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Abstract—Intelligent perception to determine the physical 

interaction between robotic hands and the environment is a topic 

of great interest for the sensing and robotics communities. Sensor 

information on object stiffness and associated object deformation 

is essential to plan and execute stable and tight grasps. This 

paper proposes a novel robot-finger-integrated perception sensor 

to estimate the physical interaction with objects. The sensing 

principle of our combined force and proximity sensor is based on 

light intensity modulation, involving fiber optics technology to 

measure the proximity between robot fingers and object during 

approach as well as to detect normal and lateral forces. In order 

to distinguish between hard and soft (deformable) objects a 

Support Vector Machine (SVM) is employed to classify the 

handled object’s stiffness based on the measured force and 

proximity data. The classifier does not require prior knowledge 

of the objects and achieves 87% classification accuracy on a set 

of household objects with different mechanical characteristics. 

Keywords—fiber optical sensing, force sensing, proximity 

sensing, stiffness classification. 

I. INTRODUCTION 

 It is well known that the quality of grasping and 
manipulation tasks performed by multi-fingered robotic hands 
can be improved with the use of tactile and proprioceptive 
sensing [2]. Such sensory information can be used to obtain an 
understanding regarding the geometry, position, orientation 
and stiffness of the handled object, allowing us to evaluate and 
improve the quality of grasping. Visual information is often 
used to estimate the shape and location of an object, as well as 
to create a virtual representation that can be used for grasp 
planning [1]. Visual recognition, however, provides little 
information on the mechanical characteristics of the object, 
such as stiffness. Without this knowledge, it can be extremely 
challenging to grasp fragile or deformable objects, such as food 
or clothing, as it is often difficult to determine whether the 
applied forces deform or, even, damage the object.  

 To grasp deformable objects, a robotic system should be 
equipped with “physical interaction” sensors installed on the 
gripper and appropriate perception intelligence using the sensor 
data to guide the grasping. Robotic grippers equipped with 
tactile sensors are becoming increasingly popular. Although 
force and tactile sensors are steadily improving, there is still 
the need for further hardware development and enhanced 
algorithms that enable the generalization of perceived 
information [2]. 

 

Fig. 1. Integrated fingertip sensor: a) CAD model; b) prototype implemented 

using three-dimensional printing; c) exploded view of the sensor structure. 

 There is a category of model-based control algorithms for 
deformable object grasping strongly relying on advanced 
sensing and computation capabilities and precise knowledge of 
the objects used, usually acquired through repeated exploratory 
grasps to identify the mechanical characteristics of the objects 
in question [3], [4]. These requirements are very specific, and 
often limit the use of these control algorithms to a specific 
application domain. Other approaches make use of vision 
systems to aid object recognition and grasping [5]. The 
disadvantage of this approach is the complexity of the models 
and exorbitant computational requirements, as vision 
processing is a difficult resource-intensive operation. More 
recent work [6] applies machine learning techniques to a set of 
features extracted from raw data of the interaction between the 
object and sensors. Similarly, using a Support Vector Machine 
(SVM), our method classifies objects into hard and soft classes 
based on the object’s deformability features as determined 
from proximity, torque and force features acquired during the 
initial interaction with the object. This method does not require 
any prior knowledge of the manipulated objects and produces 
robust classification thanks to the fusion of different sensory 
data. The contribution of this work is as follows: 1) we present 
the design of the integrated fingertip tactile sensor for grasping; 
2) we present the classification algorithm for the integrated 
sensor to distinguish between hard and deformable objects.  

II. SENSOR DESIGN 

The presented sensor is using optical fibers that detect light 
intensity at its sensing elements (Figures 1 and 2). The 
displacement of a non-deformable surface painted with a thin 
layer of reflective silver paint is used to change the light 
intensity; the light intensity is modulated as a function of the 
pressure applied to the sensing element. In addition, two 
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proximity sensors are embedded in the fingertip structure. Our 
proximity sensor comprises a couple of optical fibers and 
estimates the distance to an object evaluating the amount of 
light that is reflected back by that object. The entire structure of 
the sensor integrated with the robotic fingertip can be 3D 
printed. The sensor can be used for any robotic hand, as only 
the configuration of the connecting element need to be 
modified. The design of our integrated hybrid fingertip sensor 
is shown in Figure 1. As it can be seen, from the exploded 
view, the sensor is composed of four main elements. The tip of 
the sensor has the shape of a human fingertip, and is acting as a 
contact surface with an object. Two proximity sensors are 
embedded in the tip of the fingertip. The second part of the 
fingertip sensor is a flexible cantilever structure (supported 
beam) that is used to detect normal force and lateral moments 
based on the deflection in directions normal to the finger’s 
longitudinal axis. The third element of the sensor is a base that 
connects the fingertip with the rest of the robotic finger. Three 
pairs of optical fibers are embedded in the base element to 
detect the deflection of the flexible cantilever structure above. 
The fiber tips are directed to the reflective surface applied to 
the top structure (Figure 2). The final element of the sensor 
structure is a metal screw to protect the sensor from excessive 
loads, by limiting the deflection; this screw is inserted in the 
center of the sensor to limit the bending of the flexible element.  

A. Force and Torque Sensing 

The flexible structure of the integrated fingertip sensor is 
used to detect three-axis force/torque signals. The deflection of 
the cantilever structure is causing the displacement of the 
reflective surface in respect to the tips of the pairs of the optical 
fibers. Figure 3 shows finite element simulations of applied 
normal force and lateral moments. The design of the flexible 
structure is based on the previous work of authors, where the 
similar cantilever type structure is used to measure three-axial 
forces for cardiac catheter [7]. The above work describes the 
calibration of light intensity modulation, as well as modeling of 
sensor response. As the dimensions and configuration of the 
flexible cantilever structure are different in our case, the 
calibration process was repeated. It was found that the fingertip 
sensor measures normal force up to 4.5 N. The lateral torque 
values (around the x- and y-axes) go up to ± 18 N/mm. Using 
nylon to print the flexible cantilever structure proved to lead to 
low hysteresis and high robustness.  

B. Proximity Sensing 

Typically, an external vision system is used to detect the 
location of a target object for grasping, and to estimate its 
position inside the hand when the grasp is complete. However, 
in the scenario, when the grasp is executed wrongly, fingers 
can occlude the object, thus limiting the possibility to adjust 
the grasp. Proximity sensors are used to measure the distance 
to the object, when the fingers are ready to grasp, when in hand 
manipulation or grasp adjustment is required. As shown in 
Figure 2, the integrated fingertip sensor is equipped with two 
proximity sensors. Depending on the type of grasp, and the 
orientation of the finger relative to the object, either single pad 
or tip proximity sensor or both are used to measure the distance 
to the object. The distance to an object is estimated using the 
amount of light reflected back from the object.  

 

Fig. 2. Cross-section of the integrated fingertip sensor; red and blue arrows 
show sensor behavior for deflections in different direction. 

Fig. 3. Simulations of applied load to the flexible structure: a) normal force, 

b) and c) lateral torques. 

Our proximity sensors can measure distances of up to 30 
mm depending on the reflective properties of an object [8]. In 
previous work, the authors described the calibration method 
that uses an external camera to estimate object surface 
properties for improved distance estimates [8]. This allowed us 
to improve the accuracy of distance estimation (mean error: 
below 2 mm).  

III. OBJECT CLASSIFICATION ALGORITHM 

A. Experimental setting 

In order to design and experimentally validate the 
classification method, experimental trials were conducted with 
a range of objects (Figure 4a), which can be classified as hard 
or soft. The training set of objects had six hard and five soft 
objects. In case when the objects deformation during pressure 
was below 3 mm, the object was tagged as hard. In order to 
perform probing motion, two sensors were mounted on the 
Baxter robot parallel gripper, as shown in Figure 4b. Five 
grasping trials were performed for each object. To train and 
test the classifier, the normal force, the lateral torques and the 
proximity values were obtained from each trial. The magnitude 
of lateral moment was used in the classification algorithm. The 
sensor data was filtered with a median filter of size two; it was 
normalized and de-trended by removing the mean value. The 
proximity data was processed to obtain a binary output. If the 
proximity sensor is triggered when approaching the object, the 
output was marked as 1 and the force and torque data is 
considered for learning. If the object is too distant, the output 
of the sensor is marked as 0 and the respective data is ignored. 
In this work, normal force, torque and proximity information 
are merged to help the classification. The data was pre-
processed using Matlab 2016b, while the classification was 
performed in Weka 3.8. 

B. Design of the Algorithm 

The first step required for implementing a successful 
learning technique is to define a set of features of the data that 
can discriminate the data between the two classes. The input 



data is a series of N-by-three sequences, where N is the number 
of points in a trial, for force, proximity and torque 
observations. Two features were extracted: the standard 
deviation of the force and torque data when the finger is in 
contact with the object. It is suggested that the force/torque 
response of a hard object is mostly steady over time. Instead, a 
soft object has a variable response, which depends on the 
finger's indentation, due to the deformability of the object's 
surface. As shown in the classification results in Figure 5, the 
use of standard deviation as learning features simplified a large 
set of points into a linearly separable dataset. The problem of 
hard/soft object classification was resolved using SVM. Such 
technique is well established, and is well suited for binary 
classification. As the data is linearly separable, the SVM can 
be trained using a linear kernel. In this case a linear decision 
threshold, which requires just three parameters, adequately 
separated the data. The classifier has the following form: 

𝑓(𝑥) =  −5.2629  𝐹 − 2.9108 𝑇 + 2.38,  

𝑓(𝑥) > 0 → ℎ𝑎𝑟𝑑, 

𝑓(𝑥) < 0 → 𝑠𝑜𝑓𝑡, 

where F and T are the force and torque value respectively. 

 

Fig. 4. Experimental setting: a) set of objects; b) executed grasp for object 

classification. 

C. Classification Results 

To evaluate the results of the classification, two more 

models were trained and used for comparison: a voted 

perceptron and the ZeroR classifier. The latter assumes that all 

instances belong to the majority class and is generally used as 

reference for comparison. All models were assessed with a 10-

fold cross-validation. The trained SVM correctly classified 

87.3% of the data, as it is shown in Figure 5, and performed 

better than the perceptron (69%) and the ZeroR (63.6%). In 

addition, the classification precision, the recall and the area of 

the Receiver Operating Characteristic (ROC) curve were 

evaluated to compare the accuracy of the classification for all 

models (Table I). The precision is ratio of correct guesses on 

the total number of guesses for each class. The recall is the 

ratio of correct guesses of one class over the total number of 

correct guesses. The area of the ROC is an index, which 

indicates how well the data is separated into classes. Although 

the voted perceptron can discriminate linearly separable data, 

its performance is poorer than SVM as its algorithm, does not 

consider the margin to the samples. 

IV. DISCUSSION AND CONCLUSIONS 

In this work we present the design of an integrated fingertip 

sensor that is based on a fiber optical measurement principle 

designed to perform intelligent grasping of a wide range of 

objects, including hard non-deformable and soft deformable 

objects. An SVM classifier, using as the input data from the 

integrated fingertip sensors, classifies objects into soft and had 

based on their deformability. The performance of the proposed 

classifier is compared against a baseline classifier and a 

perceptron and it is found to be more accurate. The proposed 

sensor and classifier allow planning an adequate grasping 

strategy after single-contact probing to build up classification 

features. In the future, we plan to detect the exact stiffness 

without the need of an exploration by using a Deep 

Convolutional Neural Network. 

 
Fig. 5. Classification results of hard and soft objects using SVM. 

TABLE I.  COMPARISON OF CLASSIFICATION METRICS 

 Classification Precision Recall ROC 

Hard 

object 

ZeroR 0.636 1 0.464 

Perceptron 0.688 0.943 0.825 

SVM 0.889 0.914 0.857 

Soft 

object 

ZeroR 0 0 0.464 

Perceptron 0.714 0.25 0.825 

SVM 0.842 0.800 0.857 
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