
- 1 - 
 

 

The acute effects of dopaminergic medication and deep brain 

stimulation of subthalamic nucleus on basic executive 

functions including shifting, updating and inhibition in 

Parkinson’s disease patients 
 

Yu-Ting Huang 

 

University College London 

Doctor of Philosophy 

2018 
 

 

 

 



 

2 
 

Declaration 
 

I, Yu-Ting Huang, confirm that the work presented in this thesis is my own. Where 

information has been derived from other sources, I confirm that this has been 

indicated in the thesis. 

 

 

 

Signature: 

 

 

 

 

 

 

 

 

 

 

 

  



 

3 
 

Acknowledgment 
Firstly, I would like to thank my principle supervisor Prof. Marjan Jahanshahi for the 

continuous support of my PhD study. Her guidance helped me in all the time of 

research and writing of this thesis. Thank you, Marjan. Secondly, I would like to 

thank my secondary supervisor Dr. James Kilner for his insightful comments and 

suggestions on my research. Besides my supervisors, I would like to thank my thesis 

committee: Dr. Magda Osman and Dr. Vladimir Litvak, thank you for your time and 

comments to widen my research from various perspectives. 

 

My sincere thanks also goes to Prof. Patricia Limousin, Prof. Tom Foltynie, Prof. 

Sven Bestmann, Dr. Steve Kennerley and Prof. Marwan Hariz. Without their precious 

support it would not be possible to conduct this research. In particular, I am grateful 

to Dr. Steve Kennerley for inspiring me and keeping me motivated. Thank you Steve, 

and I am sorry about all the trouble I caused. Moreover, I would like to thank all the 

participants that were involved in my studies, it was because of their kindness that 

made this research. I thank my fellow labmate Dr. Friederike Leimbach for the 

stimulating discussions, for all the support during ups and downs, and for all the fun 

we have had in the last three years. It’s been such an amazing experience to work with 

you, I wish you success in all your future endeavors. We did it!! Many thanks to 

Suzette Shahmoon. There are no words that can express my gratitude for your kind 

words and encouragement during my darkest time. Thank you! 

 

Also I thank all my wonderful colleagues at the Unit of Functional Neurosurgery, Dr. 

Dejan Georgiev, Dr. Philipp Mahlknecht, Dr. James Gratwicke, Dr. Dilan Athauda, Dr. 

Andre Zacharia, Catherine, Joseph, Maricel, Dr. Viswas Dayal, and Dr. Emma Scelzo. 

All of you have been there to support me when I recruited patients and collected data 

for my PhD thesis. It’s been a privilege working with all of you. Many thanks to 

Linda, Shiva, Debbie and David as well. Thank you all so so much for all the kind 

help. 



 

4 
 

 

I would like to thank all my friends, especially Pom, Maysam and Yoshi, thank you all 

for the support and all the happy memories. Lastly I thank my family for their love 

and support during my PhD, I wouldn’t be able to finish it without them. 

  



 

5 
 

致謝 

首先，感謝我偉大的父母。言語完全無法闡述我對我父母的感謝，謝謝您們始終

在這條路上給我最大的支持和鼓勵，讓我能夠完成這個學位，如果成為博士有任

何值得驕傲的光榮，都應該是屬於您們兩位的。 

 

同時感謝那些在我最低潮時陪著我讓我無止盡地釋放負能量的人：我的父母、惠

文、孟庭、雅程、捷銘、一廷、欣怡、于萱、伊萍、Phoebe、Derek、Danny、家

源、小壞、鳩哥、于姐。謝謝你們願意在我看不到希望的時候聽我無止無盡地抱

怨個不停，也願意陪我罵上幾句。 

 

謝謝 Phoebe、全人計畫學霸芸新和祖青，以及 MRI中心的小夥伴 Oli 和 Erica 陪

我模擬口試，讓我對自己的這份論文產生了更多信心。 

 

感謝來過英國找我玩耍的父母、穎穎、舅舅舅媽們、宗翰、于萱、伊萍、凹凹、

惠瓘學姐、方亘、惠文、孟庭、雅程、捷銘、昕蓉，謝謝你們讓我有機會再一次

次地從各種角度愛上倫敦這座優雅而傲慢的城市。讓我在倫敦的回憶充滿各種美

好與精采。 

 

謝謝我的心靈支柱陳信宏先生，在我的博論裡曾經有你，沒有遺憾的詞句，只有

感激。當然也謝謝怪獸、瑪莎、石頭和冠佑，沒有你們所有故事都不會完整。 

 

最後的最後，謝謝始終沒有放棄的我自己。 

『光陰不會往後退，應拋開傷心憶記，願再試高飛的滋味。』 

趁風再起，願逆風萬里高飛。  



 

6 
 

Abstract 
The general aim of the present PhD thesis is to investigate the effects of two common 

treatments of Parkinson’s disease (PD), dopamine medication and deep brain 

stimulation (DBS) of the subthalamic nucleus (STN), on executive functions (EFs) 

including the abilities of shifting, updating and inhibition in patients relative to 

age-matched healthy controls. The thesis consisted of four studies. Study 1 examined 

the acute effect of dopamine medication on PD patients who had been previously 

diagnosed with impulsive control disorders (ICDs) using a moving dots paradigm to 

assess their abilities of context monitoring. Study 2 created predictive models using 

behavioural data from the previous studies to build classification predictive models, to 

demonstrate that behavioural patterns on a moving dots task could potentially be used 

as a screening tool in predicting vulnerability to develop ICDs in PD patients. Study 3 

examined the acute effects of STN DBS on task switching using a moving dots 

paradigm in PD patients. Study 4 investigated the acute effects of STN DBS on 

reprogramming actions when encountering surprising events, using a probabilistic 

reaction time (RT) task. It was hypothesised that for both treatments, being ON states 

would induce impaired executive functions that lead to faster RTs and more incorrect 

responses in PD patients, due to the ‘dopamine overdose hypothesis’ and the DBS 

interrupting the role of the STN in inhibitory control. In summary, the acute 

manipulation of both treatments did not render significantly negative effects on PD 

patients behaviourally. However, PD patients still showed certain difference on task 

performance compared to age-matched healthy controls, which may shed lights on the 

role of basal ganglia in basic abilities of EFs. Furthermore, the behavioural patterns 

on tasks involving core aspects of EFs may potentially be used to predict the onset of 

ICDs, which provides benefits to clinical purpose.  



 

7 
 

Impact statement 

Parkinson’s disease (PD) is the second most common neurodegenerative movement 

disorder, which affects 1% of the population over the age of 60 (de Lau & Breteler, 

2006). The basal ganglia dysfunction is closely related to the motor and non-motor 

symptoms observed in PD. Two common treatments for PD include dopamine 

medication and deep brain stimulation (DBS) of the subthalamic nucleus (STN). 

Despite effectively ameliorating motor symptoms, clinical observations have shown 

that PD patients may develop side effects on cognitive functions such as diminished 

verbal fluency, impaired executive functions and impulse control disorders (ICD) 

induced by the treatments. By collecting behavioural data from PD patients ON 

versus OFF treatments, the present PhD thesis investigated the acute effects of both 

treatments on behavioural tasks in PD patients. The behavioural data were further 

compared to age-matched healthy controls (HCs). In addition, hierarchical drift 

diffusion models (HDDM) were applied to the behavioural data to derive the 

underlying mental processes.  

 

In general, the results showed that both treatments are robustly effective in 

ameliorating motor symptoms and produced no significantly negative effects on task 

performance and psychological measures in PD patients. Both treatments are 

therefore supported to be safe procedures in treating patients with PD. Theoretically 

speaking, the present results are in line with the hypothesis that action execution is 

associated with both the quality/reliability of sensory information and the inner drive 

to be fast and accurate, instead of simply related to speed and accuracy trade-off 
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modulation. In addition, the results support the roles of dopamine and the STN in 

motor control and inhibition through the basal ganglia pathways. Clinically speaking, 

the results suggest that while some evidence has shown that medical and surgical 

treatments can induce negative side effects on cognition for PD patients, such side 

effects may be small and specific to individuals. Despite receiving benefits from both 

treatments, PD patients still showed certain deficits when performing the tasks 

compared to age-matched HCs. The results thus indicate that factors other than acute 

influence of treatments are involved in controlling executive functions in PD patients. 

Effects of long term treatments, disease progress, individual difference, genetic 

factors, environmental as well as social factors are in need to be considered for 

patient-centred care. More importantly, PD patients who had been clinically 

diagnosed with impulse control disorders (ICD) have been shown to have different 

behavioural patterns on a moving dots task compared to PD patients who had never 

been diagnosed with ICDs. The results suggest that tasks of similar characteristics 

may potentially be used as a screening tool to prevent the medication-induced ICDs 

by identifying PD patients who may be vulnerable to developing ICDs before the 

medication treatment.  

 

Taken together, the present thesis proposes a potential new screening tool for ICDs in 

PD patients that can have clinical benefits on preventing the negative side effects, and 

provides insights on the theoretical roles of dopamine and the STN in executive 

functions associated with the abilities of shifting, updating and inhibition.  
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Chapter 1 General introduction 

Parkinson’s disease (PD) is the second most common neurodegenerative movement 

disorder, which affects 1% of the population over the age of 60 (de Lau & Breteler, 

2006). It has been established that the basal ganglia dysfunction directly connects to 

the movement disorder (DeLong, 1990). Currently there is no cure for the disease, 

however there are two common treatments that have been developed to treat PD 

patients: dopamine medication and deep brain stimulation (DBS) of the subthalamic 

nucleus (STN). Both treatments have been suggested to efficiently ameliorate motor 

symptoms in PD, however, the treatments have also been suggested to induce 

cognitive side effects such as impulsive behaviours, impaired executive functions 

(EFs) and impaired verbal fluency (Weintraub, David, Evans, Grant & Stacy, 2015; 

Gotham, Brown, & Marsden, 1988; Cools, Barker, Sahakian, & Robbins, 2001; 

Swainson et al, 2000; Walter & Vitek, 2004). It is hypothesised that dopamine 

medication inude side effects in PD patients could be the results of ‘dopmaine 

overdose hypothesis’, which suggest that while dopamine medication remedies the 

dopamine depleted areas in the brain it would overstimulate relatively intact brain 

areas thus leads to impaired cognitive functions (Cools et al., 2001, 2006), and DBS 

of the STN would interrupt the inhibition function of the STN, leading to impaired 

inhibitory control in PD patients (Frank et al., 2007; Green et al., 2013). Broadly 

speaking, these side effects induced by treatments in PD patients could potentially be 

generalised to the impairment on three basic EFs: shifting, updating and inhibition. 

which is also closely associated with the basal ganglia dysfunctions. In addition, 

behavioural tasks such as moving dots paradigm and probabilistic reaction time (RT) 
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task can provide links associating cognitive and motor processes that are involved in 

the basic EFs. Therefore, in the present thesis I attempt to investigate the acute effects 

of treatments of PD, namely dopamine medication and STN DBS, on basic EFs 

including shifting, updating and inhibition using moving dots paradigm and a 

probabilistic RT task. 

 

The acute effects of treatments were assessed by comparing the behavioural data ON 

treatment and OFF treatment within PD patients. RTs and response accuracy of the 

behavioural tasks were collected as the dependent variables. Computational models 

such as hierarchical drift diffusion model were further applied to the behavioural data 

to study the underlying mental processes. Performance of PD patients OFF/ON 

treatments was further compared to age-matched healthy controls. The present thesis 

is composed of the following chapters:  

Chapter 1 is the general introduction including reviews on (1) general concepts on the 

three basic EFs including shifting, updating and inhibition, (2) the anatomy and 

structure of the basal ganglia, and the circuits linking action and cognition; (3) 

pathology, symptoms and the treatments of PD; (4) the acute effects of the two 

treatments (i.e. dopamine medication and STN DBS) on cognitive functions 

associated with context monitoring in PD patients; (5) general aims and 

methodologies of the studies.  

Chapter 2 introduces a behavioural study investigating the acute effect of dopamine 

medication on PD patients who had been previously diagnosed with ICDs, using a 

random moving dots paradigm. It was hypothesised that based on ‘dopamine 
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overdose hypothesis’, when response speed was emphasised while making a response, 

PD patients with ICDs ‘ON medication’ would show faster RTs and more incorrect 

responses due to impaired basic EFs that leads to failed context monitoring, in 

contrast to when response accuracy was emphasised. Contrary to prediction, the 

results showed that acute manipulation of dopamine medication did not have 

significant negative effects on the behavioural parameters of PD patients. Moreover, 

the application of hierarchical drift diffusion model (HDDM) to the behavioural data 

showed that PD patients with ICD history did not show significant impairments on 

context monitoring. The results seem to suggest that PD patients with ICD history and 

PD patients without ICD may show difference when performing certain tasks 

compared to previosuu study (Huang et al., 2015), which may further indicate that the 

behavioural parameters of the tasks could potentially be used as an input in building 

predictive models, providing clinical benefits to patient-centred health care.  

Following the previous results, Chapter 3 presents a study using behavioural data 

from the moving dots tasks as one of the input variables in training a predictive model 

with machine learning algorithms to classify PD patients with and without an ICD 

history. It was hypothesised that performance on the moving dots task could be used 

as a screening tool to predict potential development of ICDs. The results showed that 

behavioural parameters from moving dots tasks could potentially be used as a 

screening tool in predicting vulnerability to develop ICDs in PD patients. The results 

combining previous studies suggest that it is possible to use behavioural parameters to 

predict the onset of ICDs in PD patients, tasks associated with the abilities of shifting, 

updating and inhibition may be used in unmedicated PD patients, so that clinicians are 
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more likely to take appropriate precautionary action to prevent the onset of ICDs.  

 

On the other hand, to explore the acute effects of STN DBS on the basic EFs in PD 

patients, Chapter 4 & Chapter 5 each presents a behavioural study on the subject. 

Chapter 4 presents a behavioural study examining the acute effect of STN DBS on 

how PD patients performed a block-designed moving dots task that attempted to 

assess the effects of STN DBS on task-switching. In addition, the mioving dots task 

also provide the investigation of making resposnes under speed and accuracy 

instructions (Speed/Accuracy trade-off) and at the same time estimating the reliability 

of sensory information. It was hypothesised that PD patients ON stimulation would 

have impaired task-swithcing abilities dues to the hypothetical effects of DBS on 

interrupting functions of STN on inhibitory control, resulting in faster RTs and more 

incorrect responses when it is required to switch between automatic and controlled 

behaviours. Contrary to prediction, the present study shows no negative effect on task 

switching behaviours induced by the acute manipulations of STN DBS on a 

block-designed moving dots task. However, PD patients with STN DBS ON did show 

deficits on task switching during the Inhibition/Switching part of the Colour Word 

Interference Test compared to age-matched HCs. The evidence suggests that 

task-switching may involve fundamentally different but related cognitive processes, 

which are controlled by distinct brain areas. Moreover, the above results are in line 

with the hypothesis that the reliability of sensory information plays an important role 

on modulating SAT. Furthermore, PD patients still showed subtle difference on 

underlying cognitive components under the effects of DBS, which supports a role of 
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the STN on SAT and sensory information integration. It may be due to the suboptimal 

design of the behavioural tasks that the effects of STN DBS on impairing inhibitory 

control.  

 

To further explore the hypothesis of STN DBS impairing inhibitory control in PD 

patients, Chapter 5 introduces a study assessing the acute effect of STN DBS on how 

PD patients reprogamme their actions after encpuntering unexpected events, which is 

closely related to inhibition, and cognitive flexibility. It was hypothesised that when 

ON STN DBS, PD patients would fail to reprogram the action while environmental 

context changed, which leads to faster RTs and more incorrect responses during the 

trials that are unexpected (in the study the unexpectedness was defined as improbable 

trials that was based on the frequency of the sequence). The results show that all 

participants were able to react fast during Predictable blocks/Probable trials than 

Unpredictable blocks/Improbable trials. In addition, response accuracy did not differ 

between Predictable and Unpredictable blocks for all participants, but for HCs 

response accuracy was higher during Probable trials than Improbable trials, such a 

difference was not observed in PD patients across stimulation states. 

Furthermore, PD patients exhibited robust speed and accuracy trade-offs when 

performing the probabilistic RT task, which may indicate that PD patients, especially 

PD patients OFF stimulation, were predominately aiming to act fast therefore 

sacrificed response accuracy. In summary, the two studies did not show an effect of 

DBS on inducing impairedinhibitory control in PD patients, however it did not rule 

out the the possibility of STN DBS to impaire motor/cognition control through 
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inhibiton in PD patients. Moreover, in both studies PD patients treated with STN DBS 

were assessed ON medication, which may be the reason why the results did not reflect 

the hypothetical effects of DBS on interrupting the role of STN in cognitive and 

motor control. 

Chapter 6 summarises and discusses the findings from previous experimental chapters 

and provides directions for future studies investigating relevant research topics. The 

appendices contain the questionnaires and consent forms used in the studies, and the 

programming codes with additional figures for the statistical and computational 

models. Figure 1.1 illustrates a schematic framework of the present thesis. 
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Figure 1.1 A schematic framework of the present PhD thesis. The role of dopmamine 

was investigated by assessing the acute effect of dopamine medication on behavioural 

data in PD patients based on dopamine overdose hypopthesis. The rold of the 

subthalamic nucleus (STN) was investigated by assessing deep brain stimulation 

(DBS) of STN on behavioural data in PD patients based on the role of the STN 

hyperdirect pathway in motor control.  
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1-1 Executive functions 

Executive functions (EFs) is an umbrella term that refers to a family of top-down 

mental processes that control other brain processes (Diamond, 2013; Najdowski, 

Persicke, & Kung, 2014), which are skills essential for mental health, physical health, 

and almost every aspect of life. Table 1.1 lists the associations between EFs and the 

aspect of life and their references. In summary, impaired EFs may result from 

impaired inhibitory control, thus resulting in mental health and physical health 

problems (Baler & Volkow, 2006; Diamond, 2005; Lui & Tannock, 2007; Fairchild et 

al., 2009). In addition, ‘cognitive control’, which refers to the ability to coordinate 

lower-level sensory, memory and/or motor operations in relation with internal goals 

(Miller, 2000; Koechlin, Ody & Kouneiher, 2003), is sometimes interchangeable to 

EFs by some researchers (Aron, 2007; Miller & Cohen, 2001). Cognitive control is 

essential for higher cognition processes such as solving complex or novel tasks, 

correcting errors and overcoming habitual responses. Some studies associate 

cognitive control closely to the ability of task switching (Monsell. 2003; Kim, Cilles, 

Johnson, & Gold, 2012). In the present thesis I use the term ‘executive functions’ to 

represent the broad functions, whereas ‘cognitive control’ in the present thesis would 

be considered as a synonym to cognitive flexibility (task-switching) which would be 

further explored in later sections.  
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Table 1.1 Executive functions (EFs) are important to many aspects of life. Table from 

Diamond (2013). 

 

In addition to the difficulty to precisely define EFs, the study of EFs is challenging 

due to task-impurity (Miyake, Friedman, Emerson, Witzki, & Howerter, 2000), as any 

target EF must be embedded within a particular task context, the measures derived 

from any laboratory tasks to assess EFs would necessarily include non-EF processes 

(Miyake & Friedman, 2012). To ease such an issue, Miyake & Friedman (2012) have 

been using a ‘latent-variable’ approach, of which researchers select multiple exemplar 

tasks sharing little non-EF variance and statistically extract the common variables, 

resulting in ‘purer’ latent variable as the measures to study EFs. Moreover, the 

researchers have primarily focused on the study of three EFs: updating (constant 

monitoring and modifying working memory contents based on sampled information), 

shifting (switching flexibly between tasks and/or mental sets), and inhibition 

(deliberately suppressing intended or prepotent actions) (Miyake & Friedman, 2012). 
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Figure 1.2 illustrates the unity/diversity framework that reflects a shift in recent 

research goal to specifying the cognitive and biological underpinnings of the unity 

and diversity (Miyake & Friedman, 2012). 

  

 

Figure 1.2 Schematic representation of the unity and diversity of three executive 

functions (EFs). Each EF is hypothesised to be the combination of a unity component 

(i.e. common EF) and a diversity component that is specific to the particular EF (e.g. 

updating-specific EF for updating ability). In this figure, a specific diversity 

component for inhibition is missing due to previous studies showing that once the 

unity component (i.e. common EF) is accounted for, no unique variance would be left 

for the inhibition ability (Friedman et al., 2008; 2011). Figure adapted from Miyake & 

Friedman (2012).  

 

In association with the three EFs (i.e. updating, shifting, and inhibition) proposed by 

Miyakie & Friedman (2012), there is also an agreement on the existence of three core 

EFs: working memory, inhibition, and cognitive flexibility (Lehto, Juujarvi, Kooistra, 
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& Pulkkinen, 2003; Miyake et al., 2000). Figure 1.3 illustrates the basic level EFs 

(such as working memory, inhibitory control, and cognitive flexibility), higher level 

EFs (such as reasoning, problem-solving, and planning), and their associated 

concepts.  

 

 

Figure 1.3 Executive functions and related terms. Figure and caption from 

Diamond (2013). 

 

Working memory (WM) contains the cognitive capacity that is responsible to hold 

information in mind and mentally working with it (Baddeley & Hitch, 1994; Smith & 

Jonides, 1999). One of the most common concepts linked to executive functions is the 

multicomponent model of WM proposed by Baddeley & Hitch (1974), which 
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suggests that WM comprises a phonological loop for manipulating and storing 

speech-based information and a visuospatial sketchpad for visual and spatial 

information. In addition, WM is critical for reasoning and planning (Suß, Oberauer, 

Wittmann, Wilhelm, & Schulze, 2002; Owen et al., 2010), and is crucial for inhibitory 

control as information must be hold in mind to guide future behaviours (Diamond, 

2013). Conversely, inhibitory control is crucial for WM as the mind is required to 

inhibit internal and external distractions to keep the goal in mind and to avoid 

mind-wandering (Kane et al., 2007; Mason et al., 2007; Smallwood & Schooler, 

2009). In addition, inhibitory control supports WM by suppressing irrelevant 

information from the limited-capacity workspace (Hasher & Zacks, 1998; Zacks & 

Hashers, 2006). Duncan et al (2008) showed that participants with poorer EFs failed 

to switch rules when being instructed to, which has been associated to failure in 

clearing up irrelevant information from the limited-capacity WM workspace. Despite 

evidence showing that inhibitory control and WM are intertwined, the influence of 

each skill may be controlled for (Diamond, 2013). It has been suggested that WM and 

inhibitory control rely on the same limited-capacity system, therefore increasing 

demands on one would affect the performance of the other (Engle & Kane, 2004; 

Wais & Gazzaley, 2011). The neural basis of WM involves the activation of the 

prefrontal cortex in top-down modulation (D’Esposito et al., 1995; Bunge, Klingberg, 

Jacobsen, & Gabrieli, 2000; Zento et al., 2011). Some researchers view WM as the 

primary skill and that inhibitory control is the derivative (Egner & Hirsch, 2005; 

Hanania & Smith, 2010; Nieuwenhuis & Yeung, 2005), while another group of 

researchers find the two skills separable by viewing WM as the activation of goal and 
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inhibitory control as suppression on irrelevant tasks (Davidson, Amso, Anderson, & 

Diamond, 2006; Zanto, Rubens, Thangavel, & Gazzaley, 2011). It remains debatable 

on the exact relationships between WM and inhibitory control, however it is 

undeniable that the two cognitive skills are associable and that WM is an important 

part of EFs.  

 

Inhibition includes self-control (behavioural inhibition) and interference control 

(selective attention and cognitive inhibition), which involves the ability to control 

one’s attention, thoughts, behaviours, and/or emotions to override existing 

internal/external cues or goals, in order to adapt to current environment and execute 

more appropriate actions (Diamond, 2013). Inhibitory control of attention includes 

selectively choosing to pay attention or ignore (i.e. inhibit attention) specific stimuli 

in order to fulfil a set goal or intention (Posner & DiGirolamo, 1998; Theeuwes, 

2010). Another aspect of inhibitory control is self-control or self-regulation ability, 

which includes (1) controlling over one’s behaviour and emotions to prevent from 

acting impulsively, (2) having the discipline to overlook distractions and focus on 

completing a task despite temptation to quit and (3) delayed gratification that involves 

giving up a small immediate reward in exchange for a larger reward later (Diamond, 

2013). Psychological measures of inhibitory control include the Stroop task 

(MacLeod, 1991), Simon task (Hommel, 2011), Flanker task (Eriksen & Eriksen, 

1974; Mullane, Corkum, Klein, & McLaughlin, 2009), antisaccade tasks (Luna, 2009; 

Munoz & Everling, 2004), delay-of-gratification tasks (Kochanska, Coy, & Murray, 

2001; Sethi, Mischel, Aber, Shoda, & Rodriguez, 2000), Go/NoGo tasks (Cragg & 
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Nation, 2008), and stop-signal tasks (Verbruggen & Logan, 2008). Note that despite 

the effect of Stroop task is sometimes referred to as ‘Stroop inhibition’, it has also 

been suggested that Stroop task demonstrates more of an interference effect resulting 

from conflict (MacLeod, Dodd, Sheard, Wilson, & Bibi, 2003). In addition, Stroop 

task has also been considered to be a type of cognitive flexibility task (Golden & 

Freshwater, 1978; Moore & Malinowski, 2009). Most of the mentioned tasks require 

the inhibitory control to execute an action over another, whereas the Go/NoGo tasks 

and stop-signal tasks require participants to inhibit an action without making another. 

The basal ganglia are closely associated with the underlying neural mechanisms of 

inhibitory control, which is one of the core hypotheses of the present thesis and would 

be further discussed in later sections.  

 

Cognitive flexibility also refers to as set shifting, mental flexibility or mental set 

shifting, which relies on both WM and inhibition and is closely related to creativity 

and theory of mind (Diamond, 2013). The aspects of cognitive flexibility include: (1) 

the ability to change perspectives spatially and interpersonally that requires the 

inhibition of previous perspective and activating WM to switch to a different 

perspective, which is associated with ‘thinking outside the box’ (i.e. creativity) and 

‘put yourself in someone else’s shoes’ (i.e. theory of mind), and (2) the ability to 

adjust in accordance to the dynamically changing environment such as task demands, 

priorities, admitting being wrong and reacting to unexpected events. Cognitive 

flexibility has been suggested to be crucial to problem-solving abilities especially 

when facing novel and surprising condition, which is also closely related to 
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attentional processes (Canas, Quesada, Antoli, & Fajardo, 2003). With the growing 

interest in the beneficial effects of buddhist meditation on well-beings and emotions 

(Barinaga, 2003; Ekman, Davidson, Ricard, & Wallace, 2005), recent studies have 

also focused on how meditation and mindfulness may have on cognitive flexibility. 

Evidence has revealed that meditation improves mood (Davidson et al., 2003), 

cognitive performance (Cahn & Polich, 2006) and enhances attentional processes (Jha, 

Krpmpinger, & Baime, 2007; Moore & Malinowski, 2009) not only in clinical 

researches but in nonclinical populations as well (Eberth & Sedlmeier, 2012). 

Psychological measures including the Stroop Color and Word Test (Golden, 1975), 

Trail Making Test Part B (TMT; Reitan & Wolfson, 1993), Wisconsin Card Sorting 

Test (WCST; Berg, 1948), self-report measures such as the Alternate Uses Test 

(Wilson et al., 1975), Attributional Style Questionnaire (ASQ; Peterson et al., 1982) 

and Cognitive Flexibility Scale (CFS; Martin & Rubin, 1995) have been used to 

measure cognitive flexibility. Human studies have shown that left ventrolateral 

prefrontal cortex plays an important role in facilitating flexible performance (Miller & 

Cohen, 2001; Badre & Wagner, 2007; 2009). Furthermore, studies have shown that 

brain areas such as anterior cingulate cortex (ACC), and the basal ganglia are 

involved in conflict resolution and controlling the execution of actions (Koechlin et 

al., 2003; Chein & Schneider, 2005; Aron, Robbins & Poldrack, 2004; Frank, 2005; 

Aron & Poldrack, 2006; Aron, 2007). In later sections I would further explore the 

crucial involvement of the basal ganglia in cognitive flexibility especially task 

switching.  
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Taken together from the above studies, the fundamental abilities of EFs include 

shifting, updating and inhibition. In addition, the underlying neural mechanisms of 

these EFs are closely related to the functions of the basal ganglia, which is impaired 

due to dopamine neuron loss in patients with PD. The research interest of the present 

thesis therefore lies in investigating the acute effects of treatments of PD on these EFs 

associated in PD patients, in the following sections of Chapter 1 I explore different 

functions that are considered to be associated with the EFs, including (1) context 

monitoring, (2) controlled and automatic processing and task-switching paradigm, (3) 

speed and accuracy trade-offs, and their underlying neural mechanisms. In addition, 

the selected functions have been suggested to be impaired in PD patients by previous 

studies, which would also be explored in later sections.  

 

 

1-1-1 Context monitoring 

Through evolution the human brain has developed the abilities to adapt to the 

constantly changing environment by gathering and interpreting limited sensory 

information, compute the desired decisions directed by different goals and 

motivations to execute appropriate actions, which is an important skill for survival in 

a dynamic world. Among these vital abilities, inhibition is an exceptionally critical 

part to control behaviours in order to perform more context-appropriate actions 

(Chatham et al., 2013).  

 

In the field of neuroscience and psychology, inhibition has many meanings and has 



 

38 
 

been studied extensively (Aron, 2007). Response inhibition, which is a particular 

domain of inhibition, has been widely used in experimental studies to account for the 

concept of inhibitory control (MacLeod, Dodd, Sheard, Wilson, & Bibi, 2003), and 

has been linked to the functioning of frontal cortex and basal ganglia (Wiecki & Frank, 

2012). Logan & Cowen (1984) proposed a formal model stating that a control signal, 

including error during performance or an external indication to stop, would activate a 

‘stopping process’ that suppresses the underlying ongoing thoughts and actions. The 

model introduced the stop-signal procedure to account for the act of control when 

actions/thoughts are no longer relevant to the current goals, however the estimate of 

the model cannot untangled the time spent detecting and/or interpreting the stop 

signals and the time for motor stopping per se to take place (Logan & Cowen, 1984). 

Moreover, Chatham et al (2012) proposed that in order to effectively demonstrate 

inhibitory control, it is important to first monitor the environmental signals to support 

behaviours that may be contingent on the specific context, such a concept is termed 

‘context monitoring’. In most laboratory studies of response inhibition, motor 

stopping and context monitoring are inseparable as subjects were required to cancel a 

prepotent or a planned response after receiving a signal indicating the subjects to stop 

(Chikazoe et al., 2009; Logan & Gowan, 1984; Hampshire, Chamberlain, Monti, 

Duncan, & Owen, 2010; Sharp et al., 2010; Cai & Leung, 2011; Dodds, 

Morein-Zamir, & Robbins, 2011; Aron, 2010). To determine whether context 

monitoring or motor stopping may reflect the cognitively-controlled processes 

required for response inhibition, Chatham et al (2012) used computational, 

hemodynamic, electrophysiological and pupillometric techniques to assess the 
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characteristics of cognitive control. The results showed that context monitoring, rather 

than motor stopping, requires more effortful, controlled, and prefrontal-based 

processes during response inhibition task. The concept of context monitoring is in a 

sense intermingled with information updating and the ability to adapt to the 

dynamically changing environment (i.e. shifting).  

 

1-1-2 Controlled and automatic processing and task-switching paradigm 

Many daily tasks are well-learned routines; however, it is important to maintain the 

flexibility as to adjust to the dynamically changing environment if alternative tasks 

need to be performed. Imaging driving or walking the same route to work every day, 

the constant practicing of the same task has become habitual that evokes similar 

actions therefore the behaviour becomes automatic. However, if the usual road to 

work has been closed due to constructions, the human brain needs to be able to adapt 

to the new situation, collect new data and re-direct the way to work in time.  

 

Effective cognition requires an optimal balance between endogenous control (i.e. 

goal-directed deliberate intentions) that prevents disruption of an ongoing task, and 

the exogenous influences that modulate the flexibility to perform other task when 

appropriate, such effective cognition is referred to as task switching (Monsell, 2003). 

For highly practiced tasks such as daily routines, it has been proposed that the 

neocortex consolidates the associations between stimuli and actions, which are 

initially encoded in the basal ganglia (Ashby et al., 2007; Hadj-Bouziane et al., 2003). 

Therefore, the basal ganglia have more involvement when learning a new task and/or 
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during task switching compared to when performing a well-practiced task (Piton et al., 

2016). The behavioural switching may occur after receiving error feedback 

(retroactive switching) or when the subject detects the change of context and responds 

to it (proactive switching) (Isoda & Hikosaka, 2010). It has been proposed that the 

two switching are controlled by different regions in the medial frontal cortex, anterior 

cingulate cortex (ACC) and the pre-supplementary motor area (pre-SMA) (Isoda & 

Hikosaka, 2010). While different brain regions may be separately involved in 

mediating retroactive and proactive switching, it has been proposed that the two type 

of behavioural switching are both related to motor suppression as the outcome of 

behavioural switching is the change of motor behaviour (Hikosada & Isoda, 2010). As 

previously discussed, the ACC has been proposed to modulate the conflict monitoring 

system that detect and integrate response conflict, and send signals to the basal 

ganglia to control the execution of actions (Botvinick et al., 1999). In particular, the 

STN receives direct projections from the pre-SMA and cingulate cortex that compose 

conflict monitoring systems, which allows the STN to implement cognitive control by 

sending NoGo signals via diffuse excitatory projections to basal ganglia output nuclei 

(Mink, 1996; Parent & Hazrati, 1995; Frank et al., 2007). 

 

Theoretically, a dual processing of automatic and controlled processing cognitive may 

be used to explain cognitive control (Schneider & Schiffrin, 1977; Schiffrib & 

Schneider, 1977). Schneider & Chein (2003) have proposed a detailed computational 

model, which employs a large network of distributed data modules that can categorize, 

buffer, associate and prioritize information. Each module communicates with a central 



 

41 
 

control system, which is composed of five processors including a goal processor, an 

attention controller, an activity monitor, an episodic store and a gating & report relay. 

Furthermore, when the data modules are able to transmit the outputs without he 

mediation of the control system, the transition from controlled to automatic 

processing arises in the model. Figure 1.4 illustrates the hypothetical mapping of the 

five processors to brain regions, which shows that the executive Goal Processor is 

assumed to be located in dorsolateral prefrontal cortex (DLPFC). The Attention 

Controller maps to posterior parietal cortex (PPC) and the Activity Monitor to ACC. 

The Episodic Store maps to the medial temporal lobe (MTL), including the structures 

of the hippocampal complex. The Gating & Report Relay maps to the thalamus 

(THAL), with different thalamic nuclei connecting to alternative Control System 

processors, receiving report signals from the Data Matrix modules, and sending 

output gain signals to the modules.  

 

 
Figure 1.4 Hypothetical mapping of the five processors to brain regions. The 

arrows between regions illustrate known anatomical pathways. Shown on the right are 
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sample modules in the visual region of the Data Matrix, with report and control 

signals form each tier connecting to the thalamus. Figure from Schneider & Chein 

(2003). 

 

Functional imaging studies have proved evidence on supporting the roles of prefrontal 

cortex (PFC) and ACC in modulating cognitive control (Koechlin et al., 2003; Chein 

& Schneider, 2005). In addition, MacDonald et al (2000) proposed that the two brain 

regions had dissociable roles in cognitive control: the DLPFC provides top-down 

control of the behaviour whereas the ACC evaluates the processes during conflicts, 

using event-related functional magnetic resonance imaging (fMRI) techniques. 

Moreover, Botvinick et al (2004) have further proposed the role of the ACC during 

conflict monitoring that triggers compensatory adjustments in cognitive control. As 

briefly mentioned in previous sections, frontal-basal ganglia circuits have been 

proposed to be involved in conflict resolution and controlling the execution of actions 

(Aron, Robbins & Poldrack, 2004; Frank, 2005; Aron & Poldrack, 2006; Aron, 2007; 

van den Wildenberg et al., 2006; Wylie et al., 2009), which suggests a potential role of 

the basal ganglia in cognitive control. Moreover, switching from automatic to 

controlled responses requires control monitoring and suppressing the automatic 

processing. Hikosaka & Isoda (2010) have proposed two modes of behavioural 

switching: retroactive switching and proactive switching (Figure 1.5). Suppose there 

exist context αand context β that are associated with procedure A and procedure B 

separately. The correct mapping between the context and the procedure would lead to 

reward. Retroactive switching refers to when context cue is absent or unknown, an 
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agent must learn from errors (i.e. failed to receive reward) to switch from procedure A 

to procedure B, whereas the proactive switching is triggered by a cue that is 

associated with the context change, so that the agent would switch procedures without 

experiencing errors. Note that Braver et al (2007) have proposed proactive control and 

reactive control of cognitive function, which refers to the continuing process before 

the onset of a crucial stimulus and the temporal process after the onset of the crucial 

stimulus. The proactive and reactive control of cognitive function (Braver et al., 2007) 

do not explain how behaviours may switch under different context, whereas the 

retroactive switching and proactive switching proposed by Hikosaka & Isoda (2010) 

specifically defined the switching process.   
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Figure 1.5 Retroactive switching (left) is triggered by a failure (decreased reward 

value or an error). In this case the context cue is either absent or unknown to the 

animal (indicated by gray rectangles). Proactive switching (right) is triggered by a cue 

signaling a context change so that the subject will not experience the failure. This is 

possible, however, only after the subject has learned the meaning of the cue (indicated 

by purple and green rectangles). Highlighted in yellow are triggers of behavioral 

switching and switched procedures. Figure from Isoda & Hikosaka (2010). 

 

It has been proposed that the two switching are controlled by different regions in the 

medial frontal cortex, ACC and the pre-supplementary motor area (pre-SMA) (Isoda 

& Hikosaka, 2010). Retroactive switching consists of learning from negative 

feedbacks and implementing alternative actions therefore brain regions associated 

with these functions such as ACC are highly likely to be involved. In primate studies, 

evidence has shown that ACC neurons were activated when switching movements 

based on the reduced amount of reward (Shima & Tanji, 1998; Johnston et al., 2007), 

and that ACC neurons generated error-related potentials after making incorrect 

responses (Gemba et al., 1986; Wang et al., 2005; Emeric et al., 2008). Human as well 

as primate studies have suggested a prominent role of pre-SMA on motor suppression 

and conflict monitoring (Luders et al., 1995; Rushworth et al., 2002; Nachev et al., 

2005, 2007; Isoda, 2005; Ullsperger & Cramon, 2001; Garavan et al., 2003). In 

addition, human studies such as fMRI and EEG studies have found activation of the 

ACC activity after error trials or error feedback, supporting the role of the ACC in 

retroactive switching (Garavan et al., 2003; Li et al., 2008; Menon et al., 2001; 
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Ullsperger et al., 2001; Modirrousta et al., 2008; Holroyd & Coles, 2002). 

Furthermore, it has been proposed that the retroactive switching function of the ACC 

may be mediated by its connection to the lateral prefrontal cortex (LPFC) or to the 

striatum, where the former connection is believed to be involved in the execution of 

procedure implementation (Pandya et al., 1981; Morecraft & Hoesen, 1993) and the 

later connection is associated with its role in action selection and associative learning 

(Haber et al., 2006; Hikosaka et al., 2000; Pasupathy & Miller, 2005).  

 

On the other hand, the feature of proactive switching includes conflicts in information 

processing, which is closely related to the updating ability of basic EFs. There are 

four basic phenomena defined within the task-switching paradigm: switch cost 

(response are slower on a switch trail than on a non-switch trial), preparation effect 

(the average switch cost is reduced if practice is allowed prior the task), residual cost 

(switch cost would not completely be eliminated by preparation, instead it reaches a 

substantial asymptote) and mix cost (Monsell, 2003). Among these four phenomena, 

the occurrence of switch cost has been proposed to be due to the suppression of the 

old procedure and the facilitation of the new procedure (Isoada & Hikosaka, 2010). 

Human studies using fMRI techniques have found that the activation of the pre-SMA 

strongly associated with proactive switching (Tanji, 1994; Dove et al., 2000; 

Rushmore et al., 2002). Such an association between pre-SMA activity and proactive 

switching may be related to its role in motor suppression and action selection during 

conflict monitoring (Luders et al., 1995; Rushworth et al., 2002; Nachev et al., 2005, 

2007; Isoda, 2005; Ullsperger & Cramon, 2001; Garavan et al., 2003). Figure 1.6 
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illustrates the neural mechanism of proactive switching in oculomotor behaviour.  

 

 

Figure 1.6 Neural mechanism of proactive switching in oculomotor behaviour. A 

neural mechanism of behavioral switching must be able to (1) detect a change in the 

context, (2) suppress the prepotent, automatic process, and (3) facilitate the alternative, 

controlled process (conceptual scheme). The suppression must occur quickly because 

the automatic process emits a motor signal quickly; the facilitation can occur 

thereafter because the controlled process is slow. Recent studies have suggested that 

the pre-SMA, together with other frontal cortical areas, acts as a switch mechanism 

and the basal ganglia may mediate the switch-related signal from the cortical areas. In 

our study using saccadic eye movement, many neurons in the pre-SMA became active 

selectively and proactively on switch trials (Box 2). It was also shown, using a 
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go-nogo task, that some pre-SMA neurons suppress the prepotent saccade, others 

facilitate the alternative saccade, and the rest have both functions. The suppressive 

pre-SMA neurons tended to be active earlier than the facilitatory pre-SMA neurons, 

consistent with the conceptual scheme. In the basal ganglia, the STN may serve to 

suppress the automatic saccade by enhancing the inhibitory output of the basal 

ganglia (SNr) on the SC or the thalamo-cortical network. The caudate nucleus might 

serve to facilitate the controlled saccade by disinhibiting the target of the basal 

ganglia. We speculate that the signals for the automatic and controlled saccades are 

carried mainly by the frontal eye field (FEF) and the supplementary eye field (SEF) 

respectively. In the possible neural network, excitatory and inhibitory connections are 

indicated by (+) and (−) respectively. Figure and caption from Isoda & Hikosaka 

(2010). 

 

1-1-3 Speed/Accuracy Trade-off and moving dots paradigm 

In order to make an accurate or appropriate decision/action, one has to inhibit the urge 

to act in order to gather more information to guide behaviour, however such an 

inhibition may lead to failure in making timely responses. Such a dilemma is known 

as speed and accuracy trade-off (SAT) (Schouten et al., 1967; Wickelgren et al., 1977; 

Chittka et al., 2009). In the present section I would briefly introduce SAT, moving 

dots paradigm, and more importantly, their relationships with executive functions and 

context monitoring.    

 

Abstract mathematical models have been exclusively used to study SAT for almost 
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half a century (Bogacz, Wagenmakers, Forstmann, & Nieuwenhuis, 2010). Sequential 

sampling models attribute SAT effects to changes in the amount of evidence needed 

for a response, which in the model is represented by the changes in the value of the 

decision criteria (Ratcliff & Smith, 2004). In sequential sampling models, the gradual 

process of gathering sensory information in favour of one choice is defined as the 

drift of an abstract decision variable toward a decision threshold (Domenech & 

Dreher, 2010). Mathematical models can account for SAT in two ways: either by 

changing the baseline of the accumulator or by changing the threshold (Bogacz et al., 

2010). In addition, most models assume that SAT is controlled by the distance 

between the initial starting point (i.e. the baseline activity) and the decision threshold. 

If this interval is large, decisions are accurate but slow; conversely, if the interval is 

small, decisions are fast but error-prone (Bogacz et al., 2010). In the sequential 

sampling framework, two factors would determine the performance in experimental 

task, firstly the quality of the information derived from processing the stimuli and 

secondly the quantity of information needed before a decision is made. The 

framework thus may account for the main relationship between accuracy and response 

time in two-choice decisions. Theoretically, whether to make a fast but prone to error 

response/decision or make an accurate but slow response/decision should be 

determined by (1) an internal and/or an external drive to be accurate or fast, and (2) 

the quality of information necessary for achieving the goals. The former may be 

reflected as the distance between decision threshold and the baseline in the 

mathematical models, whereas the latter may be represented by the rate of 

accumulation of information (Ratcliff & McKoon, 2008). The diffusion model 
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(Ratcliff, 1978) provides a framework for the study of SAT modulation based on 

behavioural data collected from binary decision-making tasks. The model separates 

the quality of evidence accumulated to reach decision threshold and other 

non-decision processes such as stimulus encoding and response execution (Ratcliff & 

McKoon, 2008). In this model, it is assumed that a decision is made through the noisy 

process that gathers information over time to reach decision boundaries or criteria. 

The decision-making process begins from the starting point, once it reaches one of the 

decision boundaries a decision is made and a response is initiated. Within the drift 

diffusion model framework, SAT leads to the decrease of the boundary separation 

results, which means that RTs decrease at the cost of making more errors. The rate of 

accumulating information is defined as the drift rate in the diffusion model, which is 

usually determined by the quality of the information provided by the stimuli. The top 

panel of Figure 1.7 illustrates the framework of the diffusion model. 
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Figure 1.7 The drift diffusion model. Top Panel: Three simulated paths with drift 

rate (v), boundary separation (a) and starting point (z). Middle Panel: An equal size 

slowdown in drift rate (X) produces a small shift in the leading edge of the response 

time distribution (Y) and larger shift in the tail (Z) on fast and slow processes from 

each of two drift rates. Bottom Panel: Encoding time (u), Decision time (d) and 

response output time (w). The non-decision component equals the sum of (u) and (w) 

with mean (Ter) and with variability represented by a uniform distribution with range 

St. Figure and caption from Ratcliff & McKoon (2008). 

 

With the advanced development of neural imaging techniques, the neural basis of SAT 

has attracted much attention in recent years. Despite different task design and analysis, 
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fMRI studies on SAT showed that when speed was emphasised to make responses, 

activity in the striatum was increased (Forstmann et al., 2008; Ivanoff et al., 2008; van 

Veen et al., 2008). Consistent with such results, a recent fMRI study also 

demonstrated that striatal activation is associated with an ‘urgent signal’ during 

perceptual decision making in human participants (van Maanen, Fontanesi, Hawkins, 

& Forstmann, 2016). Four theories have been proposed to account for the underlying 

neural mechanisms of such a trade-off: the cortical theory, the striatal theory, the STN 

theory and the synaptic theory, which stand for different circuits that modulate the 

balance between making a fast and making an accurate response (Bogacz et al., 2010). 

Three of the four theories (the cortical theory, the striatal theory, the synaptic theory) 

are based on the mechanism that the speed instructions increase the baseline of 

cortical integrators and cause changes in the corresponding circuits (Forstmann et al., 

2008; Furman & Wang, 2008; Roxin & Ledberg, 2008; van Veen et al., 2008; Lo & 

Wang, 2006). Previous fMRI studies support the striatal theory and the cortical theory 

on suggesting that speed pressure is interpreted as an increased control signal that 

modulates cortical and striatal activity (Forstmann et al., 2008; Ivanoff et al., 2008; 

van Veen et al., 2008; Forstmann et al., 2016). In addition, the STN theory proposes 

that when accuracy is emphasised, frontal areas send additional; excitatory signals to 

the STN, leading to increased STN activity that results in slower and more accurate 

choices (Frank, Scheres, & Sherman, 2007; Utter & Basso, 2008). The STN theory is 

supported by the fMRI studies showing that when participants attempt to stop an 

initiated action, frontal areas that project to the STN and the STN activity would 

increase (Aron & Poldrack, 2006; Aron, Behrens, Smith, Frank, & Poldrack, 2007). It 
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can therefore be assumed that the SAT is controlled by a dual process that when speed 

is emphasised to make responses, frontal activation sends signals to the striatum and 

creates the urgent signal to promote timely action. Conversely, when accuracy is 

emphasised the frontal areas would send excitatory signals to the STN, increased STN 

activity would therefore support the inhibition of an intended action to allow more 

time for information accumulation. Such processes are associated with context 

monitoring as in the laboratory environment, whether to be fast or to be accurate is 

explicitly instructed by external cues, at the same time the noise of the stimuli can be 

manipulated.      
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Figure 1.8 Schematic representation of the cortico–basal-ganglia–thalamic circuit. 

STN = subthalamic nucleus. Output = substantia nigra pars reticulata and the external 

segment of globus pallidus in primates. Thin arrows denote excitatory connections; 

lines with filled circles denote inhibitory connections. Blue arrows indicate the areas 

where the input controlling SAT could be provided. Figure and caption from Bogacz, 

Wagenmakers, Forstmann & Nieuwenhuis (2010)..  

 

Moving dots paradigm is often used to investigate SAT both in animal and in human 

studies (Britten, Shadlen, Newsome, & Movshon, 1992; Gold & Shadlen, 2007). The 

task requires participants to decide whether a cloud of dots, which is visually 
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presented on a computer screen, is moving to the left or to the right. When Speed is 

emphasised while making a response, animals and humans may be able to act in a 

timely manner, but may sacrifice the accuracy of responses and vice versa. This 

characteristic of the moving dots paradigm permits the investigation on the cognitive 

flexibility to switch between acting fast and acting accurately. Moreover, the different 

coherence of moving dots provides a chance to manipulate different task difficulty, 

namely, the quality of sensory information. The paradigm therefore provides a 

suitable candidate to study the SAT and the underlying neural mechanism. In the 

present thesis, different moving dots tasks were selected to assess the abilities to (1) 

shift the internal drive or adapt to the external experimental instructions either to be 

fast or to be accurate, and (2) to sample and integrate environmental information to 

meet the intended goals. The former is related to the basic EF shifting whereas the 

latter is considered to be associated with the basic EF updating proposed by Miyake 

& Friedman (2012). Detail of the computerised tasks would be further introduced in 

Chapter 1 section 5.   

 

1-2 The Basal Ganglia  

1-2-1. Structure  

Anatomically, the basal ganglia (Figure 1.9) are subcortical nuclei consisting of the 

striatum, the subthalamic nucleus, the substantia nigra pars compacta and pars 

reticulata (SNc, SNr), the globus pallidus (internal and external segments; GPi, GPe). 

The GPi and the SNr are the main output nuclei of the basal ganglia. The neostriatum 

is composed of the putamen and the caudate nucleus, with the former being the motor 
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part of this brain region. Figure 1.9 shows that the basal ganglia are the largest 

subcortical structures in the human forebrain. The basal ganglia receive inputs from 

the neocortex and project massively to thalamic nuclei, which in turn project to the 

frontal cortex. 

 

Figure 1.9 Basic anatomy of the brain that shows the major regions within the 

basal ganglia. The blue part indicates striatum, which is composed of putamen and 

caudate nucleus. The pink part represents pallidum, which made up of outer and inner 

segments. The green part represents the thalamus and the yellow part represents the 

substantia nigra. Figure and caption from Graybiel (2000).  

 

Figure 1.10 shows the basal ganglia-thalamocortical circuits that are composed of the 

combination of ‘open’ and ‘closed-loops’ features.  As part of the ‘motor circuit’ the 

putamen, the posterior part of the striatum, receives substantial and somatotopically 

organized projections from the motor and somatosensory cortices, the arcuate 

premotor area, and the supplementary motor area (Alexander, DeLong & Strick, 

1986). The associative circuit between the dorsal caudate and the dorsolateral 

prefrontal cortex, the limbic circuit between the ventral striatum and the anterior 

cingulate cortex, the orbitofrontal circuit between the ventral striatum and the 
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orbitofrontal cortex and finally the oculomotor circuit between the body of the 

caudate and the frontal eye fields are the other four fronto-striatal circuits described 

by Alexander et al (1986). 

 

 

Figure 1.10 Parallel organization of the five basal ganglia-thalamocortical circuits. 

Each circuit engages specific regions of the cerebral cortex, striatum, pallidum, 

substantia nigra and thalamus. Abbreviations are as follows: ACA : anterior cingulate 

area; APA: arcuate premotor area; CAUD: caudate, (b) body (h) head; DLC: 

dorsolateral prefrontal cortex; EC: entorhinal cortex; FEF: frontal eye fields; GPi: 

internal segment of globus pallidus; HC: hippocampal cortex; ITG: inferior temporal 

gyrus; LOF: lateral orbitofrontal cortex; MC: motor cortex; MDpl : medialis dorsalis 

pars paralamellaris; MDmc: medialis dorsalis pars magnocell ularis ; MDpc: medialis 

dorsalis pars parvocellularis; PPC : posterior parietal cortex; PUT: putamen; SC : 

somatosensory cortex; SMA : supplementary motor area; SNr: substantia nigra pars 

reticulata; STG: superior temporal gyrus; V Amc: ventralis anterior pars 
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magnocellularis; Vapc: ventralis anterior pars parvocellularis; VLm: ventralis lateralis 

pars medialis; VLo: ventralis lateralis pars oralis; VP: ventral pallidum; VS : ventral 

striatum; c1-: caudolateral; cdm- : caudal dorsomedial; dl-: dorsolateral; 1-: lateral; 

Idm-: lateral dorsomedial; m-: medial; mdm-: medial dorsomedial; pm: posteromedial; 

rd-: rostrodorsal; r1-: rostrolateral; rm-: rostromedial; vm-: ventromedial. Figure and 

caption from Alexander, DeLong & Strick (1986) 

 

 

1-2-2. The basal ganglia and executive functions: updating, shifting, and 

inhibition  

The brain contains many motor pattern generators that each of them is responsible in 

generating a specific body movement (Kim & Hikosaka, 2015; Grillner et al., 1998). 

By receiving sensory inputs or internal states, these mechanisms are activated to 

produce corresponding actions. However, the overall behaviour can be uncontrollable 

if all mechanisms are triggered at the same time without management. To prevent 

such chaotic situation, the brain has developed a mechanism to supress all of the 

motor circuits. The basal ganglia have been identified to play the major role in such 

function. The final output neurons are all GABAergic and inhibitory in the basal 

ganglia, and are connected to the motor mechanisms (Takakusaki et al., 2004; Grillner 

et al., 2005). Dysfunction of the basal ganglia often leads to motor deficits including 

involuntary movement such as PD (DeLong, 1990). Extensive studies in human and 

in animal models (Marsden & Obeso, 1994; Aron & Poldrack, 2006; Hikosaka, 2002; 

Jin, Tecuapetla & Costa, 2014; Cui et al., 2013) have provided large evidence for the 
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involvement of the basal ganglia in action suppression and motor control. 

 

Figure 1.11 shows the direct, indirect and hyperdirect pathways in the basal ganglia. 

Classical models of the basal ganglia function circuit suggest that the direct pathway 

serves as the ‘Go’ pathway as the GABAergic inhibitory connections from the 

striatum to the SNr/GPi that lead to a reduction of inhibition on action, whereas the 

SNr/GPi neurons receive indirect inputs from the striatum via the GPe and possibly 

the STN to inhibit motor action (indirect ‘No Go’ pathway) (DeLong, 1990; Albin, 

Young & Penney, 1989; Kravitz et al., 2010). However, recent studies on animals 

suggest that both direct and indirect pathways are active during the initiation, 

execution and termination of action sequences, which indicate that the basal ganglia 

circuits may have a more complex functional organization (Jin et al., 2014; Cui et al., 

2013). The hyperdirect pathway (Nambu, Tokuno & Takada, 2002) consists of 

glutamatergic excitatory neurons that transmit signals quickly from the cerebral cortex 

to SNr/GPi via the STN, producing a net effect of motor inhibition. It has been 

proposed that the major role of the STN is behavioural switching (Aron & Poldrack, 

2006; Isoada & Hikosaka, 2008; Hikosaka & Isoda, 2010), which suggests that the 

STN activity is associated with supressing automatic and fast actions to initiate 

controlled and slow actions. Moreover, inactivation of the STN ameliorates some of 

the motor deficits observed in PD patients (Limousin et al., 1995, 1998). 
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Figure 1.11 Direct, indirect and hyperdirect pathways. The striatum receives inputs 

mainly from the cerebral cortex. D1R-expressing neurons in the striatum connect to 

SNr/GPi directly (direct pathway). D2R-expressing neurons connect to SNr/GPi 

indirectly through GPe and STN (indirect pathway). STN receives inputs directly 

from the cerebral cortex and send outputs to SNr/GPi (hyperdirect pathway). 

Dopaminergic neurons in SNc/VTA heavily innervate the striatum. D1R = dopamine 

receptor D1; D2R = dopamine receptor D2. Figure and caption from Kim & Hikosaka 

(2015). 

 

Together with the striatum, the STN is the principle input nucleus of the basal ganglia.  

It receives afferents from the cerebral cortex, the thalamus and the limbic system 
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(Gurney, Prescott & Redgrave, 2001). It has been proposed that the STN has a role in 

processing the conflict between evidence for different decision/action options (Frank, 

2006; Bogacz, 2007; Gurney, Humphries, Wood, Prescott & Redgrave, 2004; Herz et 

al., 2014). Studies have been proposed to support the role of the STN in inter-related 

processes including: switching from automatic to controlled processing (Isoda & 

Hikosaka, 2008), slowing down when encountering surprising events (Wessel et al., 

2016; Wessel & Aron, 2017), inhibitory and executive control (Frank, 2006; Frank et 

al., 2007) and adjusting response thresholds during speed and accuracy trade-offs 

(Bogacz et al., 2010). By recording the local field potentials of STN activity in PD 

patients, Herz, Zavala, Bogacz & Brown (2016) showed that STN low-frequency 

oscillations modulates decision threshold, and that the relationship between the STN 

activity and decision threshold modulation is context dependent. Furthermore, it has 

been shown that the cortico-basal ganglia networks modulate the speed and accuracy 

trade-offs during decision-making (Herz et al., 2017). On the other hand, Isoda & 

Hikosaka (2008) reported more phasic change in the neural activity of the STN during 

the inhibition of automatic inappropriate actions compared to the facilitation of 

controlled actions, indicating a role of the STN in behavioural switching. The findings 

of neural activity recordings are in consistent with the functional imaging study of 

Aron & Poldrack (2006), which has shown a role of the STN in the stop-signal 

paradigm (details in Figure 1.12). The studies thus suggest that STN plays a crucial 

role in all three basic executive functions.  
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Figure 1.12 A basal-ganglia model and the Stop-signal paradigm. A. An influential 

model proposes three pathways through the basal ganglia (direct, indirect, and 

hyperdirect). SNr, Substantia nigra; THAL, thalamus; STR, striatum. Open arrows are 

excitatory (glutamatergic); filled arrows are inhibitory (GABAergic). Figure adapted 

from Nambu et al. (2002). B. The Stop-signal paradigm consists of Go- and 

Stop-signal trials. On Go trials, the subject has 1 s (the hold period) to make a left or 

right button press in response to the stimulus. As soon as the subject responds 

(reaction time), the stimulus is replaced by a blank screen for a variable period of time 

(1 s − RT = jitter time, where jitter ranges between 0.5 and 4 s, mean of 1 s). On a 

Stop trial, a tone is played at some delay (SSD) after the arrow stimulus. If the 

response is inhibited, the arrow remains for 1 s, followed by the blank screen jitter 

period; if the subject does not inhibit (i.e., responds), then the timing is the same as 

the Go trial. SSD changes dynamically throughout the experiment to produce a 50% 

inhibition rate. C. Stop-signal reaction time (SSRT) is estimated using the race model 

(Logan & Cowan, 1984). This assumes that Go and Stop processes are in a race and 

are independent of each other. The independence assumption implies that the 

distribution of Go processes on Stop trials (whether a response is made or not) is the 

same as the observed distribution of Go responses (when there is no Stop signal). On 
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Stop trials, a tone occurs at some delay, the SSD after the Stop signal. If this delay is 

short, then P (inhibit) is high and this is likely to be a Stop-Inhibit trial; if the delay is 

long, then P (inhibit) is low and this is likely to be a Stop-Respond trial. If SSD is 

varied so that P (inhibit)=0.5, then SSRT can be estimated by subtracting the SSD 

from the median value of the Go distribution. Figure and caption from Aron & 

Poldrack (2006). 
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1-2-3. The basal ganglia circuits for conflict monitoring and action selection  

To make an appropriate response in the visual environment requires the accumulation 

of external information and the internal information about current behavioural needs. 

An agent is required to activate the collection of signals and inhibit the influence of 

noise in the environment and concurrently in the meantime balance the speed and 

accuracy of responding before producing a response. The characteristics of such 

ability involve context monitoring, inhibitory control and action selection.  

 

Botvinick, Braver, Barch, Carter & Cohen (2001) have proposed that there exists a 

conflict monitoring system, potentially involving the anterior cingulate cortex (ACC) 

of the human frontal lobe, which monitors for the occurrence of conflict in 

information processing. In other words, this conflict monitoring system evaluates 

current levels of conflict and passes the information to control centres, which 

eventually trigger the centres to adjust the strength of their influence on processing 

(Botvinick et al., 2001). Frontal-basal ganglia circuits have been proposed to be 

involved in conflict resolution and controlling the execution of actions (Aron, 

Robbins & Poldrack, 2004; Frank, 2005; Aron & Poldrack, 2006; Aron, 2007; van den 

Wildenberg et al., 2006; Wylie et al., 2009). According to the response selection 

hypothesis, the cortex sends excitatory signals that represent response commands 

elicited by cognitive computations carried out at the cortical level to the basal ganglia, 

which suggests that the basal ganglia are involved in response selection (Brown & 

Marsden, 1998; Robbins & Brown, 1990; Wylie, Stout & Bashore, 2005; Mink, 1996; 

Redgrave et al, 1999). Traditional theories of motor control regard it as the output end 
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of a serial process that includes perceptual, cognitive and executive processes (Cisek, 

2005). It has been proposed that planning and execution are distinct processes 

separated by neural representation of a ‘desired trajectory’ (Abend, Bizzi & Morasso, 

1982). However, Cisek (2005) has argued that, based on the neural data obtained from 

studies of the activity of the primary motor cortex (Scott & Kalaska, 1997; Sergio & 

Kalaska, 2003) and muscle activity (Karst & Hasan, 1991; Gordon, Ghilardi, Cooper 

& Ghez, 1993), behaviour may instead be viewed as parallel processes that specify 

the potential actions currently made possible by the environment and processes that 

select one of those actions for execution. Furthermore, Cisek (2007) has proposed an 

‘affordance competition hypothesis’, which suggested that sensory information 

received from the environment is continuously processed, while other kinds of 

information are also collected in order to select a single action from several potential 

actions. The term ‘affordance’ defined by Gibson (2014) regards the behaviour as a 

competition between internal representations of the potential actions. In other words, 

the process of action selection and the specification of an action occur simultaneously 

and continue even during the performance of movements (Cisek, 2007). Note that 

only currently available actions are specified in this manner and selective attentional 

mechanisms can eliminate many alternative actions during the process of 

transforming sensory information into representations of action. The concept is 

consistent with one of the key roles of precision of the active inference model 

proposed by Friston et al (2013) as precision modulates the biased competition among 

future control states. Action selection is modulated by the biasing inputs from various 

areas that support potential actions in a competition. 
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The basal ganglia through the direct and indirect pathways have been suggested to 

selectively execute one action command while suppressing the other alternatives 

(Mink, 1996; Redgrave, Prescott & Gurney, 1999; Frank, Samanta, Moustafa & 

Sherman, 2007; Cisek, 2007). In addition, the basal ganglia exhibit activity that is 

related to movement parameters (Alexander & Crutcher, 1990) and decision variables 

such as reward (Schultz, 1998) and expectations (Lauwereyns, Watanabe, Coe & 

Hikosaka, 2002). Theoretically it has been proposed that the connectivity between the 

basal ganglia potentially bias the competition between potential actions represented in 

the fronto-parietal system (Cisek, 2007). Building on previous work, the latest model 

proposed by Thura & Cisek (2017) suggested that instead of contributing to the 

choice between potential movements, the basal ganglia actually provide a 

time-dependent signal that controls the urgency to commit to a choice, which could 

lead to the adjustment of the speed and accuracy trade-off when making decisions 

(Thura, Cos, Trung & Cisek, 2014; Thura & Cisek, 2016). In this ‘urgency-gating 

model’, the cortical regions are hypothesised to the selection of optimal action choices 

whereas the basal ganglia are hypothesised to control the speed-accuracy trade-off 

between committing to a choice versus continuing the selection (Thura & Cisek, 

2017). An animal study showed that the STN activity is triggered in association with 

presentation of a stop cue during action cancellation; in particular, the STN transmits 

the stop cue information to SNr before the increased striatal input creates action 

suppression (Schmidt, Leventhal, Mallet, Chen & Berke, 2013). The results of this 

study supported the idea of a race between a go and a stop process, with the outcome 
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of this race determining the success or failure of motor inhibition on each trial. 

Furthermore, another major function of the hyperdirect pathway seems to be 

behavioural switching as it suppresses quick and automatic movements to switch to 

more controlled processing (Aron & Poldrack, 2006; Isoda & Hikasoka, 2008). 

Despite the urgency gating model proposing that the basal ganglia do not contribute to 

which actions to select but the urgency of committing to the responses intended by the 

cortical areas, studies in PD patients treated with STN DBS have shown that the STN 

plays a role in integrating sensory information during decision-making (Frank et al., 

2007; Frank, 2011; Green et al., 2013). In summary, while the involvement of the 

basal ganglia in the processes of information accumulation remains debatable, the 

above evidence suggests that the basal ganglia play an important role in action 

selection and inhibitory control.  

 

 

1-3. Parkinson’s disease (PD) 

The pathological hallmark of PD is the degeneration of dopamine neurons in the 

substantia pars compacta of the basal ganglia; which results in dopamine depletion in 

the nigro-striatal pathway. PD therefore provides an ideal human model to investigate 

the effect of basal ganglia dysfunction and dopamine depletion on motor and 

cognitive function. In this section I will briefly review the motor and non-motor 

symptoms in PD from early stage to advanced PD, and the neural mechanisms 

underlying these motor and cognitive deficits.  
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Table 1.2 lists the most frequent clinical features associated with PD. The loss of the 

nigrostriatal dopaminergic neurons and the presence of intraneuronal proteinacious 

cytoplasmic inclusions termed “Lewy Bodies” (LBs) are the main pathological 

hallmarks of PD (Dauer & Przedborski, 2003). The dopamine neurons in the 

substantia nigra compacta that degenerate, primarily project to the putamen. It is 

generally agreed that dopaminergic cell death of the neostriatum results in the motor 

abnormalities of hypokinesia/bradykinesia, rigidity and tremor that are observed as 

the primary symptoms of PD patients (Olanow, Stern & Sethi, 2009; Crossman, 1990). 

Dopamine deficiency in the basal ganglia causes excessive thalamic inhibition that 

suppresses the cortical motor system, which potentially results in akinesia (DeLong, 

1990), rigidity and tremor, whereas the abnormalities of gait and posture may be 

attributed to inhibitory descending projections (Lang & Lozano, 1998). In addition to 

the core motor symptoms, PD is associated with a host of other motor and non-motor 

symptoms (Jankovic, 2008). Table 1.2 lists the motor and non-motor symptoms in PD.  

 

Table 1.2 Parkinson’s disease symptoms 

Table from Jankovic (2008).  
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While motor symptoms have been the major focus in treating PD, cognitive 

dysfunction has gained much attention in recent years. Studies have shown the 

occurrence of cognitive deficits in patients with PD including attention and executive 

dysfunction from the early stages of the illness (Dubois & Pillon, 1996; Brown & 

Marsden, 1998; Dirnberger & Jahanshahi, 2013) and dementia in the later stages 

(Gratwicke, Jahanshahi & Foltynie, 2015). In addition, dopaminergic medication, 

particularly dopaminergic agonists used to ameliorate the motor symptoms of PD may 

potentially introduce side effects such as impulsivity in PD patients presenting as 

impulse control disorders (ICDs), it has been suggested that up to 25% of patients 

treated with dopaminergic agonists may experience an ICD (Weintraub, David, Evans, 

Grant & Stacy, 2015). Non-motor symptoms such as depression, anxiety, apathy, 

hallucinations and fatigue are also common features in PD (Aarsland, Brønnick, 

Larsen, Tysnes & Alves, 2009). 
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1-3-1. Non-motor symptoms in PD: impaired executive functions, mild 

cognitive impairment, deficits in decision-making 

The neuropsychological deficits in PD range from mild executive dysfunction in the 

early stages to mild cognitive impairment and dementia in later stage (Litvan et al., 

2012; Dirnberger & Jahanshahi, 2013). As previously discussed, EFs can be defined 

broadly and variously, generally they refer to complex cognitive processes such as 

goal formulation, planning and action execution that are required to reach a certain 

goal (Kudlicka, Clare & Hindle, 2011). Table 1.3 presents a list of standardized tests 

commonly used for the neuropsychological assessment of executive deficits in PD 

(Dirnberger & Jahanshahi, 2013).  

 

Table 1.3 List of standardized tests commonly used for the neuropsychological 

assessment of executive deficits in PD 

Test Creators Procedure Processes involved 

Wisconsin 

Card 

Sorting Test 

(WCST) 

Nelson, 

1976 

To learn and classify different cards to the 

same categories 

Cognitive flexibility 

Inhibition 

Stroop 

interference 

task 

Stroop, 

1935 

To name the incongruent ink colour of the 

printed colour words as fast as and as 

accurate as possible 

Inhibition 

Cognitive flexibility 

Trail 

Making 

Reitan, 

1958 

To trace a number sequence (e.g. 1-2-3...) 

or a number-letter sequence (e.g. 

Inhibition 

Cognitive flexibility 
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Test 1-A-2-B...) with a pen or pencil on the test 

sheet 

Word 

fluency 

Benton, 

1968 

To produce as many words as possible that 

begins with a particular letter (phonemic) 

or belonging to a particular category 

(semantic) in 60 seconds 

Inhibition  

Cognitive flexibility  

Context Monitoring 

Digit Span 

Backwards 

Wechsler, 

1984 

To repeat sequences of numbers of 

increasing length (2-9 items) in the reverse 

order of presentation by the examiner 

Working memory 

Tower of 

London test 

Owen et al., 

1992 

To move coloured balls across 

different-sized pegs to match a target 

configuration in as minimal moves as 

possible. Only one ball is allowed to move 

at a time 

Planning 

Inhibition 

Hayling 

Sentences 

Completion 

Task 

Burgess & 

Shallice 

1997 

To complete incomplete sentences in (1) 

with highly associated missing words to 

make sentence meaningful and (2) with 

words completely unconnected with the 

meaning of the sentence 

Inhibition 

Random 

Generation 

of Numbers  

Spatt & 

Goldenberg

, 1993 

To generate a random sequence of number Context monitoring 

Inhibition 

Kudlicka et al (2011) conducted a meta-analysis and systemic review of the pattern of 
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executive impairment in early-stage PD, the results showed consistent evidence for 

cognitive difficulties across five executive function tests including verbal fluency, 

digit span backward, Wisconsin Card Sorting Test (WCST), Stroop test and Trail 

Making Test (TMT). These tests assess a broad range of executive functions including 

cognitive flexibility (verbal fluency), set switching (TMT, WCST), selection 

attention/working memory (digit span backward), and concept formation (WCST) 

(Kudlicka et al., 2011). The results of the meta-analysis provide consistent evidence 

for cognitive deficits in PD patients. Frank (2005) has proposed that cognitive deficits 

in PD patients can be categorised into two classes: one that requires the attentional 

process or working memory (Partiot et al., 1996; Gotham et al., 1988; Dubois et al., 

1994; Woodward, Bub & Hunter, 2002; Henik, Singh, Beckley & Rafal, 1993; Rogers 

et al., 1998), which is believed to be associated with frontal cortex connection; 

whereas the other one involves implicit learning and probabilistic classification 

(Jackson, Jackson, Harrison, Henderson & Kennard, 1995; Ashby, Noble, Filoteo, 

Waldron & Ell, 2003; Maddox, Ashby & Bohil, 2003). Evidence has suggested that 

patients with PD showed inability to plan motor tasks and mental inflexibility (Taylor, 

Saint-Cyr & Lang, 1986; Brown & Marsden, 1998; Berardelli, Accornero, Argenta, 

Meco & Manfredi, 1986). Such impairment in executive functions may be viewed as 

deficits in behaviours that are based on updating information continuously, which is 

potentially caused by dopamine degeneration (Nieoullon, 2002).  

 

In addition to executive dysfunctions, mild cognitive impairment is also a common 

feature in PD and is associated with higher risk to develop dementia (Litvan et al., 
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2011, 2012; Janvin, Larsen, Aarslan & Hugdahl, 2006). Different criteria in defining 

mild cognitive impairment have been proposed, for example, Petersens (2004) 

suggested the criteria for amnestic mild cognitive impairment include (1) memory 

complaint usually corroborated by an informant; (2) objective memory impairment 

for age; (3) essentially preserved general cognitive function; (4) largely intact 

functional activities and (5) not demented. Moreover, Aarsland et al (2009) 

investigated mild cognitive impairment in non-demented, drug-naïve patients with PD. 

The results showed that patients are significantly impaired on all neuropsychological 

tests compared to healthy controls, the largest effect sizes were found for verbal 

memory and psychomotor speed. A total of 18.9% of the patients with PD were 

classified as having mild cognitive impairment, among these patients two-thirds of 

them had a non-amnestic subtype and one-third had an amnestic subtype (Aarsland et 

al., 2009). By using fMRI techniques, Beyer, Janvin, Larsen & Aarsland (2007) 

showed that PD patients with mild cognitive impairment had reduced grey matter in 

the left frontal and both temporal lobes. The Movement Disorder Society 

commissioned a task forced to mark the edge of diagnostic criteria for mild cognitive 

impairment in PD, of which the results show a significant heterogeneity within PD 

mild cognitive impairment in the number and types of cognitive domain impairments 

(Litvan et al., 2011) 

 

Moreover, a number of studies have demonstrated that PD patients show deficits in 

decision-making when performing gambling tasks compared to age-matched healthy 

controls. One of the commonly used gambling tasks on investigating decision-making 
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and strategies is the Game of Dice Task. GDT is a gambling task based on the concept 

of Iowa Gambling Task (IGT) of Bechara, Damasio, Damasio & Anderson (1994). 

GDT requires participants to predict which number will be face upwards after rolling 

a dice, whereas IGT asks the participants to choose from four decks of cards to gain 

the maximum gain. Participants will be provided with a starting capital and the goals 

for both tasks are to increase the capital and avoid losing. The difference between the 

GDT and the IGT is that in the GDT, rules and the amounts of gains and losses are 

explicitly presented on the computer screen; participants will also be informed of the 

actual number of the bets they have to make. Whereas for the IGT, participants have 

to implicitly learn from the outcome of each selection to develop the best strategy as 

to choose the decks of cards with small reward but even smaller losses, rather than the 

decks of cards with large rewards but even larger losses. The core difference between 

the GDT and the IGT can therefore categorise the GDT as decision-making under 

‘risk’, and the IGT as decision-making under ‘ambiguity’. Euteneuer et al (2009) 

investigated the performance of PD patients on both the IGT and the GDT, the results 

showed that PD patients were impaired in the GDT but not the IGT, which is 

consistent with some previous studies that found no significant difference between PD 

patients and healthy controls on the performance of the IGT (Mimura, Oeda & 

Kawamura, 2006; Stout, Rodawalt & Siemers, 2001; Czernecki et al., 2002), but is 

inconsistent with other studies that showed impairments of PD patients on the IGT 

(Pagonabarraga et al., 2007; Kobayakawa, Koyama, Mimura & Kawamura, 2008; 

Perretta, Pari & Beninger, 2005; Thiel et al., 2003). The altered decision-making was 

not associated with age of onset, duration of PD and motor severity (Czernecki et al., 
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2002; Perretta et al., 2005; Mimura et al., 2006; Pagonabarraga et al., 2007).  

 

The tendency to risky choices observed in PD patients on the IGT has been proposed 

to be related to the dysfunction of the amygdala, which is known to be involved in 

risk evaluation (Kobayakawa et al., 2008). It has been suggested that impaired 

executive functions are associated with poorer GDT performance, which is modulated 

by the dorsolateral prefrontal loop (Brand et al., 2006; Euteneuer et al., 2009). On the 

other hand, the limbic loop has been shown to play a major role in the IGT 

performance (Bechara et al., 1994; Thiel et al., 2003; Lawrence, Jollant, O’daly, 

Zelaya & Phillips, 2008). The contradictory findings suggest that depending on the 

stage of illness of the patients in the various samples, the limbic loop might not be 

principally affected in PD patients to a degree that is sufficient to affect the IGT 

performance substantially (Euteneuer et al., 2009). Labudda et al (2010) investigated 

the performance of the GDT on PD patients with fMRI techniques. While 

behaviourally the patients showed impairments in making profitable decisions, on the 

fMRI version of the task that did not include a feedback component, PD patients 

showed no difference compared to healthy controls. PD patients and healthy controls 

had similar behavioural patterns in the fMRI task but patients exhibited reduced 

parietal activation, which potentially indicate different strategy application when 

using explicit information for the decision process (Labudda et al., 2010). In general, 

most studies showed that PD patients have impairment in selecting profitable choices; 

such impairment is linked to executive functions and feedback processing, which is 

potentially due to dorsolateral prefrontal loop dysfunction and/or dopaminergic 
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medication. Taken together, clinical studies have found that in addition to motor 

symptoms, non-motor symptoms including executive dysfunctions, mild cognitive 

impairments, and impaired decision-making.  

 

 

1-3-2. Neural network model of dopamine in Parkinsonism 

Following the loss of dopamine neurons and cognitive dysfunctions in Parkinsonism, 

Frank (2005) has proposed a neural network model (Figure 1.13) about the dynamic 

dopamine modulation of basal ganglia to account for the cognitive deficits, which 

involves deficits in attentional processes, working memory and implicit learning, in 

PD patients. The model suggests that reduced dynamic range of the dopamine signal 

affects the modulation of Go/NoGo representations in the direct and indirect pathways 

of the basal ganglia that facilitate or suppress a response. Furthermore, phasic 

dopamine release during error feedback is critical for the implicit learning of 

stimulus-reward-response contingencies as in probabilistic classification and reversal 

tasks, which provides a mechanistic description of how dopaminergic medication may 

lead to reversal impairments that is generally consistent with the ‘overdose hypothesis’ 

(Frank, 2005; Gotham et al., 1988; Cools et al., 2001; Swainson et al, 2000). The loss 

of dopamine neurons in the dorsal striatum in PD thus leads to cognitive deficits in 

reinforcement learning and potentially information updating, which are also 

associated with context monitoring. 

 

The neural mechanisms of dopamine release can be viewed as the expression of two 
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dopamine subgroups of receptors: D1 and D2. The D1 receptor is predominately 

expressed in the direct ‘Go’ pathway that promotes the repeat of an action and 

favoured outcomes, whereas the D2 group is mainly expressed in the indirect ‘No Go’ 

pathway, which supresses an action to avoid negative outcomes (Keefe & Gerfen, 

1995; Gerfen, 2000; Frank, 2005). The increase of dopamine levels thus activates the 

D1 group and the direct ‘GO’ pathway, meanwhile inhibiting NoGo activity via D2 

receptors, leading to repeated actions. The balance of activity between the direct and 

indirect pathways is altered and the resulting disruption in GPi/SNr output may lead 

to abnormalities in movements featured in basal ganglia disorders (DeLong, 1990; 

Albin et al., 1989). Dysfunction of such a system thus may account for the motor 

deficits in patients with PD. Without enough dopamine release, the brain is constantly 

in the state of NoGo due to the overly active indirect pathway that inhibits motor 

execution (Frank, 2005). Dopaminergic medication ameliorates the motor symptoms 

by elevating dopamine levels in the depleted areas, activating the D1 receptors and 

Go activity. However, it has been suggested that dopaminergic medications may 

impair the ability to learn from negative outcomes in PD patients, leading to 

impulsive behaviours (Frank, Seeberger & O’reilly, 2004; Cools, Altamirano & 

D’Esposito, 2006). Figure 1.13B shows the dopamine modulation effect on the Go 

and NoGo pathways.  
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Figure 1.13 (A) The cortico-striato-thalamo-cortical loops, including the direct (Go) 

and indirect (NoGo) pathways of the basal ganglia. The Go cells disinhibit the 

thalamus via the internal segment of the globus pallidus (GPi) and thereby facilitate 

the execution of an action. The NoGo cells conversely increase the inhibition of the 

thalamus that supresses actions. Dopamine from the substantia nigra pars compacta 

(SNc) projects to the dorsal striatum, exciting Go cells via D1 receptors and inhibiting 

NoGo cells via D2 receptors. GPe: external segment of globus pallidus; SNr: 

substantia nigra pars reticulate. (B) The Frank neural network of the basal ganglia 

circuit (squares represent units, with height and colour reflecting neural activity; 

yellow means most active, red means less active and grey means not active). The 

premotor cortex selects an output response via direct projections from the thalamus. 

Go units are in the left half of the striatum layer whereas the NoGo units are in the 

right half, with separate columns for the two responses [Response 1(R1, left button), 

Response 2 (R2, right button)]. In this example, the Go pathway is stronger than the 

NoGo for R1, which inhibits the GPi and disinhibits the thalamus that facilitates the 

execution of an action in the cortex.  A tonic level of dopamine is shown in the SNc. 
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Figure from Frank et al (2007). 

 

The circuitry that implements such a selection function involves the striatum, which 

receives inputs from multiple cortical areas and projects outputs to the GPi and SNr to 

the thalamus, eventually projecting back to the cortical areas (Frank, 2005). In 

addition, the anterior cingulate cortex (ACC) projections to the ventro-medial striatum 

mediate different aspects of reward-based behaviours, whereas the dorsal premotor 

cortex projections to the dorsal striatum/putamen and the lateral caudate nucleus are 

suggested to play an important role in monitoring and planning action (Hadland, 

Rushworth, Gaffan & Passingham, 2003; Roesch & Olson, 2004; Haber & Calzavara, 

2009). Therefore, the degenerated nigrostriatal pathway in patients with PD may not 

only cause motor symptoms but also account for the non-motor symptoms. The 

amount of medication necessary to increase the dopamine-depleted areas in PD such 

as the dorsal striatum might overdose the relatively intact ventral striatum in early PD 

(Frank, 2005). Dopamine has long been identified to be a core neurotransmitter in 

reinforcement learning processes (Schultz, Apicella & Ljungberg, 1993). In addition, 

the basal ganglia have been proposed to be involved in reinforcement learning (Frank 

et al., 2004; Bayer & Glimcher. 2005). Based on reinforcement learning theory, Frank 

et al (2004) investigated the role of dopamine in leaning from positive and negative 

outcomes by testing PD patients on and off medication on two cognitive procedural 

learning tasks. The results showed that when off medication, patients were better at 

learning from negative outcomes, conversely, when on medication, patients learned 

better from positive outcomes (Frank et al., 2004). The observation was consistent 
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with the model of the direct and indirect pathways that separate ‘GO’ and ‘NoGo’ 

responses modulated by differential signals of positive and negative outcomes, which 

suggest that dopamine burst increase activity in the ‘Go’ pathway in the basal ganglia 

circuit and therefore reinforce choices from good outcomes. Conversely, dopamine 

dips lead to the activation of the ‘NoGo’ pathway that facilitates the avoidance of 

negative outcomes (Hikosaka, 1989; Frank et al, 2004). Frank (2005) has also 

suggested that the basal ganglia and specifically the STN can act as a temporary brake 

to raise response thresholds to prevent premature responses and allow time for 

information accumulation to enable selection of that is able to execute the most 

appropriate motor command during the competition between motor actions 

represented in the motor or the premotor cortex. In particular, the STN receives direct 

projections from the pre-SMA and cingulate cortex regions (Parent & Hazrati, 1995) 

which allows it to fulfil these proposed roles. 

 

 

1-3-3. Dopamine Overdose Hypothesis 

Since the establishment of dopaminergic depletion as the pathophysiological basis of 

PD, dopamine substitutions such as levodopa and dopamine agonists have been 

widely used pharmacotherapies in treating PD patients (Vaillancourt et al., 2013). 

While dopamine medication has been proven to be effective in ameliorating motor 

symptoms of PD, an increasing number of studies have been suggesting that 

dopaminergic medication may improve cognitive functions in some patients but 

impair them in others (Gotham et al., 1988; Cools et al., 2001; Dirnberger & 
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Jahanshahi, 2013). Gotham et al (1988) showed that PD patients exhibited improved 

verbal fluency but impaired performance in an associative conditional learning task 

and a subjective-ordered pointing task when on medication. The findings led to the 

formulation of ‘dopamine overdose hypothesis’. The dopamine overdose hypothesis 

proposed by Cools et al (2001) states that, the administration of dopamine medication 

to PD patients may replete dopamine-depleted regions such as the dorsal, rostral head 

of the caudate nucleus and the putamen, but may overstimulate relatively intact 

regions such as the ventral striatum in early PD, leading to poorer performance on 

tasks mediated through these circuits such as reversal learning (Cools et al, 2001), 

conditional associative learning (Gotham et al, 1998), complex discrimination 

learning (Swainson et al, 2000), and probabilistic classification learning (Jahanshahi 

et al 2010). This overdose hypothesis is consistent with the proposal of an ‘inverted U’ 

relationship between dopamine levels and cognitive performance (Figure 1.14; Cools 

et al., 2001; Cools, 2006).  
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Figure 1.14 Schematic of the ‘L-DOPA over-dose’ hypothesis in PD. The black 

‘Inverted-U-shaped’ curve refers to the finding that performance on the probabilistic 

reversal learning task, associated with the ventral striatum, is intact in patients OFF 

medication (PD OFF L-DOPA) but impaired in the same patients ON medication as 

the left black arrows shown. The grey ‘Inverted-U-shaped’ curve refers to the finding 

that performance on the switching task, associated with the dorsal striatum, is intact in 

patients ON medication (PD ON L-DOPA) but impaired in the same patients OFF 

medication. Figure from Cools (2006).  

 

Empirical studies have revealed inconsistent results on the effects of dopamine 

medication on task performance. While some studies found that PD patients 

performed worse om sequential learning tasks when being ON medication than OFF 

medication (Feigin et al., 2003; Kwak, Muller, Bohnen, Dayalu, & Seidler, 2010, 

2012; Muslimovic et al., 2007), other studies have shown no such effects of 
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medication on sequential learning task performance (Pascual-Leone et al., 1993; 

Ghilardi et al., 2007). Kwak et al (2010, 2012) suggest that such inconsistent results 

may be due to the differential effects of dopamine medication on early versus later 

stage of sequence learning processes. The early phase of sequence learning has been 

hypothesised to be associated with ventral striatum, whereas the later phase of 

sequence learning is more closely related to activity in the dorsal striatum (Doyon, 

Penhune, Ungerleider, 2003; Lehericy et al., 2005; Miyachi, Hikosaka, & Lu, 2002). 

In consistent with the hypothesis, Kwak et al (2010) observed that PD patients OFF 

medication as well as healthy controls showed better performance on sequence 

learning compared to PD patients ON medication. Moreover, PD patients OFF 

medication and healthy controls have been found to show activity in the ventral 

striatum during early sequence learning but not observed in PD patients ON 

medication (Kwak et al., 2012). In addition to the differential involvement of striatal 

functions in sequence learning, factors such as stage of disease, striatal structure used 

in the task, and genotype for genetic polymorphisms may also play a role in 

dopaminergic metabolism in striatum and prefrontal cortex, thus contribute to the 

inconsistent results on the effects of dopamine medication (Vaillancourt et al., 2013).  
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Figure 1.15 Factors such as genetic polymorphisms, striatal structure used in the 

task, disease progression may collectively contribute to each patient’s starting 

location on the inverted-U shaped function describing the association between 

dopamine and task performance, which in turn determines whether performance will 

worsen, improve, or show no change with dopaminergic medications. Figure from 

Vaillancourt et al (2013).  

 

 

1-3-4. The computational role of the subthalamic nucleus (STN) in inhibitory 

control 

In addition to degeneration of dopamine neurons, another pathological feature of PD 

is the overactivity of the STN and GPi. It has been suggested that the excessive 
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inhibitory output from the GPi and SNr to the thalamus and underactivation of 

cortical areas contributes to akinesia and bradykinesia in PD (DeLong, 1990; Albin et 

al, 1989). In animal studies, lesions of the STN lead to involuntary movements, which 

can resemble the dyskinesias observed in Parkinson’s disease (PD) patients and 

hemiballism (Crossman, Sambrook & Jackson, 1984). On the other hand, lesions of 

the STN has also been found to alleviate akinetic-rigid syndromes in parkinsonian 

monkeys (Aziz et al., 1992; Aziz, Peggs, Sambrook & Crossman, 1991; Bergman, 

Wichmann & DeLong, 1990), providing a potential treatment for motor deficits 

related to rigidity in PD patients. In human studies, inactivation of the STN have also 

been found to ameliorate some of the motor deficits observed in PD patients 

(Limousin et al., 1995, 1998) 

 

As discussed in Chapter 1-2-2, the hyperdirect pathway in the basal ganglia consists 

of glutamatergic excitatory neurons that transmit signals quickly from the cerebral 

cortex to SNr/GPi via the STN, producing a net effect of motor inhibition (Nambu, 

Tokuno & Takada, 2002). In addition to motor inhibition, it has been proposed that 

the STN also plays an important role in cognitive flexibility (Aron & Poldrack, 2006; 

Isoada & Hikosaka, 2008; Hikosaka & Isoda, 2010), which suggests that the STN 

activity is associated with supressing automatic and fast actions to initiate controlled 

and slow actions. Frank (2006) has proposed a computational role of the STN in 

dynamically controlling the threshold for executing a response, which is 

fundamentally modulated by the intensity of competing possible actions. In other 

words, STN is essential to integrate all information before action selection, thereby 
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prevents premature responses especially in high-conflict situations. Studies have 

shown that high-frequency stimulation induced impairments during decision-making 

when decision conflict was presented in PD patients (Frank et al., 2007; Green et al., 

2013). One potential hypothesis for the impairment could be the stimulation-induced 

disruption of the activity of the limbic circuit between the anterior cingulate cortex 

(ACC) and the ventral striatum as revealed by the imaging study of Schroeder et al. 

(2002). As previously discussed, the ACC has been proposed to modulate the conflict 

monitoring system that detect and integrate response conflict, and send signals to the 

basal ganglia to control the execution of actions (Botvinick, Nystrom, Fissell, Carter 

& Cohen, 1999). In particular, the STN receives direct projections from the 

pre-supplementary motor area (pre-SMA) and cingulate cortex that compose conflict 

monitoring systems, which allows the STN to implement cognitive control by sending 

NoGo signals via diffuse excitatory projections to basal ganglia output nuclei (Mink, 

1996; Parent & Hazrati, 1995; Frank et al., 2007). Consistent with the proposed 

computational role of the STN, Cavanagh et al (2011) showed that mPFC activity 

increased and decision threshold decreased with STN DBS on during decision conflict. 

Figure 1.16 illustrates the computational role of the STN in action selection during 

decision conflict.  
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Figure 1.16 The subthalamic nucleus is incorporated into a scaled-up model that 

includes four competing responses (R1–R4). The STN receives excitatory projections 

from pre/motor cortex in the “hyperdirect pathway” and excites both GPi and GPe; 

GPe provides inhibitory feedback on STN activity. Figure and caption from Frank 

(2006).  

 

Bogacz et al (2010) have proposed that the STN is essential in balancing the 

competing demands of response speed and response accuracy (i.e. the speed-accuracy 

trade-off), especially under accuracy emphasis the STN receives additional excitatory 

inputs and such increased STN activity produces slower and more accurate 

decisions/actions. Moreover, Green et al (2013) showed that PD patients OFF 
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stimulation exhibited reduced reaction time under high decision conflict on a moving 

dots task, and conversely, the effect of high conflict declined when PD patients were 

ON stimulation. Individual data sets are described by two models: when PD patients 

were OFF stimulation, the fast-diffusion model best described the behavioural data, 

while on stimulation, the race model accounted better for the behaviour under DBS 

(Green et al., 2013). The fast-diffusion model applied to two alternative choices tasks 

indicates that the information favouring each of the two alternative options is 

integrated over each trial and that a decision is reached when the accumulated 

information exceeds a critical threshold (Bogacz, Brown, Moehlis, Holmes & Cohen, 

2006), whereas the race model indicated that sensory information for the two 

alternatives are integrated independently (Bogacz & Gurney, 2007). In other words, 

the results of the Green et al (2013) study have provided evidence supporting that 

cortico-basal ganglia networks implement system-level computations that optimise 

decision-makings and potentially further action selection. Figure 1.17 illustrates the 

computational architectures for models of binary decision making. 
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Figure 1.17 (A) A network model implementing the multihypothesis sequential 

probability ratio test. The black and gray circles denote neural populations selective 

for movement toward the left and right, respectively. Labels next to the populations 

denote the brain areas where they are located (‘‘Integrators’’ denotes cortical 

integrator neurons, and ‘‘Output’’ denotes the output nuclei of the BG: the internal 

segment of the globus pallidus and the substantia nigra pars reticulata). The arrows 

denote excitatory connections, and the lines ending with circles denote inhibitory 

connections. The labels above and below the models indicate the values of inputs and 

outputs, respectively. The labels xt
L and xt

R denote the activities of sensory neurons 

selective for motion toward the left and right, respectively, at the current time T. f is a 

monotonic function equal to f(s) = –log[1 + exp(2gs)], where g is a positive model 

parameter and s the sum of the difference between both alternatives for each output 

unit. (B) In the diffusion model, the difference between sensory inputs for the two 

alternative choices is integrated. A choice is made once this integrated difference 

exceeds a decision threshold. Only the difference between sensory inputs affects the 

values of the integrators. (C) The simplest model of binary choice is the race model. 

Two independent integrators accumulate sensory evidence supporting each of the two 

choice alternatives (here, motion to the left or right). A choice is made once the 

activity of any integrator exceeds a fixed threshold. Figure and captions from Green et 

al (2013).  

 

In addition to decision conflict, Pote et al (2016) found that when decision conflict 

was set at a constant 50% coherence for the moving dots task, patients with STN DBS 
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on responded faster but made more errors and had reduced decision thresholds under 

speed instructions, suggesting that STN DBS induced impulsive responses under 

speed pressure. Together, the results support the imaging studies that suggest the STN 

is involved in the modulation of SAT through the adjustments of response thresholds 

during decision-making (Forstmann et al., 2008; van Veen et al., 2008; Ivanoff et al., 

2008; Domenech & Dreher, 2010). In addition, by recording local field potentials 

(LFP) from the STN DBS electrodes while performing a moving dots task in PD 

patients, Zavala et al (2014) demonstrated that dynamic coupling of neural activity 

between midline frontal cortex and the STN is dominated by information flow from 

the cortex to the STN, and that the elevated STN theta activity is specific to conflict. 

The results thus provide robust support for the hypothesis that the connections 

between the STN and the mPFC modulate decision thresholds during decision conflict 

in decision-making (Zavala et al., 2014). Moreover, Leimbach et al (2018) showed 

that when reward, decision conflict and/or time pressure to make decisions were 

absent during the decision-making processes, the STN plays no critical role in 

modulating the decision threshold.   

 

 

1-3-5 Deep brain stimulation (DBS) of the subthalamic nucleus (STN) 

Once levodopa induced complications such as dyskinesias or on-off fluctuations 

develop, patients are considered appropriate potential candidates for deep-brain 

stimulation (Okun, Fernandez, Rodriguez, Foote, 2007). The selection criteria for 

DBS surgery include: motor symptoms that are dopamine responsive, aged below 70 
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or 80 (this varies across centres), no evidence of brain atrophy on MRI, no dementia, 

no major psychiatric illness, no other major physical illness which would be a 

contra-indication for surgery. Deep brain stimulation is a surgical technique in which 

one or more electrodes attached to leads are implanted in specific regions of the brain, 

the STN or GPi that are hyperactive in PD (Figure 1.18) (Okun, 2012).  

 

 

Figure 1.18 Electrode Implantation for Deep-Brain Stimulation. The electrode for 

deep-brain stimulation is implanted in either the subthalamic nucleus or the internal 

segment of the globus pallidus. The lead passes through a burr hole in the skull. 

Attached to the lead is a connecting wire, which is tunneled under the skin of the 

scalp and neck to the anterior chest wall, where it is connected to an impulse 
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generator. Figure from Okun (2012).  

 

Furthermore, it has been sown in rodent studies that STN high-frequency stimulation 

(HFS) could increase striatal dopamine release and metabolism (Bruet et al., 2001; 

Meissner et al., 2003; Lacombe et al., 2007; Zhao et al., 2009; Pazo, Hocht, Barcelo, 

Fillipini & Lomastro, 2010), such increase is thought to account for the improvement 

of parkinsonian symptoms in animal models of PD. Glutaminergic output on the 

dopaminergic neurons of the SNc from the STN is believed to be involved in the 

degeneration of dopamine neurons, STN-HSF may slow down such 

neurodegeneration process by decreasing glutamate output (Benabid, Chabardes, 

Mitofanis & Pollak, 2009). The clinical observations on PD patients have shown that 

STN DBS is effective against levodopa sensitive motor symptoms (Benabid et al., 

1998; Moro et al., 1999) and it is generally observed that patients reduce 

dopaminergic medication after surgery (Krack et al., 2003; Kleiner-Fisman et al., 

2003), it has therefore been proposed that STN DBS has an effect on increasing 

striatal dopamine release. However, human imaging studies of STN DBS have found 

no evidence supporting the hypothesis that STN DBS is associated with striatal 

dopamine release (Hilker et al., 2003; Strafella, Sadikot & Dagher, 2003; Nozaki et al., 

2013; Thobois et al, 2003). For example, Hilker et al (2003) has found no correlation 

between the changes of dopamine radioligand binding and the simulation amplitudes 

in a positron emission tomography (PET) study.  

 

Despite the growing clinical practice of STN-HFS, the underlying mechanisms of 
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DBS STN remains undetermined (Meissner et al., 2005; Montgomery & Gale, 2008; 

McIntyre & Hahn, 2010). Two general theories have been strongly debated regarding 

the effects of STN DBS: (1) DBS suppresses or inhibits the stimulated nucleus that 

mimics the effects of ablation; (2) DBS results in activation of the stimulated nucleus 

that is transmitted throughout the network (McIntyre, Savasta, Goff & Vitek, 2004). 

Nevertheless, lesions or DBS of the STN in primates reduce the symptoms of 

parkinsonism in MPTP-treated monkeys (Bergman et al., 1990; Benazzouz et al., 

1993). Moreover, DBS of the STN has been shown to remarkably improve the motor 

impairments in PD as now established in randomized clinical trials (Deuschl et al, 

2006; Weaver et al, 2012; Follett & Torres-Russotto, 2012; Williams et al, 2010). A 

few experimental studies have shown that STN-HFS reduces the activity of STN 

neurons (Benazzouz, Gross, Feger, Boraud, & Bioulac, 1993; Benazzouz et al., 2004; 

Salin, Manrique, Forni, & Goff, 2002; Tai et al., 2003). Studies have shown that in 

1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-(MPTP)-lesioned non-human primates, 

STN-HFS increases the mean firing rate of GPi neurons and modifies the 

spontaneously irregular firing pattern into regular firing pattern (Bergman, Wichmann, 

Karmon, & DeLong, 1994; Hashimoto, Elder, Okun, Patrick, & Vitek, 2003). 

Electrophysiological recordings of local field potentials and unit activity in human 

STN suggest that increased oscillatory activity in beta frequency band may contribute 

to parkinsonian pathophysiology (Brown et al., 2001; Levy et al., 2002; Brown, 2003; 

Kuhn et al, 2004). Moreover, studies have shown that DBS attenuate oscillatory beta 

activity in PD patients, which may result in motor improvement (Kuhn et al., 2008; 

Bronte-Stewart et al., 2009; Giannicola et al., 2010).    
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In addition, studies have found that deep brain stimulation of the STN and GPi are 

equally effective in improving motor deficits in PD (Anderson, Burchiel, Hogarth, 

Favre & Hammerstad, 2005; Follett et al., 2010). More reports on the mood, 

behavioural and cognitive side-effects associated with STN DBS than GPi DBS 

stimulation have been found, potentially due to higher STN implantation rate; 

however the relatively smaller size and anatomical location of the STN may also 

account for the effect (Walter & Vitek, 2004). Combs et al (2015) conducted a 

meta-analysis to compare the cognitive, behavioural and mood symptoms between the 

two targets. The results showed that GPi DBS produced relatively fewer 

neurocognitive declines than STN DBS. While the former resulted in a small decline 

in attention and a small-moderate decline in verbal fluency; the latter produced small 

declines in psychomotor speed, memory, attention, executive functions, and overall 

cognition, and also moderate declines in both semantic and phonemic fluency (Combs 

et al., 2015). In addition, in a recent review of the cognitive literature and the 

available meta-analyses of this literature; Troster et al (2017) concluded that bilateral 

STN DBS is reasonably cognitively safe except for decrements in verbal fluency and 

on the Stroop task. 
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1-4.  The effect of acute manipulations of treatments on cognitive functions 

associated with context monitoring in PD patients 

One of the goals of the present PhD thesis is to investigate the acute effects of 

treatments (i.e. dopamine medication and STN DBS) on cognitive functions 

associated with context monitoring in PD patients. In the present section I will 

selectively review studies that manipulated acute effects of either of these treatments 

on cognitive functions in PD patients.  

 

1-4-1 The acute effects of dopaminergic medication on executive functions in 

PD patients 

Progressive degeneration of dopaminergic neurons in the SNc is the main feature of 

PD. The most common therapeutic strategy is dopaminergic medication including 

dopamine precursors such as levodopa and dopaminergic agonists. While both types 

of medication significantly ameliorate motor deficits in PD patients, as discussed in 

Chapter 1-2-4, dopamine overdose effect on aspects of cognitive function and 

neuropsychological and psychiatric side effects have also been reported for patients in 

the early stages of PD treated with medication (Saint-Cyr, Taylor & Lang, 1993). As 

briefly mentioned in previous sections, Frank et al (2004) have proposed a 

computational model of basal ganglia-dopamine interactions in cognition, which 

predicts that PD patients are impaired in learning form positive feedback and have 

enhanced learning from negative feedback when being OFF medication due to the 

reduced level of dopamine; whereas when being ON medication, PD patients would 

have sufficient dopamine to learn from positive feedback but relatively impaired at 
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learning from negative feedback. The proposed model may provide explanations on 

the observation that dopaminergic medication alleviates some cognitive deficits but 

impairs other cognitive functions that are associated with the intact basal ganglia 

regions (due to dopamine overdose hypothesis, which was discussed in Chapter 1-3-3) 

(Frank, 2005).   

 

The early stages of PD are associated more with nigrostriatal dopamine depletion and 

to a lesser extent associated with mesocorticolimbic dopamine depletion. The 

impairment of PD on the performance of gambling tasks is often reflected as 

impulsive choices that lead to large losses. In addition, it has been shown that PD 

patients treated with dopaminergic medication, especially dopaminergic agonists, 

potentially develop impulse control disorders (ICDs) (Voon & Fox, 2007; Wu, Politis 

& Piccini, 2009; Weintraub et al., 2015). ICDs are defined as behaviours that are 

performed repetitively, excessively, and compulsively to a degree that greatly 

interferes with major aspects of daily life (Grant, Schreiber, & Odlaug, 2011). In 

addition to pathological gambling, shopping, hypersexuality and binge eating, other 

impulsive-compulsive behaviours including punding, hobbyism, walk-about and 

hoarding have also been described in PD (Weintraub et al., 2015). Molina et al (2000) 

first reported the association between PD and pathological gambling, potentially due 

to the pharmacological treatment. Dodd et al (2005) assessed 11 PD patients who 

developed pathological disorders and their medical therapy, showing a correlation 

between dopaminergic agonists and the development of pathological gambling. 

Weintraub et al (2010) conducted a cross-sectional study of 3090 patients in America 
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and Canada, which showed that 13.6% of patients developed one risk, and 3.9% had 2 

or more ICDs. ICDs were more common in patients treated with dopamine agonists, 

showing a 2-3.5 fold increased odds of inducing ICDs for dopamine agonist treatment 

(Weintraub et al., 2010).  

 

Dopamine-receptor binding profiles may provide a neurobiological explanation for 

the association between dopamine agonist treatment and ICDs. 93 % of the prescribed 

dopamine agonists that were associated with ICDs were relatively selective for the 

dopamine D3 receptors (Dodd et al., 2005). D3 receptors are proposed to be abundant 

in the ventral striatum (Gurevich & Joyce, 1999), which is also a brain region that is 

associated with the hedonic response to amphetamine, addictions and impulsivity 

(Drevets et al., 2001; Lee et al., 2009). In addition to dopaminergic medication, 

factors such as male gender, younger age at PD onset, being single, higher novelty 

seeking personality, and personal or family history of substance abuse are factors 

relevant to development of ICDs in PD (Voon et al., 2007; Weintraub et al., 2010, 

2015). The association of ICDs with other risk factors may suggest involvement of a 

complicated network in human impulsivity and compulsivity. In addition, studies 

have shown that PD patients without ICDs and PD patients with ICDs showed 

different behavioural patterns in decision-making (Djamshidian et al., 2010; 

Djamshidian et al., 2012). While all PD patients showed reflection impulsivity as 

reflected by less information sampled before making a decision, PD patients without 

ICDs showed a behavioural pattern similar to pathological gamblers, whereas PD 

patients with ICDs exhibited a pattern resembling more to substance users 
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(Djamshidian et al., 2012). Moreover, PD patients without ICDs performed worse on 

working memory tests (Djamshidian et al., 2012). The results suggest that tasks 

investigating evidence accumulation might be powerful for detecting 

impulsive-compulsive behaviours in PD. Studies in rodents showed that blockade of 

dopamine receptors reduces preference to wait longer or work harder to obtain large 

rewards (Cardinal, Robbins & Everitt, 2000; Salamone, Wisniecki, Carlson & Correa, 

2001). Drugs increasing dopamine transmission such as amphetamine can exert 

differential effects on decision-making, while lower doses of amphetamine enhances 

tolerance for delays to reward delivery. These results suggest that acute manipulation 

of dopaminergic transmission is involved in cost/benefit decision-making. In addition 

to the acute effects, chronic administration of drugs, especially dopaminergic agonists, 

has been demonstrated to impair inhibitory control and decision-making (Everitt & 

Robbins, 2005).  

 

In the review that discussed chronic dopaminergic stimulation in PD patients on 

inducing motor and behavioural side-effects, Voon et al (2009) suggested that chronic 

dopaminergic medication (both levodopa and dopaminergic agonists) seems to alter 

presynaptic dopamine transmission that leads to both levodopa-induced dyskinesias 

and ICDs. In addition, never-medicated PD patients showed impaired 

stimulus-response learning ability compared to healthy controls (Nagy et al., 2007). 

Ryterska, Jahanshahi & Osman (2013) conducted a meta-analysis in an attempt to 

determine the motor and cognitive factors that determined impairment of 

decision-making in PD patients. The results revealed two key predictors of 
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decision-making impairment in PD: (1) the feedback structure of the decision-making 

task and (2) the medication status of patients while performing the task. Behavioural 

studies on patients with PD tested on and off medication have shown the effects of 

acute dopaminergic medication on probabilistic classification learning, perceptual 

decision-making and action selection (Czernecki et al., 2002; Shohamy, Myers, 

Geghman, Sage, & Gluck, 2006; Frank et al., 2007; Moustafa, Sherman & Frank, 

2008; Jahanshahi, Wilkinson, Gahir, Dharminda & Lagnado, 2010; Galea, Bestmann, 

Beigi, Jahanshahi & Rothwell., 2012; Huang et al., 2015). For example, Moustafa et 

al (2008) have shown that PD patients both on and off medication showed attentional 

shifting deficits in an information updating related task, but for different reasons. 

Moreover, medication seemed to improve working memory. More specifically, 

unmedicated PD patients showed deficits in updating attentional set, whereas 

medicated PD patients were impaired in ignoring distractors that were previously 

relevant to the task (Moustafa et al., 2008). Jahanshahi et al (2010) suggested that PD 

patients on medication performed worse on than off medication and healthy controls 

on a probabilistic classification learning task. On a moving dots task, Huang et al 

(2015) have shown that dopaminergic medication did not induce impulsivity when 

acting under time pressure or in situations of decision conflict; instead it impaired the 

ability to extract sensory information in PD patients, resulting in patients making 

more errors in a perceptual decision-making task when faced with decision conflict. 

In contrast, Castrioto et al (2015) showed no effect of acute manipulation of 

dopaminergic medication on the IGT scores, however, PD patients off medication 

showed significantly worse performance compared to age-matched healthy controls. 
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While the acute manipulation of dopaminergic medication may improve working 

memory and the subjective evaluation of motivation, it may also impair attentional 

shifting and perceptual decision-making. The results suggest that dopaminergic 

medication is effective in reducing the negative symptoms caused by the loss of 

dopamine neurons in multiple neural mechanisms that involved dopamine 

transmission. Timmer, Sescousse, Esselink, Piray & Cools (2018) showed that 

dopaminergic medication increased a value-dependent gambling bias in 

non-depressed PD patients, which is associated with the dopamine overdose 

hypothesis (Cools et al., 2006). In contrast to previous studies reporting dopaminergic 

medication inducing impulsive decisions in PD, Foerde et al (2016) showed that PD 

patients (who did not have ICDs) tested on medication made more farsighted choices, 

which suggests that dopamine influences the evaluation of larger later rewards. Note 

that the Foerde et al (2016) study investigated different groups of PD patients when 

ON versus OFF medication, individual differences in levels of dopamine deficiency 

and in making intertemporal decisions should also be taken into account in future 

studies. 

 

In summary, despite a few studies suggesting that dopamine medication used in 

treating PD produced no side effects in patients, most studies have found that 

dopamine medication induced side effects such as executive dysfunctions, impaired 

decision-making and potential development of ICDs in PD patients.   
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1-4-2. The acute effects of STN-DBS on executive functions in PD 

In addition to dopamine medication, STN DBS is also a common treatment for PD. 

As previously discussed, the exact mechanism of STN DBS and how specifically it 

improves the motor symptoms pf in PD remains unclear (Montgomery & Gale, 2008; 

McIntyre & Hahn, 2010). Moreover, experimental studies have shown inconsistent 

results on the effects of acute manipulation of STN DBS on executive functions in PD 

patients.  

While STN DBS has been clinically demonstrated to alleviate tremor, rigidity, 

bradykinesia, and levodopa-induced dyskinesias, its effects on cognition are less clear 

and depend on the cognitive domains under consideration (Parsons, Rogers, Braaten, 

Woods & Tröster, 2006; Woods, Fields & Troster, 2002; Comb et al, 2015; Jahanshahi, 

2013). Woods et al (2002) concluded in a critical review that most common findings 

for the effects of STN DBS, in addition to improving the motor deficits, are 

improvements in self-reported symptoms of depression and diminished verbal fluency. 

Consistent with this conclusion, Funkiewiez et al (2004) investigated 77 PD patients 

before, 1 and 3 years after surgery and found that STN stimulation did not lead to 

global cognitive deterioration however, verbal fluency was found to worsen. Such 

verbal fluency decline has been related to apathy and a decrease in self activation 

(Funkiewiez et al., 2004). A meta-analysis study of 28 neuropsychological cohort 

studies published between 1999 and 2006 including 612 patients revealed significant 

but small declines in executive functions, vernal learning and memory in PD patients 

treated with STN DBS (Parsons et al., 2006). Table 1.4 shows the average weighted 

effect sizes, standard errors of the effect sizes and confidence limit. The 
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neuroanatomical and cognitive mechanisms underlying the negative effect of STN 

DBS on verbal fluency are not mutually exclusive. Intraoperative electrical 

stimulation studies suggested that the striatum might have dissociable roles in the 

motor and cognitive control of language (Robles, Gatignol, Capelle, Mitchell & 

Duffau, 2005). In addition to the effects of STN DBS on neuropsychological tests, it 

has been suggested that DBS of the STN has an impact on executive control or 

inhibition of prepotent responses (Jahanshahi, 2013). 

 

Table 1.4    Random effect sizes for the neuropsychological domains 

 Average random 

effect size 

Effect size 

variance 

95% CI 

Cognitive screening 0·04 0·001 −0·05 to 0·12 

Attention and 

concentration 

0·02 0·001 −0·08 to 0·12 

Executive functions 0·08* 0·001 −0·03 to 0·20 

Psychomotor speed 0·22 0·020 −0·02 to 0·54 

Verbal functions 0·21* 0·020 −0·04 to 0·46 

Visual functions 0·06 0·010 −0·16 to 0·27 

Verbal fluency 0·64* 0·030 0·32 to 0·96 

Phonemic fluency 0·51* 0·080 −0·05 to 1·08 

Semantic fluency 0·73* 0·030 0·41 to 1·04 

Table from Parsons, Rogers, Braaten, Woods & Tröster, 2006.  
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To investigate the dynamic role of the STN in modulating decision thresholds in 

proportion to reinforcement and decision conflict, Frank et al (2007) administrated 

computerized decision-making tasks to PD patients treated with DBS of the STN in 

different sessions (i.e. ON and OFF). The results showed that patients on stimulation 

failed to slow down with increased decision conflict, supporting the hypothesis that 

the STN provides a control signal that prevents premature responses depending on 

decision conflict (Frank, 2006; Frank et al, 2007). Moreover, Green et al (2013) have 

demonstrated that PD patient with STN DBS ON made more fast and incorrect 

responses during the modulation of SAT (i.e. speed-accuracy trade-off) when making 

decisions compared to PD patients OFF stimulation and age-matched healthy controls. 

Together the results thus suggest that the STN is involved in information integration 

during decision making and/or action selection.  

 

In addition to its role in information integration, the STN is proposed to be involved 

in the accumulation of probabilistic information (Bogacz & Gurney, 2007). Coulthard 

et al (2012) showed that DBS of the STN impairs response choice requiring 

information integration and induces failures to slow down to incorporate new 

information before making a decision in PD patients. Studies investigating the effect 

of DBS of the STN on the Iowa Gambling task (IGT) report no significant difference 

in overall performance between ON and OFF sessions 2-4 weeks or 10 months after 

surgery (Oyama et al., 2011; Czernecki et al., 2005). Evens, Hoefler, Biber, & Lueken 

(2016) showed that acute DBS of the STN increased risky choices in the IGT. 

However, DBS of the STN had no effect on incentive salience attribution or the 
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evaluation of delayed rewards. In contrast, Brandt et al (2015) showed that 

stimulation of the STN tempered risk-seeking behaviours in PD patients, additionally 

the stimulation made patients more risk-aversive in ambiguous-risk situations. While 

results on experimental tasks suggest that in general DBS of the STN causes little to 

no negative effect on decision-making (Czernecki et al., 2005; Yugeta et al., 2010; 

Swann et al., 2011; Torta et al., 2012; Boller et al., 2014; Fumagalli et al 2015; Brandt 

et al., 2015), Smeding et al (2007) have suggested that pathological gambling is 

related to a combination of STN stimulation and treatment with dopamine agonists 

based on a case report. Consistent with this hypothesis, Castrioto et al (2015) reported 

that patients after surgery improved performance on the IGT due to the reduction of 

the dopaminergic medication. By contrast, Rogers et al (2011) showed that DBS of 

the STN enhanced loss-chasing behaviours on the Cambridge gambling task. In 

contrast with the previous findings, Torta et al (2012) revealed no such effects, instead 

patients reported being more impulsive subjectively during off stimulation periods. 

 

Neuropsychological tests have shown inconsistent results regarding the effects of 

STN DBS on inhibitory control related EFs in PD patients. To examine the effect of 

STN DBS in PD on controlling inhibition, the stop-signal paradigm and the 

estimation of stop-signal reaction time (SSRT) based on the horse race model (Logan 

& Cowan, 1984) have been used in several studies (van den Wildenberg et al., 2006; 

Swann et al., 2011; Mirabella et al., 2011; Greenhouse et al, 2011; Ray et al, 2009; 

Obeso et al, 2013). A few studies have shown prolonged SSRTs in patients ON 

compared to OFF stimulation, indicating that STN DBS impairs inhibitory control in 
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PD patients (Ray et al, 2009; Ballanger, Poisson, Broussolle, & Thobois, 2012; Obeso 

et al, 2013). However, three studies that investigated the effect of STN DBS SSRT 

have reported significantly shorter SSRTs in PD patients with stimulation ON than 

OFF, suggesting that DBS of the STN improves inhibitory control on the stop signal 

task (van den Wildenberg et al., 2006; Swann et al., 2011; Mirabella et al., 2011). 

Moreover, other studies using different tasks such as a cue-target detection task and a 

Status quo task also showed behavioural improvements for PD patients on tasks 

involving proactive inhibition (Favre et al., 2013; Zaehle et al., 2017). In addition to 

SSRT, Go/NoGo task has also been widely used to assess inhibitory control. While 

most studies suggested that STN DBS impaired inhibitory control on the Go/NoGo 

task performance (Hershey et al., 2004; Ballanger et al., 2009; Hershey et al., 2010), 

one study showed that STN DBS improved action execution when rewards were 

anticipated (Wagenbreth et al., 2015). Moreover, Georgiev et al (2016) showed that 

STN DBS selectively decreased discriminability on tasks with high probability but 

not low probability of GO stimuli. Factors such as medication state when performing 

the behavioural tasks, disease duration, the difference of the SSRT tasks used, 

baseline SSRTs in PD patients relative to healthy controls, the exact location of the 

stimulating electrode in the STN and surgical procedure variations may contribute to 

the inconsistency in these results. Despite these studies provide contrary results, the 

results of these studies suggest a direct involvement of the STN in inhibitory and 

executive control (Table 1.5). 

 

Table 1.5 Studies investigating the effects of STN DBS on inhibitory control and 
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cognitive flexibility 

Task used Impaired by STN 

DBS 

Enhanced by STN 

DBS  

Related executive 

functions 

SSRT 

(Stop-signal 

reaction time) 

Jahanshahi et al 

(2000) 

Schroeder et al 

(2002) 

Ray et al (2009) 

Obeso et al (2013) 

Van den 

Wildenberg et al 

(2006) 

Greenhouse et al 

(2011) 

Swann et al 

(2011) 

Mirabella et al 

(2011) 

Inhibition 

Go/NoGo task Hershey et al (2004) 

Ballanger et al 

(2009) 

Hershey et al (2010) 

Wagenbreth et al 

(2015) 

Georgiev et al 

(2016) 

Wagenbreth et al 

(2015) 

Inhibition 

Stroop 

interference 

task/ Simon 

Jahanshahi et al 

(2000) 

Schroeder et al 

 Cognitive flexibility 

Inhibition 
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task (2002)  

Witt et al (2008) 

Wylie et al (2010) 

 

 

1-5. General Aims, hypotheses and methodology 

The general aims of the present thesis were to investigate the acute effects of 

dopamine and STN DBS on basic executive functions such as shifting, updating and 

inhibition. PD patients are recruited as a human model of dopamine depletion. 

Dopaminergic medication and STN DBS are used to further investigate how these 

treatments both ameliorate motor deficits and affect executive functions in PD. 

Behavioural performance on computerised tasks on/off medication or on/off 

stimulation is compared for each patient. In addition, performance of PD patients was 

compared to age-matched healthy controls (HCs). On one hand, in accordance with 

the ‘dopamine overdose hypothesis’ (Cools et al., 2006), PD patients would have 

poorer performance on probabilistic learning tasks, which involves the presentation of 

one discrimination to learn at a time, when being ON medication than OFF 

medication, due to medication overstimulates dopamine-intact ventral striatum in PD 

patients. On the other hand, based on the theories of STN DBS in inhibitory control 

and previous results observed in PD patients, it is hypothesised that STN DBS would 

impair the basic EFs including shifting, updating and inhibition in PD patients, 

resulting in poorer performance on behavioural tasks when being ON stimulation.  
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1-5-1. Computerised tasks 

In the present section I introduce the computerised tasks used in the present PhD 

thesis in detail.  

 

Moving dots tasks: Speed/Accuracy trade-off and Difficulty 

The ‘speed-accuracy’ moving-dots task (Britten, Shadlen, Newsome & Movshon, 

1992) required participants to decide whether a cloud of dots moved to the left or the 

right of the screen. Out of 120 dots, 50% moved coherently in one direction and the 

remaining 50% moved randomly. Each dot consisted of three pixels, and the diameter 

of the entire cloud of dots was 250 pixels. At the beginning of each trial, a written cue 

(i.e. FAST for speed and ACCURATE for accuracy) was presented, instructing 

participants to adopt different levels of cautiousness. Participants would decide the 

direction of the dots by pressing one of two buttons with either their left (for dots 

moving left) or right (for dots moving right) index finger. The cues were 

pseudo-randomly intermixed and there were equal numbers of FAST and 

ACCURATE cues in a block of 200 trials. At the end of each trial, participants 

received feedback, which depended on the previously presented cue. Under speed 

conditions, whenever participants exceeded the reaction time criterion of 500 ms, a 

“too slow” feedback was presented. If participants responded within the time criterion 

for the speed condition, they received the feedback “in time.” At the end of the 

accuracy trials, participants were presented with an “incorrect” or “correct” feedback, 

depending on whether they had made an error or provided a correct response. The 

negative feedbacks were presented in red, while the positive feedbacks appeared in 
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green. Feedback provided an additional incentive for participants to adopt different 

levels of caution in response to the different cues. 

 

The ‘difficulty’ moving-dots task also required participants to decide the direction in 

which a cloud of dots moved. No cues for Speed or Accuracy were used in this task. 

The coherence of moving dots ranged from 5%, 10%, 15%, 25%, 35% to 50%, 

respectively making it harder (5%) or easier (50%) to decide the direction of the 

moving dots. The higher the coherence was, the easier it was to judge the direction of 

the moving cloud of dots, thus leading to faster responses. Conversely, the lower the 

coherence was, the more difficult it was to decide the direction of the moving dots and 

therefore leading to slower response time. At the end of each trial, participants 

received “incorrect”, “correct” or “no response” feedbacks depending on their 

responses (Figure 1.9). 
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Figure 1.19 The speed–accuracy version of the moving dots task. The task 

difficulty version of the task was similar but without the speed/accuracy instructions 

and the coherence of the dots varied from5%, 10%, 15%, 25%, 35% to 50%. 

 

Block-designed moving dots task  

A block-designed moving dots task was used which consisted of two kinds of blocks: 

controlled blocks and automatic blocks to investigate the role of the STN in switching 

between different tasks. At the same time the moving dots paradigm also allow the 

study of how DBS STN may affect the modulation of the SAT during perceptual 

decision-making under various moving dots coherence.  

 

The “automatic” (100% coherence) blocks required participants to decide whether a 

cloud of dots moved to the left or the right of the screen. All the dots moved 

coherently in the same direction. The participants were given two different 
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instructions before every trial: FAST (for speed) and ACCURATE (for accuracy), 

while the level of coherence being kept constantly at 100%. The participants then 

decided on the direction of the moving dots by pressing one of two buttons with either 

their left (for dots moving left) or right (for dots moving right) index finger. in 

accordance to the instruction. The cues were pseudo-randomly intermixed and there 

were equal numbers of FAST and ACCURATE cues in 2 blocks of 60 trials, which 

made it a total of 120 trials. At the end of each trial, participants received feedback, 

which depended on the previously presented cue. In the speed condition, whenever 

the participants made a response within 500 ms, the feedback ‘in time’ was presented, 

otherwise a ‘too slow’ feedback. In the accuracy condition, participants received the 

feedback ‘correct’ or ‘incorrect’ depending on their responses. ‘No response’ was 

presented on the screen if the participants failed to make any response on the trial 

within a time-frame of 1500ms. In the “controlled” blocks, the participants were also 

required to decide the direction in which a cloud of dots moved. They were instructed 

to do the task as fast and as accurately as possible. Cues for speed or accuracy were 

also used in this version of the task, as outlined above. The coherence (“difficulty”) 

level of the moving dots were set at 5%, 10%, 15%, 25%, 35% and 50%, making it 

harder (5%) or easier (50%) to decide the direction of the moving dots, since the 

higher the level of coherence was, the easier it was to judge the direction of the 

moving cloud of dots, thus leading to faster responses. In each block, there were equal 

numbers of trials at each level of coherence, pseudo-randomally mixed, with half 

presented under ‘speed’ and half under ‘accuracy’ instructions.  At the end of each 

trial, participants received the feedback “in time”, “too slow” or “no response” 
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depending on their responses, as outlined above. The numbers of trials were selected 

to obtain reliable measures of perceptual decision-making while at the same time 

avoiding causing fatigue for the patients (Lerche, Voss & Nagler, 2017) 

 

The probabilistic RT Task 

The probabilistic RT task requires participants to learn the association between the 

presented imperative stimuli (IS) and specific finger presses (Galea et al., 2012) 

(Figure 1.20 a). The order of the IS can be predictable or unpredictable (Figure 1.20 

b&c).  

 

 

Figure 1.20 The probabilistic reaction time task. a, Schematic representation of a 

single trial. A visual warning sign is presented followed by a fixation cross. One of the 

four novel IS is then presented and participants are required to respond as fast and 

accurate as possible when the next fixation cross is presented; b and c show that the 

order of the visual stimuli can either be predictable or unpredictable. Predictable 

sequences were generated from a first-order Markov sequence in which there are 16 

combinations that determined the relationship between the IS on trial t and on trial t-1. 
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Numbers within the probability matrices represent the transition probabilities. The 

overall probability of each IS on trial t was equal across all blocks. Figure adapted 

from Galea et al., (2012). 

 

Participants sit in front of a computer screen 30 cm away. A custom button box with 

four buttons is placed in front of the dominant hand. The participants are instructed to 

place each one of their fingers on each of the four buttons and to maintain this 

position throughout the task. Initially, an un-informative warning cue (“!”) was 

displayed for 250 ms. Then a fixation cross was presented for 1000 ms, one of the 

four IS was shown in the centre of the screen for 250 ms. The fixation cross then 

reappeared during the response period (2500 ms). During this time, the participant 

was required to respond to the IS as fast as possible but not at the expense of accuracy. 

Each IS image is associated with pressing a specific button. The task is divided into 4 

blocks, with block 1 and 4 being unpredictable conditions, block 2 and 3 being 

predictable conditions. No explicit information about the underlying patterns in each 

block is provided to participants. Participants were simply instructed to react with 

speed and accuracy. During the main experiment, error feedback is removed, and 

participants conduct four blocks of 100 trials with short rest periods between blocks. 

In the first and last blocks, stimuli sequences are unpredictable with a 0.25 probability 

of each IS being presented on trial t (Figure 1.20b). Conversely, in the middle of the 

two blocks, the IS is drawn from a predictable first-order Markov sequence. The 

design creates a structure that the probability of the current stimuli t is conditionally 

dependent on the stimulus of the previous trial t-1. There are 16 possible 
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combinations that determine the relationship between the IS on trial t and on trial t-1. 

Importantly, the overall probability of each IS is equal across all blocks. For all 

correct responses, RT is calculated as the time between IS onset and the subsequent 

button press. Moreover, the RT in predictable conditions is further compared between 

probable and improbable trials. The predictability of the current trial is also quantified, 

ti, based on the IS presented on the previous trial, ti -1, given by the mutual 

information (MI) between consecutive IS (Harrison et al., 2006). MI is the reduction 

in uncertainty of the IS on the current trial t as a result of the knowledge of the IS on 

the previous trial ti -1.  

 

1-5-2. Computational Models 

Hierarchical Drift Diffusion Model 

Based on the concept of the drift diffusion model (detail in previous section), Voss & 

Voss (2007) proposed a fast-dm software for the parameter estimation, which 

provides a novel and flexible tool for fast and precise diffusion model by using partial 

differential equation method and Kolmogorov-Smirnov statistic for the optimisation 

of the parameters, which was used to apply to the behavioural data (Lerche et al., 

2017).  

 

While the drift diffusion model is a powerful tool to infer the latent psychological 

processes underlying simple choice decision-making, studies investigated neural 

mechanisms associated with evidence accumulation and decision threshold 

modulation often have low trial numbers in each condition, making it difficult to 
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estimate model parameters. Wiecki, Sofer & Frank (2013) have developed a 

Python-based toolbox, which uses hierarchical Bayesian parameter estimation 

methods to allow simultaneous estimation of individual subjective parameters and the 

group distribution that the parameters are drawn from, while also providing measures 

of uncertainty in these parameters in the posterior distribution. Figure 1.21 illustrates 

the framework of hierarchical drift diffusion model.  

 

Figure 1.21 Basic graphical hierarchical model implemented by HDDM for 

estimation of the drift-diffusion model. Round nodes represent random variables. 

Shaded nodes represent observed data. Directed arrows from parents to children 

visualize that parameters of the child random variable are distributed according to its 

parents. Plates denote that multiple random variables with the same parents and 

children exist. The outer plate is over subjects while the inner plate is over trials. 

Figure from Wiecki, T., Sofer, I., and Frank, M. (2013). 

 

Machine learning frameworks 

It has been proposed that PD patients with and without ICDs showed distinct 

behavioural patterns that may shed lights on explaining why some patients would 
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develop the impulsive behaviours and the others would not (Djamshidian et al., 2012, 

2014). The distinct behavioural patterns may thus be used as a factor in building 

predictive models that could serve as a screening tool for PD patient who are at high 

risk of developing ICDs as the disease progresses or induced by inappropriate 

treatments (e.g. high dosage of dopamine agonists). As previously discussed, PD 

patients have been reported to exhibit impaired perceptual decision-making processes 

and such impairment may lead to the onset of ICDs. To examine the potentiality of 

using behavioural patterns on a perceptual decision-making framework in predicting 

impulsive behaviours in PD patients, algorithms from the field of machine learning 

were used to construct predictive models. Figure 1.22 shows a general diagram for 

using machine learning in predictive modelling.  

 

 

Figure 1.22 A typical workflow diagram for using machine learning in predictive 



 

116 
 

modelling. Figure from Raschka (2015).  

 

 

1-5-3. Samples 

All PD patients recruited for the studies had a clinical diagnosis of idiopathic 

Parkinson's disease according to the Parkinson's Disease UK Brain Bank criteria 

(Hughes, Daniel, Kilford & Lees, 1992). The severity of patients’ motor symptoms 

and their stage of illness were rated on the Unified Parkinson's Disease Rating Scale 

(UPDRS; Fahn & Elton, 1987) and the Hoehn & Yahr (1967) scale respectively. The 

Mini Mental State Examination (MMSE, Folstein et al, 1975) and the Beck 

Depression Inventory (BDI, Beck, Steer & Brown, 1996) and the Starkstein Apathy 

Scale (Starkstein, 2012) were respectively used to ensure that the patients are not 

suffering from dementia or depression or apathy at the time of assessment. 

Age-matched healthy controls were recruited from among the spouses and friends of 

the patients and through local advertising. All age-matched healthy controls did not 

have any neurological, psychiatric illness, history of head injury, drug or alcohol 

abuse.  

Information from previous studies was used to measure the sample sizes necessary to 

obtain a statistically significant effect. For all study, the sample sizes were based on 

previous studies that investigated similar effects of dopaminergic medication or 

effects of STN DBS on perceptual decision-making processes/probabilistic reaction 

time task in PD patients (Galea et al., 2012; Green et al., 2013; Huang et al., 2015).  
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Effect sizes were reported for all the significant results to present the magnitude of the 

significant effects in a standardized metric that allow the practical significance, which 

represents the practical consequences of the findings for daily life (Lakens, 2013). 

The following formula provides calculation for effect size of between-subject design 

(given as Cohen’s d, Cohen, 1992): 

𝑑 =  
(𝜇1 − 𝜇2)

𝜎
 

Where 𝜇1 represents the mean of group 1, 𝜇2 represents the mean of group 2. σ1 

represents the standard deviation of group 1, whereas σ2 represents the standard 

deviation of group 2, and 𝜎 represents the pooled standard deviation of the two 

groups.  

𝜎 = √[(𝜎12 + 𝜎22)/2] 

For within-subject design, the dependence among means must be corrected; therefore 

the correlation between the two means needs to be considered during calculation 

(Morris & DeShon, 2002). Due to small sample sizes (n < 20) in all studies, Cohen’s 

d may be biased in giving estimate of the population effect size, therefore the 

corrected effect size (Lakens, 2013), also known as Hedge’s g (Hedges & Olkin, 1985) 

was reported for all the significant results: 

Hedge′s 𝘨 = 𝐶𝑜ℎ𝑒𝑛′𝑠 𝑑 × (1 −
3

4(𝑛1 + 𝑛2) − 9
)  

 

1-5-4. Ethics approval  

All studies have the approval of the Joint Ethics Committee of the Institute of 

Neurology and The National Hospital for Neurology and Neurosurgery, London. The 
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ethics approval number for the project is 01/N040. All participants were provided 

with an information sheet and encouraged to ask questions about the procedures of the 

study before participation. Written informed consent was obtained from each 

participant prior to the investigation.  

 

1-5-5. Statistical Analysis: 

Programming languages R and relevant packages (R Core Team, 2013), Python and 

relevant toolboxes (Oliphant, 2007; Millman & Aivazis, 2011; Walt, Colbert & 

Varoquaux, 2011) and IBM SPSS 20 software were used to analyse the data and 

construct needed models. A mixed repeated measures design combined with a 

between groups design to compare patients with age-matched controls is used in most 

studies. For statistical analyses, reaction times (RTs) and response accuracy were 

measured for each participant. Multiple measurements per subjects were taken due to 

the repeated-measure experimental design, which violates the assumption of linear 

model that requires data to be independent from each other. The visual stimuli in all 

studies of the thesis were randomly presented to each participant and each participant 

performed the task repeatedly, the dependent variables thus have two forms of 

dependencies: for subjects and for conditions.  

 

For the error data that were non-normally distributed and unbalanced experimental 

design (i.e. PD patients tested twice for OFF/ON medication or stimulation states and 

HCs tested only once), generalized linear mixed models (GLMM) and linear mixed 

model (LMM) were used to analyse the behavioural data. In addition, the models 
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allow the consideration of random effect such as individual difference to be taken 

account for. To select the best fitted model, the Akaike information criterion (AIC) 

was used during model selection (Bozdogan, 1987).  

 

To determine whether PD patients and healthy controls are matched, independent 

t-tests were used for age, global cognition measured on MMSE, depression and 

apathy scores on the Beck Depression Inventory-II (DBS-II) and the Starkstein 

Apathy Scale (SAS). Paired t-tests were used to compare UPDRS scores OFF versus 

ON medication or with STN-DBS OFF versus ON stimulation for patients to 

determine the effect of medication or STN DBS on ameliorating motor symptoms in 

PD. Where necessary, a Bonferroni correction was used to adjust the p value for 

multiple comparisons. Due to the relatively small sample sizes in the studies, for all 

the differences (between- and within-subjects) that reach a significant level, the effect 

size was calculated to emphasise the size of the differences using Hedges’ g as 

previously introduced.  
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Chapter 2  The acute manipulation of dopaminergic medication did not 

induce impaired context monitoring on a moving dots task in Parkinson’s disease 

patients with impulse control disorders history 

2-1 Abstract 

To investigate the ‘dopamine overdose hypothesis’, which suggests that dopamine 

medication may induce side effects on executive functions (EFs) in PD patients, the 

present study tested 11 patients with Parkinson’s disease (PD) who had been clinically 

diagnosed with impulse control disorders (ICDs) ON and OFF dopaminergic 

medication, and compared their performance to 14 age-matched healthy controls 

(HCs). Two versions of a moving dots task were used, one manipulated speed and 

accuracy instructions to assess the modulation of Speed and Accuracy trade-off (SAT), 

which is associated with the ability to dynamically switch between mental sets. The 

other manipulated the level of coherence (i.e. task difficulty) of the task, which are 

considered to be associated with information accumulation and updating in the 

present study. Both versions of task require abilities of ‘context monitoring’. The 

hierarchical drift diffusion model (HDDM) was fitted to the behavioural data to 

further analyse the underlying mental processes related to the basic EFs during the 

task. The results showed that acute manipulation of dopamine medication did not 

have significant effects on the performance of PD patients. From the behavioural 

point of view, PD patients both ON and OFF dopamine medication were able to 

perform the task as well as age-matched healthy controls in terms of reaction time 

(RT) and response accuracy. Likewise, the application of HDDM to the behavioural 

data showed no differences between PD patients with ICD history and age-matched 

HCs. Taken together, the acute manipulation of dopamine medication did not induce 

negative effects in PD patients with ICD history. The results may be due to the ceiling 

effect of the task as both groups of participants showed high response accuracy and 

fast RTs. In addition, scores from the neuropsychological tests shows that reducing 

dopamine agonists in long term care for PD patients who had developed ICDs, which 

is a common clinical approach for treating ICDs, does not induce negative effects on 

cognitive function in PD patients.   
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2-2 Introduction 

Impulse control disorders (ICDs) such as pathological gambling, shopping, binge 

eating, and hypersexuality involve “behaviours that are performed repetitively, 

excessively, and compulsively to an extent that interferes with major daily functioning” 

(Grant et al., 2011). In recent years, there has been increasing evidence suggesting 

that patients with Parkinson’s disease (PD) treated with dopaminergic medication are 

at increased risk of developing one or more ICDs (Voon & Fox, 2007; Weintraub et al., 

2015). In a cross-sectional study of 3,090 patients, the use of dopamine agonists in the 

treatment of the motor symptoms of PD has been shown to be associated to with 2- to 

3.5- fold increased odds of developing an ICD (Weintraub et al., 2010). Such an 

association between dopamine agonists and the onset of ICDs is now well-established 

(Voon et al., 2006; Voon & Fox, 2007, Weintraub et al., 2015).  

 

As discussed in Chapter 1, the dopamine overdose hypothesis proposed by Cools et al 

(2001) states that, the administration of dopamine medication to PD patients may 

replete dopamine-depleted regions such as the dorsal, rostral head of the caudate 

nucleus and the putamen, but may overstimulate relatively intact regions such as the 

ventral striatum in early PD, leading to poorer performance on tasks mediated through 

these circuits such as reversal learning (Cools et al, 2001), conditional associative 

learning (Gotham et al, 1988), complex discrimination learning (Swainson et al, 

2000), and probabilistic classification learning (Jahanshahi et al 2010). In addition, 

acute manipulation of medication state in PD patients has revealed that, PD patients 

tested ON medication are impaired in learning from negative feedback, and fail to 
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make profitable decisions on certain gambling or decision-making tasks (Frank et al., 

2007; Djamshidian et al., 2010; Mimura et al., 2006; Pagonabarraga et al., 2007; 

Euteneuer et al., 2009; Huang et al., 2015), suggesting that dopaminergic medication 

may interfere with basic executive functions (EFs) such as shifting (i.e. switching 

flexibly between tasks and/or mental sets) and updating (i.e. constant monitoring and 

modifying working memory contents based on sampled information) in PD. It has 

been proposed that the deficit in learning from negative feedback other cognitive 

functions may relate to dopaminergic medication masking dips in dopamine release 

following negative feedback (Schultz, 2007; Frank, 2005), thus the development of 

ICDs in PD patients has been associated with the impaired cognitive functions 

induced by dopamine overdose. Imaging studies that investigated the mechanisms of 

ICDs in PD have revealed that compared to patients without ICDs, patients with ICDs 

such as pathological gambling show different patterns of brain activation in brain 

areas implicated in inhibition and impulse control (van Eimeren et al, 2009; 2010; Wu 

et al, 2013), particularly in response to dopaminergic medication (van Eimeren et al 

2010). Dopaminergic medication resulted in differential patterns of activation in the 

lateral orbitofrontal cortex, rostral cingulate, amygdala and external segment of the 

globus pallidus (GPe), with decreased dopamine-induced activation observed in PD 

patients with pathological gambling in contrast to increased dopamine-induced 

activation in these areas in patients without pathological gambling (van Eimeren et al, 

2010). Furthermore, chronic treatment with dopaminergic medication can interfere 

with the phasic and tonic activity of dopaminergic neurons, which could be associated 

with long-term neuro-adaptation including regulation of receptor and transporter 
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density (Voon et al., 2017). Reduced concentrations of striatal dopamine transporter 

(Smith, Xie, & Weintraub, 2016; Voon et al., 2014; Vriend et al., 2014), and altered 

striatal and cortical dopamine homeostasis (Rao et al., 2010; Ray et al., 2012) may 

potentially contribute to the development of ICDs. 

 

The ability to control behaviours in order to perform more context-appropriate actions 

is referred to as ‘context monitoring’, which requires the basic EFs such as 

information updating and the ability to adapt to the dynamically changing 

environment (i.e. shifting) (Chatham et al., 2012). While a number of studies have 

investigated the association between dopaminergic medication, inhibitory control and 

reward sensitivity as potential mechanisms of PD patients with ICDs (Rossi et al., 

2010; Bentivoglio et al., 2013; Djamshidian et al., 2010; Pineau et al., 2016; Voon et 

al., 2010, 2011; Housden et al., 2010; Leroi et al., 2013), the aim of the present study 

is to investigate the acute effect of dopaminergic medication on basic EFs associated 

with ‘context monitoring’ in PD patients with ICDs, using a moving dots task. In the 

present thesis, context monitoring was viewed as two components: (1) speed and 

accuracy (SAT) modulation that is considered to be associated with shifting between 

different mental sets (external drives to be fast or to be accurate), and (2) the rate of 

information accumulation, which is viewed as a type of updating ability. When 

making binary decisions in such tasks, an agent must gather perceptual information 

until a boundary separation (in the model this boundary separation is referred to as 

‘boundary separation’) is reached for one of the two options, then execute the action 

which is appropriate for that selected option.  



 

124 
 

 

In the present study, to determine how dopamine medication affects these two 

components in context monitoring in PD patients with ICDs, we used two versions of 

the ‘moving dots’ task and tested patients ON and OFF their medication. In one 

version, which was termed as the ‘SAT’ version, before each trial instructions would 

be presented so that the participants would be asked to either be fast or be accurate for 

the trial, the moving dots stimuli was set at a constant 50% coherence for all trials. In 

another version, we manipulated the level of coherence of the moving dots to modify 

the degree of decision conflict (i.e. task difficulty) so that the information needed to 

make responses differ between trials. A hierarchical drift diffusion model (HDDM) 

was fitted to the behavioural data (Wiecki et al., 2013), which enabled estimation of 

boundary separation, drift rate and non-decision time within a hierarchical Bayesian 

framework. The STA version of the task was used to investigate the ability to adapt to 

dynamically changing mental sets (i.e. to be fast or to be accurate), whereas the 

‘Difficulty’ version manipulated different was used to investigate the ability to sample 

and update sensory information from the stimuli presented when the level of 

coherence/task difficulty/degree of conflict was experimentally manipulated. It was 

hypothesised that PD patients with ICDs would show faster reaction times and lower 

response accuracy when tested ON medication than OFF medication due to 

‘dopamine overdose hypothesis’, and when compared to age-matched healthy 

controls (HCs). Furthermore, in a previous study we found that dopaminergic 

medication impaired evidence accumulation in PD patients without ICDs, particularly 

in the presence of decision conflict (Huang et al., 2015). On the basis of these results, 
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it was predicted that compared to the OFF medication state, being ON medication 

would influence information accumulation in high conflict (i.e. low coherence) 

conditions, such that the patients with ICDs would make more incorrect responses 

with increasing task difficulty/lower coherence versions of the task. 

 

Figure 2.1 A schematic framework on the hypothesis of the present study. For 

Parkinson’s disease (PD) patients, due to dopamine neuron degeneration, patients 

exhibited motor and non-motor symptoms. For PD patients ON medication, based on 

dopamine overdose hypothesis, patients showed impairments on basic executive 

functions (EFs) such as shifting, updating and inhibition. For PD patients with 

impulse control disorder (ICD), the development on the impulsive symptoms may be 

due to impaired EFs and/or abnormal reward sensitivity.  

 

2-3 Material and methods  

Participants 

• Dopamine neuron 
degeneration 

• Motor and Non-
motor symptoms

PD patients 

• Dopamine 
ovderdose 
hypothesis

• Impaired basic EFs 

PD patients ON 
medication • Dopamine 

ovderdose 
hypothesis

• Impaired context 
monitoring?

PD+ICD
ON medication
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Eleven patients (3 females) with Parkinson’s disease who had been clinically 

diagnosed with impulse control disorders (PD ICDs) and 14 age-matched healthy 

controls (HCs) (6 females) were recruited. PD patients had a clinical diagnosis of 

idiopathic Parkinson's disease according to the Parkinson's Disease UK Brain Bank 

criteria (Hughes et al., 1992). All patients had been additionally diagnosed as 

suffering from ICDs by a neurologist (average 6 years since last demonstrated active 

ICD symptoms).  The Questionnaire for Impulsive-Compulsive Disorders in 

Parkinson’s disease (QUIP) was used to screen for current or past impulsive 

behaviours for the ICD patients (Weintraub et al., 2009; Weintraub, et al., 2012). The 

Mini-Mental State Examination (cut-off score of 26; Folstein et al., 1975) was used to 

screen for cognitive impairment/dementia and the Beck Depression Inventory-II 

(BDI-II, Beck et al., 1996) was used to screen for depression (cut-off score of 24). 

None of the patients had cognitive impairment/dementia or clinical depression. None 

of the healthy controls had any neurological or psychiatric illness, head injury or drug 

or alcohol abuse. Patients were examined by a neurologist, both OFF and ON 

medication, and the severity of their motor symptoms and their stage of illness were 

rated on the Unified Parkinson's Disease Rating Scale (UPDRS; Fahn & Elton, 1987). 

Self-reported QUIP scores showed that among the eleven patients, ICDs consisted of 

both hypersexuality and compulsive shopping in 3, binge eating and compulsive 

shopping in 2, hypersexuality in 2, binge eating in 2 and repetitive punding 

behaviours in 2. All patients were currently on levodopa medication, with the mean 

levodopa equivalent dose presented in Table 2.1. Most patients reported to have 

previously taken the dopamine agonist Ropinirole, three were still taking the drug but 
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at a reduced dosage. All participants had normal or corrected-to-normal vision. The 

demographic and clinical details of the participants are presented in Table 2.1. 

 

Table 2.1. Demographic and clinical details of the sample. Table shows means and in 

brackets standard deviations.  

 HC PD patients with ICDs P 

Age 66.79(10.46) 59.91(7.57) p =.08 

MMSE 29.43(0.64) 29.18(1.08) p =.484 

BDI-II 6.46(5.09) 15.33(1.61) p =.001* +1 

Digit Span 17.93(3.89) 18.18(4.17) p =.877 

UPDRS-III  OFF: 28.00 (8.56) 

ON: 13.67 (7.65) 

p <.0001* +2 

Onset age   49.22(8.23)  

LEDD  950.45 (383.63)  

Disease 

Duration 

 8.78 years (5.78)  

QUIP  2.27 (2.20)  

PD=Parkinson’s disease; ICDs=impulse control disorders; MMSE=Mini Mental State Examination; BDI=Beck 

Depression Inventory; UPDRS=Unified Parkinson's Disease Rating Scale; LEDD=L-Dopa Equivalent Daily Dose; 

N/A=Not Applicable; NS=not significant; “*” = significant difference between groups (BDI) or ON vs. OFF 

medication for patients (UPDRS); +1= Effect size of BDI-II: Hedge’s g= 2.561; +2 = Effect size of UPDRS score 

III: paired sample Hedge’s g= 3.824 
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Design & Procedure 

A repeated measures design was used. All participants (patients and healthy controls) 

performed two versions of the moving dots task, which manipulated either speed 

versus accuracy instructions or level of coherence. Both tasks were performed by all 

participants in two testing sessions on the same day. For practical reasons, patients 

were first tested in the “OFF” state, after overnight withdrawal of dopaminergic 

medication for approximately 12–16 h. After finishing the session off medication they 

took their dopaminergic medication and were tested in the “ON” medication state at 

least one hour later. The ON an OFF medication states were confirmed by the UPDRS 

III ratings by a neurologist, which indicated that the motor symptoms of PD patients 

were significantly improved when they took their dopaminergic medication compared 

to the OFF state (t(10)=8.39, p<.001). The study was approved by the joint ethics 

committee of the UCL Institute of Neurology and the National Hospital for Neurology 

& Neurosurgery. Informed consent was obtained from all participants.  

 

The moving dots task 

In each session participants performed two versions of the moving dots task.  

The “speed–accuracy” version of the moving-dots task (Britten et al., 1992) required 

participants to decide whether a cloud of dots moved to the left or the right of the 

screen. The participants were given one of two different instructions before every trial: 

FAST (for speed) and ACCURATE (for accuracy), while the level of coherence was 

kept constant at 50%, that is half of the 120 dots moved coherently in the same 

direction, while the remainder moved randomly.  The participants then decided on 
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the direction of the moving dots by pressing one of two buttons with either their left 

(for dots moving left) or right (for dots moving right) index finger according to the 

instruction. The cues were pseudo-randomly intermixed and there were equal 

numbers of FAST and ACCURATE cues in a block of 100 trials. At the end of each 

trial, participants received feedback, which depended on the previously presented cue. 

When Speed was emphasized, whenever the participants made a response within 500 

ms, the feedback ‘in time’ was presented, otherwise a ‘too slow’ feedback. When 

Accuracy was emphasized, participants received the feedback ‘correct’ or ‘incorrect’ 

depending on their responses. ‘No response’ was presented on the screen if the 

participants failed to make any response on the trial within a time-frame of 1500ms.  

 

In the “task difficulty” version of the moving-dots, the participants were also required 

to decide the direction in which a cloud of dots moved. They were instructed to do the 

task as fast and as accurately as possible. No cues for speed or accuracy were used in 

this task. The coherence (“difficulty”) level of the moving dots were set at 5%, 10%, 

15%, 25%, 35% and 50%, making it harder (5%) or easier (50%) to decide the 

direction of the moving dots, since the higher the level of coherence was, the easier it 

was to judge the direction of the moving cloud of dots, thus leading to faster 

responses. At the end of each trial, participants received the feedback “incorrect”, 

“correct” or “no response” depending on their responses.  

 

The speed and accuracy version of the task contained two blocks with 100 trials each, 

whereas the difficulty version of the task contained one block with 120 trials. For 
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each of the two tasks, the numbers of trials were selected to obtain reliable measures 

of perceptual decision-making while at the same time avoiding causing fatigue for the 

patients. Figure 2.2 illustrates the speed and accuracy version of the task.  

 

 

Figure 2.2 The speed–accuracy version of the moving dots task. The task 

difficulty version of the task was similar but without the speed/accuracy instructions 

and the coherence of the dots varied from 5%, 10%, 15%, 25%, 35% to 50%. 

 

Data Analysis 

R (R Core Team, 2013) and IBM SPSS software were used to analyze the data. 

Reaction times (RTs) to the nearest s and response accuracy were measured as 

dependent variables. A linear mixed model (LMM) was used to fit reaction time with 

group (HC versus PD ICD), time (T1/OFF versus T2/ON), Type (i.e. different 

instructions, for Speed version of the task) or coherence (for Difficulty version of the 



 

131 
 

task) as fixed effects. Subject was assigned as a random effect to account for 

subject-by-subject variation in overall RTs. In addition to a random intercept, a 

random slope in Type (for Speed version of the task) or Coherence (for Difficulty 

version of the task) has also been added into the model, which means that the rate at 

which individuals made decisions based on the Speed/Accuracy instructions or the 

coherence of moving dots is different from person to person. Assuming the fixed 

effect of Coherence being positive, if an individual has a positive random effect, it 

suggests that the individual made responses more quickly with higher coherence level, 

while a negative random effect means that an individual would make slower 

responses with higher coherence level. Log base 10 transformation was performed to 

reduce the skewness of the data. To construct the mixed model, R package lme4 

(Bates, Maechler & Bolker, 2012) was used. The Maximum Llikelihood (ML) 

approach was used for parameter estimation. The Likelihood Ratio Test was used as a 

mean to attain p-values of the fixed effects, which compared models with full factors 

and reduced factors to determine the significance of a fixed effect.  

 

A generalized linear mixed model was used to fit the response accuracy data due to 

the data being non-normal. For the present data a binomial distribution with a logistic 

link was selected to construct the model, at the same time it was specified that the 

response accuracy could vary randomly across subjects. ML approach with Laplace 

approximation was used for parameter estimation. Group (HC versus PD ICD), time 

(T1/OFF versus T2/ON), instruction for Speed version of the task and coherence for 

Difficulty version of the task were assigned as fixed effects. Subject was assigned as a 
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random effect to account for by-subject variation in overall response accuracy. p<.05 

was used as a criterion for statistical significance. The Akaike information criterion 

(AIC), which estimates the relative quality of a statistical model given a specified data 

set, was used for model selection (Bozdogan, 1987). The relative quality of the model 

is indicated by the calculated information loss, therefore the model that has the 

minimised AIC would be chosen as the most fitted model given the specified dataset.  

 

 

Hierarchical Drift Diffusion Model 

The diffusion model has been widely used in investigating perceptual 

decision-making processes especially two-forced-choice tasks (Voss & Voss, 2007; 

Voss, Voss, & Lerche, 2015; Ratcliff, 1978; Ratcliff & McKoon, 2008). In the 

diffusion model, three variables were calculated and discussed: the boundary 

separation, the non-decision time and the drift rate. The boundary separation (a) 

represents the response threshold to reach a decision. Figure 2.3 illustrates the change 

of boundary separation in SAT. The longer the distance between the starting point and 

boundary separation, the longer the response time is and the longer it takes to make a 

decision, and fewer errors are likely to occur. Conversely, the shorter the distance 

between the starting point and the boundary separation, the faster a decision would be 

made, but the person is more likely to make errors. The decision-making process is 

defined as having three phases: perceptual processing (processing the stimulus) with a 

certain duration, decision phase with a certain duration and response phase with a 

certain duration. The non-decision time (t0) is defined as the sum of the perceptual 
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processing time plus the response time. Drift rate (v) represents the speed of the 

information accumulation process which begins from the starting point till one of the 

two decision boundaries is met. For the current experiment it represents the 

certainty/confidence to distinguish between noise and signal. A higher drift rate 

suggests a higher certainty/confidence to distinguish noise and signal and faster rate 

of information accumulation, which should be the case on easier higher coherence 

trials; whereas a lower drift rate at lower levels of coherence reflects a lower 

certainty/confidence to distinguish between noise and signal and to choose the 

direction of the moving dots on the harder trials and hence a slower rate of 

information accumulation.  

 

 

Figure 2.3 Simulated diffusion processes. The Left Panel: boundary separation 

changes with speed versus accuracy instructions. The Right Panel: drift rate varies 

with difficulty in stimulus discrimination and level of coherence. Figure from Ratcliff, 

R. and McKoon, G. (2008). 

 

 

To quantitatively fit the diffusion model to the behavioural data, a Python-based 
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hierarchical drift diffusion model (HDDM) toolbox (Wiecki et al., 2013) was used. 

HDDM uses hierarchical Bayesian parameter estimation methods for simultaneous 

estimation of subject parameters and the group distribution from which they are 

drawn, at the same time providing measures of uncertainty in the posterior 

distribution (Figure 2.4). In addition, HDDM requires less data per subject/condition 

than the non-hierarchical method, is able to deal with outliers and it allows for 

Bayesian data analysis. HDDM includes a regression model that allows estimation of 

trial-by-trial influences of a covariate onto model parameters. In the present study, 

HDDM was fitted to the behavioural data using the ‘HDDMRegressor’ function, 

which allows individual parameters to be described by a linear model specification. 

One of the benefits of estimating a model in a Bayesian framework is that significant 

testing can be directly performed on the posterior rather than relying on frequentist 

statistics. The Bayesian approach uses probability to quantify uncertainty and makes 

more precise probability statements about the state of the system by calculating the 

probability of a model given collected data (i.e. P(model | data)) (Puga, Krzywinski & 

Altman, 2015).  

 



 

135 
 

 

Figure 2.4 Basic graphical hierarchical model implemented by HDDM for 

estimation of the drift-diffusion model. Round nodes represent random variables. 

Shaded nodes represent observed data. Directed arrows from parents to children 

visualize that parameters of the child random variable are distributed according to its 

parents. Plates denote that multiple random variables with the same parents and 

children exist. The outer plate is over subjects while the inner plate is over trials. 

Figure from Wiecki, T., Sofer, I., and Frank, M. (2008). 

 

In addition, the HDDM uses Markov-Chain Monte Carlo (MCMC) to estimate the 

joint posterior distribution of all model parameters, which requires the chains of the 

model to have properly converged. When using the MCMC sampling, it is critical to 

examine the convergence of the model to make sure that the modelling is sampling 

from the actual posterior distribution. While there is no 100% fool-proof method to 

assess whether the chains are converged, one of the methods is to look at the traces of 

the posteriors. To visually examine the convergence of the model constructed for the 

study, the trace, the autocorrelation and the marginal posteriors were plotted. A 
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converged chain would have a stationary trace, low auto-correlation and normally 

distributed subject and group mean posteriors, while group variability posteriors are 

Gamma distributed. For brevity the figures examining the convergence of the created 

model were not shown here-please see Appendix A for the figures and the codes for 

creating the HDDMs. The models created in the present study seemed to be 

well-converged.  

 

2-4 Results 

Dopaminergic medication produced a significant improvement of the motor 

symptoms of PD, as reflected by a reduction of the UPDRS-III ratings (t(10)=8.39, 

p<.0001, paired sample Hedge’s g= 3.824; see Table 2.2).   

 

2-4.1 The analysis of data from the Speed/Accuracy version of the task 

Analysis of the Behavioural data for the Speed/Accuracy version of the task 

A LMM was used to analyse RTs of correct trials, which specified Group (HC/ PD 

ICD), Time (T1/OFF medication, T2/ON medication) and Type of instruction (Speed/ 

Accuracy) specified as the fixed effects and the subject specified as a random effect 

with Type as a random slope. In the LMM model contrast, all levels of the categorical 

variables are compared to the base level (reference category). Here the base levels are: 

HC (for Group), T1/OFF medication (for Time) and Accuracy (for Type). All effects 

are estimated with respect to the base levels.  

 

The model showed that all participants had faster RTs when Speed was emphasised 
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than when Accuracy was emphasised (t(9957)=-15.09, p<.0001, Hedge’s g=1.08). 

There was no difference on RTs for PD patients with ICD history ON versus OFF 

medication (t(9957)=-1.32, p=0.187) or for PD patients versus age-matched HCs 

(t(26)=0.15, p=0.881). RTs did not differ for age-matched HCs for the Time 1 versus 

Time 2 assessments (t(9957)=-0.66, p=0.527). No significant interactions were found. 

Figure 2.4 illustrates the results. Together the results suggest that (1) all participants 

adjusted responses with SAT, reflected as faster RTs when Speed was emphasized, (2) 

there was no effect of acute manipulation of dopaminergic medication on RTs for PD 

patients with ICD history and (3) PD patients with ICD history were able to perform 

the task as fast as age-matched HCs. 

 

 

Figure 2.5 Reaction time (s) for PD patients with ICD history tested ON versus 
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OFF medication and age-matched healthy controls (HCs) assessed twice (T1 versus 

T2) under Speed and Accuracy instructions. Error bars are the standard error of the 

means. The asterisk symbols denote statistically significant differences. T1=Time 1, 

T2= Time 2.  

 

 

A GLMM was used to analyse response accuracy, which specified Group (HC/ PD 

ICD), Time (T1/OFF medication, T2/ON medication) and Type of instruction (Speed/ 

Accuracy) specified as the fixed effects and the subject was specified as a random 

effect using binomial distribution. The model showed that all participants had higher 

response accuracy when Accuracy was emphasised than when Speed was emphasised 

(Z=-3.09, p=0.002, Hedge’s g= 0.72). There was no difference in response accuracy 

between PD patients with ICD history and age-matched HCs (Z=0.04, p=0.968). No 

difference was found in response accuracy between PD patients with ICD history ON 

versus OFF medication (Z=-0.01, p=0.990). Age-matched HCs performed equally 

accurately at Time 1 versus Time 2 (Z=-0.25, p=0.801). No interactions were found. 

Figure 2.5 illustrates the results. Taken together, the results suggest that (1) all 

participants modulated response accuracy according to SAT, reflecting a lower 

accuracy when Speed was emphasized, (2) there was no effect of acute manipulation 

of dopaminergic medication on response accuracy for PD patients with ICD history or 

repeated assessment for HCs and (3) PD patients with ICD history performed the task 

as accurately as age-matched HCs.  
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Figure 2.6 Response accuracy between PD patients with ICD history (ON versus 

OFF medication) and age-matched healthy controls (HCs) (T1 versus T2) under 

Speed and Accuracy instructions. Standard error means are presented as the error bars. 

The asterisk symbols denote statistically significant difference. T1=Time 1, T2= Time 

2. 
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Hierarchical drift diffusion model (HDDM) fitted to the behavioural data of the 

Speed-Accuracy trade-off (SAT) version of the task 

The above results show that Speed and Accuracy instructions had a strong impact on 

RTs and response accuracy for both PD patients with ICD history and age-matched 

HCs. However, no acute effect of dopaminergic medication was found on the 

behavioural data and no difference was found between PD patients and HCs.  

 

To investigate how experimental manipulations affect the underlying mental 

processes of moving dots tasks, the HDDM was used to fit the behavioural data. In 

the HDDM, the posterior distributions of three model parameters (i.e. the boundary 

separation, the non-decision time and the drift rate) were estimated as a function of 

task manipulations and their interactions. In the SAT version of the task, drift rate was 

considered to be unaffected by the Speed/Accuracy instructions because it was 

hypothesised that the drift rate was mainly associated with the quality of sensory 

evidence provided (e.g. coherence level, as manipulated in the Difficulty version of 

the task discussed in later sections). Three main factors were considered for 

behavioural switching in the model: Type of Instruction (Speed/ Accuracy), Time (T1 

(OFF medication)/ T2(ON medication)), and Group (HC/ PD ICD). Here an HDDM 

was constructed assuming that the boundary separation (a) and non-decision time (t), 

would be affected by all three factors, whereas drift rate (v) would be affected by 

factors Time and Group. As noted above, the boundary separation determines when to 

make responses, whereas non-decision time represents the time for non-decision 

processes such as stimulus encoding and response execution, and drift rate indicates 
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the rate of information accumulation among participants. The effects of factors are 

expressed relative to the intercept conditions. The base levels for the categorical 

variables are HCs (for Group), T1/OFF medication (for Time) and Accuracy (for 

Type).  

 

The main three goals of the SAT version of the task were to determine (1) whether the 

boundary separation for Speed instruction is lower than for Accuracy instruction that 

leads to faster but error-prone decisions, (2) whether the acute manipulation of 

dopaminergic medication would decrease the boundary separation for PD patients 

with ICD history (particularly when Speed was emphasized) and (3) whether the 

boundary separation for PD patients with ICD history is lower than for HCs. The 

HDDM showed that all participants had lower boundary separation when Speed was 

emphasised than when Accuracy was emphasised as most of the regression 

coefficients were smaller than zero. No difference on boundary separation was found 

between T1/OFF medication and T2/ON medication as the regression coefficient 

overlaps with zero. In addition, for all participants the effect of Speed instruction on 

decreasing boundary separation was enhanced during Time 2 as most of the 

regression coefficients were smaller than zero. There was no difference in boundary 

separation between PD patients with ICD history and age-matched HCs, as the 

regression coefficient overlaps with zero. Moreover, the HDDM showed a trend that 

PD patients with ICD history had lower drift rate than age-matched HCs as the 

regression coefficient is mostly smaller than zero, which suggests that PD patients 

with ICD history had a tendency to have lower drift rate when during information 
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accumulation. No significant interactions were found. The details of the created 

HDDM were presented in Appendix A.  

 

Taken together, the results showed that (1) all participants had lower boundary 

separations when Speed was emphasised than when Accuracy was emphasised, (2) 

the acute manipulation of dopaminergic medication did not produce negative effect on 

boundary separation modulation for PD patients with ICD history, (3) PD patients and 

age-matched HCs did not differ in boundary separation modulation during 

Speed/Accuracy trade-off.  

 

2-4.2 The analysis of data from the Difficulty version of the task 

Analysis of the Behavioural data from the Difficulty version of the task 

In the present section data from the Difficulty version of the task were analysed and 

presented. A LMM was used for analysing the RTs, with Group (HC/ PD ICD), Time 

(T1/OFF, T2/ON) and coherence Level (5%, 10%, 15%, 25%, 35% and 50%) 

specified as the fixed effect and the subject was specified as a random effect with 

Coherence as a random slope (Figure 2.11). The base levels of the categorical 

variables are HC (for Group), 5% (for Level) and T1/OFF medication (for Time). All 

levels of a factor are compared to the base level. All effects are estimated with respect 

to the base levels.  

 

The model showed that RTs were significantly decreased as coherence level increased 

(10%: t(5373)=-3.67, p<.0001, Hedge’s g=; 15%: t(5373)=-5.53, p<.0001, Hedge’s 
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g=; 25%: t(5373)=-12.33, p<.0001; Hedge’s g=, 35%: t(5373)=-14.22, p<.0001, 

Hedge’s g=; 50%: t(5373)=-15.70, p<.0001, Hedge’s g=). There was no difference in 

RTs for PD patients with ICD history ON versus OFF medication (t(5373)=-0.82, 

p=0.413). In addition, there was no difference in RTs between PD patients with ICD 

history and age-matched HCs (t(34)=0.01, p=0.990). No significant interaction was 

found. Figure 2.7 illustrates the results. Together the results suggest that (1) all 

participants responded equally well to different coherence levels, reflected as faster 

RTs during high coherence trials, (2) the acute manipulation of dopaminergic 

medication did not have any effect on RTs for PD patients with ICD history, and (3) 

PD patients were able to perform the task as fast as age-matched HCs. 

 

 

Figure 2.7 Reaction times in seconds (s) for PD patients with ICD history (ON 

versus OFF medication) and age-matched healthy controls (HCs) (T1 versus T2) 
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under different coherence levels of the moving dots. The error bars are standard error 

of the mean. The asterisk symbols denote significant differences as a function of level 

of coherence. T1=Time 1, T2= Time 2. 

 

A GLMM was used for analysing response accuracy, with Group (HC/ PD ICD), 

Time (T1/OFF, T2/ON) and Level (5%/ 10%/ 15%/ 25%/ 35%/ 50%) specified as the 

fixed effect and the subject was specified as a random effect with Coherence as a 

random slope. The base levels of the categorical variables are HC (for Group), 5% 

(for Level) and T1/OFF medication (for Time). All levels of a factor are compared to 

the base level. All effects are estimated with respect to the base levels. The model 

showed that response accuracy was significantly increased as coherence level 

increased (10%: Z=3.80, p<.0001, Hedge’s g=0.41; 15%: Z=6.48, p<.0001, Hedge’s 

g=0.56; 25%: Z=6.16, p<.0001; Hedge’s g=0.64, 35%: Z=-5.88, p<.0001, Hedge’s 

g=0.89; 50%: Z=5.89, p<.0001, Hedge’s g=1.04). There was no difference in 

response accuracy for PD patients with ICD history ON versus OFF medication 

(Z=-1.49, p=0.136). In addition, there was no difference in response accuracy 

between PD patients with ICD history and age-matched HCs (Z=-0.23, p=0.819). No 

significant interactions were found. Figure 2.8 illustrates the results of the model. 

Together the results suggest that (1) all participants responded equally well to the 

coherence levels, reflected as higher response accuracy during high coherence level 

trials, (2) the acute manipulation of dopaminergic medication did not have any effect 

on response accuracy for PD patients with ICD history, and (3) PD patients were able 

to perform the task as well as age-matched HCs. 
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Figure 2.8 Response accuracy for PD patients with ICD history (ON versus OFF 

medication) and age-matched healthy controls (HCs) (T1 versus T2) under different 

coherence levels of the moving dots. The error bars are standard error of the mean. 

The asterisk symbols denote significant differences. T1=Time 1, T2= Time 2. 
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Hierarchical drift diffusion model fitted to the behavioural data of the Difficulty 

version of the task 

As previously introduced, in the HDDM, three model parameters: the boundary 

separation (a), the non-decision time (t) and the drift rate (v) were estimated under the 

effects and the interactions of experimental manipulations. In the Difficulty version of 

the task, drift rate was considered to be associated with the ability of extracting 

sensory information in guiding perceptual decision-making. Such an ability is 

hypothesised to be associated with the quality of sensory information (i.e. Coherence 

levels). In addition, boundary separation and non-decision time were considered 

unaffected by the Coherence level because it was hypothesised that both factors are 

mainly associated with the Speed/Accuracy trade-offs (as manipulated in the SAT 

version of the task discussed in the previous section).  

 

Here the main three goals of the Difficulty version of the task were to assess (1) how 

decisions conflict/level of task difficult/coherence affects sensory evidence 

accumulation - i.e. if drift rate would be higher when the coherence levels were higher, 

leading to more accurate and faster RTs, (2) how drift rate differs between PD patients 

with ICD history when ON versus OFF medication, and (3) how drift rate differs 

between PD patients with ICD history and age-matched HCs. Three main factors were 

considered in the model: Level (as in coherence levels) (10%/ 15%/ 25%/ 35%/ 50%), 

Time (T1/ T2), and Group (PD ICD/ HC). Here an HDDM was constructed assuming 

that the boundary separation (a) and non-decision time (t), of which the former 

determines when to make responses whereas the later represents time for non-decision 
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processes such as stimulus encoding and response execution, would be affected by 

factors Time and Group, whereas drift rate (v) was considered to be affected by all 

factors.  

 

The model shows that all participants had higher drift rate when coherence level was 

high as the regression coefficient was larger than zero. There was no difference in 

drift rate between PD patients with ICD history and HCs as the regression coefficient 

overlaps with zero. For all participants, boundary separation was lower during Time 2 

than Time 1 as most of the regression coefficients were smaller than zero. There was 

no difference in boundary separation between PD patients with ICD history and 

age-matched HCs as the regression coefficient overlaps with zero. In addition, for all 

participants non-decision time was higher during Time 2 than Time 1 as most of the 

regression coefficient were larger than zero. There was no difference in non-decision 

time between PD patients with ICD history and age-matched HCs as the regression 

coefficient overlaps with zero. The details of the created HDDM were presented in 

Appendix A. Table 2.2 summarises the findings of the study. 
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Table 2.2 The main findings of the effect of speed-accuracy instructions and task 

difficulty on the different variables of the moving dots task  

 Speed/Accuracy version of 

the task 
Difficulty version of the task 

Behavioural 

data (RTs, 

Response 

Accuracy) 

¾ All participants had faster 

RTs and lower response 

accuracy when Speed was 

emphasized. 

¾ The acute manipulation of 

dopaminergic medication 

had no effects on the 

behavioural data. 

¾ There was no difference 

between PD patients with 

ICD history and 

age-matched HCs.  

¾  All participants had faster RTs 

and higher response accuracy 

when coherence level was high.  

¾ The acute manipulation of 

dopaminergic medication had no 

effects on the behavioural data. 

¾ There was no difference between 

PD patients with ICD history 

and age-matched HCs. 

Parameters 

derived 

from the 

HDDMs 

(boundary 

separation, 

drift rate 

and 

non-decision 

time) 

¾ For all participants, 

boundary separation was 

lower when Speed was 

emphasized than when 

Accuracy was 

emphasized. 

¾ For all participants, 

non-decision time was 

lower when Speed was 

emphasized than when 

Accuracy was 

emphasized.  

¾ PD patients with ICD 

history had a tendency to 

have lower drift rate than 

age-matched HCs. 

¾ For all participants, boundary 

separation was lower during 

T2/ON medication than T1/OFF 

medication. 

¾ For all participants, non-decision 

time was higher during T2/ON 

medication than T1/OFF 

medication. 

¾ For all participants, drift rate 

was higher during T2/ON 

medication and when coherence 

levels were high.  

RTs= reaction times, HDDM= hierarchical drift diffusion model, T2= Time 2, HCs= healthy controls 
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Correlational analysis with levodopa-equivalent dose and Power analysis 

Because of the relatively small number of participants (n=11 for PD ICDs; n=14 for 

HCs), a power analysis was performed on the findings between PD patients ON 

versus OFF medication, and between PD patients and age-matched HCs. For 

behavioural comparison between PD patients ON versus OFF medication, the effect 

sizes were all below 0.05 (Hedge’s g <0.05), and the statistical power equates to 0.05. 

To increase the power up to 0.95, more than 10000 participants would be needed for 

each group, which suggests that the non-significant results between PD patients with 

ICD history ON versus OFF medication are reliable. Moreover, for behavioural data 

compared between PD patients with ICD history and HCs, the effect sizes were all 

below 0.05 (Hedge’s g <0.05), and the statistical power equates to 0.05. To increase 

the power up to 0.95, at least 10375 participants would be needed for each group, the 

analysis thus suggests that the non-significant results between PD patients with ICD 

history and age-matched HCs are reliable. In addition, seven of the PD ICD patients 

were on dopamine agonists in addition to levodopa. As expected, the levodopa 

equivalent daily dose was significantly higher in those who took both dopamine 

agonists and levodopa compared to those who took levodopa only (t(9)=-3.97, 

p=.003). However, when the results of the patients with or without additional 

dopamine agonist medication were analyzed, there were no differences on any of the 

behavioural measures.  The correlation of the levodopa equivalent daily dose was 

examined for each patient with the RT measures.  None of these correlations were of 

notable magnitude or significant.  
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2-5 Discussion  

Behaviourally, the results showed that when under Speed instruction, all participants 

had lower response accuracy and faster RTs, which suggest that all participants 

demonstrated SAT when making perceptual decisions. On the other hand, when 

coherence level was high, participants had faster RTs and better response accuracy, 

indicating that extent of task difficulty/decision conflict (i.e. the quality of the sensory 

information) plays an important role in guiding behaviours. These significant effects 

of task manipulation indicated that the two versions of the task were reliable in 

assessing the mental processes of SAT modulation and information accumulation 

across the two groups, and that all participants had been able to follow the instructions. 

Moreover, for the SAT version of the task all participants had faster RTs (< 500 ms), 

whereas for the Difficulty version of the task even for the same dots coherence (50%), 

RTs were slower (> 500 ms). This could reflect as the task-induced context for 

performing the two tasks: as the SAT version of the task introduced the speed pressure 

when making responses, participants would hold the information in mind therefore 

overall the RTs were faster in the STA version task than the Difficulty version of the 

task (without the demand to make faster responses). Contrary to predictions, no acute 

effect of medication was found on task performance for PD patients with ICD history. 

Surprisingly, no difference was found between PD patients with ICD history and 

age-matched HCs.  

 

Potential reasons for the contrary-to-prediction results 

Despite the fact that sample size was relatively small in the present study, power 
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analysis has shown that the non-significant behavioural results were reliable. A few 

reasons may contribute to the non-significant results of the present study: firstly, 

despite the significant effects of task manipulations such as coherence and SAT 

instructions, the tasks selected may have a ceiling effect. As the behavioural data 

shown, the response accuracy for all participants were more than 50% even for the 

difficult trails, and for the SAT version of the task both groups had a response 

accuracy as high as more than 95%, suggesting that the task may not be challenging 

enough to reflect the effects of medication, as well as the difference between patient 

group and age-matched healthy control group. Secondly, in the current study the 

recruited PD ICD patients did not have active ICD symptoms. Due to difficulties in 

recruiting for PD patients with active ICD symptoms, we recruited PD patients with 

ICD history instead. Reducing or withdrawing dopamine agonist intake, which is a 

common clinical treatment for PD ICD, may have contributed to the non-significant 

effect of the medication in the present study. PD patients recruited for the study had 

received adjustment on their medication to treat ICDs, therefore their current 

medication treatments may be unlikely to induce side effects on EFs. Although a 

study has demonstrated that treated PD patients without clinically apparent ICDs still 

exhibited impairments in subjectively accumulating sufficient information when 

making decisions in a beads task (Djamshidian et al., 2012), in the present study we 

did not find difference on task performance between the two groups. Thirdly, due to 

practical reasons, PD ICD patients were assessed first then ON medication. Such an 

experimental design prevented the separation between medication effects and practice 

effects. Results from the HDDMs revealed some effects of Time (practice) on 
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boundary separation, drift rate and non-decision time even though there was no 

difference between T1/OFF medication and T2/ON medication on the behavioural 

data (RTs and response accuracy). The results thus indicate that practice effects 

influence the underlying mental processes when making performing the moving dots 

tasks. Future studies attempt to examine the medication effects should introduce a 

counter-balanced task design. Fourthly, the present study is consistent with previous 

studies showing that PD patients with active ICDs did not show deficits in tasks that 

manipulate decision conflict such as the Simon task (Wylie et al., 2012) and the 

Stroop interference task (Djamshidian et al., 2011). Fifthly, the moving dots paradigm 

has been proposed to be related to motor inhibition (Eagle, Bari, & Robbins, 2008; 

Djamshidian et al., 2014; Sharma, Markon, & Clark, 2014), the present results are 

consistent with previous studies in showing that PD patients with active ICD 

symptoms/ICD history have no deficits on motor inhibition (Claassen et al., 2015; 

Leroi et al., 2013). In spite of the negative results, the present study could be further 

discussed in two ways: (1) from the dopamine medication point of view and (2) from 

PD patients who developed ICDs point of view.  

 

Dopamine overdose hypothesis 

In the present study, the acute manipulation of dopamine medication did not produce 

any effects (neither negative nor positive effects) on task performance, which may 

result from the ceiling effect of the tasks being not challenging enough to reflect any 

difference (i.e. response accuracy higher than 95% for both groups). However, a 

pervious study using the exact same task procedure has found a significant negative 
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effect of medication on overall response accuracy in PD patients without ICD history 

compared to age-matched HCs (Huang et al., 2015). Such an inconsistent result may 

be due to (1) individual variance on task performance, (2) different statistical analysis 

methods, and (3) PD patients with ICD history (average age: 59.91) were younger 

compared to those who did not have ICD history recruited in previous study (average 

age: 61.62; Huang et al., 2015). In addition to the ceiling effect, the results may 

suggest that the moving dots tasks are suboptimal in examining dopamine overdose 

hypothesis. As discussed previously, PD patients treated with dopamine medication 

may show deficits on reversal learning (Cools et al, 2001), conditional associative 

learning (Gotham et al, 1988), complex discrimination learning (Swainson et al, 

2000), probabilistic classification learning (Jahanshahi et al 2010), learning from 

negative feedback, and fail to make profitable decisions on certain gambling or 

decision-making tasks (Frank et al., 2007; Djamshidian et al., 2010; Mimura et al., 

2006; Pagonabarraga et al., 2007; Euteneuer et al., 2009). All of the above tasks 

consist of the element of learning, which involves more complex processes than the 

basic EFs. The role of dopamine and reinforcement learning have been 

well-established (Hollerman & Schultz, 1998; Holroyd & Coles, 2002; Montague, 

Dayan, & Sejnowski, 1996). As discussed in Chapter 1, the neural mechanisms of 

dopamine release can be viewed as the expression of two dopamine subgroups of 

receptors: D1 and D2. The D1 receptor is predominately expressed in the direct ‘Go’ 

pathway that promotes the repeat of an action and favoured outcomes, whereas the D2 

group is mainly expressed in the indirect ‘No Go’ pathway, which supresses an action 

to avoid negative outcomes (Keefe & Gerfen, 1995; Gerfen, 2000; Frank, 2005). The 
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dopamine over dose hypothesis is also supported by computational models (Frank, 

2005) and dopamine synthesis studies using animal models (Sawaguchi, Matsumura, 

& Kutoba, 1990; Wang & Goldman-Rakic, 2004; Williams & Goldman-Rakic, 1995; 

Seamans, Durstewitz, Christie, Stevens, & Sejnowski, 2001). In addition, a 

pharmacological study in healthy human subjects has shown that participants with 

high baseline striatal dopamine synthesis would be overstimulated by D2 receptor 

agonist, leading to impaired reversal leaning performance when being on drug (Cools 

et al., 2009). Moreover, D2 receptors have been suggested to be more abundant in the 

basal ganglia, which supports the hypothesis that the basal ganglia may serve as a 

dynamic gating mechanism for updating working memory in the frontal cortex (Frank, 

Loughry, & O’Reilly, 2001).  

 

Furthermore, impulsivity and impaired reward processing have also been associated 

with dopamine overdose hypothesis (Robert et al., 2009; Wiecki & Frank, 2010), of 

which the present study did not investigate. The development of ICD in PD patients 

has been suggested to be closely associated with pharmacological treatment (Molina 

et al., 2010; Dodd et al., 2005). In addition, studies have shown that PD patients ON 

medication showed deficits when performing gambling tasks (Shohamy et al., 2006; 

Perretta, Pari, & Beninger, 2005; Pagonabarraga et al., 2007; Kobayakawa, Koyama, 

Mimura, & Kawamura, 2008; Sáez-Francàs et al., 2014, 2016; Mapelli, Rosa, 

Cavalletti, Schiff, & Tamburin, 2014; Xi et al., 2015; Kobayakawa, Tsuruya, & 

Kawamura, 2010; Evens, Hoefler, Biber, & Lueken, 2016). The impairment of PD on 

the performance of gambling tasks is often reflected as impulsive choices that lead to 
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large losses. Furthermore, it has been shown that PD patients treated with 

dopaminergic medication, especially dopaminergic agonists, increases risk of 

developing ICDs (Voon & Fox, 2007; Wu, Politis & Piccini, 2009; Weintraub et al., 

2015). Dopamine-receptor binding profiles may provide a neurobiological 

explanation for the association between dopamine agonist treatment and ICDs. It has 

been shown that 93 % of the prescribed dopamine agonists that were associated with 

ICDs were relatively selective for the dopamine D3 receptors (Dodd et al., 2005). D3 

receptors are proposed to be abundant in the ventral striatum (Gurevich & Joyce, 

1999), which is also a brain region that is associated with the hedonic response to 

amphetamine, addictions and impulsivity (Drevets et al., 2001; Lee et al., 2009). 

Taken from the above studies, future studies investigating the effect of dopaminergic 

medication in PD patients with ICDs should focus on the relationships between 

dopamine, learning and impulsivity, which involve prospect of reward sensitivity, and 

the related neural mechanisms. 

 

PD patients with ICD 

In addition to behavioural results, psychological measures such as the random number 

task and MMSE have revealed no difference between PD patient group and 

age-matched HC group. Moreover, scores from the UPDRS-III tested ON versus OFF 

medication showed that dopamine medication significantly improves motor 

symptoms in PD patients. Together these results may suggest that (1) long term 

reducing/withdrawing from dopamine agonists does not induce negative effects on 

cognitive function in PD patients with ICDs, and (2) motor improvement induced by 
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medication did not sacrifice after medication adjustment. Although PD patients 

showed significantly higher scores in BDI-II, suggesting that patients had mild 

depression compared to age-matched HCs, such an observation may be related to the 

disease itself instead of the pure effects of dopamine medication. The relationships 

between depression and PD have been extensively discussed in other studies 

(Cummings, 1992; Reijnders, Ehrt, Weber, Aarsland, & Leentjens, 2008; Aarsland, 

Pahlhagen, Ballard, Ehrt, & Svenningsson, 2012).  

 

In recent years, more awareness has been made on the risk of PD patients developing 

ICDs that may lead to devastating consequences such as financial loss, divorce, career 

crisis, and increased health risk (Weintraub et al., 2015). Moreover, ICDs are 

associated with low quality of life (Phu et al., 2014), increased caregiver burden 

(Leroi, McDonald, Pantula, & Harbishettar, 2012) and greater functional impairment 

(Voon et al., 2011). It has been suggested that up to 25% of PD patients treated with 

minimally therapeutic dosage of dopamine agonist may experience an ICD (Hassan et 

al., 2011; Weintraub et al., 2015). The DOMINION study reported a prevalence of 

17.1% in treated PD patients that received dopamine agonist treatment, whereas a 

prevalence of 6.9% was found in PD patients who did not receive dopamine agonist 

treatment (Weintraub et al., 2010). In the review that discussed chronic dopaminergic 

stimulation in PD patients on inducing motor and behavioural side-effects, Voon et al 

(2009) suggested that chronic dopaminergic medication (both levodopa and 

dopaminergic agonists) seems to alter presynaptic dopamine transmission that leads to 

both levodopa-induced dyskinesias and ICDs. In addition to dopamine medication, 
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factors such as personal or family history of alcoholism or gambling; younger age; 

impulsive or novelty-seeking traits; gender (male for hypersexuality, female for binge 

eating and pathological shopping); early onset of PD; being unmarried; depressive 

symptoms, and past or current cigarette smoking can all be associated with the 

development of ICDs in PD (Voon & Fox, 2007; Weintraub et al., 2010; Joutsa, 

Martikainen, Vahlberg, Voon, & Kaasinen, 2012; Weintraub et al., 2015). The 

association of ICDs with other risk factors may suggest the involvement of a 

complicated network in human impulsivity and compulsivity.  

 

In addition, studies have shown that PD patients with and without ICDs showed 

different behavioural patterns in decision-making even after PD patients with ICDs 

are treated, which may suggest that PD patients who are at risk of developing ICDs 

show difference on certain functions that could be predictable prior to medication 

administration (Djamshidian et al., 2010; Djamshidian et al., 2012). While all PD 

patients showed impairments on updating information before making a decision, PD 

patients without ICDs showed a behavioural pattern similar to pathological gamblers, 

whereas PD patients with ICDs exhibited a pattern resembling more to substance 

users (Djamshidian et al., 2012). In addition, PD patients with behavioural addictions 

are impaired in generating useful beliefs that would predict future outcomes with the 

accumulated information (Averbeck et al., 2013). The studies are in consistent with 

the hypothesis that PD patients with ICDs are less able to update stimulus value 

through negative prediction errors in reinforcement learning models (Voon et al., 

2010b; Piray et al., 2014). Conversely, PD patients without ICDs performed worse on 
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working memory tests (Djamshidian et al., 2012) Moreover, it has also been shown 

that PD patients are unable to combine previously learned information with current 

sensory information to guide behaviours (Perugini, Ditterich & Basso, 2016; Herz, 

Bogacz & Brown, 2016). These studies thus suggest that PD patients with and without 

ICDs show different behavioural patterns that may provide certain insights on 

predicting those who are prone to develop ICDs. 

 

Summary 

In terms of the clinical implications of these results for the management of ICDs, the 

present study showed that long term withdrawal/reducing dopamine agonists (due to 

the fact that the patients recruited were not actively showing ICD symptoms) did not 

induce impairments on cognition and motor functions when performing a moving dots 

task in PD. Future studies investigating the effects of dopaminergic medication on 

inducing impulsivity in PD patients with ICDs should focus on the relationships 

between dopamine and reward sensitivity. On the other hand, despite the present 

results showed no significant difference when directly comparing task performance 

between PD patients with ICD history and age-matched HCs, studies have suggested 

that PD patients with and without ICDs may be distinguishable by using classification 

predictive modelling on certain task performance patterns, therefore my next study 

would be building predictive models to investigate such hypothesis.  
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Chapter 3 Using the performance on a moving dots task to classify the 

membership between PD patients with and without impulse control disorders 

(ICDs) within a machine-learning framework  

3-1 Abstract 

Following previous results, it is hypothesised that behavioural data from moving dots 

tasks may be used to build classification predictive models to distinguish PD patients 

with impulse control disorders (ICDs) from PD patients without ICDs. Such an 

approach may potentially help finding a tool to predict vulnerability to develop 

impulsivity in PD patients. The present study attempted to use the behavioural 

performance on two types of moving dots tasks, one of which manipulated different 

instructions (i.e. Speed and Accuracy) with constant coherence level, whereas the 

other one manipulated task difficulty (i.e. 5% dots coherence), as one of the input 

factors to predict the membership between PD patients who developed impulse 

control disorders (ICDs) and PD patients who did not develop the ICDs. Machine 

learning algorithms were used to find patterns and make predictive models given the 

input variables. Models that produced the highest accuracy in making predictions on 

the membership would be selected for further validation. Factors such as reaction 

times (RTs) during incorrect trials, age when being assessed, age of PD onset and 

averaged levodopa daily dose were taken as input variables to train the predictive 

models. The results showed that the behavioural patterns, such as RTs of incorrect 

trials under Speed instruction and under 5% dots coherence, had high accuracy in 

correctly classifying membership between PD patients with and without ICDs, using a 

classification and regression tress algorithm. The present study thus supports that 

tasks require speed and accuracy trade-off modulation and/or sensory information 

integration may be suitable for screening for vulnerability to develop ICDs in PD 

patients.  
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3-2 Introduction 

Impulsive control disorders (ICDs) in patients with Parkinson’s disease (PD) have 

been recognised to be a psychiatric complication that would lead to devastating 

consequences not only for the patients but also the caregivers (Weintraub et al., 2015; 

Antonini et al., 2016).  

 

As discussed in previous chapter, ICDs involve “behaviours that are performed 

repetitively, excessively, and compulsively to an extent that interferes with major 

daily functioning” such as pathological gambling, shopping, binge eating, and 

hypersexuality (Grant, Schreiber, & Odlaug, 2011). PD patients developing ICDs may 

lead to devastating consequences such as financial loss, divorce, career crisis, and 

increased health risk (Weintraub et al., 2015). Moreover, ICDs are associated with 

low quality of life (Phu et al., 2014), increased caregiver burden (Leroi et al., 2012) 

and greater functional impairment (Voon et al., 2011). The onset of ICDs in PD 

patients had been closely associated with the use of dopamine agonist (Cools et al., 

2003; Voon et al., 2006; Voon & Fox, 2007, Voon et al., 2010; Weintraub et al., 2015; 

Antonini et al., 2016). It has been suggested that therapeutic dosage of dopamine 

agonist may be a risk factor in PD patients to develop ICDs (Weintraub et al., 2010; 

Hassan et al., 2011; Weintraub et al., 2015). While dopamine agonist is closely 

associated with the onset of ICDs in PD patients, recent studies have also suggested 

that deep brain stimulation (DBS) of the subthalamic nucleus (STN) might induce 

impulsivity in treated PD patients (Frank et al., 2007; Lu, Bharmal, & Suchowersky, 

2006; Smeding et al., 2007; Halbig et al., 2009; Moum et al., 2012). These studies 
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together suggest that treatments for PD, be it dopaminergic medication or DBS, could 

potentially induce the onset of ICDs. Therefore, it is important for preventive 

strategies to early identify risk factors before performing any treatments on PD 

patients to avoid the onset of ICDs (Halbig et al., 2009).  

 

Risk factors such as personal or family history of alcoholism or gambling; younger 

age; impulsive or novelty-seeking personality traits; gender (male for hypersexuality, 

female for binge eating and pathological shopping); early onset of PD; being 

unmarried; and past or current cigarette smoking have all been identified to be 

associated with the development of ICDs in PD (Voon & Fox, 2007; Weintraub et al., 

2010; Weintraub et al., 2015). It has been proposed that purely cognitive measures of 

executive functions can predict individual difference in clinically behaviours 

(Friedman et al., 2007; Friedman, Miyake, Robinson, & Hewitt, 2011; Young et al., 

2009). Following such hypothesis, it is possible that cognitive measures could be used 

to predict future behaviours, even predicting the likelihood of developing certain 

disorders. In line with the hypothesis, a study has shown that treated PD+ICD patients 

showed distinguishable task performance compared to PD patients without ICDs on a 

beads task (Djamshidian et al., 2012). The beads task assesses how much information 

participants would gather before making a decision, while both groups of PD patients 

sampled significantly less information, the researchers found that PD patients with 

ICDs showed behavioural patterns similar to substance users, whereas PD patients 

without ICDs showed behavioural patterns that were more closely resembled 

substance users (Djamshidian et al., 2012). In addition, an opposite interaction 



 

162 
 

between medication state and learning was found on PD patients with ICDs compared 

to PD patients without ICDs, which suggests that when being OFF medication, PD 

patients with ICDs showed decreased learning from negative feedback and increased 

learning from positive feedback (Djamshidian et al., 2011). These studies therefore 

indicate that PD patients with and without ICDs have distinguishable traits that could 

be identified. Moreover, previous studies have associated impaired perceptual 

decision-making processes to the development of impulsive behaviour in PD patients 

(Frank et al., 2007; Green et al., 2013; Djamshidian et al., 2012; Huang et al., 2015; 

Zaehle et al., 2017). Performance on the moving dots paradigm, which is considered 

to be a perceptual decision-making task, may thus be used as model inputs in building 

predictive models, leading to a potential screen tool for possible development of 

impulsive behaviours that could lead to the onset of ICDs for PD patients.  

 

The era of big data has arrived with recent rapid increase on the generation of digital 

data and rapid development of computer science that provides efficient methods to 

extract new insights from massive datasets (Lee & Yoon, 2017). In the healthcare area, 

predictive models have been used for diagnostic and prognostic tasks (Dreiseitl & 

Ohno-Machado, 2002; Martin et al., 2009; Rosenfeld & Breslow, 2008; Masood & 

Al-Jumaily, 2013). Data acquired from actual cases could be used to build these 

models with machine learning algorithms. Big data enable the identification of health 

intervention targets through the analysis of high volume and high variety datasets, and 

the refinement of the ensuing interventions using high velocity feedback mechanisms 

(Mooney, Westreich & El-Sayed, 2015). Machine learning is defined as a set of 
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methods that can automatically detect patterns in data, use the uncovered patterns to 

predict future data, or to perform decision-making under uncertainty (Murphy, 2014). 

Machine learning can be divided into three types: supervised, unsupervised and 

reinforcement learning.  

 

For the supervised learning approach, which is the most common type of machine 

learning, the goal is to use the algorithm to find the most optimal mapping function 

between a given input and output. Such a mapping function would be accurate in 

predicting future outputs. Supervised learning receives its name because the process 

of the algorithms learning from a training dataset can be thought of as a teacher 

supervising the learning process in which correct answers are known. Learning would 

stop when the algorithm reaches a certain degree of performance (i.e. accurately 

predicting the outputs). For example, the algorithm that could be used for Spam 

detection in current e-mail systems, certain characters (e.g. the word ‘discount’ or 

‘great offer’ in the subject title) of the e-mail would lead to being labelled as Spam 

and other characters such as the word ‘meeting’ may be labelled as important. There 

are correct answers when learning the patterns of the dataset in this example. 

Unsupervised learning, on the other hand, is referred to when there exist only input 

data but no corresponding outputs. Unlike supervised leaning, there are no correct 

answers and no supervision. The algorithms have to find the structure of the input 

data relying on their own computational ability. For example, an on-line 

recommendation system could categorize different groups of customers based on their 

purchasing behaviour (i.e. preference), clustering similar data and provide future 
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recommendations. There are no correct answers given in this situation. Lastly, the 

reinforcement learning approach takes into account how to maximise the accumulated 

reward in guiding the learning process. The machine using the reinforcement learning 

approach is allowed to learn the most optimal behaviour that maximises the reward 

based on feedback. In handling large amount of data, machine learning is therefore a 

powerful approach to find patterns and provide future predictions in guiding 

behaviours.  

 

The present study thus attempted to use performance of individual participants on two 

versions of a moving dots task to predict impulsivity in PD patients using algorithms 

from the field of machine learning for data classification. In addition, behavioural 

data from two versions of the moving dots were selected: speed and accuracy 

trade-off (SAT) version and the ‘Difficulty’ version. The former manipulated speed 

and accuracy instructions to motivate participants to make fast or accuracy responses 

whereas the later manipulated dots coherence to introduce task difficulty. Reaction 

times (RTs) of incorrect trials collected from the moving dots task were used to 

classify group membership between PD patients with (PD+ICD) and without ICD 

history (PD-ICD). To be more precise, six sets of data were selected as model inputs: 

RTs of incorrect trials under Speed instruction for PD patients ON medication and 

OFF medication, RTs of incorrect trials under Accuracy instruction for PD patients 

ON medication and OFF medication, and RTs of incorrect trials under 5% dots 

coherence ON medication and OFF medication. The data were selected based on the 

following hypotheses: PD patients with ICD history may show different behavioural 
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patterns compared to PD patients without ICD history when acting under (1) speed 

pressure, (2) the need to be accurate and (3) high decision conflict. Moreover, 

previous studies have demonstrated that medication state plays an important role in 

controlling behaviours in PD patients, therefore medication state has also been taken 

into account in selecting model inputs. In addition to the behavioural data, age when 

being assessed, PD onset age and averaged levodopa daily dose (LEDD) were also 

included in the model as input variables. 

 

3-3 Methods 

Dataset & programming language libraries 

The behavioural data were taken from thirteen PD-ICD (Huang et al, 2015) and 

eleven PD+ICD patients (Chapter 2) from previous studies. Demographic details of 

the patients are presented in Table 3.1. Python and SciPy platform were used for the 

classification of the data (Millman & Aivazis, 2011; Jones, Oliphant, & Peterson, 

2001). The data collected from the Speed and Accuracy trade-off (SAT) version and 

Difficulty version of the moving dots tasks were used as input variables. RTs during 

incorrect trials were used and separated between Speed instruction and Accuracy 

instruction. Behavioural data were also compared for different medication states. The 

aim of the study is to identify the difference between PD+ICD group and PD-ICD 

group when making decisions under SAT and when decision conflict was presented, 

during ON medication state and OFF medication state. Moreover, using the identified 

behavioural parameter to predict future possibility of PD patients developing ICDs. 

The python codes for performing data classification were modified from Brownlee 
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(2016) (Please see Appendix for the codes and outputs). The SAT version of the 

moving dots task consisted of 100 trials, which asked participants to make perceptual 

decisions on the direction (left or right) of a cloud of moving dots based on 

instructions given before the appearance of sensory stimuli. Coherence of the moving 

dots was fixed at a constant 50% level. The instructions either emphasised Speed (i.e. 

Fast) or Accuracy (i.e. Accurate). Participants were instructed to make response in 

accordance to the given instruction. On the other hand, for the Difficulty version of 

the task, dots coherence was manipulated to vary from 5%, 10% 15%, 25%, 35% and 

50%. There were no Speed or Accuracy instructions presented before each trial for 

this version of the task. RTs of incorrect trials of the 5% dots coherence were selected 

as model inputs due to the hypothesis that PD patients with ICD may show impaired 

EFs associated with updating information under high decision conflict. For the details 

of the moving dots task please refer to previous chapters.  
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Table 3.1 Demographic details of PD-ICD and PD+ICD patients.  

 Gender Age when 

being assessed 

Age of PD 

onset 

LEDD 

(Levodopa 

Daily 

Dose) 

 Gender Age when 

being 

assessed 

Age of PD 

onset 

LEDD 

(Levodopa 

Daily 

Dose) 

PD-ICD 01 m 71 64 600 PD+ICD 01 m 54 50 300 

PD-ICD 02 m 69 69 900 PD+ICD 02 m 58 50 600 

PD-ICD 03 m 67 60 500 PD+ICD 03 m 70 57 700 

PD-ICD 04 f 42 37 850 PD+ICD 04 m 56 47 800 

PD-ICD 05 f 60 50 1431 PD+ICD 05 f 57 54 825 

PD-ICD 06 m 86 83 300 PD+ICD 06 m 60 52 880 

PD-ICD 07 f 68 51 810 PD+ICD 07 m 57 35 960 

PD-ICD 08 m 52 45 1530 PD+ICD 08 f 45 38 1000 
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PD-ICD 09 f 43 38 910 PD+ICD 09 f 67 65 1390 

PD-ICD 10 m 67 55 980 PD+ICD 10 m 70 62 1400 

PD-ICD 11 f 58 48 650 PD+ICD 11 m 65 60 1600 

PD-ICD 12 m 77 75 600      

PD-ICD 13 m 41 32 750      

Mean (SD)  61.62 (13.96) 54.38 (15.31) 831.62  

(344.02) 

Mean (SD)  59.91 (7.57) 51.82 (9.3

8) 

950.45  

(383.63) 
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Data Classification  

The supervised machine learning approach can be further categorised into regression and 

classification. The main goal of the regression approach is to predict a continuous numerical 

variable, whereas the aim of the classification approach is to identify to which category an 

object belongs. Here in the present study a classification approach was used to identify 

different groups of PD patients (i.e. PD+ICD and PD-ICD) based on age when being assessed, 

PD onset age, mean LEDD and RTs on incorrect trials of the moving dots task. The aim of 

classifying data is to decide the class membership (y') of an unknown input (x') based on a 

dataset consists of data items xi with known class membership yi. The input variables are 

often multi-dimensional vectors. There are two different approaches for data classification: 

the first considers only the distinction between the two classes and labels either 1 or 0 to an 

unknown input variable; the second approach models the probabilistic posterior distribution 

P(y|x), which not only provides a class label for each input variable but also a probability of 

class membership (Dreiseitl & Ohno-Machad, 2002). Due to small sample sizes in the studies, 

the RTs of incorrect trials were seen as indepent examples for each class. There are only 4 

attributes and less than 400 rows, suggesting that the data set is small and relatively simple. 

The aim of the study is to examine the hypothesis of whenther it is possible to use 

behavioural data as predictors in making predictions, it is not the main focus to find the best 

algorithm in fitting all types of data, therefore the models are created using the simplest 

techniques.  

 

Six different algorithms including logistic regression (LR), linear discriminant analysis 

(LDR), K-nearest neighbors (KNN), classification and regression tress (CART), Gaussian 
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naive Bayes (NB) and support vector machines (SVM) were evaluated to select the model 

with best performance (Bishop, 2006; Browlee, 2016). Among the six algorithms logistic 

regression and linear discriminant analysis are linear algorithms and the other four are 

non-linear. The results were directly comparable because the models created using the six 

algorithms used the exact same data splits during elevation. Models with the highest accuracy 

score were selected. Two methods were used to test the accuracy of the selected models: the 

hold-out method and cross validation. The hold-out method splits the data into two groups: 

training set is used to train the classifier whereas the test set is used to estimate the error rate 

of the trained claddifier. The amount of data required for building predictive models depends 

on many factors such as the complexity of questions of interest and the complexity of the 

learning algorithm and is thus unknowable (Brownlee, 2017). The present study used 70% of 

the dataset as the training set and 30% of it as the testing set (Gholami, Chau, Fadaee, 

Torkaman, & Ghaffari, 2015). In addition, K-fold cross validation (conventionally K=10) 

was also used to estimate accuracy of the model. The validation dataset was to prevent errors 

during the training processes such as overfitting to the training set or a data leak, which 

would negatively affect the accuracy of the model.  

 

Logistic Regression (LR) 

Logistic regression, borrowed from the field of statistics by machine learning, uses the 

logistic function (also referred to as Sigmoid function), which is the inverse form of the logit 

function, to solve linear and binary classification problems. Despite the name, logistic 

regression is a model for classification rather than regression (Raschka, 2015). In general, a 

logistic regression model predicts the probability of certain samples belonging to one of the 
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two categories (labelled with value 1 in the model) in the data set:  

𝑃(1|𝑥, 𝛼)  =  
1

1 + 𝑒−(𝛼∙𝑥) 

, where x represents the data items and α represents the parameter vector. The probability for 

the other class (labelled with value 0) would thus be calculated as P(0| x, α) = 1- P(1| x, α) 

(Dreiseitl & Ohno-Machado, 2002). Figure 3.1 illustrates the general concept of logistic 

regression: the algorithm receives the inputs of a sample X and combined with the weights W 

to compute the net input, which would be passed onto the activation function (here the 

sigmoid function) for the prediction of class membership (Raschka, 2015).  

 

  

Figure 3.1 The general concept of logistic regression. The output produced by the 

sigmoid function is interpreted as the probability of certain sample belonging to one of the 

two classes, given the features parameterized by the weights. The predicted probability is 

converter into a binary outcome via a quantizer. Figure from Raschka, (2015). 

 

Linear Discriminant Analysis (LDA) 

Linear discriminant analysis (LDA) was proposed by R. Fischer in 1936, which consists in 

finding the projection hyperplane that minimizes the interclass variance and maximized the 
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distance between the projected means of the classes (Xanthopoulos, Pardalos & Trafalis, 

2013). The general concept behind the LDA is to find the feature subspace that optimizes 

class separability (Raschka, 2015). One assumption in the LDA is that the data is normally 

distributed, in addition, it is assumed that the classes have identical covariance matrices and 

that the features are statistically independent of each other. However, in dimensionality 

reducntion and classification tasks, LDA may still work reasonally well even if the above 

assumptions are violated (Duda, Hart, & Stork, 2012). Figure 3.2 illustrates the concept of 

LDA for a two-class data classification. 

  

Figure 3.2 The concept of linear discriminant analysis (LDA) for a two-class data 

classification. Samples from class 1 are shown as crosses whereas samples from class 2 are 

shown as circles. The linear discriminant 1 (LD 1) on the x-axis separates the two normally 

distributed classes. The linear discriminant 2 (LD 2) on the y-axis, while captures the general 

variance in the dataset, would not be an ideal linear discriminant as is does not capture any of 

the information that discriminates the two classes. Figure from Raschka, (2015).  
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K-nearest neighbours (KNN) 

The K-nearest neighbours (KNN) algorithm classifies each unlabelled example by the 

majority label among its k-nearest neighbours in the training dataset (Weinberger, Blitzer & 

Saul, 2006). Instead of learning a discriminative function from the training datamm, the KNN 

algorithm memorizes the training dataset. Namelym the KNN finds the k samples in the 

training dataset that are closest (or most similar) to the point that is to be classifies, the class 

of the point is then determined by a majority vote among the k nearest neighbours (Raschka, 

2015). KNN is considered a nonparametric model that uses memory-based approach. Such an 

approach may work more optimally when the dataset has very few dimentions because the 

computational complexity for classifying new samples grows linearly with the increasing 

number of samples in the training dataset (Friedman, Bentley, & Finkel, 1976). As Figure 5.3 

shows, the data point “?” is classified as triangle class label based on the k (in this example, 5) 

nearest neighbours of the sample.  

  

Figure 3.3 The concept of the k-nearest neighbour classifier (KNN). The question mark 

“?”represents the data point that is to be classified. The three symbols (triangle, the plus sign 
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and the minus sign) indicate different class labels. Based on the majority vote of the 5 nearest 

(k=5) neighbours, the data point is therefore classified as class triangle. Figure from Raschka, 

(2015). 

 

Classification and regression trees (CART) 

For classification and regression tree methods, the models are constructed by recursively 

partitioning the data space and fitting a simple prediction model within each partition (Loh, 

2011). The partitioning can be graphically presented as a decision tree classifier, which can 

be thought of as breaking down the data by making decisions based on asking a series of 

questions. Namely, the deicison tree model learns a series of questions to infer the class lables 

of the samples (Raschka, 2015). Classification trees are designed for inputs that take a finite 

number of unordered values, with misclassification cost measured as prediction error. (Loh, 

2011). Regression trees, on the other hand are designed for inputs that take continuous or 

ordered discrete values, with the squared difference between the observed and predicted 

values measured as prediction error (Loh, 2011). The approach in practice may reasly lead to 

overfitting as the decision tree grows deeper, therefore it is better to set a limit for the 

maximal depth of the decision tree. Figure 3.4 illustrates an example of a one-day activity 

being decided within the decision tree framework.   
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Figure 3.4 An example of decision tree deciding upon an activity on a particular day. 

While the figure illustrates the concepts of decision tree based on categorical labels, the same 

concepts applies for numerical datasets. Figure from Raschka, (2015). 

 

Gaussian Naïve Bayes (GNB) 

Naïve Bayes is a linear classifier that can be effectively applied to high-dimensional datasets, 

which predicts the probability of each class based on the feature vector for given continuous 

big data with a prior distribution of the probability. The naive aspect of the algorithms is that 

it assumes all of the input dimensions are independent from each other (Raizada & Lee, 

2013). Gaussian Naïve Bayes (GNB) classifier referred to Naïve Bayes classifier that 

considers the bid data is generated through a Gaussian process with normal distribution, 

which allows the z-score distance to be converted into a p-value. Figure 3.5 illustrates the 
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concept of GNB, showing that the z-score distance of each data point x was calculated  

 

Figure 3.5 The concept of Gaussian Naïve Bayes (GNB) classifier. The distance between 

the data point x and the class mean divided by the standard deviation of the class is the 

z-score distance of x. Because the model assumes the data to be normally distributed, each 

z-score distance is allowed to be converted directly into a p-value. Figure from Raizada & 

Lee (2013).  

 

Support vector machines (SVM) 

The SVM algorithms are the most representatives of the data classification approach that 

considers only a dichotomous difference between the two classes. A support vector machine 

classified the input variables by finding the hyperplane that maximizes the margin (i.e. the 

distance between the optimal hyperplane and input data points) between the two classes. The 

SVM concerns the problem of constructing consistent estimators from data, namely, how to 

estimate the model performance on an unknown dataset, given the characteristic of the model 

and its performance on a training dataset (Dreiseitl & Ohno-Machado, 2002).  
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Figure 

3.6. The support vector machine (SVM). The aim of the SVM is to find a hyperplane that 

optimally separate the two classes. The optimization is to maximize the margin, which is 

defined as the distance between the separating hyperplane (decision boundary) and the 

training samples that are closest to this hyperplane, which are the co-called support vectors. 

Figure from Raschka, (2015).   

 

 

3-4 Results  

RTs from incorrect trials under Accuracy instruction (ON/OFF medication) to predict 

PD+ICD/PD-ICD membership 

Six models were created using six different algorithms discussed in the previous section. For 

the codes and figures please refer to the Appendix. The metric of accuracy was used to 

evaluate the models. Figure 3.7 illustrates the spread and the mean accuracy of each model. 

Each algorithm was evaluated 10 times with the 10-fold cross validation, thus each model 

had a population of accuracy measures. As shown in the figure, the spread of the samples 

indicates that many samples reached 100% accuracy in model CART, whereas the other five 

models had less accuracy in predicting the classification of the data.  
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Figure 3.7 Model evaluation results that compare the spread and the mean accuracy of each model 

created with different algorithms. The left figure represents the results from models using OFF 

medication data set, whereas the right figure represents the results from models using ON medication 

data set. LR= logistic regression, LDA= linear discriminant analysis, KNN= K-Nearest Neighbors, 

CART= Classification and Regression Trees, NB= Gaussian Naive Bayes, SVM = Support Vector 

Machines. 

 

The score of accuracy represented the ratio of the number of correctly predicted cases divided 

by the total number of cases in the database. The results showed that the model created with 

classification and regression tree algorithm had the highest accuracy score. Table 3.2 shows 

the estimated accuracy score for each model. 

 

Table 3.2 Estimated accuracy score for each model using data of incorrect responses funder 

Accuracy instructions 

 Models LR LDA KNN CART NB SVM 

OFF Mean 0.89 0.90 0.87 0.98 0.84  0.74 
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medication 

data set  

Estimated 

Accuracy  

(0.08) (0.03) (0.11) (0.03) (0.04) (0.12) 

ON 

medication 

data set 

Mean 

Estimated 

Accuracy  

0.79 

(0.07) 

0.82 

(0.08) 

0.79 

(0.08) 

0.98 

(0.03) 

0.79 

(0.09) 

0.78 

(0.07) 

LR= logistic regression, LDA= linear discriminant analysis, KNN= K-Nearest Neighbors, CART= 

Classification and Regression Trees, NB= Gaussian Naive Bayes, SVM = Support Vector Machines. 

The estimated accuracy score was given as the mean with the standard deviation in parentheses. 

 

The CART algorithm was the most accurate model among the six models created and tested. 

The validation dataset was used to further examine the accuracy of the selected model. The 

results showed a 97% precision in making predictions on the validation dataset. Table 3.3 

shows the classification report of the models, which indicates how well the models worked. 

The uneven number of each class may contribute to the high precision of the model, therefore 

a confusion matrix was calculated to see the types of the errors the model made when making 

predictions. 

 

Table 3.3 The classification report of the classification and regression tree (CART) models 

created with OFF/ON medication under Accuracy instruction data sets 

OFF medication data set 

 Precision Recall F1-Score Support 

PD+ICD 1.00 0.86 0.92 14 

PD-ICD 0.92 1.00 0.96 23 



 

180 
 

Avg. /Total 0.95 0.95 0.94 37 

ON medication data set 

 Precision Recall F1-Score Support 

PD+ICD 0.88 0.88 0.88 8 

PD-ICD 0.96 0.96 0.96 24 

Avg. /Total 0.94 0.94 0.94 32 

Precision: precision in successfully classifying each case; Recall: accuracy in predicting the classes 

for each case; F1-Score: a weighted average of the precision and recall; Support: number of cases 

given by the validation dataset. 

 

As shown in Table 3.4, for the OFF medication data set, the type of the error appeared in two 

cases when two PD+ICD data points were misclassified as PD-ICD, whereas PD-ICD data 

were all accurately classified. The Table showed that there were 14 cases in class PD+ICD 

and 24 cases in class PD-ICD. 2 of the 14 cases in the class PD+ICD were correctly classified 

(recall: 12/14=0.86) whereas all the cases in the class PD-ICD were correctly classified 

(recall: 23/23=1.00). For the 12 cases classified as class PD+ICD in the model, all of them 

were actually labelled as PD+ICD, leading to the 1.00 precision (12/12=1.00). On the other 

hand, for the 25 cases classified as PD-ICD in the model, only 23 of them actually belonged 

to the PD-ICD class, the precision was therefore calculated as 23/25= 0.92. On the other hand, 

for the ON medication data set, the type of the error appeared in one case when a PD+ICD 

data point was misclassified as PD-ICD, and when a PD-ICD data point was misclassified as 

PD+ICD. The Table showed that there were 8 cases in class PD+ICD and 24 cases in class 

PD-ICD. 7 of the 8 cases in the class PD+ICD were correctly classified (recall: 7/8=0.88) 
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whereas 23 out of the 24 cases in the class PD-ICD were correctly classified (recall: 

23/24=0.96). For the 8 cases classified as class PD+ICD in the model, 7 of them were 

accurately labelled as PD+ICD, leading to the 0.88 precision (7/8=0.88). On the other hand, 

for the 24 cases classified as PD-ICD in the model, only 23 of them actually belonged to the 

PD-ICD class, the precision was therefore calculated as 23/24= 0.96. 

 

Table 3.4 The confusion matrix of the classification and regression tree (CART) models 

OFF medication data set 

 PD+ICD (Predicted) PD-ICD (Predicted) Total 

PD+ICD (Input) 12 2 14 

PD-ICD (Input) 0 23 23 

ON medication data set 

 PD+ICD (Predicted) PD-ICD (Predicted) Total 

PD+ICD (Input) 7 1 8 

PD-ICD (Input) 1 23 24 

 

 

RTs from incorrect trials under Speed instruction (ON/OFF medication) to predict 

PD+ICD/PD-ICD membership 

Likewise, here six models were created using six different algorithms using data sets of 

Speed instructions. For the codes and figures please refer to Appendix C. The metric of 

accuracy was used to evaluate the models. Figure 3.8 illustrates the spread and the mean 

accuracy of each model. Each algorithm was evaluated 10 times with the 10-fold cross 
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validation, thus each model had a population of accuracy measures. As shown in the figure, 

the spread of the samples indicates that many samples reached 100% accuracy in model 

CART, whereas the other five models had less accuracy in predicting the classification of the 

data.  

 

 

Figure 3.8 Model evaluation results that compare the spread and the mean accuracy of each model 

created with different algorithms. The left figure represents the results from models using OFF 

medication data set, whereas the right figure represents the results from models using ON medication 

data set. LR= logistic regression, LDA= linear discriminant analysis, KNN= K-Nearest Neighbors, 

CART= Classification and Regression Trees, NB= Gaussian Naive Bayes, SVM = Support Vector 

Machines. 

 

The score of accuracy represented the ratio of the number of correctly predicted cases divided 

by the total number of cases in the database. The results showed that the model created with 

classification and regression tree algorithm had the highest accuracy score. Table 3.5 shows 

the estimated accuracy score for each model. 
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Table 3.5 Estimated accuracy score for each model 

 Models LR LDA KNN CART NB SVM 

OFF 

medication 

data set  

Mean 

Estimated 

Accuracy 

0.69 

(0.08) 

0.67  

(0.10) 

0.84 

(0.10) 

1.00 

(0.00) 

0.65 

(0.07) 

0.73 

(0.09) 

ON 

medication 

data set 

Mean 

Estimated 

Accuracy  

0.74 

(0.06) 

0.73 

(0.07) 

0.87 

(0.08) 

0.99 

(0.01) 

0.76 

(0.09) 

0.79 

(0.06) 

LR= logistic regression, LDA= linear discriminant analysis, KNN= K-Nearest Neighbors, CART= 

Classification and Regression Trees, NB= Gaussian Naive Bayes, SVM = Support Vector Machines. 

The estimated accuracy score was given as the mean with the standard deviation in parentheses. 

 

The CART algorithm was the most accurate model among the six models created and tested. 

The validation dataset was used to further examine the accuracy of the selected model. The 

results showed a 100% precision in making predictions on the validation dataset. Table 3.6 

shows the classification report of the models, which indicates how well the models worked. 

The uneven number of each class may contribute to the high precision of the model, therefore 

a confusion matrix was calculated to see the types of the errors the model made when making 

predictions. 
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Table 3.6 The classification report of the classification and regression tree (CART) models 

created with OFF/ON medication under Speed instruction data sets 

OFF medication data set 

 Precision Recall F1-Score Support 

PD+ICD 1.00 1.00 1.00 12 

PD-ICD 1.00 1.0 1.00 47 

Avg. /Total 1.00 1.00 1.00 59 

ON medication data set 

 Precision Recall F1-Score Support 

PD+ICD 1.00 1.00 1.00 21 

PD-ICD 1.00 1.00 1.00 56 

Avg. /Total 1.00 1.00 1.00 77 

Precision: precision in successfully classifying each case; Recall: accuracy in predicting the classes 

for each case; F1-Score: a weighted average of the precision and recall; Support: number of cases 

given by the validation dataset. 

 

As shown in Table 3.7, for both ON and OFF medication data sets, PD+ICD and PD-ICD 

data points were all accurately classified. The Table showed that for OFF medication data set, 

there were 12 cases in class PD+ICD and 59 cases in class PD-ICD. All 12 cases in the class 

PD+ICD were correctly classified (recall: 12/12=1.00). Similarly, all the cases in the class 

PD-ICD were correctly classified (recall: 47/47=1.00). For the 12 cases classified as class 

PD+ICD in the model, all of them were actually labelled as PD+ICD, leading to the 1.00 

precision (12/12=1.00). In addition, for the 47 cases classified as PD-ICD in the model, all 47 
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cases actually belonged to the PD-ICD class, the precision was therefore calculated as 47/47= 

1.00. For the ON medication data set, all data points were correctly classified. The Table 

showed that there were 21 cases in class PD+ICD and 56 cases in class PD-ICD. All 21 of the 

21 cases in the class PD+ICD were correctly classified (recall: 21/21=1.00). Moreover, all 56 

cases in the class PD-ICD were correctly classified (recall: 56/56=1.00). For the 21 cases 

classified as class PD+ICD in the model, all 21 of them were accurately labelled as PD+ICD, 

leading to the 1.00 precision (21/21=1.00). For the 56 cases classified as PD-ICD in the 

model, all 56 of them actually belonged to the PD-ICD class, the precision was therefore 

calculated as 56/56= 1.00. 

 

Table 3.7 The confusion matrix of the classification and regression tree (CART) models 

OFF medication data set 

 PD+ICD (Predicted) PD-ICD (Predicted) Total 

PD+ICD (Input) 12 0 12 

PD-ICD (Input) 0 47 59 

ON medication data set 

 PD+ICD (Predicted) PD-ICD (Predicted) Total 

PD+ICD (Input) 21 0 21 

PD-ICD (Input) 0 56 56 

 

 

RTs from incorrect trials under 5% dots coherence (ON/OFF medication) to predict 

PD+ICD/PD-ICD membership 
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Six models were created using six different algorithms discussed in the previous section. For 

the codes and figures please refer to Appendix C. The metric of accuracy was used to 

evaluate the models. Figure 3.9 illustrates the spread and the mean accuracy of each model. 

Each algorithm was evaluated 10 times with the 10-fold cross validation, thus each model 

had a population of accuracy measures. As shown in the figure, the spread of the samples 

indicates that many samples reached 100% accuracy in model CART, whereas the other five 

models had less accuracy in predicting the classification of the data.  

 

 

Figure 3.9 Model evaluation results that compare the spread and the mean accuracy of each model 

created with different algorithms. The left figure represents the results from models using OFF 

medication data set, whereas the right figure represents the results from models using ON medication 

data set. LR= logistic regression, LDA= linear discriminant analysis, KNN= K-Nearest Neighbors, 

CART= Classification and Regression Trees, NB= Gaussian Naive Bayes, SVM = Support Vector 

Machines. 

 

The score of accuracy represented the ratio of the number of correctly predicted cases divided 

by the total number of cases in the database. The results showed that the model created with 

classification and regression tree algorithm had the highest accuracy score. Table 3.8 shows 
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the estimated accuracy score for each model. 

 

Table 3.8 Estimated accuracy score for each model 

 Models LR LDA KNN CART NB SVM 

OFF 

medication 

data set  

Mean 

Estimated 

Accuracy 

0.61 

(0.15) 

0.59 

(0.16) 

0.64 

(0.16) 

1.00 

(0.00) 

0.76 

(0.11) 

0.62 

(0.12) 

ON 

medication 

data set 

Mean 

Estimated 

Accuracy  

0.54 

(0.10) 

0.53 

(0.10) 

0.70 

(0.13) 

0.98 

(0.03) 

0.64 

(0.13) 

0.56 

(0.12) 

LR= logistic regression, LDA= linear discriminant analysis, KNN= K-Nearest Neighbors, CART= 

Classification and Regression Trees, NB= Gaussian Naive Bayes, SVM = Support Vector Machines. 

The estimated accuracy score was given as the mean with the standard deviation in parentheses. 

 

The CART algorithm was the most accurate model among the six models created and tested. 

The validation dataset was used to further examine the accuracy of the selected model. The 

results showed a 100% precision in making predictions on the validation dataset. Table 3.9 

shows the classification report of the models, which indicates how well the models worked. 

The uneven number of each class may contribute to the high precision of the model, therefore 

a confusion matrix was calculated to see the types of the errors the model made when making 

predictions. 
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Table 3.9 The classification report of the classification and regression tree (CART) models 

created with OFF/ON medication under 5% dots coherence data sets 

OFF medication data set 

 Precision Recall F1-Score Support 

PD+ICD 1.00 1.00 1.00 8 

PD-ICD 1.00 1.0 1.00 16 

Avg. /Total 1.00 1.00 1.00 24 

ON medication data set 

 Precision Recall F1-Score Support 

PD+ICD 1.00 1.00 1.00 11 

PD-ICD 1.00 1.00 1.00 27 

Avg. /Total 1.00 1.00 1.00 38 

Precision: precision in successfully classifying each case; Recall: accuracy in predicting the 

classes for each case; F1-Score: a weighted average of the precision and recall; Support: 

number of cases given by the validation dataset. 

 

As shown in Table 3.10, for both ON and OFF medication data sets, PD+ICD and PD-ICD 

data points were all accurately classified. The Table showed that for OFF medication data set 

there were 8 cases in class PD+ICD and 16 cases in class PD-ICD. All 8 cases in the class 

PD+ICD were correctly classified (recall: 8/8=1.00). Similarly, all the cases in the class 

PD-ICD were correctly classified (recall: 16/16=1.00). For the 8 cases classified as class 

PD+ICD in the model, all of them were actually labelled as PD+ICD, leading to the 1.00 

precision (8/8=1.00). In addition, for the 16 cases classified as PD-ICD in the model, all 16 
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cases actually belonged to the PD-ICD class, the precision was therefore calculated as 16/16= 

1.00. For the ON medication data set, all data points were correctly classified. The Table 

showed that there were 11 cases in class PD+ICD and 27 cases in class PD-ICD. All 11 of the 

11 cases in the class PD+ICD were correctly classified (recall: 11/11=1.00). Moreover, all 27 

cases in the class PD-ICD were correctly classified (recall: 27/27=1.00). For the 11 cases 

classified as class PD+ICD in the model, all 11 of them were accurately labelled as PD+ICD, 

leading to the 1.00 precision (11/11=1.00). For the 27 cases classified as PD-ICD in the 

model, all 27 of them actually belonged to the PD-ICD class, the precision was therefore 

calculated as 27/27= 1.00. 

 

Table 3.10 The confusion matrix of the classification and regression tree (CART) models 

OFF medication data set 

 PD+ICD (Predicted) PD-ICD (Predicted) Total 

PD+ICD (Input) 8 0 8 

PD-ICD (Input) 0 16 16 

ON medication data set 

 PD+ICD (Predicted) PD-ICD (Predicted) Total 

PD+ICD (Input) 11 0 11 

PD-ICD (Input) 0 27 27 

 

 

3-5 Discussion 

In the present study, the results showed that RTs from incorrect trials of a moving dots 
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paradigm, especially RTs of incorrect trials under Speed instruction and under 5% dots 

coherence, could be used to classify the membership between PD+ICD and PD-ICD groups 

in PD patients. While all constructed models had high accuracy in making predictions, the 

models created with different datasets (i.e. one used incorrect trials under Speed instruction 

whereas the other one used incorrect trails under Accuracy instruction) were not comparable 

because they were created from different datasets. Therefore, it is difficult to directly 

compare the performance of the models with regard to data classification. However, the total 

classes of the models indicate that RTs on incorrect trials under Speed instruction may 

provide better predictions for data classification on categorising the PD+ICD/PD-ICD 

membership. 

 

Predictive modelling approach in the field of health care and limitations of the present study 

The present results suggest a possibility to use behavioural data as a predictor in predicting 

the vulnerability in developing ICDs in PD aptients. To develop the best/most suitable 

predictive model is not the main research interest of the study. In recent years, predictive 

modelling approaches have been received much attention in the field of health care (Choi et 

al., 2016; Hatzmann, Maurice-Stam, Heymans, & Grootenhuis, 2009), such as in gene 

expression analysis (Shi et al., 2010). However, few studies discuss the possibility to use 

behavioural data as screening tool in disease prevention.  

 

The quality of a predictive model depends on three factors: the quality of the input data in 

building the model, the caution when choosing the adjustable parameters, and evaluation 

criteria when reporting the results of model processing. Given the current dataset the CART 
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model was selected for the best performance in making predictions on the classification. 

Despite the results suggest a possibility to use the behavioural data in predicting PD patients 

prone to develop ICDs, there are a few limitations of the present study should be 

acknowledged. First, while the dataset consists of 24 patients and up to 389 response trials, it 

was a relatively small sample size. Second, due to the small sample size, each response trial 

as considered as a dependent data point, which may have produced bias in the dataset when 

estimating the accuracy of the model. Third, the models created in the present study were 

designed in the simplest manner to avoid too much noise in the data, however this may result 

in high accuracy but less interoretability (Hall, 2016). Fourthly, the classification approach 

used in the present study requires numeric input variable thus other predictive factors that 

were associated with the development of PD ICD such as gender (binary vector), marital 

status, and personal/family history experience of using psychostimulants (Weintraub et al., 

2015) were not included in the models. Approaches that are able to construct models with 

more input variables from multiple dimensions may be more informative on screening for the 

development of ICDs in PD patients in future studies. For such models, which are far more 

complicated that the ones constructed in current study, algorithms such sequential backward 

selection (SBS) could be used to select the most important features at the same time maintain 

the accuracy of the model. While the accuracy in making predictions on the membership of 

PD patients is high given the present data, future studies are required to further investigate 

the reliability and validity of using behavioural patterns in a moving dots task as a clinical 

screening tool to predict impulsive behaviours in PD patients. As previously discussed, ICDs 

in PD patients would cause devastating consequences to patients and the caregivers 

(Weintraub et al., 2015; Phu et al., 2014; Leroi et al., 2012; Voon et al., 2011), and that the 
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onset of the ICDs is likely to be induced by treatments such as dopaminergic medication 

(especially dopamine agonist) (Cools et al., 2003; Voon et al., 2007, 2011; Weintraub et al., 

2010, 2015) and STN DBS (Hälbig et al., 2009; Moum et al., 2012). The behavioural tasks 

can therefore be administered on untreated PD patients and the data can be used for building 

predictive models that help guiding further treatment to prevent the onset of the ICDs.  

 

Note that in the present study it is not the main purpose to determine which input variable in 

the model had the most impact on making the predictions, because impulsivity is not a 

unitary construct and the onset of a disease or a disorder is hardly determined by only one 

factor. The aim of the models is to use the input variables (e.g. behavioural patterns and 

factors such as age) in making predictions on PD patients that may potentially develop ICDs 

in the future, rather than finding the potential factors that may be the cause of the 

development of the ICDs. Such concept is supported by the idea of the big data, which focus 

on temporal stability of the association, rather than on causal relationship (Lee & Yoon, 2017). 

Moreover, PD+ICD patients recruited in the study were not actively showing symptoms of 

ICDs, yet the patients still showed different behavioural patterns compared to PD-ICD 

patients. The results are in line with previous study in suggesting that PD+ICD and PD-ICD 

patients had distinct behavioural pattern, which may shed insights on why some PD patients 

developed ICDs and the others did not (Djamshidian et al., 2012, 2014). 

 

Behavioural classification in PD patients with and without ICDs 

Previously, Djamshidian et al (2012) have used a linear discriminant analysis to classify PD 

patients with and without ICDs using the performance on a beads task. The beads task 
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requires participants to decide from which of the two cups coloured beads were being drawn. 

The cups differed in the proportion of blue and green beads they contained (e.g. one cup is 

80% Green and 20% Blue whereas the other cup contains 20% Green and 80% Blue). 

Participants were first shown a bead draw, which was either blue or green. Then the 

participants could choose between drawing another bead and guessing from which cup the 

bead was drawing from. Participants are allowed to draw as many beads as they need to make 

decisions. The number of draws is associated with the subjective certainty of making the 

decision. The essence of the beads task is that participants are allowed to gather as much 

information as subjectively needed. During ambiguous trials, participants would gather more 

information to guide the decision. Conversely, participants would gather less information 

during trials that are much clearer. The number of beads draws therefore represents the 

amount of information gathered before making optimal decisions. Both PD-ICD and 

PD+ICD patients have been shown to draw significantly less beads compared to age-matched 

healthy controls, indicating that PD patients showed reflection impulsivity when making 

decisions (Djamshidian et al., 2012). Furthermore, the authors used the data in the 80/20 

condition to predict the class membership of PD-ICD and PD+ICD patients by using the 

number of draws in the 80/20 condition to predict group membership between different 

groups of patients, which produced a 96% accuracy in making predictions on the membership 

of PD patients. Djamshidian et al (2012) thus proposed that the behavioural patterns for the 

beads task were a powerful tool to screen for impulsive behaviours in PD patients. The 

present results were in line with the study in showing that PD patients with and without ICDs 

have different behavioural patterns, and that tools may be developed to screen for PD patient 

that are vulnerable to develop ICDs based on such difference.  
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Summary 

In summary, the results suggest that by using data classification methods, it may be possible 

to classify PD patients into PD+ICD and PD-ICD groups with certain behavioural tasks, 

which could further be used as a clinical assessment in unmedicated PD patients to reduce the 

chance of ICD onset. Here in the present study, it is shown that tasks manipulated speed 

pressure and decision conflict may be suitable for screening vulnerability to develop ICDs in 

PD patients. Future studies are in need to further investigate the type of measures and 

develop more proper models and algorithms in predicting ICDs onset in PD patients before 

treatment.  
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Chapter 4 The acute effects of deep brain stimulation of the subthalamic nucleus on 

task-switching within the framework of moving dots paradigm in PD patients 

 

4-1 Abstract 

Conflict monitoring during the information processes is one of the key characteristics of task 

switching. Evidence has shown that deep brain stimulation (DBS) of the subthalamic nucleus 

(STN) would induce deficits by disrupting the normal function of the STN on information 

processing during task switching in patients with Parkinson’s disease (PD). To investigate 

such a hypothesis, ten PD patients treated with bilateral STN DBS were recruited to perform 

on a block-designed moving dots task, where parts of the task consisted of 100% dot 

coherence blocks (i.e. automatic behaviours) and other parts consisted of various coherence 

levels (5%-50%) (i.e. controlled behaviours). The beahavioural performance of PD patients 

was compared to twelve age-matched healthy controls (HC). The results show that the acute 

manipulation of STN DBS did not induce deficits on task switching for PD patients, instead 

STN DBS improved the performance on the moving dots task. However, PD patients with 

STN DBS ON did show impairments on the Inhibition/Switching section of Colour Word 

Interference Test, which supports the negative effect induced by STN DBS in PD patients. 

The evidence suggests that task-switching may involve fundamentally different but related 

cognitive processes, which are controlled by distinct brain areas. Moreover, the above results 

are in line with the hypothesis that the reliability of sensory information plays an important 

role on modulating SAT. Furthermore, PD patients still showed subtle difference on 

underlying cognitive components under the effects of DBS, which supports a role of the STN 

on modulating boundary separation and sensory information integration during task 

performance.  
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4-2 Introduction 

Most daily behaviours are well-learned routines that evoke the same actions, from time to 

time decisions must be made to switch from the habitual/automatic behaviour to controlled 

behaviour in order to adjust to the changes. Such a process requires context monitoring and 

the control of motor inhibition to supress an intended/initiated action in order to activate an 

alternative action that is more context appropriate.  

 

The subthalamic nucleus (STN) has been proposed to play an important role in motor control. 

As discussed in Chapter 1, the hyperdirect pathway of the basal ganglia (Nambu, Tokuno & 

Takada, 2002) consists of glutamatergic excitatory neurons that transmit signals quickly from 

the cerebral cortex to the substantia nigra pars compacta (SNr)/ the internal segment of the 

globus pallidus (GPi) via the STN, producing a net effect of motor inhibition, and that lesions 

of the STN induced involuntary movements in rodents (Crossman et al., 1984) and alleviated 

akinetic-rigid syndromes in parkinsonian monkeys (Aziz et al., 1992; Aziz, Peggs, Sambrook 

& Crossman, 1991; Bergman et al., 1990). In a primate study Isoda & Hikosaka (2008) found 

that the STN neurons showed activation during task switching. Moreover, the activation of 

the STN neurons was similar but slightly slower that the activation of the pre-SMA neurons, 

which supports the hypothesis that the STN receives signals regarding behaviour switching 

from the pre-SMA and activates its function of motor inhibition to supress the old ongoing 

but invalid actions in order to execute new adaptive actions (Hikosaka & Isoda, 2010). In 

addition to motor inhibition, it has been proposed that the STN also plays an important role in 

cognitive flexibility (Aron & Poldrack, 2006; Isoada & Hikosaka, 2008; Hikosaka & Isoda, 

2010), which suggests that the STN activity is associated with supressing automatic and fast 
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actions to initiate controlled and slow actions. In particular, the STN receives direct 

projections from the pre-SMA and cingulate cortex that compose conflict monitoring systems, 

which allows the STN to implement cognitive control by sending NoGo signals via diffuse 

excitatory projections to basal ganglia output nuclei (Mink, 1996; Parent & Hazrati, 1995; 

Frank et al., 2007). Frank (2006) has proposed a computational role of the STN in 

dynamically controlling the threshold for executing a response, which is fundamentally 

modulated by the intensity of competing possible actions. In other words, STN is essential to 

integrate all information before action selection, thereby prevents premature responses 

especially in high-conflict situations. Studies have shown that high-frequency stimulation 

induced impairments during decision-making when decision conflict was presented in PD 

patients (Frank et al., 2007; Green et al., 2013). One potential hypothesis for the impairment 

could be the stimulation-induced disruption of the activity of the limbic circuit between the 

ACC and the ventral striatum as revealed by the imaging study of Schroeder et al. (2002). 

Consistent with the proposed computational role of the STN, Cavanagh et al (2011) showed 

that mPFC activity increased and decision threshold decreased with STN DBS on during 

conflict. In line with the above hypothesis, PD patients treated with deep brain stimulation 

(DBS) of the STN have been found to be impaired in slowing down when facing high 

decision conflict (Frank et al., 2007; Wylie et al., 2010; Green et al., 2013) and task switching 

during a Stroop interference task, where participants are required to supress the habit of 

saying the names of colours (automatic behaviours) and say the ink colour of the name 

printed instead (controlled behaviour) (Jahanshahi et al., 2000; Schroeder et al., 2002; Witt et 

al., 2008). 
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Here the present study used a block-designed moving dots task including automatic blocks 

and controlled blocks, which attempted to not only study behavioural switching but also 

simulate the dynamic environment during action selection (implemented by varied 

coherences of the moving dots and the explicit instructions on informing participants to be 

fast or accurate) in PD patients. Acute manipulation of STN DBS was adopted to assess the 

effect of STN DBS on behaviours in PD patients. Moreover, performance of PD patients was 

compared to age-matched healthy controls (HCs). In addition to behavioural switching, the 

moving dots paradigm also allows the investigation on the acute effect of STN DBS on 

mental processes associated with speed/accuracy trade-off (SAT) and information integration, 

which in the present PhD thesis are considered to be associated with the basic executive 

functions including switching, shifting and inhibition. Two studies examining the acute 

effects of STN DBS on the same moving dots paradigm have found that (1) STN DBS 

significantly influenced task performance especially under high decision conflict (i.e. high 

task difficulty) when accuracy was emphasized, indicating that stimulation reduced the 

effects of task difficulty/level of coherence of the moving dots on reaction times (RTs) (Green 

et al., 2013), and (2) when coherence level was kept constant at a relatively easy level, STN 

DBS had a stronger impact on moving dots task performance when speed was emphasized 

that led to fast and incorrect responses (Pote et al., 2016). Both studies suggest a role of the 

STN in and that STN DBS would induce negative impact on inhibitory control in PD patients. 

Following results from the above studies, it is hypothesised that when being ON stimulation 

PD patients would have impaired task switching, resulting in faster reaction time (RT) and 

more incorrect responses. Computational models were applied to the behavioural data to 

further study the underlying mental processes of SAT modulation and sensory information 
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integration. Three parameters including boundary separation, drift rate and non-decision time 

would be derived from the model. It is predicted that PD patients ON stimulation would have 

lower boundary separation and lower drift rate that are associated with impaired abilities of 

cognitive flexibility on the task. 

 

 

Figure 4.1 Difference between Parkinson’s disease (PD) patients treated with deep brain 

stimulation (DBS) of subthalamic nucleus (STN) and healthy controls on the functions of the 

STN.  

 

4-3  Material and methods  

Participants 

Ten patients (2 females) with Parkinson’s disease treated with bilateral STN DBS at least 6 

months or longer after surgery and twelve age-matched healthy controls (HCs) (5 females) 

were recruited. PD patients had a clinical diagnosis of idiopathic Parkinson's disease 

according to the Parkinson's Disease UK Brain Bank criteria (Hughes et al., 1992). The Mini 

• Controls motor inhibtion 
• Modualtes cogntivie flexibility
• Supports task switching

Noraml STN in healthy 
controls

• Improves motor symptoms in PD
• Impaires cognitive flexibility 
• Impaires task switching

DBS of the STN in PD 
patients
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Mental State Examination (cut-off score of 26; Folstein et al., 1975) was used to screen for 

dementia. The Starkstein Apathy Scale (SAS) was used to screen for apathy symptoms 

(cut-off score of 14; Starkstein et al., 1992). The Beck Depression Inventory II (BDI-II, Beck 

et al., 1996) was used to screen for depression (cut-off score of 24). None of the patients had 

dementia or clinical depression. Even though the patients had significantly higher levels of 

apathy than the controls on the SAS, none had clinical levels/diagnosis of apathy. None of the 

healthy controls had any neurological or psychiatric illness, head injury or drug or alcohol 

abuse. Patients were examined by a neurologist, both ON and OFF stimulation, the severity 

of their motor symptoms and their stage of illness were rated on the Unified Parkinson's 

Disease Rating Scale (UPDRS; Fahn & Elton, 1987). All participants had normal or 

corrected-to-normal vision. The clinical details of all participants are presented in Table 4.1, 

whereas the clinical data of patients with Parkinson’s disease are listed in Table 4.2. 

 

Table 4.1.  Demographic and clinical details of the participants. Table shows means with 

standard deviations in parenthesis.  

 PD (n=10) HC (n=12) p value 

Handedness (RH:LH) 10:0  12:0  N/A 

Mini Mental State Examination  29.10 (1.10) 29.82 (0.39) p=.070 

Beck Depression Inventory  8.45 (5.54) 6.91 (5.80) p=.542 

Starkstein Apathy Scale  12.83 (4.34) 8.71 (3.25) p=.141 

Barratt Impulsivity Scale  65.4 (10.98) 57.27 (8.87) p=.085 

Digit Span forward and backwards total score 17.8 (3.85) 20.55 (3.50) p=.103 

Trail Making Test-part A  

Completion time (seconds) 

Trail Making Test-part B  

Completion time (seconds) 

 

52.5 (22.96) 

 

90.5 (30.63) 

 

45.1 (10.27) 

 

82.27 (24.22) 

 

p=.270 

 

p=.358 
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Colour Word Interference Test-colour naming  

Errors 

Completion Time (seconds) 

 

0.9 (1.10) 

36.1 (7.74) 

 

0.36 (0.65) 

31.91 (4.83) 

 

p=.178 

p=.110 

Colour Word Interference Test-word reading  

Errors 

Completion Time (seconds) 

 

0.5 (0.53) 

24.4 (4.25) 

 

0.00 (0.00) 

22.82 (4.29) 

 

p=.006* +1 

p=.253 

Colour Word Interference Test-Inhibition  

Errors 

Completion Time (seconds) 

 

2.2 (2.74) 

65.1 (12.93) 

 

1.18 (1.38) 

61.09 (13.36) 

 

p=.660 

p=.376 

Colour Word Interference Test-Inhibition/Switching 

Errors 

Completion Time (seconds) 

 

4.00 (2.49) 

81.9 (22.97) 

 

1.00 (0.82) 

58.09 (8.79) 

 

p=.002* +2 

p=.008* +3 

Age of onset (years) 46.6 (8.44) N/A N/A 

Disease duration (years) 14.9 (5.30) N/A N/A 

UPDRS score III 

PD STN-DBS ON 

PD STN-DBS OFF 

 

15.6 (7.14) 

29.5 (16.77) 

 

N/A 

 

p=.018*+4 

UPDRS= Unified Parkinson’s Disease Rating Scale, PD = Parkinson’s disease, STN-DBS = Deep brain stimulation of the 

subthalamic nucleus, N/A= Not Applicable, *= Statistically significant differences between groups  

+1= Effect size of Errors of Colour Word Interference Test-word reading: Hedge’s g= -1.817 

+2= Effect size of Errors of Colour Word Interference Test-Inhibition/Switching: Hedge’s g = -1.753 

+3= Effect size of Completion Time of Colour Word Interference Test-Inhibition/Switching: Hedge’s g = -1.444 

+4= Effect size of UPDRS score III: paired sample Hedge’s g = -2.504 

 

Design and Procedure 

A repeated measures design was used. All patients performed two blocks (i.e. auto and 

control blocks) of the moving dots task twice (in total four blocks), once ON stimulation and 

once OFF stimulation, with the order counterbalanced between participants. Due to the 

moving dots stimui were presented psudo-randomly, it was assumed that no here were no 
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learning/practice effects on the task performance. In addition, a study using the same task 

paradigm has suggested that there were no learning/practice effects on the behavioural 

parameters for the moving dots task (Huang et al., 2015), therefore the healthy controls 

performed the task once. In addition, it should affect the behavioural parameters for PD 

patients whether they were tested ON then OFF stimulation or OFF then ON stimulation. The 

task and all the questionnaires were performed by all participants on the same day. The study 

was approved by the joint ethics committee of the UCL Institute of Neurology and the 

National Hospital for Neurology & Neurosurgery. Informed consent was obtained from all 

participants. Clinical data of PD patients were shown in Table 4.2. 
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Table 4.2 Clinical data of patients with Parkinson’s disease. 
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The moving dots task 

In the present study, a moving dots task paradigm (Britten et al., 1992) with block 

design was used to assess the task switching behaviour. As introduced in previous 

Chapters, the moving dots paradigm requires participants to decide the direction of a 

cloud of moving dots on a computer screen. The coherence levels of the moving dots 

may be manipulated for experimental purpose. For the ‘Automatic’ blocks, all trials 

contained moving dots with 100% coherence, which makes it very easy for the 

participants to decide the direction of the moving dots. For the ‘Controlled’ blocks, 

the dots coherence varied from 5% to 50% (including 5%, 10%, 15%, 25%, 35% and 

50%), which required participants to decide under conflicts that would take more 

cognitive processing to make correct responses. All participants went through the 

order of ‘Auto block- Control block- Auto block’ to investigate task switching 

behaviours. In addition to the task switching behaviour, the moving dots paradigm 

also provides a chance to investigate the modulation of SAT and the ability to sample 

and integrate sensory information in guiding responses. The numbers of trials in for 

each block were selected to obtain reliable parameter estimation in diffusion 

modelling while at the same time avoiding fatigue for the patients (Lerche et al., 

2017).  

 

Data Analysis 

R (R Core Team, 2013) and IBM SPSS software were used to analyze the data. 

Reaction times (RTs) of correct trials and response accuracy were measured as 

dependent variables. Linear mixed model (LMM) was used to fit reaction time with 

DBS (DBS ON/ DBS OFF/ HC), and Blocks (B1/ B2/ B3) as fixed effects. Subject 

was assigned as a random effect to account for subject-by-subject variation in overall 

RTs. In addition to a random intercept, a random slope in Type has also been added 
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into the model, which means that the rate at which individuals made decisions based 

on the Speed/Accuracy instructions is different from person to person.  

 

To construct the mixed model, R package lme4 (Bates, Maechler & Bolker, 2012) was 

used. The Maximum Llikelihood (ML) approach was used for parameter estimation. 

The Likelihood Ratio Test was used as a mean to attain p-values of the fixed effects, 

which compared models with full factors and reduced factors to determine the 

significance of a fixed effect. Moreover, a generalized linear mixed model (GLMM) 

was used to fit the response accuracy data due to the data being non-normal. For the 

present data a binomial distribution with a logistic link was selected to construct the 

model, at the same time it was specified that the response accuracy could vary 

randomly across subjects. ML approach with Laplace approximation was used for 

parameter estimation. DBS (DBS ON/ DBS OFF/ HC), and Blocks (B1/ B2/ B3) were 

assigned as fixed effects. Subject was assigned as a random effect to account for 

by-subject variation in overall response accuracy. p<.05 was used as a criterion for 

statistical significance. The Akaike information criterion (AIC), which estimates the 

relative quality of a statistical model given a specified data set, was used for model 

selection (Bozdogan, 1987). The relative quality of the model is indicated by the 

calculated information loss, therefore the model that has the minimised AIC would be 

chosen as the most fitted model given the specified dataset.  

 

Hierarchical Drift Diffusion Model (HDDM) 

In addition to the behavioural measurement, computational model was applied to 

derived underlying cognitive mechanisms during SAT modulation and sensory 

information integration. The diffusion model has been widely used in investigating 

underlying cognitive processes especially for two-forced-choice tasks (Voss & Voss, 
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2007; Voss et al., 2015; Ratcliff, 1978; Ratcliff & McKoon, 2008). In the diffusion 

model, three variables were calculated and discussed: the boundary separation, the 

non-decision time and the drift rate. The boundary separation (a) represents the 

response threshold to reach a decision/response. The longer the distance between the 

starting point and boundary threshold, the longer the response time is and the longer it 

takes to make a decision/response, and lesser errors are likely to occur. Conversely, 

the shorter the distance between the starting point and the boundary ` threshold, the 

faster a decision would be made, but the person is more likely to make errors. The 

components of the process are defined as having three phases: perceptual processing 

(processing the stimulus) with a certain duration, decision phase with a certain 

duration and response phase with a certain duration. The non-decision time (t0) is 

defined as the sum of the perceptual processing time plus the response time. Drift rate 

(v) refers to as the as the speed of the information accumulation process which leads 

to one of the two decision boundaries, for the current experiment it represents the 

certainty/confidence to distinguish between noise and signal. A higher drift rate 

suggests a higher certainty/confidence to distinguish noise and signal, which should 

be the case on easier higher coherence trials, whereas a lower drift rate at lower levels 

of coherence reflects a lower certainty/confidence to distinguish between noise and 

signal and to choose the direction of the moving dots on the harder trials.  

 

To quantitatively fit the diffusion model to the behavioural data, a Python-based 

hierarchical drift diffusion model (HDDM) toolbox (Wiecki et al., 2013) was used. 

HDDM uses hierarchical Bayesian parameter estimation methods for simultaneous 

estimation of subject parameters and the group distribution from which they are 

drawn, at the same time providing measures of uncertainty in the posterior 

distribution (Figure 4.2). In addition, HDDM requires less data per subject/condition 
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than the non-hierarchical method, is able to deal with outliers and it allows for 

Bayesian data analysis. HDDM includes a regression model that allows estimation of 

trial-by-trial influences of a covariate onto model parameters. In the present study, 

HDDM was fitted to the behavioural data using the ‘HDDMRegressor’ function, 

which allows individual parameters to be described by a linear model specification. 

One of the benefits of estimating a model in a Bayesian framework is that significant 

testing can be directly performed on the posterior rather than relying on frequentist 

statistics. The Bayesian approach uses probability to quantify uncertainty and makes 

more precise probability statements about the state of the system by calculating the 

probability of a model given collected data (i.e. P(model | data)) (Puga et al., 2015). 

  

 

Figure 4.2 Basic graphical hierarchical model implemented by HDDM for 

estimation of the drift-diffusion model. Round nodes represent random variables. 

Shaded nodes represent observed data. Directed arrows from parents to children 

visualize that parameters of the child random variable are distributed according to its 

parents. Plates denote that multiple random variables with the same parents and 

children exist. The outer plate is over subjects while the inner plate is over trials. 

Figure from Wiecki, T., Sofer, I., and Frank, M. (2013). 
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4-4. Results 

The results are presented form three perspectives: (1) behavioural data from task 

switching and moving dots task (SAT modulation and sensory information integration) 

points of view, (2) application of computational model on the behavioural data, and (3) 

comparisons between current and previous studies using the same moving dots task. 

 

4-4-1 The analyses of the behavioural data 

Response accuracy and RTs during task switching 

Firstly, to examine how well participants performed the task, a GLMM was created 

using response accuracy as the dependent variable, with DBS (STN DBS ON/ DBS 

OFF/ HC) and Block (Block 1/ Block 2/ Block 3) set as fixed effects and subject as a 

random effect. For the variable ‘Block’, Block 1 represents the first block that was an 

Auto block with 100% dot coherence, following by a Control block (Block 2) with 

varied dots coherence and finally another Auto block (Block 3). Such order of blocks 

includes both switching from automatic behaviour to control behaviour, and switching 

from controlled behaviour to automatic behaviour. Note that the effects of all factors 

are expressed relative to the intercept conditions, which were set as the baselines. 

Here STN DBS ON was set as the intercept condition for DBS factor, whereas Block 

1 was set as the intercept condition for Block. 

 

The model showed a significant difference on response accuracy between Block 1 and 

Block 2 (Z=-4.348, p<.0001), suggesting that for all participants the performance on 

Block 1 (automatic block) was significantly better than on Block 2 (controlled block), 

which is in line with predictions. In addition, for PD patients ON stimulation, there is 

a possible negative trend on response accuracy between Block 3 and Block 1 

(Z=-1.705, p=0.088), suggesting that PD patients with STN DBS ON had a trend to 
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have worse performance during Block 3 than Block 1. Both Block 3 and Block 1 were 

Auto blocks with 100% dot coherence; such a negative trend may potentially be the 

results of impaired task switching induced by DBS interrupting the function of STN 

on proactive switching in PD patients. However, the effect size of the trend is 

considered small (Hedge’s g = 0.216). There was no difference on response accuracy 

(Z=-0.387, p=0.699) between PD patients ON versus OFF stimulation. In contrast, 

there is a significant difference on response accuracy between PD patients with STN 

DBS ON and age-matched HCs (Z=3.169, p=0.002), indicating that HCs had better 

performance than PD patients during Block 1. The effect size for the difference on 

response accuracy between PD patients with STN DBS ON during Block 1 is medium 

(Hedge’s g = 0.568). Moreover, the two-factor interaction Block x DBS showed a 

significant difference (Z=-3.244, p=0.001), which suggested that the difference on 

response accuracy for the two blocks was larger for HCs than for PD patients with 

STN DBS ON. The effect size of difference between Block 1 and Block 2 for HCs is 

large (Hedge’s g = 1.003) and the effect size of difference between Block 1 and Block 

2 for PD patients with STN DBS ON is medium (Hedge’s g = 0.561). As shown in 

Figure 4.3, such a difference was reflected by the significantly better performance for 

HCs during automatic blocks. 

 

The results together suggest that (1) all participants had higher response accuracy 

during Auto blocks than Control blocks; (2) the acute manipulation of STN DBS had 

no effects on response accuracy, and (3) PD patients were able to perform the Control 

blocks as well as age-matched HCs, however during Auto blocks PD patients across 

both stimulation states had significantly lower response accuracy than HCs. Figure 

4.3 illustrates the response accuracy during task switching for all participants.  
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Figure 4.3 Response accuracy during task switching. Standard error means are 

presented as the error bars. The asterisk symbols denote statistically significant 

difference. 

 

 

To further examine how the participants perform the behavioural task, reaction times 

(RTs) of correct trials were analysed with linear mixed models (LMMs). The LMM 

took RTs of correct trials as the dependent variable, with DBS (STN DBS ON/ STN 

DBS OFF/ HC) and Block (Block 1/ Block 2/ Block 3) set as the fixed effects and 

subject as the random effect. Note that the effects of all factors are expressed relative 

to the intercept conditions, which were set as the baselines. Here STN DBS ON was 

set as the intercept condition for DBS factor, whereas Block 1 was set as the intercept 

condition for Block.  

 

The model showed that there was a significant difference on RTs between Block 2 and 
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Block 1 for PD patients ON stimulation (t=9.561, p<.0001), indicating that RTs during 

Block 2 RTs were significantly slower (higher) than during Block 1, which is in line 

with the prediction that RTs during Control blocks would be higher than during Auto 

blocks. The effect size of the significant effect of Block on RTs for PD patients with 

STN DBS ON is larger (Hedge’s g = -1.107). There was no difference between Block 

1 and Block 3 for PD patients ON stimulation (t=-1.279, p=0.201), indicating that PD 

patients ON stimulation had faster RTs when switching from controlled behaviour to 

automatic behaviour. During Block 1, there was no difference between PD patients 

ON stimulation and age-matched HCs (t=-1.245, p=0.224). There was a significant 

two-factor interaction between Block x DBS (t=2.895, p=0.004), showing that the 

difference on RTs between the two blocks are higher for HCs than for PD patients ON 

stimulation. In addition, the effect size of difference between Block 1 and Block 2 for 

HCs is larger (Hedge’s g = -1.720) than the effect size of difference between Block 1 

and Block 2 for PD patients with STN DBS ON (Hedge’s g= -1.107), which suggests 

that the difference is larger for HCs than for PD patients with STN DBS ON. Together 

the results suggest that HCs were actually more sensitive during task switching 

compared to PD patients with STN DBS ON. In summary the results indicate that (1) 

all participants had successful task-switching behaviour reflecting as significantly 

higher (slower) RTs during Control blocks than Auto blocks, (2) STN DBS improved 

the RTs of PD patients to a degree that were as fast as age-matched HCs, and (3) 

however, PD patients ON stimulation had different behavioural patterns than OFF 

stimulation and age-matched HCs. Surprisingly the different behavioural patterns 

mainly occurred during Auto blocks when sensory information was sufficient (Table 

4.3). Figure 4.4 illustrates the RTs of correct trials during task witching for all 

participants. 
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Figure 4.4 RTs of correct trials for PD patients with STN DBS ON and OFF 

stimulation and for healthy controls (HC). Standard error means are presented as the 

error bars. The asterisk symbols denote statistically significant difference. Visually the 

slopes of DBS OFF and HC seem to be parallel, however the slop of DBS ON seems 

to be steeper, indicating a trend of different behavioural pattern for PD patients ON 

stimulation.  

 

 

Table 4.3 Summary of main findings of the behavioural data.  

 Task switching from Auto blocks to Control blocks 

Response 

accuracy 

¾ All participants had successful task switching behaviour reflecting as 

better task performance during Auto blocks than Control blocks. 

¾ The acute manipulation of STN DBS had no effects on response 

accuracy. 

¾ PD patients were able to perform the Control blocks as well as 

age-matched HCs, however during Auto blocks PD patients had 

significantly lower response accuracy than HCs.  

RTs of correct 

trials 

¾ All participants had faster RTs during Auto blocks than Control blocks. 

¾ Acute manipulation of STN DBS improved RTs for PD patients. 

¾ PD patients ON stimulation showed different behavioural patterns 

* 

* 

* 

* 
* * 
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compared to age-matched HCs and when being OFF stimulation. 

 

Response accuracy and RTs under the effects of Speed/Accuracy instructions and 

dots coherence 

Response accuracy 

In addition to task switching, behavioural data were also analysed under the effects of 

Speed/Accuracy instructions and dots coherence to study the potential effects of STN 

DBS on the underlying mental processes of SAT modulation and information 

integration. Initially data analyses were performed using factors Type (Speed/ 

Accuracy), Level (5%/ 10%/ 15%/ 25%/ 35%/ 50%/ 100%) and DBS (STN DBS 

ON/STN DBS OFF/ HC) on dependent variables response accuracy and RTs (the 

results are shown in the Appendix B). However, such a procedure raised a problem 

that each coherence level may contain too small of trial numbers comparing to the 

100% moving dots trials therefore decreases the power of the model. To decrease this 

difference on the trial number, instead of comparing each individual coherence level, 

the various coherence levels were divided into three groups: Low coherence levels 

(5%, 10%, 15%), High coherence levels (25%, 35%, 50%) and 100% coherence level 

(automatic behaviour). To examine how participants performed the task as a function 

of Speed/Accuracy instructions and dots coherence, a GLMM was created using 

response accuracy as the dependent variable, with Type (Speed/ Accuracy), 

Coherence (Low coherence/ High coherence/ 100% coherence) and DBS (STN DBS 

ON/STN DBS OFF/ HC) set as fixed effects and subject as a random effect. all levels 

of the categorical variables are compared to the base level (reference category). Here 

the base levels are: Accuracy (Type), 100% coherence (for Coherence) and STN DBS 
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ON (for DBS).  

 

The model shows that all participants had higher response accuracy when Accuracy 

was emphasized (Z=-4.27, p<.0001, Hedge’s g = 0.55). The effect of Type on 

response accuracy was significantly reversed during Low coherence trials (Z=2.06, 

p=0.039, Hedge’s g =0.04) suggesting that when sensory information was insufficient, 

SAT had less impact on task performance for all participants. In addition, 

age-matched HCs had higher response accuracy than PD patients ON/OFF stimulation 

(Z=3.46, p<.0001, Hedge’s g =0.37) during 100% coherence trials. PD patients (both 

ON and OFF stimulation) had higher response accuracy during 100% than Low 

coherence trials (Z=-5.4, p<.0001, Hedge’s g = 0.4), however, response accuracy did 

not differ between 100% coherence trials and High coherence trials (Z=0.60, p=0.546) 

for PD patients. On the other hand, task performance of age-matched HCs was 

significantly related to dots coherence as response accuracy was significantly lower 

for High coherence trials (Z=-2.7, p=0.007, Hedge’s g =0.44) and for Low coherence 

trials (Z=-3.2, p=0.001, Hedge’s g =1.54) compared to 100% coherence trials. No 

other significant interaction was found. The results showed that (1) all participants 

had higher response accuracy when Accuracy was emphasized during 100% 

coherence and High coherence trials but not Low coherence trials, (2) the acute 

manipulation of STN DBS did not produce negative effects on response accuracy for 

PD patients, (3) age-matched HCs had higher response accuracy than PD patients 

when dots coherence was 100%, and (4) age-matched HCs had higher response 

accuracy as the dots coherence increased. However, for PD patients both ON and OFF 

stimulation, such an effect of dots coherence on response accuracy was only observed 

between Low coherence trials and 100% coherence trials but not between High 

coherence trials and 100% trials. Figure 4.5 illustrates the above results.  
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Figure 4.5 Response accuracy under the effects of Accuracy and Speed instructions and various dots coherence for PD patients with STN 

DBS ON (DBS ON), STN DBS OFF (DBS OFF) and age-matched healthy controls (HCs). Data of PD patients ON stimulation are presented in 

colour red, data of PD patients OFF stimulation are presented in colour blue, and HCs are presented in colour green. The standard error of the 

mean presented as the error bars. The asterisk symbols denote statistically significant differences. 
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Reaction Times 

Furthermore, to examine how participants performed the task as a function of 

Speed/Accuracy instructions and dots coherence, a LMM was created using RTs of correct 

responses as the dependent variable, with Type (Speed/ Accuracy), Coherence (Low 

coherence/ High coherence/ 100% coherence) and DBS (STN DBS ON/ DBS OFF/ HC) set 

as fixed effects and subject as a random effect. All levels of the categorical variables are 

compared to the base level (reference category). Here the base levels are: Accuracy (Type), 

100% coherence (for Coherence) and STN DBS ON (for DBS).  

 

The model shows that all participants had faster RTs when Speed was emphasized 

(t(4823)=-5.99, p<.0001, Hedge’s g = 0.32) for all coherence trials, except for the 100% 

coherence trials such an effect of Speed instruction was significantly reversed for 

age-matched HCs (t(4823)=2.75, p=0.006, Hedge’s g =0.30), which means that for HCs there 

was no effect of Speed/Accuracy instructions on RTs during 100% coherence. All participants 

had faster RTs when dots coherence was 100% compared to High coherence trials 

(t(4823)=3.04, p=0.002, Hedge’s g =0.50) and compared to Low coherence trials 

(t(4823)=11.11, p<.0001, Hedge’s g =0.86). PD patients had faster RTs when ON than OFF 

stimulation (t(4823)=4.86, p<.0001, Hedge’s g =0.66). No difference was found in RTs 

between PD patients ON stimulation and age-matched HCs (t(26)=-1.69, p=0.104). No other 

significant interactions were found. The results showed that (1) all participants had faster RTs 

when Speed was emphasized, except for when dots coherence was 100%, such an effect of 

Speed instruction was eliminated for age-matched HCs, (2) all participants had faster RTs 

when decision conflicts were low (i.e. when dots coherence was high), (3) the acute 
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manipulation of STN DBS significantly decreased RTs for PD patients to the level of the RTs 

of HCs.   
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Figure 4.6 Reaction time of correct trials under the effects of Accuracy and Speed instructions and various dots coherence (Low coherence/ 

High coherence/ 100% coherence) for PD patients with STN DBS ON (DBS ON), STN DBS OFF (DBS OFF) and age-matched healthy controls 

(HCs). Data of PD patients ON stimulation are presented in colour red, data of PD patients OFF stimulation are presented in colour blue, and 

HCs are presented in colour green. Standard error of the mean is presented as the error bars. The asterisk symbols denote statistically significant 

differences. 

* 

* 

* 

* 

* 
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4-4-2 The application of the Hierarchical drift diffusion model (HDDM) to the 

behavioural data of task switching 

HDDM fitted to the behavioural data for task switching 

The above results show that PD patients with STN DBS ON had different behavioural 

patterns during task switching compared to when being OFF stimulation and age-matched 

HCs, which is in line with the hypothetical role of the STN on proactive switching and the 

hypothesis that DBS of the STN interrupts such role that leads to impaired task switching in 

PD patients.  

 

As discussed in previous chapter, the application of the HDDM allows the study of how task 

manipulations affect the underlying cognitive processes when performing the task for all 

participants. In the HDDM, the posterior distribution of three model parameters (i.e. the 

decision threshold, the non-decision time and the drift rate) was estimated under the effects of 

task manipulations and their interactions. Two main factors were considered for behavioural 

switching in the model: DBS (BDS ON/ DBS OFF/ HC) and Block (Block 1/ Block 2/ Block 

3). Here an HDDM was constructed assuming that the decision threshold (a) and 

non-decision time (t), of which the former determines when to make responses whereas the 

later represents time for non-decision processes such as stimulus encoding and response 

execution, would vary between participants (i.e affected by the factor DBS) but would not be 

affected by the factor Block. In addition, the model considered drift rate (v) to vary under the 

effects of both DBS and Block, the former indicates difference on the ability of information 

accumulation among different participants and the later indicates the difference on the quality 

of sensory information provided by different blocks. For brevity the figures of the model are 
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not shown here, please refer to Appendix B. In summary the results from HDDMs show that 

(1) overall HCs had lower decision threshold, higher non-decision time and higher drift rate 

than PD patients, and (2) all participants had higher drift rate during Block 1 and lower drift 

rate during Block 2 (potentially due to task manipulations on moving dots coherence), 

however PD patients with STN DBS ON were less influenced by the switching of blocks on 

drift rate compared to being STN DBS OFF and age-matched HCs.  

 

HDDM fitted to the behavioural data under the effects of speed/accuracy instructions and 

dots coherence 

In previous HDDMs, the models were constructed using factors DBS and Block to assess the 

underlying cognitive components. To look into the data from the perceptual decision-making 

point of view, an HDDM using DBS (STN DBS ON/ STN DBS OFF/ HC), Type (i.e. type of 

the instruction: Speed/Accuracy) and Coherence (Low coherence/ High coherence/ 100% 

coherence) as fixed factors were further created. Here the HDDM was constructed assuming 

that the decision threshold (a) would vary between participants (DBS), different types of 

instructions (Type) and the quality of sensory evidence (Coherence). In addition, the model 

considered drift rate (v) to vary under the effects of DBS and Coherence but unaffected by 

Type. Non-decision time was eliminated from the model due to failed convergence of the 

model.  

 

Table 4.4 The effect of Speed instructions on decreasing boundary separation (a) for all 

participants 

The effect of Speed instructions on decreasing boundary separation (a) 
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 Low Coherence  High Coherence 100% Coherence 

STN DBS ON O O O 

STN DBS OFF — + — 

HC O O — 

‘O’= the effect of Speed instructions occurred, ‘—’= the effect of Speed instructions 

decreased, ‘+’= the effect of Speed instructions increased. Note that in the model data from 

STN DBS ON were set as the reference level for comparison.  

 

Taken together, the HDDM shows that (1) all participants had higher decision threshold and 

lower drift rate when moving dots coherence decreased, (2) PD patients with STN DBS ON 

had lower decision threshold and lower drift rate than age-matched HCs but higher decision 

threshold and higher drift rate than being STN DBS OFF, (3) the acute manipulation of STN 

DBS had impacts on how PD patients performed the moving dots task under the effects of 

moving dots coherence and Speed/Accuracy instructions (Table 4.5). 
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Table 4.5 Summary of the behavioural data and the application of hierarchical drift diffusion model (HDDM) on the behavioural data 

 

SAT=Speed and Accuracy trade-off; RTs= reaction times; PD=Parkinson’s disease; HCs=heanthy controls 
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4-4-3 Comparison between previous and present studies 

In addition to behavioural data analysis and application of computational model, to see 

whether current data replicated the results of Green et al (2013) study or the Pote et al (2016) 

study, the data were further analysed as following. 

 

Comparing to Green et al (2013) study 

First the trials from the controlled blocks (of which the coherence levels ranged from 5%, 

10%, 15%, 25%, 35% to 50%) were analysed. A GLMM was created using response 

accuracy as the dependent variable, with Type (Speed/ Accuracy), Coherence (5%/ 10%/ 

15%/ 25%/ 35%/ 50%) and DBS (STN DBS ON/ DBS OFF/ HC) set as fixed effects and 

subject as a random effect. All levels of the categorical variables are compared to the base 

level (reference category). Here the base levels are: Accuracy (for Type), 5% coherence (for 

Coherence) and STN DBS ON (for DBS). For brevity the output of the GLMM is not shown. 

Figure 3.4 illustrates the results of the model. Type of instruction had no effects on response 

accuracy for all participants (PD patients with DBS ON: Z= -0.01, p=0.992; PD patients with 

DBS OFF: Z=0.35, p=0.726; HCs: Z=0.93, p=0.354), suggesting that Speed/Accuracy 

instruction had limited influence on response accuracy. For all participants, as the coherence 

level increased response accuracy also significantly increased (15%: Z=2.56, p=0.011, 

Hedge’s g= 0.27; 25%: Z=4.02, p<.0001, Hedge’s g=0.43; 35%: Z=4.41, p<.0001, Hedge’s 

g=0.54; 50%: Z=4.41, p<.0001, Hedge’s g=0.60), indicating that response accuracy was 

closely related to the quality of sensory information. There was no difference in response 

accuracy between PD patients ON versus OFF stimulation (Z=0.93, p=0.354) or between PD 



 

224 
 

patients ON/OFF stimulation and HCs (Z=0.35, p=0.726). No significant interactions were 

found. 

 

Second, a LMM was created using RTs as the dependent variable, with Type (Speed/ 

Accuracy), Coherence (5%/ 10%/ 15%/ 25%/ 35%/ 50%) and DBS (STN DBS ON/ DBS 

OFF/ HC) set as fixed effects and subject as a random effect. All levels of the categorical 

variables are compared to the base level (reference category). Here the base levels are: 

Accuracy (for Type), 5% coherence (for Coherence) and STN DBS ON (for DBS). For 

brevity the output of the LMM is not shown. Figure 3.5 illustrates the results of the model. 

Type had a significant effect on RTs for all participants (t(3693)=-4.88, p<.0001, Hedge’s 

g=0.40), suggesting that all participants responded faster when Speed was emphasised. 

Moreover, for all participants RTs decreased/became faster as the dots coherence increased 

(25%: t(3638)=-4.30, p<.0001, Hedge’s g=0.38; 35%: t(3639)=-5.92, p<.0001, Hedge’s 

g=0.50; 50%: t(3638)=5.31, p<.0001, Hedge’s g=0.53), indicating that when sensory 

information was sufficient (i.e. higher dots coherence), all participants made responses faster. 

There was no differences in RTs between PD patients ON versus OFF stimulation 

(t(3638)=1.55, p=0.122) or between PD patients ON/OFF stimulation and HCs (t(58)=-0.52, 

p=0.803). No significant interaction was found. The results showed that, contrary to the 

Green et al study, which found that STN DBS reduced the effect of the present data did not 

find that acute manipulation of STN DBS had no significant effect when making decisions 

under conflict for PD patients. Figure 4.7 illustrates the above results.  
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Figure 4.7 Response accuracy and Reaction time (ms) under the effects of Speed (SP)/Accuracy (AC) instructions and dots coherence from 

5% to 50% for PD patients with STN DBS ON (DBS ON), STN DBS OFF (DBS OFF) and age-matched healthy controls (HCs). Data of PD 

patients ON stimulation are presented in colour red, data of PD patients OFF stimulation are presented in colour blue, and HCs are presented in 

colour green. The standard error of the mean is presented as the error bars. The asterisk symbols denote statistically significant differences. 
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Comparing to Pote et al (2016) study 

To further compare current data with the Pote et al (2016) study, behavioural parameters from 

50% trials (derived from the various coherence blocks) and automatic blocks (constant 100% 

dots coherence) were analyzed with GLMM and LMM. Type (Speed/ Accuracy) and DBS 

(STN DBS ON/ DBS OFF/ HC) were set as fixed effects and subject was set as a random 

effect. All levels of the categorical variables are compared to the base level (reference 

category). Here the base levels are: Accuracy (for Type) and STN DBS ON (for DBS). For 

brevity the outputs of the models are not shown. Figure 3.6 & Figure 3.7 illustrates the results 

of the models.  

 

For 50% dots coherence trials, all participants responded faster (t(593)=-3.14, p=0.002, 

Hedge’s g=0.24) and made more errors (Z=-2.18, p=0.029, Hedge’s g=0.33) when Speed was 

emphasised. There was no difference in response accuracy between PD patients ON versus 

OFF stimulation (Z=0.86, p=0.389) and no difference in response accuracy between PD 

patients and age-matched HCs (Z=0.78, p=0.437). PD patients made faster responses when 

ON stimulation than OFF stimulation (t(593)=3.36, p=0.001, Hedge’s g=0.28). There was no 

difference on RTs between PD patient with DBS ON stimulation and age-matched HCs 

(t(41)=-0.81, p=0.422). No significant interaction was found. Figure 3.6 illustrates the 

behavioural results of 50% dots coherence trials. The results from 50% trials suggest that the 

acute manipulation of STN DBS did not specifically induce faster RTs especially when Speed 

instruction was emphasised for PD patients. Instead, PD patients with STN DBS ON were 

able to perform as fast as age-matched HCs and did not sacrifice the accuracy, which may 

suggest an improvement on motor function produced by STN DBS. However, note that the 
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data from 50% trials were derived from a block with various dots coherence therefore the 

trail numbers are small, and that the various coherence was presented pseudo-randomly, 

therefore it is not possible to neglect the effect of coherence order. These two confounding 

factors may interfere with drawing a concrete conclusion on the effect of STN DBS and 

Speed/Accuracy instruction on making perceptual decisions for PD patients independently of 

task difficulty, if by simply looking at data from the 50% coherence trials. The results from 

100% coherence blocks were therefore analysed to provide more evidence on how STN DBS 

and Speed/Accuracy instruction affect decision-making under conditions which decision 

conflicts were absent. For 100% dots coherence blocks, all participants had higher response 

accuracy when Accuracy was emphasised (Z=-4.25, p<.0001, Hedge’s g=0.2). No difference 

was found between PD patients ON versus OFF stimulation in response accuracy (Z=-0.35, 

p=0.724). Age-matched HCs had higher response accuracy than PD patients (Z=3.27, 

p=0.001, Hedge’s g=0.28). No significant interactions were found for response accuracy. 

Moreover, during 100% coherence trials PD patients ON stimulation had faster RTs than OFF 

stimulation (t(3756)=5.35, p<.0001, Hedge’s g=0.37). Age-matched HCs did not have faster 

RTs when Speed was emphasised during the 100% dots coherence trials due to the effect of 

Speed was significantly reversed for HCs (t(3756)=3.39, p=0.001, Hedge’s g=0.21), which 

suggests that during 100% coherence the effect of Speed/Accuracy instructions was 

eliminated for HCs but not to a degree that RTs were faster under Accuracy instructions 

(Figure 3.7). There was no difference on RTs between PD patients ON stimulation and HCs 

(t(24)=-1.38, p=0.180). No other significant interaction was found. Figure 3.7 illustrates the 

behavioural results of 100% dots coherence trials. By showing that PD patients with STN 

DBS ON had faster RTs along with making more incorrect responses than being OFF 
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stimulation especially under speed pressure, Pote et al (2016) suggested that STN stimulation 

induced impulsive actions in patients when acting under speed pressure independently of task 

difficulty. However, in the present study PD patients with STN DBS ON did not make more 

errors despite having in general faster RTs compared to being OFF stimulation when dots 

coherence was 100%. The decrease in RTs for PD patients ON stimulation was not induced 

by the speed pressure, but could likely be a result of the benefits of STN DBS on motor 

function, when performing moving dots task without decision conflicts. Therefore, the results 

showed that the acute manipulation of STN DBS in the present study did not induce 

impulsive behaviours (faster RTs along with more incorrect responses) when under Speed 

pressure during a constant dots coherence or 50% dots coherence. Figure 4.8 illustrates the 

above results.  
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Figure 4.8 Response accuracy and Reaction time (ms) under the effects of Speed (SP)/Accuracy (AC) instructions and dots coherence from 

5% to 50% for PD patients with STN DBS ON (DBS ON), STN DBS OFF (DBS OFF) and age-matched healthy controls (HCs). Data of PD 

patients ON stimulation are presented in colour red, data of PD patients OFF stimulation are presented in colour blue, and HCs are presented in 

colour green. The standard error of the mean is presented as the error bars. The asterisk symbols denote statistically significant differences.
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4-5 Discussion 

The present study investigated the acute manipulation of STN DBS in PD patients on task 

switching. In addition, by using a block-design moving dots task that also manipulated 

Speed/Accuracy instructions and various moving dots coherence, the acute effects of STN 

DBS on SAT modulation and sensory information integration were analysed as well. The 

main findings of the above results are: (1) from task switching point of view, the acute 

manipulation of STN DBS did not significantly induce deficits on behaviours for PD patients, 

(2) from the SAT modulation and sensory information integration point of view, acute effects 

of STN DBS improved RTs and underlying cognitive components (i.e. drift rate and 

boundary separation) but impaired making responses during 100% coherence trials in PD 

patients, and (3) the acute manipulation of STN DBS had impacts on behavioural patterns for 

PD patients. Similar to the results section, the following discussion is presented from three 

aspects: (1) the effects of STN DBS on behavioural switching, (2) the effects of STN DBS on 

SAT modulation and sensory information integration, and (3) comparison between present 

and previous results using similar moving dots tasks.  

 

The effects of STN DBS on behavioural switching 

The results from the present behavioural task did not show that the acute manipulation of 

STN DBS had significant influences on behavioural switching from Auto blocks to Control 

blocks in PD patients. Instead, both behavioural data and computational parameters suggest 

that PD patients had impaired mental processes during Auto blocks, which would be further 

discussed in the next section. PD patients with STN DBS ON had a possible negative trend to 

have worse performance during Block 3 than Block 1. Since both Block 3 and Block 1 were 
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Auto blocks with 100% dot coherence; such a negative trend may potentially be the results of 

impaired task switching induced by DBS interrupting the function of STN on proactive 

switching in PD patients. However no acute effect of STN DBS was found on behavioural 

switching from Auto blocks to Control blocks in PD patients. A few reasons may contribute 

to the non-significant results on task switching: firstly, the attentional demands of the Control 

blocks were within the available resources of PD patients. Brown & Marsden (1988) 

proposed a hypothesis that the locus of attentional control is an important aspect in 

determining the presence and/or the magnitude of cognitive deficits in PD patients, which 

suggests that PD patients may not show deficits performing that task if the demands of the 

task are within the available attentional resource. The results are in line with the hypothesis 

showing that performance of PD patients during the Control blocks maintained despite the 

increased task demands. Secondly, previous studies have shown that PD patients with STN 

DBS ON had impairments on performing Stroop interference task, which requires 

participants to withhold a predominant/automatic response (i.e. word reading) and activate a 

more controlled one (i.e. reading ink colour instead of word) (Combs et al., 2015; Troster, 

Jankovic, Tagliati, Peichel, & Okun, 2017). In the present study, the automatic behaviours 

were defined as responding to 100% of the dots moving to the same direction, which is not as 

predominantly encoded in the brain as word reading. Suck task difference may contribute to 

the non-significant results.   

 

Despite the behavioural results showing no significant negative effects on task switching, the 

psychological tests showed that PD patients with STN DBS ON had robustly slower RTs and 

lower response accuracy than age-matched HCs on the Colour Word Interference 
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Test-Inhibition/Switching (i.e. Stroop interference task, see Table 4.1). The test requires 

participants to say the ink colours of the printed colour words but when encountering a 

certain cue (e.g. when the printed word was in a rectangular text box), participants are 

instructed to say the printed colour words instead of the ink colours. Note that PD patients 

only performed the task once (when being STN DBS ON), therefore it is unknown that 

whether such deficits were induced by the acute effect of STN DBS. Nevertheless, the results 

from this task indicate that PD patients with STN DBS ON had impaired behavioural/mental 

set switching. This is consistent with previous studies showing that PD patients were 

impaired in performing tasks that require mental sets/rules switching (Combs et al., 2015; 

Troster et al., 2017). In addition to the role of STN, behavioural and imaging studies show 

that patients who suffered from frontal lobe damage showed deficits in task switching (Owen 

et al., 1993; Holroyd & Coles, 2002; Rushworth et al., 2004; Botvinick et al., 2004; Sakai, 

2008), which may indicate that the cortico-basal ganglia loops are closely involved in 

controlling task switching. Together the evidence suggests that task-switching may involve 

fundamentally different but related cognitive processes, which are controlled by distinct brain 

areas. Future studies are required to investigate these different connections on controlling 

task switching. 

 

Modulation of SAT requires the optimal estimation on the precision of the sensory input 

The results reported above show that Speed and Accuracy instructions had stronger impacts 

on behavioural data especially during high coherence level trials but not when coherence 

levels were low, which indicates that the modulation of boundary separation and potentially 

SAT requires the reliability of the sensory evidence to be known. In the theoretical 
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frameworks of a two-alternative-forced-choice task such as the diffusion model, the optimal 

decision-making processes are described as information integration to a threshold (Gold & 

Shadlen, 2002; Ratcliff & McKoon, 2008). However, Deneve (2012) proposed that such 

analogy hides a problem that to know how much information to be accumulated and set the 

optimal decision threshold, firstly the reliability of the sensory evidence must be known. 

Under the Bayesian framework, the modulation of decision threshold is thus associated with 

the reliability of sensory evidence and the inner drive to be fast/accurate. The present results 

not only support the involvement of the reliability of sensory information on drift rate, but 

also support the role of the reliability of sensory information on modulating decision 

threshold that affects the accuracy of the decisions.  

 

Interestingly, the above results show that during Control blocks PD patients were able to react 

as well as age-matched HCs, however during Auto blocks, PD patients not only had poorer 

performance and slower RTs, but also had lower drift rate and higher decision threshold 

compared to age-matched HCs. Moreover, PD patients with STN DBS ON had different 

behavioural patterns compared to being OFF stimulation and compared to age-matched HCs, 

reflecting as both HCs and PD patients with STN DBS OFF had bigger difference on RTs 

between Auto blocks and Control blocks, however for PD patients with STN DBS ON such a 

difference was significantly smaller (Figure 4.4). The results indicate that PD patients with 

STN DBS ON were slow in making decisions when sensory information was sufficient. 

Moreover, the application of the HDDM showed that PD patients with STN DBS ON, though 

had higher decision threshold, were less influenced by task switching on drift rate. One of the 

possible reasons may be the involvement of the Speed/Accuracy instructions that interrupted 
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the decision-making processes for PD patients with STN DBS ON. As shown in Table 4.4, 

for PD patients with STN DBS ON only, the modulation of decision threshold was influenced 

by Speed/Accuracy instructions during 100% coherence trials. For age-matched HCs and PD 

patients with STN DBS OFF, when sensory information was sufficient, the high reliability of 

the sensory information increased confidence in making decisions and surpassed the effect of 

Speed/Accuracy instructions on processing the decisions. However, for PD patients with STN 

DBS ON, even when the reliability of the sensory information was high, the effect of 

Speed/Accuracy instructions remained strongly on modulating decision threshold, resulting 

in slower RTs. 

 

Bogacz (2010) proposed four theories that explain the part of the cortico-basal ganglia circuit 

that modulates the Speed/Accuracy trade-off, including ‘cortical’, ‘striatal’, ‘STN’ and 

‘synaptic’ theories. All of the four theories are based on the mechanism that the Speed 

instructions increase the baseline of cortical integrators and cause changes in one of the four 

circuits. However these theories neglected the potential effect of the reliability of the sensory 

information, which in the present study has been shown to be important when making 

perceptual decisions. Future studies are in need to investigate (1) how normal STN activity 

modulates decision thresholds when simultaneously taking into accounts of the reliability of 

the sensory information, and (2) how DBS of the STN would affect this process in PD 

patients that lead to impairments when performing tasks require sensory information 

integration. 

 

Comparison between previous and present studies 
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As shown in introduction, two studies examining the acute effects of STN DBS on moving 

dots tasks found that (1) STN DBS induced significantly lower response accuracy and faster 

RTs under high decision conflict (1.6%, 4.8%, 8.0%) especially when accuracy was 

emphasized, indicating that stimulation reduced the effect of task difficulty/level of 

coherence of the moving dots on reaction times (RTs) (Green et al., 2013), and (2) when 

coherence level was kept constant at a relatively easy level (50%), STN DBS induced faster 

RTs and lower response accuracy for PD patients when Speed was emphasised (Pote et al., 

2016). Contrary to the Green et al (2013) study, the present study did not find an effect of 

STN DBS on reducing the effects of dot coherence, which potentially results from the fact 

that even the low coherence trials (5%, 10%, 15%) had higher coherence levels compared to 

the Green et study (2013) (1.6%, 4.8%, 8.0%). On the other hand, the present study showed 

that PD patients with STN DBS ON had significantly lower response accuracy when Speed 

was emphasised during High coherence trials but no significant difference on RTs compared 

to when being STN DBS OFF, which did not fully support the hypothesis that Speed pressure 

induces fast and low response accuracy in PD patients. Such an observation could result from 

the complex design of the current experiment, which may not be optimal in terms of studying 

the impulsive behaviours induced by STN DBS in PD. In addition, the Green et al (2013) 

study tested PD patients ON versus OFF stimulation OFF dopamine medication, whereas 

Pote et al (2016) study tested PD patients ON dopamine medication, therefore the effects of 

dopamine medication could not ne neglected. Despite the different procedures and 

behavioural results, the previous two studies and the present study all suggest a role of the 

STN and effects of DBS on affecting SAT, and modulating boundary threshold potentially via 

encoding the reliability of sensory information that is associated with the dots coherence. 
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Future studies are required to further investigate the effects of STN DBS on affecting SAT 

modulation, the direction of such effects, and the possibility of inducing negative effects on 

behaviours in PD patients.  
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Table 4.6 Behavioural data comparison between previous studies and the present result 
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Summary 

The present study shows no negative effect on task switching behaviours induced by the 

acute manipulations of STN DBS on a block-designed moving dots task. However, PD 

patients with STN DBS ON did show deficits on task switching during the 

Inhibition/Switching part of the Colour Word Interference Test compared to age-matched 

HCs. The evidence suggests that task-switching may involve fundamentally different but 

related cognitive processes, which are controlled by distinct brain areas. Moreover, the above 

results are in line with the hypothesis that the reliability of sensory information plays an 

important role on modulating SAT. Furthermore, PD patients still showed subtle difference on 

underlying cognitive components under the effects of DBS, which supports a role of the STN 

on SAT and sensory information integration. To further investigate how DBS may affect STN 

function on cognitive and motor control, in the next chapter I would study PD patients with 

STN DBS using a behavioural task that manipulated unexpected sensroy events which leads 

to ‘action reprogramming’.   
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Chapter 5 The effect of deep brain stimulation of the subthalamic nucleus on action 

reprogramming when encountering unexpected events 

5-1. Abstract  

Following previous results indicating that the deep brain stimulation (DBS) of the 

subthalamic nucleus (STN) may disrupt the role of the STN in inhibition in Parkinson’s 

disease (PD) patients, the present study aimed to investigate the potential effect of DBS STN 

on reprogramming actions when facing unexpected sensory events. The STN has been 

proposed to play a prominent role in motor inhibition, reprogramming planned actions and is 

involved in interruption of cognitive functions and attentional reorientation when 

encountering unexpected sensory events. To investigate such a role of the STN, ten patients 

with Parkinson’s disease (PD) treated with bilateral deep brain stimulation (DBS) of the STN 

were recruited to participate in the study using a probabilistic reaction time (RT) task. PD 

patients performed the task twice, once ON stimulation and once OFF stimulation, with a 

counterbalanced design. The performance of PD patients was also compared to twelve 

age-matched healthy controls (HCs). The results show that all participants were able to react 

fast during Predictable blocks/Probable trials than Unpredictable blocks/Improbable trials. In 

addition, response accuracy did not differ between Predictable and Unpredictable blocks for 

all participants, but for HCs response accuracy was higher during Probable trials than 

Improbable trials, such a difference was not observed in PD patients across stimulation states. 

Furthermore, PD patients exhibited robust speed and accuracy trade-offs when performing 

the probabilistic RT task, which may indicate that PD patients, especially PD patients OFF 

stimulation, were predominately aiming to act fast therefore sacrificed response accuracy. 

The results thus indicate that PD patients with STN DBS OFF could act as fast as 

age-matched HCs, however such fast responses would cost response accuracy. The present 

study did not show an effect of DBS on inducing impaired action reprogramming, however it 

did not rule out the the possibility of STN DBS to impaire motor/cognition control through 

inhibiton in PD patients. Moreover, in the present study PD patients treated with STN DBS 

were assessed ON medication, which may be the reason why the results did not reflect the 

hypothetical effects of DBS on interrupting the role of STN in cognitive and motor control. 
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5-2 Introduction 

Facing unexpected events is inevitable in daily life, which may lead to slowness in movement 

and cognitive distraction. When facing a surprising or an unexpected event, the brain has to 

inhibit the execution of a planned action, gather more information and generate a new action 

in order to reach a better outcome given the changed circumstance. Such a process of action 

adjustment is referred to as ‘action reprogramming’ (Mar, Piekema, Coles, Hulstijn, & Toni, 

2007).  

 

A significant feature of action reprogramming is the slowness in reaction time (RT) when 

encountering unexpected events. Such slowness has been associated with a global mechanism 

of motor inhibition via the frontal-basal ganglia connections (Wessel & Aron, 2013, 2015). In 

addition, evidence has shown that multiple routes are involved in an interaction between the 

primary motor area and the frontal cortex to mediate action inhibition during action 

reprogramming: a direct cortical route and a subcortical route via the basal ganglia, including 

the subthalamic nucleus (STN) (Neuber, Mars, Buch, Olivier, & Rushworth, 2010). Local 

field potential recordings on Parkinson’s disease (PD) patients undergoing DBS revealed that 

elevated STN activity is associated with post-error slowing of RTs, which suggests a role for 

the STN in motor adjustments following errors (Siegert et al., 2014). It has been 

well-established that the STN is involved in motor inhibition (Aron & Poldrack, 2006; van 

den Wildenberg et al., 2006; Kim & Hikosaka, 2015; Alegre et al, 2013; Obeso et al, 2014). 

Human imaging studies also provide evidence supporting the prominent role of the STN in 

suppressing an ongoing movement, and that decreasing STN activity releases the brain from 

inhibition (Aron &Poldrack, 2006; Aron, Behrens, Smith, Frank, & Poldrack, 2007; Li et al, 

2008; Forstmann et al, 2010). Such a mechanism is possibly through the ‘hyperdirect’ 

pathway in which the STN receives signals from the cerebral cortex and projects to the 

SNr/GPi (Nambu, Tokuno, & Takada, 2002; Kim & Hikosaka, 2015). Furthermore, in 

primate studies, the STN has been shown to mediate the control signals from cortex and 

implement action switching from automatic to controlled behaviours via its connections with 

the basal ganglia output nuclei (Isoda & Hikosaka, 2008; Hikosaka & Isoda, 2010). The STN 

has also been proposed to serve as a brake to allow more information to be integrated before 

making an optimal response, which is believed to be relevant to its role in motor inhibition 

(Frank, 2006). Moreover, computational models of the basal ganglia have suggested that the 

degree of decision conflict dynamically modulates STN activity, which contributes to 

optimally delaying action selection in a given situation in order to decrease the uncertainty 
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when making decisions (Frank, 2006; Bogacz & Gurney, 2007; Bogacz, Wagenmakers, 

Forstmann, & Nieuwenhuis, 2010). In addition, a recent study of local filed potentials from 

the STN in deep brain stimulation (DBS) treated PD patients has shown that encountering 

unexpected events increases STN activity, which leads to the decrement of verbal working 

memory, and is related to attentional reorientation (Wessel et al., 2016). Wessel et al (2016) 

further proposed that surprise (i.e. unexpectedness) interrupts cognition via the same 

fronto-basal ganglia mechanism that interrupts action, which may lead to a new theory of 

distraction that involves a cortico-basal ganglia network that underlies motor suppression but 

also affects cognitive function. These studies together suggest that the STN, being part of the 

global suppressive mechanism of the basal ganglia, also participates in mediating cognitive 

functions such as making decisions under decision conflict and/or in response to encountering 

unexpected events. In line with such a hypothesis, the STN may potentially be involved in 

controlling action reprogramming.  

 

STN DBS is an effective procedure for treating the motor symptoms in patients with 

Parkinson’s disease (PD) (Deuschl et al, 2006; Weaver et al., 2012; Williams et al, 2010). It 

has been hypothesised that high-frequency stimulation of the STN supresses the over 

enhancement of oscillatory β activity in PD patients, which is closely associated with the 

deterioration of flexible behavioural and cognitive control (Engel & Fries, 2010), therefore is 

associated with the therapeutic motor improvement of DBS in PD patients (Kühn et al., 2008). 

Consistent with the hypothesised computational role of the STN, DBS of the STN has been 

shown to induce faster reaction times (RT) during high-conflict decision contexts in PD 

patients, potentially due to stimulation of the STN interfering with the normal STN activity 

on inhibiting premature responses (Jahanshahi et al, 2000; Witt et al, 2006; Frank et al., 2007; 

Green et al., 2013; Pote et al, 2016). While the exact mechanism underlying the beneficial 

effects of STN DBS on the motor symptoms of PD remains unknown (Vitek, 2002; McIntyre, 

Savasta, Kerkerian-Le Goff, & Vitek, 2004), it is hypothesised that high frequency 

stimulation decreased STN activity, which releases the brain from motor inhibition. 

Furthermore, PD patients treated with DBS of the STN have been shown to have impairments 

in response inhibition (Hershey et al., 2004, 2010; Ballanger et al., 2009; Favre et al., 2013; 

Obeso et al., 2013; Georgiev et al, 2016; Williams et al, 2015) and making accurate decisions 

under decision conflict ON stimulation compared to OFF stimulation (Jahanshahi et al., 2000; 

Schroeder et al., 2002; Frank et al, 2007; Witt et al., 2008; Wylie et al., 2010). To examine the 

hypothesis that STN modulates reactions to unexpected events, a probabilistic RT task 
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created by Galea et al (2012) was used to assess the effect of STN DBS on perceiving 

unexpected sensory events and action reprogramming on PD patients. PD patients receiving 

both STN DBS and dopaminergic medication and age-matched healthy controls were 

recruited for the study. Patients were tested OFF and ON stimulation ON their usual 

dopaminergic medication. The probabilistic RT task used a predictable first-order Markov 

sequence to generate order of stimulus presentation, which enabled the participants to predict 

the stimulus in current trial based on what appeared in the previous trial. Trials that violated 

the expectedness/prediction were defined as improbable and thus created a sense of 

unexpectedness. 

 

Thus two kinds of blocks were included in the behavioural task: one was unpredictable and 

the other was predictable. Within the predictable trials there were probable trials and 

improbable trials, which were designed to create the sense of unexpectedness. The sense of 

unexpectedness is quantified by the frequency of stimulus appearance. Unexpected events, as 

Wessel & Aron (2017) categorised in their review, can be of three different types: (1) action 

error, (2) unexpected action outcome and (3) unexpected perceptual events. The unexpected 

events manipulated in the present study were unexpected perceptual events. In addition, the 

unexpectedness of the sensory event in the present task was task relevant as participants had 

to make responses in accordance to the presented imperative stimulus (IS), which may not 

only affect the interruption of behaviour but also involve interrupting cognition. While there 

may exist different underlying neural mechanisms in the brain that would be triggered by the 

three different types of unexpected events, Wessel & Aron (2017) further proposed a unified 

theory on how these unexpected events affect motor and cognitive functions. Namely, when 

unexpected events activate the fronto-basal ganglia network that modulates suppression of 

ongoing motor function, cognitive functions (e.g. verbal working memory) at the same time 

will be interrupted by the activation of the same network, involving the pre-SMA/right 

inferior frontal cortex and the STN. It is hypothesised that the STN would ordinarily be 

involved in perceiving surprising events via the same mechanism as motor inhibition, and 

that STN DBS which reduces STN hyperactivity in PD would interfere with this ‘unexpected’ 

function such that when tested ON STN DBS, PD patients would have overall faster RTs but 

impaired action reprogramming relative to DBS OFF, which leads to more incorrect 

responses during the improbable trials.  
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5-3 Materials and Methods 

Participants 

Ten PD patients (2 females) treated with Parkinson’s disease treated with bilateral STN DBS at 

least 6 months or longer after surgery and twelve age-matched healthy controls (HCs) (5 

females) were recruited for the study. All patients met the United Kingdom Brain Bank 

criteria for idiopathic PD (Hughes, Daniel, Kilford, & Lees, 1992). For all participants, there 

was no history of any other neurological disease, head injury, psychiatric illness, or 

drug/alcohol abuse. The Mini Mental State Examination (cut-off score of 26; Folstein, 

Folstein, & McHugh, 1975) was used to screen for dementia and the Beck Depression 

Inventory (Beck, Steer, & Brown, 1996) was used to screen for depression (cut-off score of 

24). None of the patients had dementia or clinical depression. Patients were examined by a 

neurologist, both ON and OFF stimulation, and the severity of their motor symptoms and 

their stage of illness were rated on the Unified Parkinson's Disease Rating Scale (UPDRS; 

Fahn & Elton, 1987). All participants had normal or corrected-to-normal vision. The clinical 

details of all participants are presented in Table 5.1. Demographic information and clinical 

data of patients with Parkinson’s disease are listed in Table 5.2. 

 
Table 5.1.  Demographic and clinical details of the participants. Table shows means with 

standard deviations in parenthesis.  

 PD (n=10) HC (n=12) p value 
Age (years) 61.5 (10.10) 68.17 (9.47) p=.107 
Handedness (RH:LH) 10:0 (100% 

RH) 
12:0 (100% 
RH) 

N/A 

Mini Mental State Examination  29.10 (1.10) 29.82 (0.39) p=.070 
Beck Depression Inventory-II  8.45 (5.54) 6.91 (5.80) p=.542 
Starkstein Apathy Scale  12.83 (4.34) 8.71 (3.25) p=.141 
Barratt Impulsivity Scale  65.4 (10.98) 57.27 (8.87) p=.085 
Digit Span forward and backwards total 
score 

17.8 (3.85) 20.55 (3.50) p=.103 

Trail Making Test-part A  
Completion time (seconds) 
Trail Making Test-part B  
Completion time (seconds) 

 
52.5 (22.96) 
 
90.5 (30.63) 

 
45.1 (10.27) 
 
82.27 (24.22) 

 
p=.270 
 
p=.358 

Colour Word Interference Test-colour 
naming  
Errors 
Completion Time (seconds) 

 
0.9 (1.10) 
36.1 (7.74) 

 
0.36 (0.65) 
31.91 (4.83) 

 
p=.178 
p=.110 

Colour Word Interference Test-word reading 
Errors 
Completion Time (seconds) 

 
0.5 (0.53) 
24.4 (4.25) 

 
0.00 (0.00) 
22.82 (4.29) 

 
p=.006* 
+1 
p=.253 
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Colour Word Interference Test-Inhibition 
Errors 
Completion Time (seconds) 

 
2.2 (2.74) 
65.1 (12.93) 

 
1.18 (1.38) 
61.09 (13.36) 

 
p=.660 
p=.376 

Colour Word Interference 
Test-Inhibition/Switching 
Errors 
Completion Time (seconds) 

 
4.00 (2.49) 
81.9 (22.97) 

 
1.00 (0.82) 
58.09 (8.79) 

 
p=.002* 
+2 
p=.008* 
+3 

Age of onset (years) 46.6 (8.44) N/A N/A 
Disease duration (years) 14.9 (5.30) N/A N/A 
UPDRS score III 
PD STN-DBS ON 
PD STN-DBS OFF 

 
15.6 (7.14) 
29.5 (16.77) 

 
N/A 

 
p=.018* 
+4 

RH= right handed, LH= left handed, UPDRS= Unified Parkinson’s Disease Rating Scale, PD = Parkinson’s disease, 
STN-DBS = Deep brain stimulation of the subthalamic nucleus, N/A= Not Applicable, *= Statistically significant differences 
between groups  
+1= Effect size of Errors of Colour Word Interference Test-word reading: Hedge’s g = -1.89 
+2= Effect size of Errors of Colour Word Interference Test-Inhibition/Switching: Hedge’s g = -1.81 
+3= Effect size of Completion Time of Colour Word Interference Test-Inhibition/Switching: Hedge’s g = -1.50 
+4= Effect size of UPDRS score III: Hedge’s g = -2.60 
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Table 5.2 Clinical data of patients with Parkinson’s disease. 

 
  



 

246 
 

Behavioural Task 

 

PD patients completed two sessions on the same day: once ON stimulation and once OFF 

stimulation, with breaks in between as the participants needed. The session order was 

counterbalanced across patients. Control participants completed the session once. The 

unbalanced experimental design of the present study was in reference to the experimental 

design of the Galea et al (2012) study, which compared the effect of dopaminergic medication 

on PD patients. Originaly the age-matched HCs were designed to perform the task twice (the 

same as PD patients for comparison), however some participants declined to perform the task 

for the second time because they thought it was too time-consuming for them and make them 

tired. In addition, since there was no monetary reimbursement, the participantion rate was 

low. Therefore, for practical reasons such as saving time and increasing willingness for HCs 

to participate in the study, age-matched HCs was asked to perform the task once. To reduce 

the disadvantage of such unbalanced design, generalized linear mixed models (GLMM) and 

linear mixed model (LMM) were used to analyse the behavioural data. In addition, because 

of the probabilistic nature of the behaviourla task, it is assumed that there are no practice 

effects for performing the task. 

 

The behavioural task was introduced to the participants on a computer with a custom button 

box with four buttons. The participants were instructed to place each one of their fingers on 

each of the four buttons and to maintain this position throughout the task. Initially, an 

un-informative warning cue (“!”) was displayed for 250 ms. After a fixation cross was 

presented for 1000 ms, one of the four imperative stimuli (IS) was shown in the centre of the 

screen for 250 ms. The fixation cross then reappeared during the response period (2500 ms). 
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During this time, the participants were required to respond to the IS as fast and as accurately 

as possible. Each IS image was associated with pressing a specific button. The 

stimulus-response mapping was acquired through trial and error. During the training session 

composed of 200 trials, feedback either ‘correct!!!’ or ‘wrong’, was presented after each 

response, indicating whether the participants had selected the correct response associated 

with the particular stimulus.   

 

During the main experiment, the feedback was removed. The task was divided into 4 blocks, 

with block 1 and 4 being unpredictable conditions where the probability of each IS being 

presented at trail t equals to 0.25. On the other hand, blocks 2 and 3 were designed as 

predictable conditions, where the IS was drawn from a predictable first-order Markov 

sequence. Each block contained 100 trials. This design created predictable sequences that the 

current stimulus on trial t was conditionally dependent on the stimulus of the previous trial, 

t-1. In other words, the type of IS on previous trials t-1 provides information to predict the 

type of IS on the current trial t. The distribution specified in the transition matrix quantified 

the dependence among consecutive stimuli, which generated the predictable sequences in 

which IS order 1-2-3-4 occurred with high probability (Figure 5.1 C). There were 16 possible 

combinations that determined the relationship between the IS on trial t and on trial t-1. The 

overall probability of each IS should be equal across all blocks.  The experimental design 

provided a probabilistic context that allowed participants to reduce uncertainty before an 

event occurred (Harrison et al, 2006). Because of the probabilistic nature of the generated 

sequences, occasionally unexpected (surprising) stimuli would appear that was not expected 

based on the predictability of the sequence. When these unexpected (surprising) stimuli were 
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presented, participants would need to inhibit the planned response based on prior 

expectations about the forthcoming stimuli. It is important to note that no explicit information 

about the underlying patterns in each block was provided to participants. Participants were 

simply instructed to react with speed and accuracy. 

 

 

Figure 5.1 Experimental design. (A) Schematic representation of a single trial. A visual 

warning signal was followed by one of four novel IS. Participants were told to react as fast as 

possible to the IS. The order of the visual stimuli could either be unpredictable (B: blocks 1, 4) 

or predictable (C; blocks 2, 3). Predictable sequences were generated from a first-order 

Markov sequence in which there were 16 combinations that determined the relationship 

between the IS on trial t and on trial t-1. Numbers within the probability matrices represent 

the transition probabilities. The overall probability of each IS on trial t was equal across all 

blocks. Figure and caption from Galea et al., (2012).  

 

Data Analysis 

R (R Core Team, 2013) and IBM SPSS software were used to analyze the data. Reaction 
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times (RTs) and response accuracy were measured as dependent variables. For all correct 

responses, RTs were calculated as the time between IS onset and the subsequent button press. 

Moreover, RTs in predictable conditions were further compared between probable and 

improbable trials. A simple linear mixed model (LMM) was used to fit RTs with Group (HC 

versus PD), Stimulation (DBS OFF versus ON), Response Accuracy (Correct responses 

versus Incorrect responses) and Probability (Improbable versus Unpredictable, Improbable 

versus Probable) as fixed effects. Subject was assigned as a random effect to account for 

by-subject variation in overall RTs. Log base 10 transformation was performed to reduce the 

skewness of the data. 

Generalized linear mixed models (GLMM) were used to fit the response accuracy data due to 

the data being non-normal. For the present data a binomial distribution with a logistic link 

was selected to construct the model, at the same time it was specified that the response 

accuracy could vary randomly across subjects. A simple GLMM that defined Group (HC 

versus PD), Stimulation (DBS OFF versus ON), Probability (Improbable versus 

Unpredictable, Improbable versus Probable) as fixed effects was fitted to the behavioural data.  

ML approach with Laplace approximation was used for parameter estimation. p<.05 was used 

as a criterion for statistical significance. The Akaike information criterion (AIC), which 

estimates the relative quality of a statistical model given a specified data set, was used for 

model selection (Bozdogan, 1987). The relative quality of the model is indicated by the 

calculated information loss, therefore the model that has the minimised AIC would be chosen 

as the most fitted model given the specified dataset. 

 

R package lme4 (Bates, Maechler & Bolker, 2012) was used to construct the LMMs and the 
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GLMMs. Maximum likelihood (ML) approach was used for parameter estimation for the 

LMMs. Likelihood Ratio Test was used as a mean to attain p-values of the fixed effects, 

which compared models with full factors and reduced factors to determine the significance of 

a fixed effect. For all the significant results, the effect sizes were given as Hedge’s g.  

 

5-4 Results 

Effects of Predictability on response accuracy and reaction time of correct trials 

A GLMM was created to examine how well participants performed the task. Two main 

factors were considered to affect response accuracy in the model: Predictability (Predictable/ 

Unpredictable) and DBS (DBS ON/ DBS OFF/ HC). In the GLMM, all levels of the 

categorical variables are compared to the base level (reference category). Here the base levels 

are: Predictable (for Predictability) and DBS ON (for DBS). All effects are estimated with 

respect to the base levels. The model showed that age-matched HCs had higher response 

accuracy than PD patients with stimulation ON (Z=2.88, p=0.004, Hedge’s g=0.32), whereas 

PD patients with STN DBS ON had higher response accuracy than OFF stimulation (Z=-3.85, 

p<.0001, Hedge’s g=0.27). For all participants, response accuracy did not differ between 

Predictable and Unpredictable blocks (Z=-0.52, p=0.602). The results suggest that (1) all 

participants performed equally well for Predictable and Unpredictable blocks, (2) PD patients 

with STN DBS ON had better performance than when OFF stimulation, however the small 

effect size shows that the significant difference on response accuracy between PD patients 

ON versus OFF STN DBS was not very robust, and (3)  age-matched HCs had better 

response accuracy than PD patients (both ON and OFF stimulation), but again the small 

effect size suggest that such a difference was not very robust. Figure 5.2 illustrates the above 
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results.  

 

Figure 5.2 Response accuracy for Unpredictable (light grey bar) and Predictable (dark 

grey bar) for healthy control (HC), PD patients with deep brain stimulation (DBS) ON (DBS 

ON) and OFF (DBS OFF). Standard error of the mean is set as the error bars. The asterisk 

symbols denote the statistical significance.  

 

A LMM was created using RTs as the dependent variable. Two main factors were considered 

to affect response accuracy in the model: Predictability (Predictable/ Unpredictable) and DBS 

(DBS ON/ DBS OFF/ HC). In the model contrast of the LMM, all levels of the categorical 

variables are compared to the base level (reference category). Here the base levels are: 

Predictable (for Predictability) and DBS ON (for DBS). All effects are estimated with respect 

to the base levels. For all participants, RTs were faster during Predictable blocks 

(t(10610)=6.63, p<.0001, Hedge’s g= 0.41). There was no difference on RTs between PD 

patients ON versus OFF stimulation (t(10310)=-0.67, p=0.505). Age-matched HCs had faster 

RTs during Predictable trials than PD patient with STN DBS ON (t(10610)=2023, p=0.003, 
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Hedge’s g= 0.41) but not during Unpredictable trials (t(23)=-0.52, p=0.606). The results 

suggest that (1) all participants performed equally fast for Unpredictable blocks but HCs were 

the fastest during Predictable blocks, and (2) the acute manipulation of STN DBS did not 

have effects on RTs for PD patients. Figure 5.3 illustrates the above results. 

 

Figure 5.3 RTs of correct trials during Predictable and Unpredictable blocks for PD 

patients with STN DBS ON (DBS ON) and OFF (DBS OFF), and for healthy controls (HC). 

Standard error of the mean is presented as the error bars. The asterisk symbols denote 

statistically significant differences. As shown in the figures, all participants had similar 

behavioural patterns when responding to Predictable/Unpredictable blocks. The main 

difference is that age-matched HCs were much faster than PD patients (both ON/OFF 

stimulation) when responding to Predictable blocks.  

 

Effects of Trial type on response accuracy and reaction times (RTs) of correct trials  

Figure 4.4 shows the average RT for each of the 16 possible combinations of IS on the 

previous and the current trial, during predictable blocks. Due to the probabilistic nature of the 

task, some participants may not experience all 16 combinations. Therefore, these data were 

* * * 
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not suitable to be statistically analysed. However, from a pure observational point of view, in 

general there seems to be little difference between HCs and PD patients in both stimulation 

states. As shown by faster RTs to the highly probable combinations, it is clear that HCs were 

able to learn the relative probabilities between consecutive IS. For PD patients both ON and 

OFF stimulation, RTs for some combinations were faster despite the lower relative 

probabilities but does not seem to differ robustly between HCs (Figure 5.4). 

 

 

Figure 5.4 Average ± SEM group reaction times (RTs) for each of the 16 possible 

imperative stimulus (IS) combinations between the IS on trial t and t-1 for all three groups 

Healthy controls (HC) Parkinson’s disease patients (PD) with stimulation OFF (PD OFF) or 

ON (PD ON).  
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To further investigate how participants responded to Probable and Improbable trials in 

Predictable blocks, behavioural data was analysed with GLMM and LMM. Here a GLMM 

was creased using response accuracy as the dependent variable, with Probability 

(Improbable/Probable) and DBS (DBS ON/ DBS OFF/ HC) set as the fixed effects and 

subject as a random effect. The base levels in the present GLMM are Improbable (for 

Probability) and DBS ON (for DBS). All levels of the categorical variables are compared to 

the base level (reference category). Across Probable and Improbable trials, for PD patients, 

response accuracy was higher when ON stimulation than OFF stimulation (Z=-2.26, p=0.024, 

Hedge’s g= 0.22). PD patients did not differ in response accuracy between Probable and 

Improbable trials ON (Z=0.29, p=0.769) or OFF stimulation (Z=0.37, p=0.713). In addition, 

age-matched HCs had higher response accuracy than PD patients (Z=-2.90, p=0.004, Hedge’s 

g= 0.32). Taken together, the results indicate that (1) HCs had significantly higher response 

accuracy than PD patients, (2) PD patients with STN DBS ON had higher response accuracy 

than STN DBS OFF, despite the fact that effect sizes showed that such differences on task 

performance on probable vs improbable trials may not be robust across Probable and 

Improbable trial, and (3) age-matched HCs were more sensitive in reacting to 

Probable/Improbable trials. Figure 5.5 illustrates the above results.  
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Figure 5.5 Response accuracy for healthy controls (HCs), Parkinson’s disease patients 

with deep brain stimulation (DBS) of subthalamic nucleus (STN) OFF (DBS OFF) and ON 

(DBS ON). The error bars are standard error of the mean. The asterisk symbols denote the 

statistical significance. 

 

Moreover, a LMM was created using RTs of correct trials as the dependent variable, with 

Probability (Improbable/Probable) and DBS (DBS ON/ DBS OFF/ HC) set as the fixed 

effects and subject as a random effect. The base levels in the present LMM are Improbable 

(for Probabiliy) and DBS ON (for DBS). All levels of the categorical variables are compared 

to the base level (reference category). For all participants, RTs were faster for Probable than 

Improbable trials (t(6203)=-6.78, p<.0001, Hedge’s g= 0.82). PD patients did not differ on 

RTs between DBS ON versus OFF during Probable (t(6204)=-1.73, p=0.083) and Improbable 

trials (t(6203)=-1.75, p=0.080). There was no difference on RTs between PD patients and 

age-matched HCs (t(25)=-0.07, p=0.941). Taken together, the results indicate that (1) all 

participants had faster RTs during Probable trials than Improbable trials, (2) the acute 

manipulation of STN DBS did not affect RTs, and (3) there was no difference on RTs 
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between PD patients and age-matched HCs. Figure 5.6 illustrates the above results. 

 

 

Figure 5.6 RTs of correct trials during Probable and Improbable trials of Predictable 

blocks for PD patients with STN DBS ON and OFF, and for healthy controls (HC). Standard 

error of the mean is presented as the error bars. The asterisk symbols denote statistically 

significant differences. As shown in the figures, all participants had similar behavioural 

patterns when responding to Probable/Improbable trials. The main difference is that 

age-matched HCs were much faster than PD patients (both ON/OFF stimulation) when 

responding to Probable trials.  
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Table 5.3 Summary of the main findings of the behavioural data. 

 Predictable versus Unpredictable 

blocks 

Probable versus Improbable trials of 

Predictable blocks 

Response 

accuracy 

¾ All participants performed 

equally well on Predictable and 

Unpredictable blocks. 

¾ HCs had better performance on 

Probable trials than Improbable 

trials, but not PD patients.  

¾ PD patients had better performance ON than OFF stimulation 

¾ HCs had better performance than PD patients (both ON and OFF 

stimulation). 

RTs ¾ All participants responded faster to Predictable blocks/Probable trials than 

Unpredictable blocks/Improbable trials.  

¾ The acute manipulation of STN DBS did not affect RTs for PD patients. 

¾ All participants reacted equally fast when performing the task. 

 

5-5. Discussion  

The above analysis examined the effects of Predictability of blocks and Trial type (probable 

vs improbable) on response accuracy and RTs of correct trials. In terms of task manipulation, 

all participants had faster RTs during Predictable blocks and slower RTs for Improbable trials, 

which indicates that the task was reliable in examining action reprogramming (i.e. slowness 

after encountering surprising events). From a behavioural point of view, the results show that 

(1) all participants had faster RTs during Predictable blocks than Unpredictable blocks, and 

that the predictability did not make different on response accuracy for all participants, (2) the 

acute manipulation of STN DBS did not have effects on RTs but significantly improved task 

performance, and (3) PD patients were able to respond as fast as age-matched HCs however 
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the response accuracy was sacrificed, resulting in a behavioural speed and accuracy trade-off.  

 

The effects of STN DBS on action reprogramming 

Contrary to expectation, the acute manipulation of STN DBS did not render negative effects 

on decreasing RTs and/or producing more incorrect responses when trial types were 

improbable. Instead PD patients with STN DBS ON had higher overall response accuracy 

than when being OFF stimulation, although the effect sizes for the singifcant results were 

small (around 0.2). The hypothesis of the present study was that DBS of the STN would 

impaire inhibition when encountering unexpected sensory events (potentially by decreasing 

STN-beta power), resulting in faster RTs when encountering unexpected events. One possible 

factor may contribute to the observed results: for the current study PD patients were assessed 

ON medication to reduce discomfort, therefore the effects of medication may interfere with 

the effects of STN DBS. Moerover, unlike age-matched HCs, response accuracy did not 

differ between Probable and Improbable trials for PD patients, which may suggest that 

patients had certain difference in processing Probable versus Improbable events. Previous 

studies have shown that the sense of ‘Surprise’ or unexpectedness is closely related to 

prediction errors and thus may be associated with the level of dopamine in the brain 

(Bestmann et al., 2008; Galea et al., 2012; Shomaker & Meeker, 2015). On the other hand, 

the results may also suggest that the behavioural task requires certain improvements, as the 

results showed, PD patietns reacted to Improbable trials as fast as age-matched HCs. The 

difference seemed to appear when reacting to Probable trials, where age-matched HCs 

responded significantly faster than patients. This may suggest that the Improbable trials in the 

present study did not properly reflect the unexpectedness that would create robust action 
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reprogramming that was intended to study. Despite in the present study the results did not 

show speficits effects of STN DBS on action reprogramming, pervious studies have shown 

that the STN plays a major role in motor inhibition (Nambu et al., 2002; Aron &Poldrack, 

2006; Aron, Behrens, Smith, Frank, & Poldrack, 2007; Li et al, 2008; Forstmann et al, 2010; 

Kim & Hikosaka, 2015) and that DBS of the STN may interrupt such functions that leads to 

impaired inhibiton resulting in cognitive side effects in PD patients (Hershey et al., 2004, 

2010; Ballanger et al., 2009; Favre et al., 2013; Obeso et al., 2013; Georgiev et al, 2016; 

Williams et al, 2015). The inconsistent results of effects of STN DBS on behavioural data in 

PD patients may results from confounding factors such as individual difference, tasks used, 

experimental design, disease duration, and surgical procedures.   

 

Speed and Accuracy trade-offs (SAT) potentially affected task performance in PD patients  

For PD patients with both STN DBS ON and OFF, there was no effect of 

Probable/Improbable trials nor effect of Predictable/Unpredictable blocks on response 

accuracy. On the other hand, for age-matched HCs there were significant effects of these 

manipulations of probabilities on response accuracy. Furthermore, in the present studies PD 

patients were able to made responses as fast as HCs. However, PD patients both OFF and ON 

stimulation had lower response accuracy than HCs. Such an observation could potentially 

result from the SAT for PD patients, namely, in order to act fast the accuracy was sacrificed 

when performing the task. The inner drive to perform fast prevailed over performing 

accurately for PD patients. 

 

Four theories have been proposed to account for the underlying neural mechanisms of such a 
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trade-off: the cortical theory, the striatal theory, the STN theory and the synaptic theory, 

which stand for different circuits that modulate the balance between making a fast or making 

an accurate response (for details please see the review of Bogacz, 2010). The present study 

supports the striatal theory, which proposed that when speed is emphasised during 

decision-making (to select and make a response), the striatum receives excitatory signals 

from the cortical area that releases the inhibitory function of the basal ganglia, thus facilitates 

faster RTs but may lead to premature responses. Since PD patients in the current study were 

tested ON medication state, the SAT may thus be associated with dopaminergic medication 

increasing the activity of the striatum. On the other hand, in the present study acute 

manipulation on the effect of STN DBS increased the response accuracy but did not alter the 

RTs in PD patients, which in a sense may also be consistent with the STN theory, which 

suggests that in order to make accurate responses, the increased activity STN produced slow 

but accurate responses. Grossly speaking the effect of DBS is theoretically assumed to reduce 

the STN activity, such improvement on the task performance may be due to the optimal 

balance between dopaminergic medication and the STN DBS. Moreover, in the current study 

participants did not receive feedback after making responses therefore were unable to adjust 

decisions based on feedback. The potential effect of forgetting the stimulus-response 

mapping may also have contributed to the lower response accuracy for PD patients. 

 

In addition, PD patients with STN DBS ON had better response accuracy than when STN 

DBS was OFF, which may be hypothetically associated with the benefits of the treatment. 

The shift of attention is closely related to cognitive control and post-error slowing (Notebaert 

et al., 2009). It has been proposed that the basal ganglia play a role in focusing, which has 
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further suggested that dopamine suppresses the unwanted expected action and facilitates the 

initiation of the unexpected action (Redgrave et al., 199l; Cools et al., 2001; Frank, 2005; 

Isoda & Hikosaka, 2007; Hikosaka & Isoda, 2010). The ON medication state of PD patients 

in the present study therefore potentially facilitated the RTs when responding to 

Unpredictable/Predictable blocks and Probable/Improbable trials.  

 

Non-DBS treated PD patients had prolonged RTs in reacting to surprising events when OFF 

medication 

The occurrence of unexpected events and the need of action reprogramming can be seen as 

reflecting the sensorimotor system having issued a prediction error (Bestmann et al., 2008; 

Galea et al., 2012). Making decisions requires a certain degree of confidence, which 

represents the graded beliefs of the likelihood about the desired outcomes. Such confidence 

in making decisions could be derived from a mapping between the decision variables (i.e. 

accumulated sensory evidence) and the probability that the decision based on these decision 

variables is correct and leads to the desired outcome (Zylberberg et al., 2016; Kiani et al., 

2014). A previous study using the same probabilistic RT task as the present study had shown 

that non-DBS treated PD patients tested OFF dopaminergic medication had impaired action 

reprogramming, which demonstrates that prediction error, which relates to dopamine levels, 

modulates the action reprogramming deficits in PD patients (Galea et al., 2012). Moreover, in 

such a framework PD patients OFF medication have low dopamine levels and are less 

confident about the new sensory evidence thus are more reliant on top-down predictions, 

which results in prolonged RTs when prediction error occurs for PD patients OFF medication 

(Galea et al., 2012). Furthermore, dopamine is considered to reflect the precision or reliability 



 

262 
 

of sensory information. Computational studies have proposed a role of dopamine in encoding 

the precision of prediction errors that generate actions by simulating dopaminergic 

neurotransmission at a different level of a hierarchical mode (Friston et al., 2012; FitzGerald, 

Schwartenbeck, Moutoussis, Dolan, & Friston., 2015). Together, evidence from previous 

studies suggests that dopamine plays a major role in encoding the precision of prediction 

error and the confidence in updating prior beliefs with accumulated sensory information, 

therefore controls action reprogramming. PD patients in the present study were assessed ON 

medication, which potentially contributes to the non-sifnificant results of acute manipulations 

of STN DBS.  

 

To ameliorate the motor deficits in PD patients, clinically DBS STN and dopaminergic 

medication are combined depending on each patient’s motor symptoms. Many studies have 

been conducted separately in examining the effects of STN DBS and the effects of dopamine 

medication (Frank et al., 2007; Galea et al., 2012; Green et al., 2013; Djamshidian et al., 

2012, 2014; Huang et al., 2015; Pote et al., 2016) on cognition and motor function, however, 

for PD patients treated with both DBS and medication, it may not be easy to disentangle the 

effects of one treatment from the other even with acute manipulation of ON or OFF these 

treatments. It remains unclear how the relationship between dopaminergic medication and the 

STN together affect the motor and cognitive function in PD patients. Novel approaches 

should be developed in assessing the effects of both treatments for PD in order to reach better 

disease management for patients and carers and provide insights on the brain networks in 

future. 
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Summary 

To sum up, the results show that the acute manipulation of STN DBS did not render negative 

effects on RTs during action reprogramming. In addition, PD patients exhibited a robust SAT 

when performing the probabilistic task. However, it is not to say that DBS of STN would not 

interfere with the STN functions on inhibition and cognitive/motor control that may result in 

side effects in PD patients. Future studies are required to (1) investigate the role of STN on 

interrupting cognition such as working memory after encountering unexpected events, and (2) 

the connections between dopaminergic medication and STN DBS on modulating SAT in PD 

patients. 
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Chapter 6 General Discussion 

6-1 Main findings from each study 

Evidence from previous studies, as discussed in Chapter 1, has suggested that treatments for 

Parkinson’s disease (PD) such as dopamine medication and deep brain stimulation (DBS) of 

the subthalamic nucleus (STN) would induce side effects on basic executive functions (EFs) 

including abilities of shifting, updating and cognitive flexibility in patients, possibly due to 

the ‘dopamine overdose hypothesis’ and the hypothetical effects of DBS on the role of the 

STN in inhibitory control and sensory information integration, leading to impairments on 

performing certain behavioural tasks. Studies in the present PhD thesis thus focused on 

assessing the acute effects of both treatments (i.e. dopamine medication and STN DBS) for 

PD patients on behaviours associated with speed and accuracy trade-off (SAT) modulation 

and sensory information sampling and updating, using behavioural tasks such as a moving 

dots task and a probabilistic reaction time (RT) task. The studies assessed how PD patients 

perform the behavioural tasks ON versus OFF treatments in relative to age-matched healthy 

controls (HC). In addition, hierarchical drift diffusion models (HDDM) were applied to the 

behavioural data to further derive the underlying cognitive components during task 

performance. In general, there were no robustly negative effects induced by acute 

manipulation of both treatments on behavioural data. Despite the limitations of the task 

design, the behavioural results combining psychological test scores suggest that while some 

evidence shows that medical and surgical treatments can induce negative side effects on 

cognition for PD patients, such side effects may be small and specific to individuals, 

indicating that both treatments are safe and reliable procedures in ameliorating motor 

symptoms of PD without inducing negative side-effects on cognitive functions. 
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However, while the acute manipulations of both treatments produced no significantly 

negative effects on general task performance, PD patients were found to show subtle defects 

on cognitive components involving the ability to update and sample the environmental 

sensory information, which may further lead to the subtle impairments on the modulation of 

SAT. In Chapter 2, the results showed that PD patients who had been clinically diagnosed 

with impulse control disorders (ICD) were able to perform the moving dots tasks as well as 

age-matched healthy controls (HC) in terms of RTs and response accuracy. A ceiling effect 

may exist for the selected moving dots task as most participants had response accuracy as 

high as more than 95%, therefore the task may not be challenging enough to reflect the 

effects of medication, as well as the difference between patient group and age-matched 

healthy control group. Nevertheless, the results indicate that the clinical approaches on 

reducing dopamine agonist to treat impulsive behaviour did not induce any negative side 

effects on motor or cognitive functions for PD patients who developed with ICDs. Despite 

showing no significant acute effects of dopamine medication, PD patients with ICD history 

and PD patients without ICDs showed different behavioural patterns on the same moving 

dots task (Huang et al., 2015). The results are in line with previous studies showing that PD 

patients with and without ICDs showed different behavioural patterns in decision-making 

even after PD patients with ICDs are treated, which may suggest that PD patients who are at 

risk of developing ICDs show difference on certain functions that could be predictable prior 

to medication administration (Djamshidian et al., 2010; Djamshidian et al., 2012). Chapter 3 

thus introduced a study using behavioural data collected from the moving dots tasks to build 

classification predictive models, in order to investigate the hypothesis on PD patients with 
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and without ICDs may be distinguishable by building classification predictive modelling with 

certain task performance patterns. The results show that difference on performance of certain 

tasks between PD patients who developed ICDs and PD patients who did not have ICDs is 

distinguishable using a machine learning algorithm. Such distinct behavioural pattern could 

therefore be used as a screen tool to predict PD patients who have high risk to develop ICDs 

thus preventing the onset of the disorders. Moreover, previous evidence suggests that PD 

patients with ICDs showed different behavioural patterns on a task required sensory 

information updating compared to PD patients without ICDs (Djamshidian et al., 2012). 

Together, the results suggest that tasks involving information updating and SAT modulation 

may be powerful in predicting vulnerability to develop ICDs in PD patients.  

 

In addition to the effects of dopamine medication on behaviours in PD patients, the present 

thesis also aimed to investigate the effects of STN DBS PD in PD patients. In Chapter 4, a 

block-designed moving dots task was used to investigate the hypothesis on PD patients with 

STN DBS may show deficits on task switching. In addition, the nature of moving dots task 

could provide a chance to study the effects of STN DBS on SAT modulation and sensory 

information updating. The results show that the acute manipulation of STN DBS did not 

induce deficits on task switching for PD patients in a block-desinged moving dots task. 

However, PD patients with STN DBS ON did show impairments on a psychological test 

assessing the ability of task switching, which supports that DBS of the STN impairs certain 

task-swithcing abilities in PD patients. The evidence suggests that task-switching may 

involve fundamentally different but related cognitive processes, which are controlled by 

distinct brain areas. Moreover, the above results are in line with the hypothesis that the 
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reliability of sensory information plays an important role on modulating SAT. Moreover, PD 

patients still showed subtle difference on underlying cognitive components under the effects 

of DBS, which supports a role of the STN on modulating SAT and sensory information 

integration during task performance. To further investigate on how STN DBS may affect the 

function of STN on imformation updating and inhibitory control, a probabilistic RT task was 

used to assess the effect of STN DBS on reprogramming actions when encountering 

unexpected sensory events in PD patients. The results show that the acute manipulation of 

STN DBS did not induce negative effects on the probabilistic RT task for PD patients. The 

results may be due to the task design not properly inducing the unexpectedness that would 

create robust action reprogramming that was intended to study. In addition, PD patients 

exhibited robust SAT when performing the probabilistic RT task, which may indicate that PD 

patients were predominately aiming to act fast therefore sacrificed response accuracy. 

Moverover, PD patients treated with STN DBS were assessed ON medication, which may be 

the reason why the results did not reflect the hypothetical effects of DBS on interrupting the 

role of STN in motor control that induce fast RTs and more incorrect responses in PD 

patients. 

 

6-2 Clinical and theoretical implications 

The present thesis investigated the acute effect of dopamine medication and STN DBS on 

EFs in PD patients by assessing PD patients ON versus OFF treatments with behavioural 

tasks associated with the abilities of updating, shifting and inhibition, therefore may shed 

lights on the role of dopamine medication and DBS of the STN on motor inhibition and 

cognitive control in patients with PD. Overall speaking, in the studies of present PhD thesis 
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both dopaminergic medication and STN DBS were effective in ameliorating motor deficits in 

PD patients and produced no significantly negative effects on behaviours. Moreover, PD 

patients did not show significantly negative effects on most of the psychological tests 

compared to age-matched HCs, except for affective psychiatric tests such as depression 

inventory scores and apathy scale. Combining the previous and present results, both 

dopamine medication and STN DBS are considered to be safe and effective methods in 

treating PD. Despite the results showing no significant side effects produced by the acute 

manipulations of both treatments, it is not to say that long term administration of both 

treatments would not induce side effects in PD patients. 

 

As discussed in Chapter 1, the dopamine overdose hypothesis proposed by Cools et al (2001) 

states that, the administration of dopamine medication to PD patients may replete 

dopamine-depleted regions such as the dorsal, rostral head of the caudate nucleus and the 

putamen, but may overstimulate relatively intact regions such as the ventral striatum in early 

PD, leading to poorer performance on tasks mediated through these circuits such as reversal 

learning (Cools et al, 2001), conditional associative learning (Gotham et al, 1998), complex 

discrimination learning (Swainson et al, 2000), and probabilistic classification learning 

(Jahanshahi et al 2010). In addition, Weintraub et al (2010) proposed that ICDs were more 

common in patients treated with dopamine agonists, showing higher probabilities of inducing 

ICDs for dopamine agonist treatment. In the present study the acute manipulation of 

dopamine medication did not affect task performance but did improve motor functions in PD 

patients with ICD history, which may result from (1) in the present study the recruited PD 

patients were not early PD, therefore the ventral striatum may be dopamine depleted as the 
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disease progressed and that medication would not overstimulate the area, (2) the dopamine 

overdoes hypothesis does not apply to treated PD+ICD patiens as their medication treamtents 

have been adjusted to a level that no signifricant behavioural impairments would be observed, 

and (3) the dopamine overdoes hypopthesis does not apply to the processes of the moving 

dots tasks performance. It is difficult to determine how disease progress affects the 

degeneration of dopamine neurons in different striatal regions in different PD patients, and 

how dopamine medication stimulate or overstimulate certain regions in treating PDs. 

However, the results of Chapter 3 provide a possibility that the onset of PD+ICD may be 

predictable by analysing performance on behavioural tasks associated with EFs.   

 

In addition to dopamine overdose hypothesis, it has been suggested that dopamine agnosit is 

closely related to the onset of ICDs (Voon & Fox, 2007; Weintraub et al., 2015). Moreover, it 

has been suggested that obsessive-compulsiveness is closely related to impulsivity in 

individuals (Li & Chen, 2007; Isaias et al., 2008). Impulsivity is not a unitary phenomenon 

and has several distinct components (Evenden, 1999; Dalley, Everitt, & Robbins, 2011). First, 

delayed motor inhibition (‘impulsive action’). Second, a failure to take time to reflect and 

adequately sample evidence before making a decision (‘reflection impulsivity’). Third, an 

inability to delay gratification shown as a tendency to accept small immediate rewards over 

larger delayed rewards (‘impulsive choice’). Fourth, engagement in risky behaviours such as 

gambling. Different experimental tasks tap different components of impulsivity. Table 6.1 

summarises the studies that have used different behavioural tasks to examine the four 

components of impulsivity in PD patients with ICDs. In general, most of the behavioural 

studies showed that PD patients with ICDs made more impulsive and risky choices on 
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behavioural tasks except for one study that found no difference between PD patients with or 

without ICDs (Pineau et al., 2016) (see Table 6.1). Furthermore, PD patients with ICDs were 

not impaired on motor inhibition assessed on the stop signal task (Claassen et al,2015; Leroi 

et al, 2013). Also, hasty decisions under conflict on tasks such as the Simon task (Wylie et al., 

2012) or the Stroop interference test (Djamshidian et al., 2011) were not observed in PD 

patients with ICDs, such results are in line with results from Chapter 2. Thus, the available 

evidence suggests that PD patients with ICDs exhibit specific forms of impulsivity and do not 

have a generalized deficit in inhibitory control. These results contradict with the hypothesis 

that PD patients with impaired EFs such as motor inhibition are more prone to develop ICDs 

(Weintraub et al., 2010, 2015). 
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Table 6.1. Behavioural studies examining different aspects of impulsivity in non-surgically treated patients with Parkinson’s disease (PD) who 

developed impulse control disorders (ICDs).  

Type of Impulsivity 

Assessed 

Authors Behavioural Tasks Main findings 

Impulsive Action 

(failure of motor inhibition) 

Claassen et al (2015) 

Leroi et al (2013) 

Stop Signal Task PD+ICD patients did not show impulsive action. 

Reflection Impulsivity 

(Sample less information 

before making decisions) 

Djamshidian et al 

(2012) 

Wylie et al (2012) 

Djamshidian et al 

(2011) 

Beads Task 

Simon Conflict Task 

Stroop Task 

All PD patients (PD+ICD patients and PD-ICD patients) 

had similar performance on all behavioural tasks 

 

Djamshidian et al 

(2014) 

Simple Reaction time task/ 

Perceptual 

decision-making task 

PD+ICDs had faster RTs on the simple reaction time task, 

and had fastest RTs on incorrect trials on perceptual 

decision-making task 

Impulsive Choice 

(choose small but 

immediate reward over 

large but delayed rewards) 

Voon et al (2010) 

Voon et al (2011) 

Leroi et al (2013) 

Discounting Task 

Risk task 

PD+ICD patients made more risky choices and had 

impaired EFs with greater anterior insular activity 

compared to PD-ICD patients 

Housden et al (2010) self-rated Kirby delay 

discounting 

questionnaire /Delay 

Discounting Task 

PD+ICD patients showed highly elevated delay 

discounting than PD-ICD patients  
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Risky Behaviour (on 

gambling tasks) 

Bentivoglio et al 

(2013) 

Rossi et al (2009) 

Pineau et al (2016) 

Iowa Gambling Task PD+ICD patients showed a statistical trend to make more 

risky choices than PD-ICD patients  

Djamshidian et al 

(2010) 

Gambling Task PD+ICD patients were more risk prone than PD-ICD 

patients  

PD+ICD: Parkinson’s disease patients with impulse control disorders; PD-ICD: Parkinson’s disease patients without impulse control disorders; 

HCs: healthy controls; PD+DA: Parkinson’s disease patients treated with dopamine agonists; PD-DA: Parkinson’s disease patients treated 

without dopamine agonist.
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In the present thesis, the acute manipulation of STN DBS did not render significant 

negative effects on task performance. The results are consistent with previous 

follow-up studies showing that STN DBS produced no negative effects on global 

motor and cognitive functions (Funkiewiez et al., 2004; Temel et al., 2006; Schüpbach 

et al., 2005; Troster et al., 2017). However, It remains unclear how exactly DBS 

affects the STN functions, the studies have suggested that DBS of the STN decreases 

beta-band oscillations that leads to motor improvement in PD patients (Kuhn, Kupsch, 

Schneider, & Brown., 2006; Kuhn et al., 2008). Moreover, the effect of DBS on the 

STN in PD patients is hypothesised to interrupt with the theoretical role of the STN 

on information integration and serving as a brake in the brain comes from its 

involvement in global motor inhibition via the hyperdirect pathway, leading to 

impaired inhibition and motor/cognitive control.  

 

On the other hand, previous studies have shown that the STN plays a role in 

information integration when decision conflicts are presented, leading PD patients 

with DBS ON to have impulsive decisions/behaviours (Frank et al., 2007; Green et al., 

2013). Computational models of decision-making hypothesise that the STN mediates 

the function of slowing down when facing difficult decisions by elevating decision 

thresholds so that more evidence could be sampled before making an optimal 

response (Bogacz & Gurney, 2007; Frank, 2005; Frank et al., 2007; Bogacz, 2010; 

Mansfield, Karayanidis, Jamadar, Heathcote, & Forstmann, 2011; Cavanagh et al., 

2011; Green et al., 2013). In addition, the present thesis also supports the 

‘urgency-gating model’ proposed by Thura & Cisek (2017), which suggest that the 

basal ganglia are hypothesised to control the SAT between committing to a choice 

versus continuing the selection. However, Thura & Cisek (2017) suggested that 

instead of contributing to the choice between potential movements, the basal ganglia 
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actually provide a time-dependent signal that controls the urgency to commit to a 

choice, which could lead to the adjustment of the SAT when making decisions. In the 

present study it is not determined whether the STN is involved in providing such 

time-dependent signal. Future studies are in need to investigate on how the STN is 

involved within the urgency-gating model. 

 

Taken together, studies in the present thesis showed that (1) while dopamine 

medication is closely related to the onset of ICDs, it is possible to identify PD patients 

who may be prone to develop ICDs before medication treatments, which could have 

clinical benefits for desease prevention, and that (2) in both studies PD patients 

treated with STN DBS were assessed ON medication, which may be the reason why 

the results did not reflect the hypothetical effects of DBS on interrupting the role of 

STN in cognitive and motor control. It may be hypothesised that the impaired 

inhibitory control could be diminished by dopamine medication. In addition, DBS of 

the STN may not induce impaired inhibitory control in all conditions, however the 

rpesent studies did not rule out the the possibility of STN DBS to impaire 

motor/cognition control in PD patients. It requires more studies on determining the 

distinct effects of dopamine medication and STN DBS on these functions in PD 

patients, which may also shed lights on the normal functions of dopamine and the 

STN on cognitive functions.  

 

6-4 Limitations  

There are a few limitations of the studies, some of which have been addressed in each 

experimental chapter. In this section I will briefly review these limitations and provide 

potential ways to improve these flaws for future studies.  
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Firstly, the design of the chosen behavioural tasks in the present studies appeared to 

be suboptimal in examing the executive functions interested of topic. For example, the 

moving dots task used in Chapter 2 seemed to have a ceiling effect. In addition, 

contrary to previous studies showing that treatments of PD have effects on the task 

performance (Frank et al., 2007; Green et al., 2013; Pote et al., 2016; Galea et al., 

2012), the present studies revealed no robust effects of acute manipulations of 

treatments. The inconsistent results may be due to difference on task design (such as 

the dots coherence in the Green study and present study being different), experimental 

procedure and individual difference. Approches should be developed in account for 

the potential effects of the above confounding factors (Whitsett & Shoda, 2014; 

Hayward, 2007).  

 

Secondly, small sample sizes have been a general issue in all studies due to difficulties 

in recruiting participants that would be discussed later. To diminish the disadvantages 

of small sample sizes, effect sizes were calculated for each significant effect of 

treatment manipulation and each significant difference between groups using Hedges’ 

g. For moderate to large effect sizes, it suggests that the effects are robust despite the 

small sample sizes. For the present studies, although most of the effect sizes reported 

were small to moderate effect sizes, due to the participants being patient groups, small 

effect sizes may still indicate beneficial improvements or noticeable impairments that 

are worth investigating. One of the reasons for the small sample sizes in the present 

thesis was because the experimental design of all behavioural studies was to examine 

the acute effects of treatments on cognitive and motor functions. Patients were 

therefore required to be OFF treatment for at least 2-3 hours to assess the behavioural 

data. This was a great concern for most patients therefore many of them refused to 

participate in studies because they did not want to be OFF treatments. In addition, the 
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participation of the study was purely voluntary, which means that the participants 

received no monetary reimbursement. This drawback could make it less motivated for 

patients to participate in the studies. To reduce the difficulties in recruiting patients to 

participate in behavioural studies, better communication should be formed between 

patients and experimenters. The experimenters have the responsibilities to make the 

experiments clear and relevant to the patients in order to increase their willingness to 

take parts in by carefully designing the experiments and explaining the aims in details 

to the patients. During the process of designing the experimental tasks, most concerns 

have been put onto the convenience of the experimenters. It should be considered with 

more carefulness the balance between the aims of the research, the procedures of the 

experiments and how it would affect the patients. For example, being OFF treatments 

would no doubt cause discomforts to patients therefore it is understandable why 

patients would refuse to participate in the studies. It is therefore important to consider 

if the acute manipulation of treatments is a necessary design to achieve the aims of the 

research. If it is necessary for the purpose of the study, the experimenters should be 

dedicated to make the experimental environment trustworthy and somehow closer to 

comfortable for patients to be willing to participate in the study. These important 

issues should be carefully considered when designing experimental procedures 

especially for recruiting the patient groups as experimental participants.  

 

Third and correspondingly, due to the difficulties in recruiting PD participants, same 

patients have been repeatedly calling back to do other studies. Bias may occur such as 

patients who are willingly to participant in scientific research repeatedly have certain 

personality traits that may potentially affect behaviours. The results collected from the 

same group of patients may therefore not be robust in representing larger patient 

population. For future studies, it is therefore important to increase sample sizes and 
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PD patient group. This could be achieved by spreading news via social media pages 

(e.g. Twitter, Facebook and Instagram) and charity foundation (e.g. Parkinson’s UK) 

so that more PD patients would know about the study therefore increasing the 

probability of participation. 

 

Fourthly, ICD patients were treated OFF medication than ON medication for practical 

reasons, practice effect thus could not be distinct from the effect of medication. In 

order to make certain that the effect of dopaminergic medication was completely OFF 

when testing patients for OFF session, it is required for patients to have an overnight 

withdrawal (approximately 12-16 hours) from their normal medication prior to testing. 

Previous study has shown no practice effect for age-matched HCs on the moving dots 

task therefore when designing the experiment it did not strike me as a problem. 

However, the present results proved that there was a practice effect for HCs and the 

effect of dopaminergic medication could therefore not be ruled out for PD patients. In 

order to prevent such misunderstanding, it is recommended to assess the effect of 

dopaminergic medication in a counter-balanced design in the future. In addition, in 

the present studies the tasks seem to have a ceiling effect as both patient group and 

healthy control groups had more than 95% response accuracy. The task difficulty 

should also be carefully designed in future studies to investigate proposed hypotheses.  

Fourth, PD patients treated with bilateral STN DBS were assessed ON medication 

state. The effects of dopaminergic medication (especially dopamine agonists) could 

therefore not be ruled out. In animal studies, STN high-frequency stimulation (HFS) 

has been demonstrated to increase striatal dopamine release and metabolism (Bruet et 

al., 2001; Meissner et al., 2003; Lacombe et al., 2007; Zhao et al., 2009; Pazo, Hocht, 

Barcelo, Fillipini and Lomastro, 2010), such increase is hypothesised to cause the 

improvement of movement deficits in PD. However, human studies on DBS-STN 
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have found no evidence supporting the hypothesis that DBS-STN increase the striatal 

dopamine level (Hilker et al., 2003; Strafella, Sadikot & Dagher, 2003; Nozaki et al., 

2013). Clinical observations on PD patients have shown that patients treated with 

STN DBS decrease the intake of dopamine medication. Nevertheless, the interactions 

between STN DBS and dopaminergic medication and the underlying neural 

mechanisms on improving motor and (possibly) cognitive functions remain unclear. 

Future studies are in need to shed lights on the connections between the treatments 

and the way they work in better understanding PD and how to treat the symptoms.  

 

6-5 Direction for future research 

The present thesis provides several different directions for the future studies.  

 

In terms of the effects of dopamine medication, Chapter 2 suggests that in line with 

previous studies, PD patients with ICD history were able to perform as well as 

age-matched HCs on a moving dots task manipulating decision conflict, and that the 

acute effect of medication did not produce negative influences on task performance. 

Voon et al (2017) proposed that chronic treatment with dopamine medication can 

interfere with the phasic and tonic activity of dopaminergic neurons, which could be 

associated with long-term neuro-adaptation including regulation of receptor and 

transporter density. It has also been suggested that reduced concentrations of striatal 

dopamine transporter (Smith et al., 2016; Voon et al., 2014; Vriend et al., 2014), and 

altered striatal and cortical dopamine homeostasis (Rao et al., 2010; Ray et al., 2012) 

may potentially contribute to the development of ICDs. Moreover, factors such as 

personal or family history of alcoholism or gambling; younger age; impulsive or 

novelty-seeking traits; gender (male for hypersexuality, female for binge eating and 

pathological shopping); early onset of PD; being unmarried; and past or current 



 

279 
 

cigarette smoking can all be associated with the development of ICDs in PD (Voon & 

Fox, 2007; Weintraub et al., 2010; Weintraub et al., 2015). Future studies should 

therefore focus on the chronic effects of dopamine medication, especially dopamine 

agonist, and identify risky factors on inducing risky behaviours and choices in PD 

patients, in order to prevent the onset of ICDs in patients, which may also shed lights 

on the underlying neural mechanisms. The effects of dopamine agonist on inducing 

impulsive choices may also provide insights on how abnormal dopamine transmission 

would lead to pathological gambling and addiction. Future studies investigating the 

development of ICDs in PD patients should focus on impulsive choices and risky 

behaviour that involve rewarding effect and corresponding neural mechanisms such as 

the mesolimbic dopaminergic pathways. On the other hand, the present thesis 

indicates PD patients developed ICDs may potentially be identified before medication 

treatment through tasks associated with EFs 

 

In addition, dopamine has been well established to be involved in major cognitive 

functions such as reinforcement learning, decision-making and motor/cognitive 

control. Most of the dopamine neurons reside in the midbrain and form three cell 

groups: (1) the retrorubral nucleus (RRN, cell group A8 in the rat); (2) the substantia 

nigra pars compacta (SNpc, A9) and (3) the ventral tegmental area (VTA, A10) (Daw 

& Tobler, 2014). Over the past several decades, two aspects have been proposed to be 

the major functions of dopamine in the striatum: (1) movement control and (2) 

modulating motivation and reward. The majority of studies have been focused on how 

the brain resolves the reinforcement learning problem via the midbrain dopamine 

neurons (Glimcher, 2011; Niv, 2009; Daw & Tobler, 2014; Schultz, Dayan & 

Montague, 1997). Besides the reinforcement learning framework in explaining 

learning and decision-making, Friston, Daunizeau & Kiebel (2009) have proposed 
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that optimal behaviours could be guided by the adjustment of the agents’ internal 

states and external sampling of sensory evidence to minimise free energy, which 

discard the notion of reward, value or utility. Such framework is termed as ‘active 

inference’ (Friston et al., 2009). It has been suggested that the brain can be regarded 

as an inference machine, which governs the processes involved in accumulation of 

sensory information and making inference about the external world (Helmholtz, 1866; 

Gregory, 1980; Rao & Ballard, 1995; Friston et al., 2005; Friston, 2010). Friston et al 

(2012) have considered dopamine neurotransmission as an integral part of 

Bayes-optimal perception and sensorimotor integration that responds to the perceptual 

cues in an environment with a fixed level of uncertainty. In active inference, 

behaviour emerges as a natural consequence of high-level sensorimotor 

representations that are maintained by bottom-up prediction errors in both sensory and 

motor modalities (Friston, Daunizeau, Kilner & Kiebel, 2010; Friston et al., 2013; 

Friston & Kiebel, 2009). In other words, dopamine is involved in selecting the 

proprioceptive (motor) and exteroceptive (sensory) signals (prediction errors) that 

compete for higher level explanation by controlling their precision, which means that 

dopamine is in a position to select an attribute of a probabilistic representation that 

determines the confidence about what is presented (Friston et al., 2012). Moreover, 

confidence in making a decision can be associated with decision itself (i.e. to obtain 

more information and/or prediction of a reward) and a link between previous decision 

outcomes and the strategy on guiding the following decisions (van den Berg et al., 

2016a). Confidence, choice and RTs are further proposed to be elements in a bounded 

evidence accumulation process (van den Berg et al., 2016b). Together previous studies 

have suggested an important role of dopamine in reinforcement learning and making 

inference, how dopamine depletion may affect these functions in PD patients could 

therefore bring insights on the supporting the hypothetical role of dopamine in the 
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brain. 

 

Following the results of Chapter 2, the machine learning study described in Chapter 3 

suggests that it is possible to use behavioural pattern as an input factor in building 

predictive models that serve as a screening tool to distinguish patients who may be 

more likely to develop ICDs in the future. Previous studies have also suggested the 

existence of pre-motor markers that may predict high risk in developing PD for some 

people (Chaudhuri & Schapira, 2009; Büttner et al., 1995; Postuma et al., 2006). 

Moreover, the application of machine learning on clinical data may also be powerful 

and useful to monitor disease progress for patients with long-term diseases such as PD. 

Diseases are not caused by one single factor but various factors interacting on various 

levels. Interdisciplinary research programmes are needed to better monitor the 

progress of chronic diseases. In 2014, New York University’s Institute for the Study 

of Decision Making and the Kavli Foundation have initiated an interdisciplinary 

research platform named The HUMAN Projects (URL: 

https://www.thehumanproject.org/), which attempts to link the connections between 

human minds, bodies and environment to build a comprehensive understanding of the 

factors and the interactions between these factors that shape how people live and 

affect their health and well-being (Azmak et al., 2015). These factors and the 

interactions between the factors may further help to form new theories, therapeutics 

and policies that improve the quality of life. Chronic diseases such as PD and 

Alzheimer’s disease result from interactions between many different factors on 

various levels, and the disease progress also highly correlated with theses interactions. 

If similar research platform could be built for patients who have chronic diseases, 

clinicians, caregivers and patients themselves could benefit from the data and be more 

efficient in monitoring the disease progress. Smartphone applications can be used to 

https://www.thehumanproject.org/
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help track each patient’s individual data on various levels such as medication intake, 

food intake, mood, and the amount of exercise... etc. These data could be further 

analysed and used for building customized models that help to improve the quality of 

live for both patients and caregivers, especially for long-term degenerative diseases 

such as Parkinson’s disease. 

 

On the other hand, Chapter 4 supports the hypothesis that the STN plays a role in task 

switching. Moreover, the evidence suggests that task-switching may involve 

fundamentally different but related cognitive processes, which are controlled by 

distinct brain areas. The results are also in line with the hypothesis that the reliability 

of sensory information plays an important role on modulating SAT (Devene, 2012). 

Furthermore, PD patients still showed subtle difference on underlying cognitive 

components under the effects of DBS, which supports a role of the STN on 

modulating boundary separation and sensory information integration. While some 

studies suggest that when decision conflict was presented, PD patients with STN DBS 

ON would show impulsive behaviours when response accuracy was emphasised 

(Bogacz & Gurney, 2007; Frank, 2005; Frank et al., 2007; Bogacz, 2010; Mansfield et 

al., 2011; Cavanagh et al., 2011; Green et al., 2013), one suggested that speed 

pressure without decision conflict could induce impulsive behaviours (Pote et al., 

2016), and others proposed that the inability to slow down when making decisions 

during high decision conflict conditions and the exhibition of reflection impulsivity 

by PD patients who had undergone functional neurosurgery was associated with 

dopamine agonists rather than with DBS (Djamshidian et al., 2013; Djamshidian et al., 

2014). Future studies are needed to determine how these multiple factors (i.e. STN 

DBS, dopamine agonist, decision conflict and SAT) and their interactions affect PD 

patients when making perceptual decisions. Moreover, future studies may be 
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developed to investigate how the STN is involved in modulating decision thresholds 

during value-based decision making, which may provide insights on how 

cortico-basal ganglia circuits participate in the computation of the associations 

between action and outcome, and the evaluation of the rewards that are associated 

with the different outcomes.  

 

Moreover, Chapter 5 shows that the acute manipulation of STN DBS improved task 

performance on the probabilistic RT task for PD patients. The observation indicates 

that PD patients with STN DBS ON slowed down when encountering surprising 

events but not to a degree that would induce abnormally slowed behaviours. Such an 

observation contradicts the hypothesis that DBS in PD patients would disrupt the 

function of the STN in serving as a brake in the brain that would allow more 

information to be accumulated during ambiguous conditions, resulting in impulsive 

decisions/actions and impaired action reprogramming (Frank et al., 2007; Green et al., 

2013). Future studies are therefore required to determine the role of the STN in 

making decisions under ambiguity. Moreover, PD patients exhibited a robust SAT 

when performing the probabilistic task. Four theories have been proposed to account 

for the underlying neural mechanisms of such a trade-off: the cortical theory, the 

striatal theory, the STN theory and the synaptic theory, which stand for different 

circuits that modulate the balance between making a fast or making an accurate 

response (for details please see the review of Bogacz, 2010). The present results 

support both striatal and the STN theory on modulating the SAT. Future studies may 

be developed to determine the underlying neural mechanisms.  

 

In addition, Wessel et al (2016) found that encountering unexpected events increases 

STN activity, which leads to the decrement of verbal working memory, and is related 
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to attentional reorientation. The authors therefore proposed that encountering 

surprising events would interrupt cognition via the same fronto-basal ganglia 

mechanism that interrupts action, which may lead to a new theory of distraction that 

involves a cortico-basal ganglia network that underlies motor suppression but also 

affects cognitive function (Wessel et al., 2016). Studies are in need to investigate the 

role of STN on interrupting cognition such as working memory after encountering 

unexpected events, and the connections between dopaminergic medication.  

 

Overall speaking, the present PhD thesis suggests that both STN DBS and dopamine 

medication are effective in treating motor dysfunction in PD and the potential siede 

effects induced by treatments may be specific to individuals under certain coditions. 

However, the results do not rule out the potential side effects thay may be induced by 

treatments which would result in devastating consequnces to certain patients and their 

families. As prevention is better than cure, it is useful to further explore the 

possibilities of developing screening tools to identify risk factors for developing other 

disorders such as ICDs and dementia in individual patients, in order to reach better 

patient-centered care, which focuses on the individual's particular health care needs.  
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Appendices



In [5]:

Plotting a_Intercept 
Plotting a_C(type)[T.SP] 
Plotting a_C(time)[T.T2] 
Plotting a_C(Group)[T.PD ICD] 
Plotting a_C(type)[T.SP]:C(time)[T.T2] 
Plotting a_C(type)[T.SP]:C(Group)[T.PD ICD] 
Plotting a_C(time)[T.T2]:C(Group)[T.PD ICD] 
Plotting a_C(type)[T.SP]:C(time)[T.T2]:C(Group)[T.PD ICD] 
Plotting v_Intercept 
Plotting v_C(time)[T.T2] 
Plotting v_C(Group)[T.PD ICD] 
Plotting v_C(time)[T.T2]:C(Group)[T.PD ICD] 
Plotting t_Intercept 
Plotting t_C(type)[T.SP] 
Plotting t_C(time)[T.T2] 
Plotting t_C(Group)[T.PD ICD] 
Plotting t_C(type)[T.SP]:C(time)[T.T2] 
Plotting t_C(type)[T.SP]:C(Group)[T.PD ICD] 
Plotting t_C(time)[T.T2]:C(Group)[T.PD ICD] 
Plotting t_C(type)[T.SP]:C(time)[T.T2]:C(Group)[T.PD ICD] 

#plot the figures to examine the convergence of the model
m_Speed.plot_posteriors()
plt.show()





















In [6]: a_Intercept, a_Group, a_Time, a_Type, a_Group_Time, a_Group_Type, a_Time_Type, a_

#Plot the posterior distribution of decision threshold (a) under the influence of
hddm.analyze.plot_posterior_nodes([a_Group])
plt.xlabel('Regression Coefficient')
plt.ylabel('Posterior Probability')
plt.show()
print "P(a_Group < 0)=", (a_Group.trace() < 0).mean()

#Plot the posterior distribution of decision threshold (a) under the influence of
hddm.analyze.plot_posterior_nodes([a_Time])
plt.xlabel('Regression Coefficient')
plt.ylabel('Posterior Probability')
plt.show()
print "P(a_Time < 0)=", (a_Time.trace() < 0).mean()

#Plot the posterior distribution of decision threshold (a) under the influence of
hddm.analyze.plot_posterior_nodes([a_Type])
plt.xlabel('Regression Coefficient')
plt.ylabel('Posterior Probability')
plt.show()
print "P(a_Type < 0)=", (a_Type.trace() < 0).mean()

#Plot the posterior distribution of decision threshold (a) under the inflence of 
hddm.analyze.plot_posterior_nodes([a_Group_Time])
plt.xlabel('Regression Coefficient')
plt.ylabel('Posterior Probability')
plt.show()
print "P(a_Time_Group < 0)=", (a_Group_Time.trace() < 0).mean()

#Plot the posterior distribution of decision threshold (a) under the influence of
hddm.analyze.plot_posterior_nodes([a_Group_Type])
plt.xlabel('Regression Coefficient')
plt.ylabel('Posterior Probability')
plt.show()
print "P(a_Type_Group < 0)=", (a_Group_Type.trace() < 0).mean()

#Plot the posterior distribution of decision threshold (a) under the influence of
hddm.analyze.plot_posterior_nodes([a_Time_Type])
plt.xlabel('Regression Coefficient')
plt.ylabel('Posterior Probability')
plt.show()
print "P(a_Type_Time < 0)=", (a_Time_Type.trace() < 0).mean()

#Plot the posterior distribution of decision threshold (a) under the influence of
hddm.analyze.plot_posterior_nodes([a_Group_Time_Type])
plt.xlabel('Regression Coefficient')
plt.ylabel('Posterior Probability')
plt.show()
print "P(a_Type_Time_Group < 0)=", (a_Group_Time_Type.trace() < 0).mean()



P(a_Group < 0)= 0.56797979798 

P(a_Time < 0)= 0.602616161616 

P(a_Type < 0)= 0.996454545455 



P(a_Time_Group < 0)= 0.668545454545 

P(a_Type_Group < 0)= 0.801767676768 

P(a_Type_Time < 0)= 0.976848484848 



P(a_Type_Time_Group < 0)= 0.265282828283 



In [7]:

P(v_Group < 0)= 0.924080808081 

P(v_Time < 0)= 0.759595959596 

v_Intercept, v_Group, v_Time, v_Group_Time = m_Speed.nodes_db.loc[['v_Intercept'

#Plot the posterior distribution of drift rate (v) under the influence of group 
hddm.analyze.plot_posterior_nodes([v_Group])
plt.xlabel('Regression Coefficient')
plt.ylabel('Posterior Probability')
plt.show()
print "P(v_Group < 0)=", (v_Group.trace() < 0).mean()

#Plot the posterior distribution of drift rate (v) under the influence of time (i
hddm.analyze.plot_posterior_nodes([v_Time])
plt.xlabel('Regression Coefficient')
plt.ylabel('Posterior Probability')
plt.show()
print "P(v_Time < 0)=", (v_Time.trace() < 0).mean()

#Plot the posterior distribution of drift rate (v) under the influence of group*t
hddm.analyze.plot_posterior_nodes([v_Group_Time])
plt.xlabel('Regression Coefficient')
plt.ylabel('Posterior Probability')
plt.show()
print "P(v_Time_Group < 0)=", (v_Group_Time.trace() < 0).mean()



P(v_Time_Group < 0)= 0.470424242424 



In [8]: t_Intercept, t_Group, t_Time, t_Type, t_Group_Time, t_Group_Type, t_Time_Type, t_

#Plot the posterior distribution of non-decision time (t) under the influence of 
hddm.analyze.plot_posterior_nodes([t_Group])
plt.xlabel('Regression Coefficient')
plt.ylabel('Posterior Probability')
plt.show()
print "P(t_Group < 0)=", (t_Group.trace() < 0).mean()

#Plot the posterior distribution of non-decision time (t) under the influence of 
hddm.analyze.plot_posterior_nodes([t_Time])
plt.xlabel('Regression Coefficient')
plt.ylabel('Posterior Probability')
plt.show()
print "P(t_Time < 0)=", (t_Time.trace() < 0).mean()

#Plot the posterior distribution of non-decision time (t) under the influence of 
hddm.analyze.plot_posterior_nodes([t_Type])
plt.xlabel('Regression Coefficient')
plt.ylabel('Posterior Probability')
plt.show()
print "P(t_Type < 0)=", (t_Type.trace() < 0).mean()

#Plot the posterior distribution of non-decision time (t) under the inflence of g
hddm.analyze.plot_posterior_nodes([a_Group_Time])
plt.xlabel('Regression Coefficient')
plt.ylabel('Posterior Probability')
plt.show()
print "P(a_Time_Group < 0)=", (a_Group_Time.trace() < 0).mean()

#Plot the posterior distribution of non-decision time (t) under the influence of 
hddm.analyze.plot_posterior_nodes([t_Group_Type])
plt.xlabel('Regression Coefficient')
plt.ylabel('Posterior Probability')
plt.show()
print "P(t_Type_Group < 0)=", (t_Group_Type.trace() < 0).mean()

#Plot the posterior distribution of non-decision time (t) under the influence of 
hddm.analyze.plot_posterior_nodes([t_Time_Type])
plt.xlabel('Regression Coefficient')
plt.ylabel('Posterior Probability')
plt.show()
print "P(t_Type_Time < 0)=", (t_Time_Type.trace() < 0).mean()

#Plot the posterior distribution of non-decision time (t) under the influence of 
hddm.analyze.plot_posterior_nodes([t_Group_Time_Type])
plt.xlabel('Regression Coefficient')
plt.ylabel('Posterior Probability')
plt.show()
print "P(t_Type_Time_Group < 0)=", (t_Group_Time_Type.trace() < 0).mean()



P(t_Group < 0)= 0.71904040404 

P(t_Time < 0)= 0.718494949495 

P(t_Type < 0)= 1.0 



P(a_Time_Group < 0)= 0.668545454545 

P(t_Type_Group < 0)= 0.350101010101 

P(t_Type_Time < 0)= 0.00207070707071 



P(t_Type_Time_Group < 0)= 0.573404040404 



In [1]:

In [5]:

In [6]:

In [7]:

/Users/Nicole/anaconda2/lib/python2.7/site-packages/IPython/parallel.py:13: Sh
imWarning: The `IPython.parallel` package has been deprecated. You should impo
rt from ipyparallel instead. 
  "You should import from ipyparallel instead.", ShimWarning) 

Adding these covariates: 
['a_Intercept', 'a_C(Time)[T.T2]', 'a_C(Group)[T.PD ICD]', 'a_C(Time)[T.T2]:C
(Group)[T.PD ICD]'] 
Adding these covariates: 
['v_Intercept', 'v_C(Level)[T.L2]', 'v_C(Level)[T.L3]', 'v_C(Level)[T.L4]', 'v
_C(Level)[T.L5]', 'v_C(Level)[T.L6]', 'v_C(Time)[T.T2]', 'v_C(Group)[T.PD IC
D]', 'v_C(Level)[T.L2]:C(Time)[T.T2]', 'v_C(Level)[T.L3]:C(Time)[T.T2]', 'v_C
(Level)[T.L4]:C(Time)[T.T2]', 'v_C(Level)[T.L5]:C(Time)[T.T2]', 'v_C(Level)[T.
L6]:C(Time)[T.T2]', 'v_C(Level)[T.L2]:C(Group)[T.PD ICD]', 'v_C(Level)[T.L3]:C
(Group)[T.PD ICD]', 'v_C(Level)[T.L4]:C(Group)[T.PD ICD]', 'v_C(Level)[T.L5]:C
(Group)[T.PD ICD]', 'v_C(Level)[T.L6]:C(Group)[T.PD ICD]', 'v_C(Time)[T.T2]:C
(Group)[T.PD ICD]', 'v_C(Level)[T.L2]:C(Time)[T.T2]:C(Group)[T.PD ICD]', 'v_C
(Level)[T.L3]:C(Time)[T.T2]:C(Group)[T.PD ICD]', 'v_C(Level)[T.L4]:C(Time)[T.T
2]:C(Group)[T.PD ICD]', 'v_C(Level)[T.L5]:C(Time)[T.T2]:C(Group)[T.PD ICD]', 
'v_C(Level)[T.L6]:C(Time)[T.T2]:C(Group)[T.PD ICD]'] 
Adding these covariates: 
['t_Intercept', 't_C(Time)[T.T2]', 't_C(Group)[T.PD ICD]', 't_C(Time)[T.T2]:C
(Group)[T.PD ICD]'] 

 [-----------------100%-----------------] 10001 of 10000 complete in 20136.0 s
ec

Out[7]: <pymc.MCMC.MCMC at 0x11f1925d0>

#import the related toolboxes
import hddm
import pandas as pd
import matplotlib.pyplot as plt

#import the data
Difficulty = hddm.load_csv('/Users/Nicole/Desktop/HDDM_DotsPD/Difficulty.csv')

#Instead of estimating one static threshold per subject across trials, this model
m_Difficulty = hddm.HDDMRegressor(Difficulty, ["a ~ C(Time)*C(Group)","v ~ C(Leve

#Start drawing 10000 samples and discarding 1000 as burn-in
m_Difficulty.sample(10000, burn=1000)

Appendix - Programming codes for Chapter 2 



In [8]:

Plotting a_Intercept 
Plotting a_C(Time)[T.T2] 
Plotting a_C(Group)[T.PD ICD] 
Plotting a_C(Time)[T.T2]:C(Group)[T.PD ICD] 
Plotting v_Intercept 
Plotting v_C(Level)[T.L2] 
Plotting v_C(Level)[T.L3] 
Plotting v_C(Level)[T.L4] 
Plotting v_C(Level)[T.L5] 
Plotting v_C(Level)[T.L6] 
Plotting v_C(Time)[T.T2] 
Plotting v_C(Group)[T.PD ICD] 
Plotting v_C(Level)[T.L2]:C(Time)[T.T2] 
Plotting v_C(Level)[T.L3]:C(Time)[T.T2] 
Plotting v_C(Level)[T.L4]:C(Time)[T.T2] 
Plotting v_C(Level)[T.L5]:C(Time)[T.T2] 
Plotting v_C(Level)[T.L6]:C(Time)[T.T2] 
Plotting v_C(Level)[T.L2]:C(Group)[T.PD ICD] 
Plotting v_C(Level)[T.L3]:C(Group)[T.PD ICD] 
Plotting v_C(Level)[T.L4]:C(Group)[T.PD ICD] 
Plotting v_C(Level)[T.L5]:C(Group)[T.PD ICD] 

/Users/Nicole/anaconda2/lib/python2.7/site-packages/matplotlib/pyplot.py:524: 
RuntimeWarning: More than 20 figures have been opened. Figures created through 
the pyplot interface (`matplotlib.pyplot.figure`) are retained until explicitl
y closed and may consume too much memory. (To control this warning, see the rc
Param `figure.max_open_warning`). 
  max_open_warning, RuntimeWarning) 

Plotting v_C(Level)[T.L6]:C(Group)[T.PD ICD] 
Plotting v_C(Time)[T.T2]:C(Group)[T.PD ICD] 
Plotting v_C(Level)[T.L2]:C(Time)[T.T2]:C(Group)[T.PD ICD] 
Plotting v_C(Level)[T.L3]:C(Time)[T.T2]:C(Group)[T.PD ICD] 
Plotting v_C(Level)[T.L4]:C(Time)[T.T2]:C(Group)[T.PD ICD] 
Plotting v_C(Level)[T.L5]:C(Time)[T.T2]:C(Group)[T.PD ICD] 
Plotting v_C(Level)[T.L6]:C(Time)[T.T2]:C(Group)[T.PD ICD] 
Plotting t_Intercept 
Plotting t_C(Time)[T.T2] 
Plotting t_C(Group)[T.PD ICD] 
Plotting t_C(Time)[T.T2]:C(Group)[T.PD ICD] 

#plot the figures to examine the convergence of the model
m_Difficulty.plot_posteriors()
plt.show()
#As the figure shown, the model seems to be well-converged





























In [9]:

P(a_Group < 0)= 0.670666666667 

P(a_Time < 0)= 1.0 

#Extract the posterior distribution of decision threshold (a) under the effects o
a_Intercept, a_Group, a_Time, a_Group_Time = m_Difficulty.nodes_db.loc[['a_Interc
#Plot the posterior distribution of decision threshold (a) under the influence of
hddm.analyze.plot_posterior_nodes([a_Group])
plt.xlabel('Regression Coefficient')
plt.ylabel('Posterior Probability')
plt.show()
print "P(a_Group < 0)=", (a_Group.trace() < 0).mean()
#As the figure shown, the regression coefficient overlaps with zero, indicating t

#Plot the posterior distribution of decision threshold (a) under the influence of
hddm.analyze.plot_posterior_nodes([a_Time])
plt.xlabel('Regression Coefficient')
plt.ylabel('Posterior Probability')
plt.show()
print "P(a_Time < 0)=", (a_Time.trace() < 0).mean()
#The regression coefficient is negative with more than 99% of it being begative, 

#Plot the posterior distribution of decision threshold (a) under the influence of
hddm.analyze.plot_posterior_nodes([a_Group_Time])
plt.xlabel('Regression Coefficient')
plt.ylabel('Posterior Probability')
plt.show()
print "P(a_Time_Group < 0)=", (a_Group_Time.trace() < 0).mean()
#The regression coefficient overlaps with zero, showing no effect of the Group*Ti



P(a_Time_Group < 0)= 0.233 



In [22]: #Extract the posterior distribution of each parameter under the effects of diffen
v_Intercept, v_Group, v_Time, v_L2, v_L3, v_L4, v_L5, v_L6 = m_Difficulty.nodes_d
#Plot the posterior distribution of drift rate (v) under the influence of the gro
hddm.analyze.plot_posterior_nodes([v_Group])
plt.xlabel('Regression Coefficient')
plt.ylabel('Posterior Probability')
plt.show()
print "P(v_Group < 0)=", (v_Group.trace() < 0).mean()
# As the figure and the probability shown, the regression coefficient overlaps wi

#Plot the posterior distribution of drift rate (v) under the influence of the tim
hddm.analyze.plot_posterior_nodes([v_Time])
plt.xlabel('Regression Coefficient')
plt.ylabel('Posterior Probability')
plt.show()
print "P(v_Time < 0)=", (v_Time.trace() < 0).mean()
#The regression coefficient was zero with more than 99% of it being negative, ind
                                                                                 
#Plot the posterior distribution of drift rate (v) under the influence of the Coh
hddm.analyze.plot_posterior_nodes([v_L2, v_L3, v_L4, v_L5, v_L6])
plt.xlabel('Regression Coefficient')
plt.ylabel('Posterior Probability')
plt.show()
print "P(v_L2 < 0)=", (v_L2.trace() < 0).mean()                                  
print "P(v_L3 < 0)=", (v_L3.trace() < 0).mean()   
print "P(v_L4 < 0)=", (v_L4.trace() < 0).mean()
print "P(v_L5 < 0)=", (v_L5.trace() < 0).mean()
print "P(v_L6 < 0)=", (v_L6.trace() < 0).mean()
#The regression coefficient of all coherence level is positive and more than 99% 

#Extract the posterior distribution of drift rate (v) under the effects of diffen
v_Group_Time, v_Group_L2, v_Group_L3, v_Group_L4, v_Group_L5, v_Group_L6 = m_Diff
#Plot the posterior distribution of drift rate (v) under the influence of the gro
hddm.analyze.plot_posterior_nodes([v_Group_Time])
plt.xlabel('Regression Coefficient')
plt.ylabel('Posterior Probability')
plt.show()
print "P(v_Time_Group < 0)=", (v_Group_Time.trace() < 0).mean()
#The regression coefficient overlaps with zero, indicating that the Group*Time in

#Plot the posterior distribution of drift rate (v) under the influence of the gro
hddm.analyze.plot_posterior_nodes([v_Group_L2, v_Group_L3, v_Group_L4, v_Group_L5
plt.xlabel('Regression Coefficient')
plt.ylabel('Posterior Probability')
plt.show()
print "P(v_L2_Group < 0)=", (v_Group_L2.trace() < 0).mean()                      
print "P(v_L3_Group < 0)=", (v_Group_L3.trace() < 0).mean()   
print "P(v_L4_Group < 0)=", (v_Group_L4.trace() < 0).mean()
print "P(v_L5_Group < 0)=", (v_Group_L5.trace() < 0).mean()
print "P(v_L6_Group < 0)=", (v_Group_L6.trace() < 0).mean()
#The regression coefficient overlaps with zero, indicating that the Group*Coheren

                                                                                 
#Extract the posterior distribution of drift rate (v) under the effects of diffen
v_Time_L2, v_Time_L3, v_Time_L4, v_Time_L5, v_Time_L6 = m_Difficulty.nodes_db.loc
#Plot the posterior distribution of drift rate (v) under the influence of the tim
hddm.analyze.plot_posterior_nodes([v_Time_L2, v_Time_L3, v_Time_L4, v_Time_L5, v_
plt.xlabel('Regression Coefficient')
plt.ylabel('Posterior Probability')
plt.show()
print "P(v_L2_Time < 0)=", (v_Time_L2.trace() < 0).mean()                        
print "P(v_L3_Time < 0)=", (v_Time_L3.trace() < 0).mean()   
print "P(v_L4_Time < 0)=", (v_Time_L4.trace() < 0).mean()
print "P(v_L5_Time < 0)=", (v_Time_L5.trace() < 0).mean()



<matplotlib.figure.Figure at 0x1282a3c10>

<matplotlib.figure.Figure at 0x128a3da50>

P(v_Group < 0)= 0.619666666667 

P(v_Time < 0)= 0.992444444444 

print "P(v_L6_Time < 0)=", (v_Time_L6.trace() < 0).mean()
#As the figure and the probability shown, as the Coherence level increases, the r

#Extract the posterior distribution of drift rate (v) under the effects of diffen
v_Group_Time_L2, v_Group_Time_L3, v_Group_Time_L4, v_Group_Time_L5, v_Group_Time_
#Plot the posterior distribution of drift rate (v) under the influence of the gro
hddm.analyze.plot_posterior_nodes([v_Group_Time_L2, v_Group_Time_L3, v_Group_Time
plt.xlabel('Regression Coefficient')
plt.ylabel('Posterior Probability')
plt.show()
print "P(v_L2_Time_Group < 0)=", (v_Group_Time_L2.trace() < 0).mean()            
print "P(v_L3_Time_Group < 0)=", (v_Group_Time_L3.trace() < 0).mean()   
print "P(v_L4_Time_Group < 0)=", (v_Group_Time_L4.trace() < 0).mean()
print "P(v_L5_Time_Group < 0)=", (v_Group_Time_L5.trace() < 0).mean()
print "P(v_L6_Time_Group < 0)=", (v_Group_Time_L6.trace() < 0).mean()            
#The regression coefficient overlaps with zero, indicating that the Group*Time*Co



P(v_L2 < 0)= 0.0 
P(v_L3 < 0)= 0.0 
P(v_L4 < 0)= 0.0 
P(v_L5 < 0)= 0.0 
P(v_L6 < 0)= 0.0 

P(v_Time_Group < 0)= 0.473222222222 

P(v_L2_Group < 0)= 0.631444444444 
P(v_L3_Group < 0)= 0.742111111111 
P(v_L4_Group < 0)= 0.629666666667 
P(v_L5_Group < 0)= 0.638555555556 
P(v_L6_Group < 0)= 0.631666666667 



P(v_L2_Time < 0)= 0.392111111111 
P(v_L3_Time < 0)= 0.0556666666667 
P(v_L4_Time < 0)= 0.000333333333333 
P(v_L5_Time < 0)= 0.0 
P(v_L6_Time < 0)= 0.0 

P(v_L2_Time_Group < 0)= 0.460444444444 
P(v_L3_Time_Group < 0)= 0.340666666667 
P(v_L4_Time_Group < 0)= 0.485111111111 
P(v_L5_Time_Group < 0)= 0.520777777778 
P(v_L6_Time_Group < 0)= 0.62 



In [23]:

P(t_Group < 0)= 0.828111111111 

P(t_Time < 0)= 0.0 

#Extract the posterior distribution of non-decision time (t) under the effects of
t_Intercpet, t_Group, t_Time, t_Group_Time = m_Difficulty.nodes_db.loc[['t_Interc
#Plot the posterior distribution of non-decision time (t) under the influence of 
hddm.analyze.plot_posterior_nodes([t_Group])
plt.xlabel('Regression Coefficient')
plt.ylabel('Posterior Probability')
plt.show()
print "P(t_Group < 0)=", (t_Group.trace() < 0).mean()
#The regression coefficient overlaps with zero, indicating that the Group*Time*Co

#Plot the posterior distribution of non-decision time (t) under the influence of 
hddm.analyze.plot_posterior_nodes([t_Time])
plt.xlabel('Regression Coefficient')
plt.ylabel('Posterior Probability')
plt.show()
print "P(t_Time < 0)=", (t_Time.trace() < 0).mean()
#The regression coefficient is positive with more than 99% of it being larger tha

#Plot the posterior distribution of non-decision time (t) under the influence of 
hddm.analyze.plot_posterior_nodes([t_Group_Time])
plt.xlabel('Regression Coefficient')
plt.ylabel('Posterior Probability')
plt.show()
print "P(t_Time_Group < 0)=", (t_Group_Time.trace() < 0).mean()
#The regression coefficient overlaps with zero, indicating that the Group*Time in



In [ ]:

P(t_Time_Group < 0)= 0.582777777778 
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In [149]:

In [150]:

import pandas as pd
import scipy
import matplotlib.pyplot as plt
import numpy as np
import sklearn
from pandas.tools.plotting import scatter_matrix 
from sklearn import model_selection
from sklearn.metrics import classification_report 
from sklearn.metrics import confusion_matrix
from sklearn.metrics import accuracy_score
from sklearn.linear_model import LogisticRegression
from sklearn.tree import DecisionTreeClassifier
from sklearn.neighbors import KNeighborsClassifier
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis 
from sklearn.naive_bayes import GaussianNB
from sklearn.svm import SVC

#Create predictive model with RTs of incorrect trials under Accuracy instruction OFF med
#Input variables: age (when being assessed), onset age, LEDD, RTs of incorrect trials of 0.05 coherence
path = "/Users/yu-tinghuang/Documents/ML_Data/ML_AC_OFF.csv"
names = ['Age', 'Age of PD onset', 'LEDD', 'RT' ,'class']
dataset = pd.read_csv(path, names=names)
 
y = dataset.iloc[0:128, 4].values
y = np.where(y== 'PD-ICD', -1, 1)
X = dataset.iloc[0:185, [2, 3]].values
plt.scatter(X[:128,0], X[:128, 1], color='blue', marker='x', label='PD-ICD'
plt.scatter(X[128:185,0], X[128:185, 1], color='red', marker='o', label
plt.xlabel('LEDD')
plt.ylabel('RT')
plt.legend(loc='upper left')
plt.show()
y = dataset.iloc[0:128, 4].values
y = np.where(y== 'PD-ICD', -1, 1)
X = dataset.iloc[0:185, [1, 3]].values
plt.scatter(X[:128,0], X[:128, 1], color='blue', marker='x', label='PD-ICD'
plt.scatter(X[128:185,0], X[128:185, 1], color='red', marker='o', label
plt.xlabel('Age of PD onset')
plt.ylabel('RT')
plt.legend(loc='upper left')
plt.show()
y = dataset.iloc[0:128, 4].values
y = np.where(y== 'PD+ICD', -1, 1)
X = dataset.iloc[0:185, [1, 3]].values
plt.scatter(X[:128,0], X[:128, 1], color='blue', marker='x', label='PD-ICD'
plt.scatter(X[128:185,0], X[128:185, 1], color='red', marker='o', label
plt.xlabel('Age')
plt.ylabel('RT')
plt.legend(loc='upper left')
plt.show()
 
#box and whisker plots

Appendix - Programming codes for Chapter 3
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#box and whisker plots
dataset.plot(kind='box', subplots=True, layout=(2,2), sharex=False, sharey
plt.show()
 
#scatter plot matrix 
scatter_matrix(dataset)
plt.show()
 
#Split-out validation dataset 
array = dataset.values
X = array[:,0:4]
Y = array[:,4]
validation_size = 0.20
seed = 7
X_train, X_validation, Y_train, Y_validation = model_selection.train_test_split
 
# Spot Check Algorithms
models = []
models.append(('LR', LogisticRegression()))
models.append(('LDA', LinearDiscriminantAnalysis()))
models.append(('KNN', KNeighborsClassifier()))
models.append(('CART', DecisionTreeClassifier()))
models.append(('NB', GaussianNB()))
models.append(('SVM', SVC()))
# evaluate each model in turn
results = []
names = []
for name, model in models:
    kfold = model_selection.KFold(n_splits=10, random_state=seed)
    cv_results = model_selection.cross_val_score(model, X_train, Y_train
    results.append(cv_results)
    names.append(name)
    msg = "%s: %f (%f)" % (name, cv_results.mean(), cv_results.std())
    print(msg)
    
#Compare Algorithms
fig = plt.figure()
fig.suptitle('Algorithm Comparison')
ax = fig.add_subplot(111)
plt.boxplot(results)
ax.set_xticklabels(names)
plt.show()
 
# Make predictions on validation dataset
cart = DecisionTreeClassifier()
cart.fit(X_train, Y_train)
predictions = cart.predict(X_validation)
print(accuracy_score(Y_validation, predictions))
print(confusion_matrix(Y_validation, predictions))
print(classification_report(Y_validation, predictions))
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/anaconda3/lib/python3.6/site-packages/ipykernel_launcher.py:40: Fut
ureWarning: 'pandas.tools.plotting.scatter_matrix' is deprecated, im
port 'pandas.plotting.scatter_matrix' instead.

LR: 0.886190 (0.078894)
LDA: 0.899048 (0.032423)
KNN: 0.865714 (0.107535)
CART: 0.979524 (0.031302)
NB: 0.844762 (0.041959)
SVM: 0.737143 (0.120181)
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In [151]:

0.9459459459459459
[[12  2]
 [ 0 23]]
             precision    recall  f1-score   support

     PD+ICD       1.00      0.86      0.92        14
     PD-ICD       0.92      1.00      0.96        23

avg / total       0.95      0.95      0.94        37

#Create predictive model with RTs of incorrect trials under Accuracy instruction ON med
#Input variables: age (when being assessed), onset age, LEDD, RTs of incorrect trials of 0.05 coherence
path = "/Users/yu-tinghuang/Documents/ML_Data/ML_AC_ON.csv"
names = ['Age', 'Age of PD onset', 'LEDD', 'RT' ,'class']
dataset = pd.read_csv(path, names=names)
y = dataset.iloc[0:121, 4].values
y = np.where(y== 'PD-ICD', -1, 1)
X = dataset.iloc[0:157, [2, 3]].values
plt.scatter(X[:121,0], X[:121, 1], color='blue', marker='x', label='PD-ICD'
plt.scatter(X[121:157,0], X[121:157, 1], color='red', marker='o', label
plt.xlabel('LEDD')
plt.ylabel('RT')
plt.legend(loc='upper left')
plt.show()
y = dataset.iloc[0:121, 4].values
y = np.where(y== 'PD-ICD', -1, 1)
X = dataset.iloc[0:157, [1, 3]].values
plt.scatter(X[:121,0], X[:121, 1], color='blue', marker='x', label='PD-ICD'
plt.scatter(X[121:157,0], X[121:157, 1], color='red', marker='o', label
plt.xlabel('Age of PD onset')
plt.ylabel('RT')
plt.legend(loc='upper left')
plt.show()
y = dataset.iloc[0:121, 4].values
y = np.where(y== 'PD+ICD', -1, 1)
X = dataset.iloc[0:157, [1, 3]].values
plt.scatter(X[:121,0], X[:121, 1], color='blue', marker='x', label='PD-ICD'
plt.scatter(X[121:157,0], X[121:157, 1], color='red', marker='o', label
plt.xlabel('Age')
plt.ylabel('RT')
plt.legend(loc='upper left')
plt.show()
 
#box and whisker plots
dataset.plot(kind='box', subplots=True, layout=(2,2), sharex=False, sharey
plt.show()
 
#scatter plot matrix 
scatter_matrix(dataset)
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scatter_matrix(dataset)
plt.show()
 
 
#Split-out validation dataset 
array = dataset.values
X = array[:,0:4]
Y = array[:,4]
validation_size = 0.20
seed = 7
X_train, X_validation, Y_train, Y_validation = model_selection.train_test_split
 
# Spot Check Algorithms
models = []
models.append(('LR', LogisticRegression()))
models.append(('LDA', LinearDiscriminantAnalysis()))
models.append(('KNN', KNeighborsClassifier()))
models.append(('CART', DecisionTreeClassifier()))
models.append(('NB', GaussianNB()))
models.append(('SVM', SVC()))
# evaluate each model in turn
results = []
names = []
for name, model in models:
    kfold = model_selection.KFold(n_splits=10, random_state=seed)
    cv_results = model_selection.cross_val_score(model, X_train, Y_train
    results.append(cv_results)
    names.append(name)
    msg = "%s: %f (%f)" % (name, cv_results.mean(), cv_results.std())
    print(msg)
 
#Compare Algorithms
fig = plt.figure()
fig.suptitle('Algorithm Comparison')
ax = fig.add_subplot(111)
plt.boxplot(results)
ax.set_xticklabels(names)
plt.show()
 
# Make predictions on validation dataset
cart = DecisionTreeClassifier()
cart.fit(X_train, Y_train)
predictions = cart.predict(X_validation)
print(accuracy_score(Y_validation, predictions))
print(confusion_matrix(Y_validation, predictions))
print(classification_report(Y_validation, predictions))
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/anaconda3/lib/python3.6/site-packages/ipykernel_launcher.py:39: Fut
ureWarning: 'pandas.tools.plotting.scatter_matrix' is deprecated, im
port 'pandas.plotting.scatter_matrix' instead.

LR: 0.785256 (0.067734)
LDA: 0.817308 (0.075153)
KNN: 0.792949 (0.077829)
CART: 0.976923 (0.035251)
NB: 0.785256 (0.091343)
SVM: 0.775641 (0.069751)
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In [153]:

0.9375
[[ 7  1]
 [ 1 23]]
             precision    recall  f1-score   support

     PD+ICD       0.88      0.88      0.88         8
     PD-ICD       0.96      0.96      0.96        24

avg / total       0.94      0.94      0.94        32

#Create predictive model with RTs of incorrect trials under Speed instruction OFF med
#Input variables: age (when being assessed), onset age, LEDD, RTs of incorrect trials of 0.05 coherence
path = "/Users/yu-tinghuang/Documents/ML_Data/ML_SP_OFF.csv"
names = ['Age', 'Age of PD onset', 'LEDD', 'RT' ,'class']
dataset = pd.read_csv(path, names=names)
 
y = dataset.iloc[0:215, 4].values
y = np.where(y== 'PD-ICD', -1, 1)
X = dataset.iloc[0:292, [2, 3]].values
plt.scatter(X[:215,0], X[:215, 1], color='blue', marker='x', label='PD-ICD'
plt.scatter(X[215:292,0], X[215:292, 1], color='red', marker='o', label
plt.xlabel('LEDD')
plt.ylabel('RT')
plt.legend(loc='upper left')
plt.show()
y = dataset.iloc[0:215, 4].values
y = np.where(y== 'PD-ICD', -1, 1)
X = dataset.iloc[0:292, [1, 3]].values
plt.scatter(X[:215,0], X[:215, 1], color='blue', marker='x', label='PD-ICD'
plt.scatter(X[215:292,0], X[215:292, 1], color='red', marker='o', label
plt.xlabel('Age of PD onset')
plt.ylabel('RT')
plt.legend(loc='upper left')
plt.show()
y = dataset.iloc[0:215, 4].values
y = np.where(y== 'PD-ICD', -1, 1)
X = dataset.iloc[0:292, [1, 3]].values
plt.scatter(X[:215,0], X[:215, 1], color='blue', marker='x', label='PD-ICD'
plt.scatter(X[215:292,0], X[215:292, 1], color='red', marker='o', label
plt.xlabel('Age')
plt.ylabel('RT')
plt.legend(loc='upper left')
plt.show()
 
#box and whisker plots
dataset.plot(kind='box', subplots=True, layout=(2,2), sharex=False, sharey
plt.show()
 
#scatter plot matrix 
scatter_matrix(dataset)
plt.show()
 
#Split-out validation dataset 
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#Split-out validation dataset 
array = dataset.values
X = array[:,0:4]
Y = array[:,4]
validation_size = 0.20
seed = 7
X_train, X_validation, Y_train, Y_validation = model_selection.train_test_split
 
#Spot Check Algorithms
models = []
models.append(('LR', LogisticRegression()))
models.append(('LDA', LinearDiscriminantAnalysis()))
models.append(('KNN', KNeighborsClassifier()))
models.append(('CART', DecisionTreeClassifier()))
models.append(('NB', GaussianNB()))
models.append(('SVM', SVC()))
# evaluate each model in turn
results = []
names = []
for name, model in models:
    kfold = model_selection.KFold(n_splits=10, random_state=seed)
    cv_results = model_selection.cross_val_score(model, X_train, Y_train
    results.append(cv_results)
    names.append(name)
    msg = "%s: %f (%f)" % (name, cv_results.mean(), cv_results.std())
    print(msg)
    
 
#Compare Algorithms
fig = plt.figure()
fig.suptitle('Algorithm Comparison')
ax = fig.add_subplot(111)
plt.boxplot(results)
ax.set_xticklabels(names)
plt.show()
 
# Make predictions on validation dataset
cart = DecisionTreeClassifier()
cart.fit(X_train, Y_train)
predictions = cart.predict(X_validation)
print(accuracy_score(Y_validation, predictions))
print(confusion_matrix(Y_validation, predictions))
print(classification_report(Y_validation, predictions))
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/anaconda3/lib/python3.6/site-packages/ipykernel_launcher.py:40: Fut
ureWarning: 'pandas.tools.plotting.scatter_matrix' is deprecated, im
port 'pandas.plotting.scatter_matrix' instead.

LR: 0.690942 (0.078403)
LDA: 0.669203 (0.096520)
KNN: 0.840580 (0.104659)
CART: 1.000000 (0.000000)
NB: 0.652355 (0.072275)
SVM: 0.729891 (0.087391)

1.0
[[12  0]
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In [154]:

 [ 0 47]]
             precision    recall  f1-score   support

     PD+ICD       1.00      1.00      1.00        12
     PD-ICD       1.00      1.00      1.00        47

avg / total       1.00      1.00      1.00        59

#Create predictive model with RTs of incorrect trials under Speed instruction ON med
#Input variables: age (when being assessed), onset age, LEDD, RTs of incorrect trials of 0.05 coherence
path = "/Users/yu-tinghuang/Documents/ML_Data/ML_SP_ON.csv"
names = ['Age', 'Age of PD onset', 'LEDD', 'RT' ,'class']
dataset = pd.read_csv(path, names=names)
 
y = dataset.iloc[0:295, 4].values
y = np.where(y== 'PD-ICD', -1, 1)
X = dataset.iloc[0:385, [2, 3]].values
plt.scatter(X[:295,0], X[:295, 1], color='blue', marker='x', label='PD-ICD'
plt.scatter(X[295:385,0], X[295:385, 1], color='red', marker='o', label
plt.xlabel('LEDD')
plt.ylabel('RT')
plt.legend(loc='upper left')
plt.show()
y = dataset.iloc[0:295, 4].values
y = np.where(y== 'PD-ICD', -1, 1)
X = dataset.iloc[0:385, [1, 3]].values
plt.scatter(X[:295,0], X[:295, 1], color='blue', marker='x', label='PD-ICD'
plt.scatter(X[295:385,0], X[295:385, 1], color='red', marker='o', label
plt.xlabel('Age of PD onset')
plt.ylabel('RT')
plt.legend(loc='upper left')
plt.show()
y = dataset.iloc[0:295, 4].values
y = np.where(y== 'PD+ICD', -1, 1)
X = dataset.iloc[0:385, [1, 3]].values
plt.scatter(X[:295,0], X[:295, 1], color='blue', marker='x', label='PD-ICD'
plt.scatter(X[295:385,0], X[295:385, 1], color='red', marker='o', label
plt.xlabel('Age')
plt.ylabel('RT')
plt.legend(loc='upper left')
plt.show()
 
#box and whisker plots
dataset.plot(kind='box', subplots=True, layout=(2,2), sharex=False, sharey
plt.show()
 
#scatter plot matrix 
scatter_matrix(dataset)
plt.show()
 
#Split-out validation dataset 
array = dataset.values
X = array[:,0:4]
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X = array[:,0:4]
Y = array[:,4]
validation_size = 0.20
seed = 7
X_train, X_validation, Y_train, Y_validation = model_selection.train_test_split
 
# Spot Check Algorithms
models = []
models.append(('LR', LogisticRegression()))
models.append(('LDA', LinearDiscriminantAnalysis()))
models.append(('KNN', KNeighborsClassifier()))
models.append(('CART', DecisionTreeClassifier()))
models.append(('NB', GaussianNB()))
models.append(('SVM', SVC()))
# evaluate each model in turn
results = []
names = []
for name, model in models:
    kfold = model_selection.KFold(n_splits=10, random_state=seed)
    cv_results = model_selection.cross_val_score(model, X_train, Y_train
    results.append(cv_results)
    names.append(name)
    msg = "%s: %f (%f)" % (name, cv_results.mean(), cv_results.std())
    print(msg)
    
#Compare Algorithms
fig = plt.figure()
fig.suptitle('Algorithm Comparison')
ax = fig.add_subplot(111)
plt.boxplot(results)
ax.set_xticklabels(names)
plt.show()
 
# Make predictions on validation dataset
cart = DecisionTreeClassifier()
cart.fit(X_train, Y_train)
predictions = cart.predict(X_validation)
print(accuracy_score(Y_validation, predictions))
print(confusion_matrix(Y_validation, predictions))
print(classification_report(Y_validation, predictions))
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/anaconda3/lib/python3.6/site-packages/ipykernel_launcher.py:40: Fut
ureWarning: 'pandas.tools.plotting.scatter_matrix' is deprecated, im
port 'pandas.plotting.scatter_matrix' instead.

LR: 0.743441 (0.057030)
LDA: 0.733763 (0.074991)
KNN: 0.866989 (0.078139)
CART: 0.993548 (0.012903)
NB: 0.760000 (0.093203)
SVM: 0.789032 (0.057974)

1.0
[[21  0]
 [ 0 56]]
             precision    recall  f1-score   support
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In [155]:

     PD+ICD       1.00      1.00      1.00        21
     PD-ICD       1.00      1.00      1.00        56

avg / total       1.00      1.00      1.00        77

#Create predictive model with RTs of incorrect trials under 0.05 coherence OFF med
#Input variables: age (when being assessed), onset age, LEDD, RTs of incorrect trials of 0.05 coherence
path = "/Users/yu-tinghuang/Documents/ML_Data/Difficulty_0.05_OFF.csv"
names = ['Age', 'Age of PD onset', 'LEDD', 'RT' ,'class']
dataset = pd.read_csv(path, names=names)
 
y = dataset.iloc[0:46, 4].values
y = np.where(y== 'PD+ICD', -1, 1)
X = dataset.iloc[0:118, [2, 3]].values
plt.scatter(X[:46,0], X[:46, 1], color='red', marker='o', label='PD+ICD'
plt.scatter(X[46:118,0], X[46:118, 1], color='blue', marker='x', label=
plt.xlabel('LEDD')
plt.ylabel('RT')
plt.legend(loc='upper left')
plt.show()
y = dataset.iloc[0:46, 4].values
y = np.where(y== 'PD+ICD', -1, 1)
X = dataset.iloc[0:118, [1, 3]].values
plt.scatter(X[:46,0], X[:46, 1], color='red', marker='o', label='PD+ICD'
plt.scatter(X[46:118,0], X[46:118, 1], color='blue', marker='x', label=
plt.xlabel('Age of PD onset')
plt.ylabel('RT')
plt.legend(loc='upper left')
plt.show()
y = dataset.iloc[0:46, 4].values
y = np.where(y== 'PD+ICD', -1, 1)
X = dataset.iloc[0:118, [1, 3]].values
plt.scatter(X[:46,0], X[:46, 1], color='red', marker='o', label='PD+ICD'
plt.scatter(X[46:118,0], X[46:118, 1], color='blue', marker='x', label=
plt.xlabel('Age')
plt.ylabel('RT')
plt.legend(loc='upper left')
plt.show()
 
#box and whisker plots
dataset.plot(kind='box', subplots=True, layout=(2,2), sharex=False, sharey
plt.show()
 
#scatter plot matrix 
scatter_matrix(dataset)
plt.show()
 
#Split-out validation dataset 
array = dataset.values
X = array[:,0:4]
Y = array[:,4]
validation_size = 0.20
seed = 7
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seed = 7
X_train, X_validation, Y_train, Y_validation = model_selection.train_test_split
 
# Spot Check Algorithms
models = []
models.append(('LR', LogisticRegression()))
models.append(('LDA', LinearDiscriminantAnalysis()))
models.append(('KNN', KNeighborsClassifier()))
models.append(('CART', DecisionTreeClassifier()))
models.append(('NB', GaussianNB()))
models.append(('SVM', SVC()))
# evaluate each model in turn
results = []
names = []
for name, model in models:
    kfold = model_selection.KFold(n_splits=10, random_state=seed)
    cv_results = model_selection.cross_val_score(model, X_train, Y_train
    results.append(cv_results)
    names.append(name)
    msg = "%s: %f (%f)" % (name, cv_results.mean(), cv_results.std())
    print(msg)
 
#Compare Algorithms
fig = plt.figure()
fig.suptitle('Algorithm Comparison')
ax = fig.add_subplot(111)
plt.boxplot(results)
ax.set_xticklabels(names)
plt.show()
 
# Make predictions on validation dataset
cart = DecisionTreeClassifier()
cart.fit(X_train, Y_train)
predictions = cart.predict(X_validation)
print(accuracy_score(Y_validation, predictions))
print(confusion_matrix(Y_validation, predictions))
print(classification_report(Y_validation, predictions))
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/anaconda3/lib/python3.6/site-packages/ipykernel_launcher.py:40: Fut
ureWarning: 'pandas.tools.plotting.scatter_matrix' is deprecated, im
port 'pandas.plotting.scatter_matrix' instead.

LR: 0.606667 (0.147506)
LDA: 0.585556 (0.164133)
KNN: 0.642222 (0.163662)
CART: 1.000000 (0.000000)
NB: 0.755556 (0.111886)
SVM: 0.617778 (0.119174)

1.0
[[ 8  0]
 [ 0 16]]
             precision    recall  f1-score   support

     PD+ICD       1.00      1.00      1.00         8
     PD-ICD       1.00      1.00      1.00        16
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In [156]:

avg / total       1.00      1.00      1.00        24

#Create predictive model with RTs of incorrect trials under 0.05 coherence ON med
#Input variables: age (when being assessed), onset age, LEDD, RTs of incorrect trials of 0.05 coherence
path = "/Users/yu-tinghuang/Documents/ML_Data/Difficulty_0.05_ON.csv"
names = ['Age', 'Age of PD onset', 'LEDD', 'RT' ,'class']
dataset = pd.read_csv(path, names=names)
 
y = dataset.iloc[0:76, 4].values
y = np.where(y== 'PD+ICD', -1, 1)
X = dataset.iloc[0:187, [2, 3]].values
plt.scatter(X[:76,0], X[:76, 1], color='red', marker='o', label='PD+ICD'
plt.scatter(X[76:187,0], X[76:187, 1], color='blue', marker='x', label=
plt.xlabel('LEDD')
plt.ylabel('RT')
plt.legend(loc='upper left')
plt.show()
y = dataset.iloc[0:76, 4].values
y = np.where(y== 'PD+ICD', -1, 1)
X = dataset.iloc[0:187, [1, 3]].values
plt.scatter(X[:76,0], X[:76, 1], color='red', marker='o', label='PD+ICD'
plt.scatter(X[76:187,0], X[76:187, 1], color='blue', marker='x', label=
plt.xlabel('Age of PD onset')
plt.ylabel('RT')
plt.legend(loc='upper left')
plt.show()
y = dataset.iloc[0:76, 4].values
y = np.where(y== 'PD+ICD', -1, 1)
X = dataset.iloc[0:187, [1, 3]].values
plt.scatter(X[:76,0], X[:76, 1], color='red', marker='o', label='PD+ICD'
plt.scatter(X[76:187,0], X[76:187, 1], color='blue', marker='x', label=
plt.xlabel('Age')
plt.ylabel('RT')
plt.legend(loc='upper left')
plt.show()
 
#box and whisker plots
dataset.plot(kind='box', subplots=True, layout=(2,2), sharex=False, sharey
plt.show()
 
#scatter plot matrix 
scatter_matrix(dataset)
plt.show()
 
#Split-out validation dataset 
array = dataset.values
X = array[:,0:4]
Y = array[:,4]
validation_size = 0.20
seed = 7
X_train, X_validation, Y_train, Y_validation = model_selection.train_test_split
 
# Spot Check Algorithms
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# Spot Check Algorithms
models = []
models.append(('LR', LogisticRegression()))
models.append(('LDA', LinearDiscriminantAnalysis()))
models.append(('KNN', KNeighborsClassifier()))
models.append(('CART', DecisionTreeClassifier()))
models.append(('NB', GaussianNB()))
models.append(('SVM', SVC()))
# evaluate each model in turn
results = []
names = []
for name, model in models:
    kfold = model_selection.KFold(n_splits=10, random_state=seed)
    cv_results = model_selection.cross_val_score(model, X_train, Y_train
    results.append(cv_results)
    names.append(name)
    msg = "%s: %f (%f)" % (name, cv_results.mean(), cv_results.std())
    print(msg)
    
#Compare Algorithms
fig = plt.figure()
fig.suptitle('Algorithm Comparison')
ax = fig.add_subplot(111)
plt.boxplot(results)
ax.set_xticklabels(names)
plt.show()
 
# Make predictions on validation dataset
cart = DecisionTreeClassifier()
cart.fit(X_train, Y_train)
predictions = cart.predict(X_validation)
print(accuracy_score(Y_validation, predictions))
print(confusion_matrix(Y_validation, predictions))
print(classification_report(Y_validation, predictions))
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/anaconda3/lib/python3.6/site-packages/ipykernel_launcher.py:40: Fut
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/anaconda3/lib/python3.6/site-packages/ipykernel_launcher.py:40: Fut
ureWarning: 'pandas.tools.plotting.scatter_matrix' is deprecated, im
port 'pandas.plotting.scatter_matrix' instead.

LR: 0.543810 (0.101280)
LDA: 0.530476 (0.097315)
KNN: 0.698571 (0.133164)
CART: 0.980000 (0.030551)
NB: 0.643810 (0.131429)
SVM: 0.564286 (0.118403)

1.0
[[11  0]
 [ 0 27]]
             precision    recall  f1-score   support

     PD+ICD       1.00      1.00      1.00        11
     PD-ICD       1.00      1.00      1.00        27

avg / total       1.00      1.00      1.00        38



In [1]:

In [5]:

In [10]:

In [11]:

/Users/Nicole/anaconda2/lib/python2.7/site-packages/IPython/parallel.py:13: Sh
imWarning: The `IPython.parallel` package has been deprecated. You should impo
rt from ipyparallel instead. 
  "You should import from ipyparallel instead.", ShimWarning) 

Adding these covariates: 
['a_Intercept', 'a_C(DBS)[T.HC]', 'a_C(DBS)[T.STN DBS OFF]'] 
Adding these covariates: 
['v_Intercept', 'v_C(Block)[T.B2]', 'v_C(Block)[T.B3]', 'v_C(DBS)[T.HC]', 'v_C
(DBS)[T.STN DBS OFF]', 'v_C(Block)[T.B2]:C(DBS)[T.HC]', 'v_C(Block)[T.B3]:C(DB
S)[T.HC]', 'v_C(Block)[T.B2]:C(DBS)[T.STN DBS OFF]', 'v_C(Block)[T.B3]:C(DBS)
[T.STN DBS OFF]'] 
Adding these covariates: 
['t_Intercept', 't_C(DBS)[T.HC]', 't_C(DBS)[T.STN DBS OFF]'] 

 [-----------------100%-----------------] 10001 of 10000 complete in 7494.0 se
c

Out[11]: <pymc.MCMC.MCMC at 0x1267d0c90>

#import the related toolboxes
import hddm
import pandas as pd
import matplotlib.pyplot as plt

#load the data
data = hddm.load_csv('/Users/Nicole/Desktop/Latest drafts3/DBS_switching/DBS_swit

#Create the model with all available data
m1 = hddm.HDDMRegressor(data, ["a ~ C(DBS)","v ~ C(Block)*C(DBS)","t ~ C(DBS)"])

#Start drawing 10000 samples and discarding 1000 as burn-in 
m1.sample(10000, burn=1000)

Appendix - Programming codes for Chapter 4



In [12]:

Plotting a_Intercept 
Plotting a_C(DBS)[T.HC] 
Plotting a_C(DBS)[T.STN DBS OFF] 
Plotting v_Intercept 
Plotting v_C(Block)[T.B2] 
Plotting v_C(Block)[T.B3] 
Plotting v_C(DBS)[T.HC] 
Plotting v_C(DBS)[T.STN DBS OFF] 
Plotting v_C(Block)[T.B2]:C(DBS)[T.HC] 
Plotting v_C(Block)[T.B3]:C(DBS)[T.HC] 
Plotting v_C(Block)[T.B2]:C(DBS)[T.STN DBS OFF] 
Plotting v_C(Block)[T.B3]:C(DBS)[T.STN DBS OFF] 
Plotting t_Intercept 
Plotting t_C(DBS)[T.HC] 
Plotting t_C(DBS)[T.STN DBS OFF] 

#Plot the figures to examine the convergence of the model
m1.plot_posteriors()
plt.show()

#A converged chain would have a stationary trace (upper left plots), 
#low auto-correlation (lower left plots), 
#and normally distributed subject and group mean posteriors, 
#while group variability posteriors are Gamma distributed (right plots).















In [13]:

P(a_HC < 0)= 1.0 
P(a_DBSOFF < 0)= 0.681666666667 

#Extract the estimated decision threshold (a) from the created model 
a_Intercept, a_DBS_HC, a_DBS_OFF = m1.nodes_db.loc[['a_Intercept', 'a_C(DBS)[T.HC

#Plot the posterior distribution of decision threshold (a) under the influence of
hddm.analyze.plot_posterior_nodes([a_DBS_HC, a_DBS_OFF])
plt.xlabel('Regression Coefficient')
plt.ylabel('Posterior Probability')
plt.show()
print "P(a_HC < 0)=", (a_DBS_HC.trace() < 0).mean()
print "P(a_DBSOFF < 0)=", (a_DBS_OFF.trace() < 0).mean()



In [14]:

P(v_HC < 0)= 0.001 
P(v_DBSOFF < 0)= 0.995444444444 

v_Intercept, v_DBS_HC, v_DBS_OFF = m1.nodes_db.loc[['v_Intercept', 'v_C(DBS)[T.HC
v_Block2, v_Block3, v_Block2_HC, v_Block3_HC, v_Block2_DBSOFF, v_Block3_DBSOFF = 

#Plot the posterior distribution of drift rate (v) under the influence of the DBS
hddm.analyze.plot_posterior_nodes([v_DBS_HC, v_DBS_OFF])
plt.xlabel('Regression Coefficient')
plt.ylabel('Posterior Probability')
plt.show()
print "P(v_HC < 0)=", (v_DBS_HC.trace() < 0).mean()
print "P(v_DBSOFF < 0)=", (v_DBS_OFF.trace() < 0).mean()

#Plot the posterior distribution of drift rate (v) under the influence of the Blo
hddm.analyze.plot_posterior_nodes([v_Block2, v_Block3])
plt.xlabel('Regression Coefficient')
plt.ylabel('Posterior Probability')
plt.show()
print "P(v_Block2 < 0)=", (v_Block2.trace() < 0).mean()
print "P(v_Block3 < 0)=", (v_Block3.trace() < 0).mean()

#Plot the posterior distribution of drift rate (v) under the influence of the two
hddm.analyze.plot_posterior_nodes([v_Block2_HC, v_Block3_HC])
plt.xlabel('Regression Coefficient')
plt.ylabel('Posterior Probability')
plt.show()
print "P(v_Block2_HC < 0)=", (v_Block2_HC.trace() < 0).mean()
print "P(v_Block3_HC < 0)=", (v_Block3_HC.trace() < 0).mean()

#Plot the posterior distribution of drift rate (v) under the influence of the two
hddm.analyze.plot_posterior_nodes([v_Block2_DBSOFF, v_Block3_DBSOFF])
plt.xlabel('Regression Coefficient')
plt.ylabel('Posterior Probability')
plt.show()
print "P(v_Block2_DBSOFF < 0)=", (v_Block2_DBSOFF.trace() < 0).mean()
print "P(v_Block3_DBSOFF < 0)=", (v_Block3_DBSOFF.trace() < 0).mean()



P(v_Block2 < 0)= 1.0 
P(v_Block3 < 0)= 0.092 

P(v_Block2_HC < 0)= 1.0 
P(v_Block3_HC < 0)= 0.524888888889 

P(v_Block2_DBSOFF < 0)= 0.920444444444 
P(v_Block3_DBSOFF < 0)= 0.836444444444 



In [15]:

In [ ]:

P(t_HC < 0)= 0.0 
P(t_DBSOFF < 0)= 0.195888888889 

#Extract the estimated non-decision time (t) from the created model 
t_Intercept, t_DBS_HC, t_DBS_OFF = m1.nodes_db.loc[['t_Intercept', 't_C(DBS)[T.HC

#Plot the posterior distribution of non-decision time under the influence of the 
hddm.analyze.plot_posterior_nodes([t_DBS_HC, t_DBS_OFF])
plt.xlabel('Regression Coefficient')
plt.ylabel('Posterior Probability')
plt.show()
print "P(t_HC < 0)=", (t_DBS_HC.trace() < 0).mean()
print "P(t_DBSOFF < 0)=", (t_DBS_OFF.trace() < 0).mean()



In [1]:

In [4]:

In [5]:

In [6]:

/Users/Nicole/anaconda2/lib/python2.7/site-packages/IPython/parallel.py:13: Sh
imWarning: The `IPython.parallel` package has been deprecated. You should impo
rt from ipyparallel instead. 
  "You should import from ipyparallel instead.", ShimWarning) 

Adding these covariates: 
['a_Intercept', 'a_C(Type)[T.SP]', 'a_C(Coherence)[T.High]', 'a_C(Coherence)
[T.Low]', 'a_C(DBS)[T.HC]', 'a_C(DBS)[T.STN DBS OFF]', 'a_C(Type)[T.SP]:C(Cohe
rence)[T.High]', 'a_C(Type)[T.SP]:C(Coherence)[T.Low]', 'a_C(Type)[T.SP]:C(DB
S)[T.HC]', 'a_C(Type)[T.SP]:C(DBS)[T.STN DBS OFF]', 'a_C(Coherence)[T.High]:C
(DBS)[T.HC]', 'a_C(Coherence)[T.Low]:C(DBS)[T.HC]', 'a_C(Coherence)[T.High]:C
(DBS)[T.STN DBS OFF]', 'a_C(Coherence)[T.Low]:C(DBS)[T.STN DBS OFF]', 'a_C(Typ
e)[T.SP]:C(Coherence)[T.High]:C(DBS)[T.HC]', 'a_C(Type)[T.SP]:C(Coherence)[T.L
ow]:C(DBS)[T.HC]', 'a_C(Type)[T.SP]:C(Coherence)[T.High]:C(DBS)[T.STN DBS OF
F]', 'a_C(Type)[T.SP]:C(Coherence)[T.Low]:C(DBS)[T.STN DBS OFF]'] 
Adding these covariates: 
['v_Intercept', 'v_C(Coherence)[T.High]', 'v_C(Coherence)[T.Low]', 'v_C(DBS)
[T.HC]', 'v_C(DBS)[T.STN DBS OFF]', 'v_C(Coherence)[T.High]:C(DBS)[T.HC]', 'v_
C(Coherence)[T.Low]:C(DBS)[T.HC]', 'v_C(Coherence)[T.High]:C(DBS)[T.STN DBS OF
F]', 'v_C(Coherence)[T.Low]:C(DBS)[T.STN DBS OFF]'] 

 [-----------------100%-----------------] 10001 of 10000 complete in 13535.5 s
ec

Out[6]: <pymc.MCMC.MCMC at 0x1194e03d0>

#import the related toolboxes
import hddm
import pandas as pd
import matplotlib.pyplot as plt

#load the data
data = hddm.load_csv('/Users/Nicole/Desktop/Latest drafts3/DBS_switching/DBS.csv

#Create the model with all available data
m = hddm.HDDMRegressor(data, ["a ~ C(Type)*C(Coherence)*C(DBS)","v ~ C(Coherence

#Start drawing 10000 samples and discarding 1000 as burn-in 
m.sample(10000, burn=1000)

Appendix - Programming coeds for Chapter 4 



In [7]:

Plotting t 
Plotting a_Intercept 
Plotting a_C(Type)[T.SP] 
Plotting a_C(Coherence)[T.High] 
Plotting a_C(Coherence)[T.Low] 
Plotting a_C(DBS)[T.HC] 
Plotting a_C(DBS)[T.STN DBS OFF] 
Plotting a_C(Type)[T.SP]:C(Coherence)[T.High] 
Plotting a_C(Type)[T.SP]:C(Coherence)[T.Low] 
Plotting a_C(Type)[T.SP]:C(DBS)[T.HC] 
Plotting a_C(Type)[T.SP]:C(DBS)[T.STN DBS OFF] 
Plotting a_C(Coherence)[T.High]:C(DBS)[T.HC] 
Plotting a_C(Coherence)[T.Low]:C(DBS)[T.HC] 
Plotting a_C(Coherence)[T.High]:C(DBS)[T.STN DBS OFF] 
Plotting a_C(Coherence)[T.Low]:C(DBS)[T.STN DBS OFF] 
Plotting a_C(Type)[T.SP]:C(Coherence)[T.High]:C(DBS)[T.HC] 
Plotting a_C(Type)[T.SP]:C(Coherence)[T.Low]:C(DBS)[T.HC] 
Plotting a_C(Type)[T.SP]:C(Coherence)[T.High]:C(DBS)[T.STN DBS OFF] 
Plotting a_C(Type)[T.SP]:C(Coherence)[T.Low]:C(DBS)[T.STN DBS OFF] 
Plotting v_Intercept 
Plotting v_C(Coherence)[T.High] 

/Users/Nicole/anaconda2/lib/python2.7/site-packages/matplotlib/pyplot.py:524: 
RuntimeWarning: More than 20 figures have been opened. Figures created through 
the pyplot interface (`matplotlib.pyplot.figure`) are retained until explicitl
y closed and may consume too much memory. (To control this warning, see the rc
Param `figure.max_open_warning`). 
  max_open_warning, RuntimeWarning) 

Plotting v_C(Coherence)[T.Low] 
Plotting v_C(DBS)[T.HC] 
Plotting v_C(DBS)[T.STN DBS OFF] 
Plotting v_C(Coherence)[T.High]:C(DBS)[T.HC] 
Plotting v_C(Coherence)[T.Low]:C(DBS)[T.HC] 
Plotting v_C(Coherence)[T.High]:C(DBS)[T.STN DBS OFF] 
Plotting v_C(Coherence)[T.Low]:C(DBS)[T.STN DBS OFF] 

#Plot the figures to examine the convergence of the model
m.plot_posteriors()
plt.show()

#As the figures shown, the model doesn't seem to be we

























In [9]:tract the estimated decision threshold (a) from the created model 
ntercept, a_Type, a_High, a_Low, a_HC, a_DBSOFF = m.nodes_db.loc[['a_Intercept', '
ype_High, a_Type_Low, a_Type_HC, a_Type_DBSOFF = m.nodes_db.loc[['a_C(Type)[T.SP]:
igh_HC, a_Low_HC, a_High_DBSOFF, a_Low_DBSOFF = m.nodes_db.loc[['a_C(Coherence)[T.
ype_High_HC, a_Type_Low_HC, a_Type_High_DBSOFF, a_Type_Low_DBSOFF = m.nodes_db.loc

m.analyze.plot_posterior_nodes([a_Type])
xlabel('Regression Coefficient')
ylabel('Posterior Probability')
show()
nt "P(a_Type < 0)=", (a_Type.trace() < 0).mean()

m.analyze.plot_posterior_nodes([a_High, a_Low])
xlabel('Regression Coefficient')
ylabel('Posterior Probability')
show()
nt "P(a_High < 0)=", (a_High.trace() < 0).mean()
nt "P(a_Low < 0)=", (a_Low.trace() < 0).mean()

m.analyze.plot_posterior_nodes([a_HC, a_DBSOFF])
xlabel('Regression Coefficient')
ylabel('Posterior Probability')
show()
nt "P(a_HC < 0)=", (a_HC.trace() < 0).mean()
nt "P(a_DBSOFF < 0)=", (a_DBSOFF.trace() < 0).mean()

m.analyze.plot_posterior_nodes([a_Type_HC, a_Type_DBSOFF])
xlabel('Regression Coefficient')
ylabel('Posterior Probability')
show()
nt "P(a_HC < 0)=", (a_HC.trace() < 0).mean()
nt "P(a_DBSOFF < 0)=", (a_DBSOFF.trace() < 0).mean()

m.analyze.plot_posterior_nodes([a_Low_HC, a_High_HC, a_Low_DBSOFF, a_High_DBSOFF])
xlabel('Regression Coefficient')
ylabel('Posterior Probability')
show()
nt "P(a_Low_HC < 0)=", (a_Low_HC.trace() < 0).mean()
nt "P(a_High_HC < 0)=", (a_High_HC.trace() < 0).mean()
nt "P(a_Low_DBSOFF < 0)=", (a_Low_DBSOFF.trace() < 0).mean()
nt "P(a_High_DBSOFF < 0)=", (a_High_DBSOFF.trace() < 0).mean()

m.analyze.plot_posterior_nodes([a_Type_Low_HC, a_Type_High_HC, a_Type_Low_DBSOFF, 
xlabel('Regression Coefficient')
ylabel('Posterior Probability')
show()
nt "P(a_Type_Low_HC < 0)=", (a_Type_Low_HC.trace() < 0).mean()
nt "P(a_Type_High_HC < 0)=", (a_Type_High_HC.trace() < 0).mean()
nt "P(a_Type_Low_DBSOFF < 0)=", (a_Type_Low_DBSOFF.trace() < 0).mean()
nt "P(a_Type_High_DBSOFF < 0)=", (a_Type_High_DBSOFF.trace() < 0).mean()



P(a_Type < 0)= 1.0 

P(a_High < 0)= 0.007 
P(a_Low < 0)= 0.0991111111111 

P(a_HC < 0)= 0.0 
P(a_DBSOFF < 0)= 0.951333333333 



P(a_HC < 0)= 0.0 
P(a_DBSOFF < 0)= 0.951333333333 

P(a_Low_HC < 0)= 1.0 
P(a_High_HC < 0)= 0.973888888889 
P(a_Low_DBSOFF < 0)= 0.944111111111 
P(a_High_DBSOFF < 0)= 0.272777777778 

P(a_Type_Low_HC < 0)= 0.418888888889 
P(a_Type_High_HC < 0)= 0.922555555556 
P(a_Type_Low_DBSOFF < 0)= 0.099 
P(a_Type_High_DBSOFF < 0)= 0.954777777778 



In [11]:

P(v_High < 0)= 0.357444444444 
P(v_Low < 0)= 1.0 

P(v_HC < 0)= 0.0 
P(v_DBSOFF < 0)= 0.999555555556 

v_Intercept, v_High, v_Low, v_HC, v_DBSOFF = m.nodes_db.loc[['v_Intercept', 'v_C
v_High_HC, v_Low_HC, v_High_DBSOFF, v_Low_DBSOFF= m.nodes_db.loc[['v_C(Coherence

hddm.analyze.plot_posterior_nodes([v_High, v_Low])
plt.xlabel('Regression Coefficient')
plt.ylabel('Posterior Probability')
plt.show()
print "P(v_High < 0)=", (v_High.trace() < 0).mean()
print "P(v_Low < 0)=", (v_Low.trace() < 0).mean()

hddm.analyze.plot_posterior_nodes([v_HC, v_DBSOFF])
plt.xlabel('Regression Coefficient')
plt.ylabel('Posterior Probability')
plt.show()
print "P(v_HC < 0)=", (v_HC.trace() < 0).mean()
print "P(v_DBSOFF < 0)=", (v_DBSOFF.trace() < 0).mean()

hddm.analyze.plot_posterior_nodes([v_High_HC, v_Low_HC, v_High_DBSOFF, v_Low_DBSO
plt.xlabel('Regression Coefficient')
plt.ylabel('Posterior Probability')
plt.show()
print "P(v_High_HC < 0)=", (v_High_HC.trace() < 0).mean()
print "P(v_Low_HC < 0)=", (v_Low_HC.trace() < 0).mean()
print "P(v_High_DBSOFF < 0)=", (v_High_DBSOFF.trace() < 0).mean()
print "P(v_Low_DBSOFF < 0)=", (v_Low_DBSOFF.trace() < 0).mean()



In [ ]:

P(v_High_HC < 0)= 1.0 
P(v_Low_HC < 0)= 1.0 
P(v_High_DBSOFF < 0)= 0.789333333333 
P(v_Low_DBSOFF < 0)= 0.822555555556 
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Control information sheet: 
 
UCLH Project ID number: 07/Q0512/27 
Version number: 28/10/15 
 
Study title Perceptual Decision-Making on patients with Parkinson’s disease 
 
You are invited to take part in a research study. Before you decide, it is important for you to 
understand why the research is being done and what it will involve. Please take time to read 
the following information carefully and discuss it with others if you wish. Ask us if there is 
anything that is not clear or if you would like more information. Take time to decide whether 
or not you wish to take part. 
 
What is the purpose of the study? 
The aim of this study is to provide information about the ability to change movement speed to 
achieve either fast or accurate movements and how this may be changed in people with 
Parkinson’s disease.  
  
Why have I been chosen? 
You have been invited to take part because you are a similar age to many people with 
Parkinson’s disease and do not have significant mobility or cognitive problems or depression. 
 
Do I have to take part? 
It is up to you to decide whether or not to take part. If you decide to take part, you will be 
asked to sign a consent form. If you decide to take part you are still free to withdraw at any 
time and without giving a reason. A decision to withdraw at any time, or a decision not to 
take part, will not affect your medical care or your future relationship with the Institute of 
Neurology or the National Hospital for Neurology and Neurosurgery. Your medical records 
may be inspected by competent researchers, but if any information is released, this will be 
done in a coded form so that confidentiality is strictly maintained. Participation in this study 
will in no way affect your legal rights.  
 
What will happen to me if I take part? 
You will be asked to participate in a behavioural study. The behavioural study will take place 
at the Sobell Department, Institute of Neurology, UCL at 33 Queen Square, London. Testing 
will take about 30 minutes to complete.  
 
 
Are there any risks or side effects? 
We don’t anticipate any risks or side-effects from participation in the study. 

Appendix - Information sheets, Consent forms 
and questionnaires
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What do I have to do? 
On arriving at the Sobell Department you will complete some pre-experiment pen-and-paper 
questionnaires. Then you will complete a computerized task.  On each trial you will see a 
series of dots and your task is to decide whether the majority of the dots are moving to the 
left or to the right by pressing buttons with your left or right index fingers.  This task will be 
performed under speed (make your decision as quickly as possible) or accuracy (make your 
decision so that it is accurate) with different levels of task difficulty.  
 
What is being tested? 
By measuring your speed of reactions or reaction times, we can compare your performance 
under speed and accuracy instructions and determine if so-called speed-accuracy trade-offs in 
people with Parkinson’s disease are similar or different to healthy people of the same age.  
 
What are the possible benefits of taking part? 
Participation in this study may not give you any direct benefit. But the information we obtain 
from this study may help us understand Parkinson’s disease better and particularly contribute 
to improving mobility in Parkinson’s disease. We will reimburse you for your travel costs to 
and from Queen Square. 
 
Will my taking part in this study be kept confidential? 
All information which is collected about you during the course of the research will be kept 
strictly confidential. Any information about you which leaves the hospital will have your 
name and address removed so that you cannot be recognised from it.  
 
What information about me will be held? 
We will keep a record of your name, age, address, contact details, physical and mental 
examinations. The results will be stored on computer for analysis. All information which is 
collected about you during the course of the study will stay strictly confidential and remain 
within the Institute of Neurology / UCL. Any information about you which leaves the 
Institute of Neurology will have your name, address, birth date and identifiable information 
removed so that you cannot be recognised from it. The principal investigator, Prof. Marjan 
Jahanshahi, will be in charge of ensuring that the security and confidentiality of your 
information is maintained.  
 
What will happen to the results of the research study? 
The data will be analysed and published in scientific journals and presented at scientific 
conferences. It should be emphasised that your name or any information that could identify 
you (e.g. your date of birth) will not be published. We will be happy to provide you with a 
copy of the completed article for you to keep. 
 
What can I do if I am harmed during this study or wish to make a complaint? 
We will welcome your feedback on your experience of this experiment and at the end of each 
session you will have a chance to record any comments on the experiment in writing. These 
comments will be shown (without identifying the person it came from) to the clinician 
involved in the study to ensure that the experiments do not produce too much discomfort. 
Please remember that you are free to withdraw at any point without giving a reason. 
 
If you are harmed by taking part in this research project, there are no special compensation 
arrangements. NHS Indemnity does not offer no-fault compensation i.e. for non-negligent 
harm, and NHS bodies are unable to agree in advance to pay compensation for non-negligent 
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harm. If you are harmed due to someone’s negligence, then you may have grounds for a legal 
action but you may have to pay for it. 
 
Regardless of this, if you wish to complain, or have any concerns with this study, the normal 
National Health Service complaints mechanisms should be available to you.  
 
Who is organising and funding the research? 
This research is being conducted by members of the Sobell Department of Motor 
Neuroscience and Movement Disorders, Institute of Neurology, Queen’s Square, London. 
This study has been reviewed by the Programme Panel of the Sobell Department of Motor 
Neuroscience and Movement Disorders and approved by the National Hospital for Neurology 
and Neurosurgery/Institute of Neurology Joint Research Ethics Committee. The study is 
sponsored by University College London Hospitals Trust. 
 
Contact for further information 
Please do not hesitate to contact the principal investigator Prof Jahanshahi (contact details given 
below) should you have any questions at any stage of the research study: 
 
Miss Yu-Ting Huang  
Sobell Department of Motor Neuroscience and Movement Disorders 
UCL Institute of Neurology,  
33 Queen Square, London, WC1N 3BG 
Mobile:  07940452298 , email: yth1975@gmail.com 
 
Prof. Marjan Jahanshahi 
Sobell Department of Motor Neuroscience and Movement Disorders 
UCL Institute of Neurology 
33 Queen Square, London, WC1N 3BG. 
Tel:0203 4488733, email: m.jaahnshahi@ucl.ac.uk 
 
Prof. Patricia Limousin 
Sobell Department of Motor Neuroscience and Movement Disorders 
UCL Institute of Neurology 
33 Queen Square, London, WC1N 3BG 
!
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Information sheet – PD participants 
 
UCLH Project ID number: 07/Q0512/27 
Version number: 05/10/12, version 6b 
 
Study title Behavioural studies of paradoxical kinesis in Parkinson’s disease 
 
You are invited to take part in a research study. Before you decide, it is important for you to 
understand why the research is being done and what it will involve. Please take time to read 
the following information carefully and discuss it with others if you wish. Ask us if there is 
anything that is not clear or if you would like more information. Take time to decide whether 
or not you wish to take part. 
 
What is the purpose of the study? 
The aim of this study is to provide information about the ability to change movement speed to 
achieve either fast or accurate movements and how this may be changed in people with 
Parkinson’s disease. This study is part of a larger project in which we are seeking to (i) 
understand the mobility problems in Parkinson’s disease and (ii) develop techniques and aids 
for improving them. 
  
Why have I been chosen? 
You have been invited to take part because you are under STN DBS treatment for 
Parkinson’s disease. 
 
Do I have to take part? 
It is up to you to decide whether or not to take part. If you decide to take part, you will be 
asked to sign a consent form. If you decide to take part you are still free to withdraw at any 
time and without giving a reason. A decision to withdraw at any time, or a decision not to 
take part, will not affect your medical care or your future relationship with the Institute of 
Neurology or the National Hospital for Neurology and Neurosurgery. Your medical records 
may be inspected by competent researchers, but if any information is released, this will be 
done in a coded form so that confidentiality is strictly maintained. Participation in this study 
will in no way affect your legal rights.  
 
What will happen to me if I take part? 
You will be asked to participate in a behavioural study.  We will be happy to reimburse you 
for your travel costs to and from Queen Square. 
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The behavioural study will take place at the Sobell Department, Institute of Neurology, UCL 
at 33 Queen Square, London. Testing will take about 3½ hours to complete.  
 
Are there any risks or side effects? 
We don’t anticipate any risks or side-effects from participation in the study. 
 
What do I have to do? 
On arriving at the Sobell Department you will complete some pre-experiment pen-and-paper 
questionnaires. Then you will complete a computerized task.  On each trial you will see a 
series of dots and your task is to decide whether the majority of the dots are moving to the 
left or to the right and then to press a right hand or left hand response button.  This task will 
be performed under speed (make your decision as quickly as possible) or accuracy (make 
your decision so that it is accurate) and with different levels of task difficulty.  
 
What is being tested? 
By measuring your speed of reactions or reaction times, we can compare your performance 
under speed and accuracy instructions and determine if so-called speed-accuracy trade-offs in 
people with Parkinson’s disease are similar or different to healthy people of the same age.  
 
What are the possible benefits of taking part? 
Participation in this study may not give you any direct benefit. But the information we obtain 
from this study may help us understand Parkinson’s disease better and particularly contribute 
to improving mobility in Parkinson’s disease. We will reimburse you for your travel costs to 
and from Queen Square. 
 
Will my taking part in this study be kept confidential? 
All information which is collected about you during the course of the research will be kept 
strictly confidential. Any information about you which leaves the hospital will have your 
name and address removed so that you cannot be recognised from it.  
 
What information about me will be held? 
We will keep a record of your name, age, address, contact details, physical and mental 
examinations. The results will be stored on computer for analysis. All information which is 
collected about you during the course of the study will stay strictly confidential and remain 
within the Institute of Neurology / UCL. Any information about you which leaves the 
Institute of Neurology will have your name, address, birth date and identifiable information 
removed so that you cannot be recognised from it. The principal investigator, Prof. Marjan 
Jahanshahi, will be in charge of ensuring that the security and confidentiality of your 
information is maintained.  
 
What will happen to the results of the research study? 
The data will be analysed and published in scientific journals and presented at scientific 
conferences. It should be emphasised that your name or any information that could identify 
you (e.g. your date of birth) will not be published. We will be happy to provide you with a 
copy of the completed article for you to keep. 
 
What can I do if I am harmed during this study or wish to make a complaint? 
We will welcome your feedback on your experience of this experiment and at the end of each 
session you will have a chance to record any comments on the experiment in writing. These 
comments will be shown (without identifying the person it came from) to the clinician 
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involved in the study to ensure that the experiments do not produce too much discomfort. 
Please remember that you are free to withdraw at any point without giving a reason. 
 
If you are harmed by taking part in this research project, there are no special compensation 
arrangements. NHS Indemnity does not offer no-fault compensation i.e. for non-negligent 
harm, and NHS bodies are unable to agree in advance to pay compensation for non-negligent 
harm. If you are harmed due to someone’s negligence, then you may have grounds for a legal 
action but you may have to pay for it. 
 
Regardless of this, if you wish to complain, or have any concerns with this study, the normal 
National Health Service complaints mechanisms should be available to you.  
 
Who is organising and funding the research? 
This research is being conducted by members of the Sobell Department of Motor 
Neuroscience and Movement Disorders, Institute of Neurology, Queen’s Square, London. 
This study has been reviewed by the Programme Panel of the Sobell Department of Motor 
Neuroscience and Movement Disorders and approved by the National Hospital for Neurology 
and Neurosurgery/Institute of Neurology Joint Research Ethics Committee. The study is 
sponsored by University College London Hospitals Trust. 
 
Contact for further information 
Please do not hesitate to contact the principal investigator Prof Jahanshahi (contact details given 
below) should you have any questions at any stage of the research study: 
 
Ms Yu Ting Huang  
Sobell Department of Motor Neuroscience and Movement Disorders 
UCL Institute of Neurology,  
33 Queen Square, London, WC1N 3BG 
Mobile:  07940452298 , email: yth1975@gmail.com 
 
Prof. Marjan Jahanshahi 
Sobell Department of Motor Neuroscience and Movement Disorders 
UCL Institute of Neurology 
33 Queen Square, London, WC1N 3BG. 
Tel:0203 4488733, email: m.jaahnshahi@ucl.ac.uk 
 
Prof. Patricia Limousin 
Sobell Department of Motor Neuroscience and Movement Disorders 
UCL Institute of Neurology 
33 Queen Square, London, WC1N 3BG 
!
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Information sheet – HC participants 
 

UCLH project number: 07/Q0512/27 
Version Number: Version 2, 27/10/2015 
 
Study title Action Reprogramming on PD patients treated with STN DBS 
 
You are invited to take part in a research study. Before you decide whether you want to do 
this, it is important for you to understand why the research is being done and what you will 
have to do.  
 
Please take time to read the following information carefully and talk to others about it if you 
wish. Ask us if you have any questions. Take time to decide whether or not you wish to take 
part.  
 
 
What is the purpose of this study?  
The aim of the study that you are asked to participate in is to see how deep brain stimulation 
(DBS) on subthalamic nucleus (STN) affects the action reprogramming as surprise events 
takes place. You will take part in two studies. The aim of the first study is to examine your 
action responses to simple visual stimuli on a computer screen. The aim of the second study 
is to examine your action responses to simple visual stimuli on a computer screen after 
learning. We will compare the responses to visual stimuli in Parkinson’s disease patients ON 
and OFF DBS and to healthy individuals. These studies advance our knowledge about the 
integration of mental and motor systems affected by Parkinson’s disease and how we can 
improve it. All information is anonymous and confidential.  
 
Why have I been chosen?   
You have been invited to take part because you are of similar age to many people with 
Parkinson’s disease and do not have significant mobility or cognitive problems or depression. 
 
Do I have to take part?  
You can decide whether or not you want to take part. If you decide to take part, we will ask 
you to sign a consent form. You are still free to withdraw at any time without giving a reason.  
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Your medical care won’t be affected if you decide not to take part in the study, or if you take 
part and then withdraw from the study later on. Also, this will not affect future relationship 
with the Institute of Neurology or the National Hospital for Neurology and Neurosurgery.  
 
Compete researchers may look at your medical records. If any information is released, your 
name will be left out, so that everything stays strictly confidential. Participation in this study 
does not affect your legal rights.  
 
What will happen to me if I take part? 
You will be interviewed by a researcher who will ask you for some information about your 
physical and mental health. You will then complete a computer-based reaction time task by 
pressing buttons on a response box with your fingers. During the task, there will be four 
different kinds of visual stimuli image presented on a computer screen. Each visual stimuli 
image will be associated with pressing a specific button. You will perform the reaction-time 
task twice. 
 
Are there any risks or side effects? 
There are no major risk or side effects in this study. The manipulation has been used 
previously and no negative effects have been documented.  
 
What do I have to do?  
We would like you to complete the tests described below. The purpose of each test will be 
explained to you, followed by a demonstration of what you have to do. On some tests such as 
the questionnaire measures of mood, there are no right or wrong answers and we are simply 
interested in how you are feeling a the time you are completing the form. The assessment will 
take about 2.5 hours with short breaks in between tests. 
1. Computer-based reaction time test: You will be asked to complete a reaction time task by 

pressing buttons on a response box. When you see specific image on the computer screen, 
simply respond by pressing a specific button. The task would require you to be fully 
focused due to the presenting time of the images may be fast. 

2. Questionnaires: An experimenter will do small examinations on your cognitive functions 
such as memory, mood...etc.  

 
What is being tested? 
The aim is to determine the execution of action reprogramming, namely how fast can one re-
initiate an action when surprising events occur. The reaction time and accuracy would be 
recorded.  
 
What are the possible benefits of taking part? 
Participation in this study means that you will be making an important contribution to 
scientific research, helping us understand how Parkinson’s disease and its treatment affecting 
the integration of cognitive functions and motor movement.  
 
Will my taking part in this study be kept confidential?  
All information collected about you during the course of the research will be kept strictly 
confidential. Any information about you that leaves the hospital will remove your name and 
address so that you cannot be recognised from it. 
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What information about me will be held?  
We will keep a record of your name, age, address, contact details, physical and mental 
examinations and data collected during the study.  
 
The results will be stored on computer for analysis. All information collected about you 
during the study will stay strictly confidential and remain within the Institute of 
Neurology/UCL. Any information about you that leaves the Institute of Neurology will have 
your name, date of birth, address, contact details, and identifiable information removed so 
that you cannot be recognised from it. The principal investigator, Prof. Marjan Jahanshahi, 
will be in charge of ensuring that the security and confidentiality of your information is 
maintained.  
 
What will happen to the results of the research study? 
The data will be analysed and published in scientific journals and presented at scientific 
conferences. We will NOT publish your name or any information that could identify you (e.g. 
your date of birth). We will be happy to give you a copy of the completed article for you to 
keep.  
 
What can I do of I am harmed during this study or I wish to make a complaint?  
We will welcome your feedback on your experience of this experiment and at the end of each 
session you will have a chance to record any comments on the experiment in writing. These 
comments will be shown (without identifying the person it came from) to the clinician 
involved in the study to ensure that the experiments do not produce too much discomfort. 
Please remember that you are free to withdraw at any point without giving a reason.  
 
If you are harmed by taking part in this research project, there are no special compensation 
arrangements. NHS Indemnity does not offer no-fault compensation i.e. for non-negligent 
harm, and NHS bodies are unable to agree in advance to pay compensation for non-negligent 
harm. If you are harmed due to someone’s negligence, then you may have grounds for a legal 
action but you may have to pay for it. 

 

Regardless of this, if you wish to complain, or have any concerns with this study, the normal 
National Health Service complaints mechanisms should be available to you.  

 

Who is organising and funding the research? 

This research is being conducted by members of the Sobell Department of Motor 
Neuroscience and Movement Disorders, Institute of Neurology, Queen’s Square, London. 
This study has been reviewed by the Programme Panel of the Sobell Department of Motor 
Neuroscience and Movement Disorders and approved by the National Hospital for Neurology 
and Neurosurgery/Institute of Neurology Joint Research Ethics Committee. The study is 
sponsored by University College London Hospitals Trust. 
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Contact for further information 

Please do not hesitate to contact the principal experimenter Miss Yu-Ting Huang (contact 
details given below) should you have any questions at any stage of the research study. 

 

Miss Yu-Ting Huang  

Sobell Department of Motor Neuroscience and Movement Disorders 

UCL Institute of Neurology,  

33 Queen Square, London, WC1N 3BG 

E-mail: yu.huang.13@ucl.ac.uk 

 

Prof. Marjan Jahanshahi 

Sobell Department of Motor Neuroscience and Movement Disorders 

UCL Institute of Neurology 

33 Queen Square, London, WC1N 3BG. 

Tel:0203 4488733, email: m.jaahnshahi@ucl.ac.uk 

 

Prof. Patricia Limousin 

Sobell Department of Motor Neuroscience and Movement Disorders 

UCL Institute of Neurology 

33 Queen Square, London, WC1N 3BG 
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Information sheet – PD participants 
 

UCLH project number: 07/Q0512/27 
Version Number: Version 2, 27/10/2015 
 
Study title Action Reprogramming on PD patients treated with STN DBS 
 
You are invited to take part in a research study. Before you decide whether you want to do 
this, it is important for you to understand why the research is being done and what you will 
have to do.  
 
Please take time to read the following information carefully and talk to others about it if you 
wish. Ask us if you have any questions. Take time to decide whether or not you wish to take 
part.  
 
 
What is the purpose of this study?  
The aim of the study that you are invited to participate in is to see how deep brain stimulation 
(DBS) on subthalamic nucleus (STN) affects the action reprogramming as surprise events 
takes place. You will take part in two studies. The aim of the first study is to examine your 
action responses to simple visual stimuli on a computer screen when being ON DBS. The aim 
of the second study is to examine your action responses to simple visual stimuli on a 
computer screen when being OFF DBS. We will compare the responses to visual stimuli in 
Parkinson’s disease patients ON and OFF DBS and to healthy individuals. These studies 
advance our knowledge about the integration of mental and motor systems affected by 
Parkinson’s disease and how we can improve it. All information is anonymous and 
confidential.  
 
Why have I been chosen?   
You have been invited to take part because you are under STN DBS treatment for 
Parkinson’s disease. 
 
Do I have to take part?  
You can decide whether or not you want to take part. If you decide to take part, we will ask 
you to sign a consent form. You are still free to withdraw at any time without giving a reason.  
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Your medical care won’t be affected if you decide not to take part in the study, or if you take 
part and then withdraw from the study later on. Also, this will not affect future relationship 
with the Institute of Neurology or the National Hospital for Neurology and Neurosurgery.  
 
Compete researchers may look at your medical records. If any information is released, your 
name will be left out, so that everything stays strictly confidential. Participation in this study 
does not affect your legal rights.  
 
What will happen to me if I take part? 
You will be interviewed by a researcher who will ask you for some information about your 
physical and mental health. You will then complete a computer-based reaction time task by 
pressing buttons on a response box with your fingers. During the task, there will be four 
different kinds of visual stimuli image presented on a computer screen. Each visual stimuli 
image will be associated with pressing a specific button. You will perform the task twice, one 
ON stimulation and one OFF stimulation. 
 
Are there any risks or side effects? 
There are no major risk or side effects in this study. The manipulation has been used 
previously and no negative effects have been documented.  
 
What do I have to do?  
We would like you to complete the tests described below. The purpose of each test will be 
explained to you, followed by a demonstration of what you have to do. On some tests such as 
the questionnaire measures of mood, there are no right or wrong answers and we are simply 
interested in how you are feeling a the time you are completing the form. The assessment will 
take about 2.5 hours with short breaks in between tests. 
1. Computer-based reaction time test: You will be asked to complete a reaction time task by 

pressing buttons on a response box. When you see specific image on the computer screen, 
simply respond by pressing a specific button. The task would require you to be fully 
focused due to the presentation of the images may be fast. 

2. Questionnaires: An experimenter will do small examinations on your cognitive functions 
such as memory, mood...etc.  

 
What is being tested? 
The aim is to determine the execution of action reprogramming, namely how fast can one re-
initiate an action when surprising events occur. The reaction time and accuracy would be 
recorded.  
 
What are the possible benefits of taking part? 
Participation in this study means that you will be making an important contribution to 
scientific research, helping us understand how Parkinson’s disease and its treatment affecting 
the integration of cognitive functions and motor movement.  
 
Will my taking part in this study be kept confidential?  
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All information collected about you during the course of the research will be kept strictly 
confidential. Any information about you that leaves the hospital will remove your name and 
address so that you cannot be recognised from it. 
 
What information about me will be held?  
We will keep a record of your name, age, address, contact details, physical and mental 
examinations and data collected during the study.  
 
The results will be stored on computer for analysis. All information collected about you 
during the study will stay strictly confidential and remain within the Institute of 
Neurology/UCL. Any information about you that leaves the Institute of Neurology will have 
your name, date of birth, address, contact details, and identifiable information removed so 
that you cannot be recognised from it. The principal investigator, Prof. Marjan Jahanshahi, 
will be in charge of ensuring that the security and confidentiality of your information is 
maintained.  
 
What will happen to the results of the research study? 
The data will be analysed and published in scientific journals and presented at scientific 
conferences. We will NOT publish your name or any information that could identify you (e.g. 
your date of birth). We will be happy to give you a copy of the completed article for you to 
keep.  
 
What can I do of I am harmed during this study or I wish to make a complaint?  
We will welcome your feedback on your experience of this experiment and at the end of each 
session you will have a chance to record any comments on the experiment in writing. These 
comments will be shown (without identifying the person it came from) to the clinician 
involved in the study to ensure that the experiments do not produce too much discomfort. 
Please remember that you are free to withdraw at any point without giving a reason.  
 
If you are harmed by taking part in this research project, there are no special compensation 
arrangements. NHS Indemnity does not offer no-fault compensation i.e. for non-negligent 
harm, and NHS bodies are unable to agree in advance to pay compensation for non-negligent 
harm. If you are harmed due to someone’s negligence, then you may have grounds for a legal 
action but you may have to pay for it. 

 

Regardless of this, if you wish to complain, or have any concerns with this study, the normal 
National Health Service complaints mechanisms should be available to you.  

 

Who is organising and funding the research? 

This research is being conducted by members of the Sobell Department of Motor 
Neuroscience and Movement Disorders, Institute of Neurology, Queen’s Square, London. 
This study has been reviewed by the Programme Panel of the Sobell Department of Motor 
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Neuroscience and Movement Disorders and approved by the National Hospital for Neurology 
and Neurosurgery/Institute of Neurology Joint Research Ethics Committee. The study is 
sponsored by University College London Hospitals Trust. 

 

Contact for further information 

Please do not hesitate to contact the principal experimenter Miss Yu-Ting Huang (contact 
details given below) should you have any questions at any stage of the research study: 

 

Miss Yu-Ting Huang  

Sobell Department of Motor Neuroscience and Movement Disorders 

UCL Institute of Neurology,  

33 Queen Square, London, WC1N 3BG 

E-mail: yu.huang.13@ucl.ac.uk 

 

Prof. Marjan Jahanshahi 

Sobell Department of Motor Neuroscience and Movement Disorders 

UCL Institute of Neurology 

33 Queen Square, London, WC1N 3BG. 

Tel:0203 4488733, email: m.jaahnshahi@ucl.ac.uk 

 

Prof. Patricia Limousin 

Sobell Department of Motor Neuroscience and Movement Disorders 

UCL Institute of Neurology 

33 Queen Square, London, WC1N 3BG 
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Sobell Department of Motor Neuroscience and Movement Disorders 
 
Professor Marjan Jahanshahi BSc, MPhil (Clinical Psychol), PhD 
Head, Cognitive Motor Neuroscience Group 
Tel: 020 3448 8733 
Fax: 020 7419 1860   
E-mail:  m.jahanshahi@ucl.ac.uk 
 

 
  
 
 
   
 
UCLH Project ID number: 07/Q0512/27 
Version number: 05/09/2012, version 6b 
 
CONSENT FORM 
 
Study title: Study title Behavioural studies of paradoxical kinesis in Parkinson’s disease  
 
Name of Principal Investigator: Prof. Marjan Jahanshahi 
 
  Please 

initial 
box 

1 I confirm that I have read and understood the information 
sheet for the above study and have had the opportunity to 
ask questions 

 

 

2 I confirm that I have had enough time to consider whether or 
not I want to be included in the study. 
 
 

 

3 I understand that my participation is voluntary and that I am 
free to withdraw at any time, without giving any reason, 
without my medical care or legal rights being affected. 
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______________________  _________  ____________________ 
Name of participant   Date   Signature 
 
 
 
 
________________________        _________ ____________________ 
Name of Person taking consent Date   Signature 
(if different from researcher) 
    
Name of the researcher to be contacted if there are any problems: 
 
Ms Yu Ting Huang 
email: yth1975@gmail.com 
Mobile:  07940452298 
 
Professor Jahanshahi; (contact details as above) 
       

Comments or concerns during the study  
 
If you have any comments or concerns you may discuss these with 
the investigator.   If you wish to go further and complain about any 
aspect of the way you have been approached or treated during the 
course of the study, you should write or get in touch with the 
Complaints Manager, University College Hospitals.  Please quote 
the UCLH project number at the top of this consent form. 

  
Please 
initial 
box 

4. I understand that sections of any of my medical notes may be 
looked at by responsible individuals from the Institute of 
Neurology, where it is relevant to my taking part in research.  I 
give permission for these individuals to have access to my 
records. 

 

 
5. 

 
I agree to take part in the above study. 
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Questionnaire for Impulsive-Compulsive Disorders in Parkinson’s Disease 
 (QUIP-Anytime During PD-Short)  

 
 

Reported by:  _____ Patient  _____ Informant*  _____ Patient and Informant   

Patient name:  __________________________________________ 

Date:   __________________________________________ 

 
*If information reported by an informant, answer questions based on your understanding of the patient. 

 
Answer ALL QUESTIONS based on BEHAVIORS ANYTIME DURING PD  

LASTING AT LEAST 4 WEEKS 
 
 
A. GAMBLING 
1. Do [Did] you or others think you have [had] an issue with too much gambling behaviors (such as casinos, 
internet gambling, lotteries, scratch tickets, betting, or slot or poker machines)?   __Yes    __No  
 
2. Do [Did] you have difficulty controlling your gambling behaviors (such as increasing them over time, or 
having trouble cutting down or stopping them)?       __Yes    __No   
 
B. SEX 
1. Do [Did] you or others think you have [had] an issue with too much sex behaviors (such as making sexual 
demands on others, promiscuity, prostitution, change in sexual orientation, masturbation, internet or telephone 
sexual activities, or pornography)?          __Yes    __No  

 
2. Do [Did] you think too much about sex behaviors (such as having trouble keeping thoughts out of your mind 
or feeling guilty)?           __Yes    __No 
 
C. BUYING 
1. Do [Did] you or others think you have [had] an issue with too much buying behaviors (such as too much of 
the same thing or things that you don't need or use)?      __Yes    __No 
 
2. Do [Did] you engage in activities specifically to continue the buying behaviors (such as hiding what you are 
[were] doing, lying, hoarding things, borrowing from others, accumulating debt, stealing, or being involved in 
illegal acts)?             __Yes    __No 
 
D. EATING 
1. Do [Did] you or others think you have [had] an issue with too much eating behaviors (such as eating larger 
amounts or different types of food than in the past, more rapidly than normal, until feeling uncomfortably full, 
or when not hungry)?           __Yes    __No 

 
2. Do [Did] you have urges or desires for eating behaviors that you feel are [felt were] excessive or cause 
[caused] you distress (including becoming restless or irritable when unable to participate in the behavior)?  
            __Yes    __No 
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Questionnaire for Impulsive-Compulsive Disorders in Parkinson’s Disease 
 (QUIP-Anytime During PD-Short)  

 
 
E. OTHER BEHAVIORS  
Do [Did] you or others think that you spend [spent] too much time….  

 
1. On specific tasks, hobbies or other organized activities (such as writing, painting, gardening, repairing or 

dismantling things, collecting, computer use, working on projects, etc.)?  __Yes    __No 
 

2. Repeating certain simple motor activities (such as cleaning, tidying, handling, examining, sorting, 
ordering, or arranging objects, etc.)?                     __Yes    __No 
 

3. Walking or driving with no intended goal or specific purpose?   __Yes    __No 
  
 
F. MEDICATION USE 
1. Do [Did] you or others (including your physicians) think that you consistently take [took] too much of your 
Parkinson’s medications?         __Yes    __No  
 
2. Do [Did] you have difficulty controlling your use of Parkinson’s medications (such as experiencing a strong 
desire for more medication, or having worse mood or feeling unmotivated at a lower dosage)?  
            __Yes    __No  
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Questionnaire for Impulsive-Compulsive Disorders in Parkinson’s Disease 
 (QUIP-Current-Short)  

 
Reported by:  _____ Patient  _____ Informant*  _____ Patient and Informant   

Patient name:  __________________________________________ 

Date:   __________________________________________ 

 

*If information reported by an informant, answer questions based on your understanding of the patient. 

 
Answer ALL QUESTIONS based on CURRENT BEHAVIORS  

LASTING AT LEAST 4 WEEKS 
 
A. GAMBLING 
1. Do you or others think you have an issue with too much gambling behaviors (such as casinos, internet 

gambling, lotteries, scratch tickets, betting, or slot or poker machines)?    __Yes    __No 
 
2. Do you have difficulty controlling your gambling behaviors (such as increasing them over time, or having 

trouble cutting down or stopping them)?        __Yes    __No 
 
 
B. SEX 
1. Do you or others think you have an issue with too much sex behaviors (such as making sexual demands on 

others, promiscuity, prostitution, change in sexual orientation, masturbation, internet or telephone sexual 

activities, or pornography)?           __Yes    __No 
  

2. Do you think too much about sex behaviors (such as having trouble keeping thoughts out of your mind or 

feeling guilty)?           __Yes    __No 

  
 
C. BUYING 
1. Do you or others think you have an issue with too much buying behaviors (such as too much of the same 

thing or things that you don't need or use)?        __Yes    __No 
 
2. Do you engage in activities specifically to continue the buying behaviors (such as hiding what you’re doing, 

lying, hoarding things, borrowing from others, accumulating debt, stealing, or being involved in illegal acts)?   
           __Yes    __No 

 
D. EATING 
1. Do you or others think you have an issue with too much eating behaviors (such as eating larger amounts or 

different types of food than in the past, more rapidly than normal, until feeling uncomfortably full, or when not 

hungry)?            __Yes    __No 
 
2. Do you have urges or desires for eating behaviors that you feel are excessive or cause you distress (including 

becoming restless or irritable when unable to participate in the behavior)?    __Yes    __No 
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Questionnaire for Impulsive-Compulsive Disorders in Parkinson’s Disease 
 (QUIP-Current-Short)  

 
 
E. OTHER BEHAVIORS  
Do you or others think that you spend too much time….  

 

1. On specific tasks, hobbies or other organized activities (such as writing, painting, gardening, repairing or 

dismantling things, collecting, computer use, working on projects, etc.)?  __Yes    __No 

 

2. Repeating certain simple motor activities (such as cleaning, tidying, handling, examining, sorting, 

ordering, or arranging objects, etc.)?                     __Yes    __No 

 

3. Walking or driving with no intended goal or specific purpose?   __Yes    __No 
 

  

F. MEDICATION USE 
1. Do you or others (including your physicians) think that you consistently take too much of your Parkinson’s 

medications?           __Yes    __No 
 
2. Do you have difficulty controlling your use of Parkinson’s medications (such as experiencing a strong desire 

for more medication, or having worse mood or feeling unmotivated at a lower dosage)? __Yes    __No 

 











MINI MENTAL STATE 
      EXAMINATION
             (MMSE)

Patient's name:

Hospital number:

ORIENTATION

REGISTRATION

ATTENTION AND CALCULATION

RECALL

LANGUAGE

COPYING

Year    Month     Day     Date     Time

Country     Town      District     Hospital     Ward

Examiner names 3 objects (eg apple, table, penny)
Patient asked to repeat (1 point for each correct).

Subtract 7 from 100,  then repeat from result.
Continue 5 times:  100  93  86  79  65

THEN patient to learn the 3 names repeating until
correct.

Ask for names of 3 objects learned earlier.

Name a pencil and watch.  

Repeat "No ifs, ands, or buts".

Give a 3 stage command.  Score 1 for each stage.
Eg. "Place index finger of right hand on your nose
and then on your left ear".

Ask patient to read and obey a written command 
on a piece of paper stating "Close your eyes".

Ask the patient to write a sentence. Score if it is 
sensible and has a subject and a verb.

Ask the patient to copy a pair of intersecting
pentagons:

TOTAL

____/5

____/5 ____/5 ____/5 ____/5

____/5____/5 ____/5

____/5 ____/5____/5____/5

____/2

____/1

____/3 ____/3 ____/3

____/2 ____/2 ____/2

____/1 ____/1 ____/1

____/3

____/3____/3 ____/3 ____/3

____/3 ____/3 ____/3 ____/3

____/1 ____/1 ____/1 ____/1

____/1____/1____/1 ____/1

____/1 ____/1____/1____/1

DATE

____/30 ____/30 ____/30 ____/30

ONE POINT FOR EACH ANSWER

Alternative: spell "WORLD" backwards - dlrow.




