended by either performing
addition or multiplication with any base kernel. While the
original approach described in [12] proposes kernels for each
dimension independently, in this work both dimensions were
studied simultaneously (thus two dimensional kernels were
proposed at each step). This decision is based on the hypothesis
that each dimension (either frequency or phase) would share a
similar relationship with the response, therefore leading to the
selection of similar (if not the same) kernel.

2) Acquisition function: Of equal importance for the suc-
cess of the Bayesian optimization is the choice of acquisition
function. The role of the acquisition function is to iteratively
propose the experimental condition to be presented to the
subject. It therefore serves to guide the search over all com-
binations of parameters (in our case frequency and phase)
and must implicitly balance exploration with exploitation. In
this work we considered the performance of two popular
acquisition functions: the expected improvement (EI) and
upper confidence bound (GP-UCB) acquisition function [5]1.
The two acquisition functions differ in their trade-off between
exploration and exploitation of the experimental parameters
space, giving rise to distinct sampling behaviors over time.
Informally, the EI acquisition function can be seen as trying
to maximize the expected improvement over the current best.
While the GP-UCB also favors the selection of points with
high mean value (similar to the EI acquisition function), it also
favors points with high variance (i.e., regions worth to explore).
In certain settings, this will result in a more explorative
behavior of the GP-UCB compared to the more “greedy” EI
acquisition function. For algorithmic details, please refer to
[5].

While the choice of kernel function can be guided by model
selection and information theoretic measures, the comparison
of multiple acquisition functions requires explicit knowledge
of the underlying objective function. As a result, a simulation
study was employed to the benchmark the performance of the
two aforementioned acquisition functions.

A complex and multimodal objective function was pro-
posed for the simulation study (see Fig. 3a). This was moti-
vated by our empirical results, showing multiple optima and
minima for each subject (not shown). As the presence of
non-neural noise is well documented for fMRI experiments,
we also studied how different levels of contrast-to-noise-ratio

1 The probability of improvement (PI) acquisition function was not included
as it is typically seen to be over exploitative.

(CNR) affected the Bayesian optimization. We repeated our
simulations analyses with CNR values ranging from 0.1 and
1.8 (typically reported CNR values in fMRI literature vary
between 0.5 and 1.8 [14]). For each CNR value tested, we
ran 100 simulations. The maximum number of iterations was
set to 100 with the first five (randomly selected) observations
serving as burn-in phase. Thereafter, at each iteration, a new
frequency-and-phase combination was proposed by maximiz-
ing the respective acquisition function and sampled by the
Bayesian optimization algorithm in the next iteration.

As a measure of accuracy we computed spatial correlation
between the algorithm’s predictions for the whole parameter
space and the “ground truth” objective function. Considering
our underlying motivation to gain a holistic understanding of
the whole parameter space (learning about maxima and min-
ima), spatial correlations seemed most appropriate to capture
similarity across the whole space. This procedure was identical
to the one reported in [4].

III. RESULTS

A. Covariance kernel selection

In this work we follow [12], [13], and look to compare
several distinct kernels via the use of BIC. Furthermore, we
also employ a greedy search algorithm whereby we begin with
a base kernel and iteratively extend this kernel.

There are two significant differences in the approaches
described in this work to those of [12], [13]. The first is our
choice of base kernels; in this work the squared exponential,
periodic, linear and Matern ( 32 ) where employed as base
kernels. The second difference is that two-dimensional kernels
were proposed at each iteration. This choice was motivated by
an assumption that the relationship between parameter (fre-
quency or phase) and the response shared a similar functional
form. Finally, a minor difference between this work and that of
[13] is that change-point functions were not considered here.

Following [12], we begin by proposing each of the base
kernels and calculating the associated BIC scores. In this first
step the squared exponential kernel was selected. We then
proceeded to consider compositional structures. Each of these
structures was composed by either adding or multiplying the
squared exponential kernel with each of the base kernels.
For each compositional kernel, the parameters were estimated
using the previous parameters as warm starts. Again, BIC
scores were employed to score each of the compositional
models. At this stage, there was no reduction in BIC scores
resulting in the choice of the squared exponential kernel.

B. Acquisition function selection

Simulation analyses were carried out to assess the perfor-
mance of the EI and GP-UCB acquisition functions. A range of
CRN values were employed in order to recreate the properties
of fMRI data as well as study the performance of each of
the acquisition functions in scenarios with low signal-to-noise
ratio. Throughout this simulation the underlying GP model was
maintained constant, allowing us to attribute any differences in
performance to the acquisition functions.

For each CNR value, 100 simulations where performed.
Each simulation allowed the proposed Bayesian optimization



Fig. 3. Results of simulation analyses. (a) Modeled objective function used for simulations. Mean ± SEM (shaded areas) spatial correlation between predicted
and modeled parameter space for (b) EI and (c) GP-UCB acquisition function. As the first five iterations were used as a burn-in, they are not depicted here
(gray dashed line). Simulations were performed for 10 different CNR values, ranging from 0.1 (bright blue) to 1.8 (dark blue).

algorithm to explore the parameter space over 100 iterations.
The spatial correlation between the predictive posterior under
the GP model and the true objective function was calculated
at each iteration.

The mean ± SEM spatial correlation results are depicted in
Fig. 3b for the EI and in Fig. 3c for the GP-UCB acquisition
function. Not surprisingly, we note that both acquisition func-
tions fail in the presence of too much noise (for CNR values
< 0.2). The results also indicate that the GP-UCB acquisition
function clearly outperforms the EI acquisition function for
typical CNR values reported in the literature (0.5-1.8).

IV. DISCUSSION AND FUTURE WORK

The results presented here serve as an initial exploration
into the choices of kernel and acquisition functions which can
be used in the context of real-time optimization for tACS.
Our results propose the use of a squared exponential kernel
function in combination with a GP-UCB acquisition function.
In a series of simulations, the latter was shown to capture
the whole parameter space (as identified by using spatial
correlations) when compared to the EI acquisition function.
This result was consistent for a range of CNR values tested.
These findings serve as an important basis for upcoming real-
time experiments. An avenue of future work is the definition
of appropriate stopping criteria to determine convergence [15].
This is particularly important in our context due to high
scanning costs, limited attentional capacities of subjects and
neural habituation to the stimulation.

To our knowledge, this is the first study to propose a
framework that allows tailoring non-invasive brain stimulation
to an individual. The next step consists of applying this
technology to patients suffering from traumatic brain injury; a
condition that disrupts frontoparietal brain networks and hence
results in cognitive impairments [16]. While closed-loop deep
brain stimulation has already been shown to outperform the
conventional approach in Parkinson’s patients [17] we envision
that our framework will advance personalized treatment by
means of non-invasive brain stimulation. This will be of
particular importance for neurological and psychiatric deficits
that are diffuse and widely heterogeneous in their origin.
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