1 *Type of the Paper (Review)*

Population Based Testing for Primary Prevention: a Systematic Review

- 4 *Ranjit Manchanda^{1,2,3,} Faiza Gaba^{1,2}
- ¹ Barts Cancer Institute, Queen Mary University of London, Old Anatomy Building, Charterhouse
 Square, London, EC1M 6BQ, UK
- 7 ² Department of Gynaecological Oncology, St Bartholomew's Hospital, London, UK, EC1A 7BE

³Gynaecological Cancer Research Centre, Department of Women's Cancer, Institute for Women's
 Health, University College London, 149 Tottenham Court Road, London, UK, W1T 7DN.

10 *Correspondence: r.manchanda@qmul.ac.uk

11

12 Abstract: The current clinical model for genetic-testing is based on clinical-criteria/family-13 history(FH) and a pre-defined mutation probability threshold. It requires people to develop cancer 14 before identifying unaffected individuals in the family to target prevention. This process is 15 inefficient, resource intense and misses >50% of individuals/mutation carriers at risk. Population 16 genetic-testing can overcome these limitations. It is technically feasible to test populations on a large 17 are falling and the acceptability/awareness is genetic-testing costs scale; rising. 18 MEDLINE/EMBASE/Pubmed/CINAHL/PsychINFO databases were searched using a free-text and 19 MeSH terms; reference lists of publications retrieved screened; additionally web-based platforms, 20 Google, and clinical-trial registries were searched. Quality of studies were evaluated using 21 appropriate check-lists. A number of studies have evaluated population-based BRCA-testing in the 22 Jewish-population. This has been found to be acceptable, feasible, clinically-effective, safe, 23 associated with high satisfaction rates and extremely cost-effective. Data support change in 24 guidelines to population-based BRCA-testing in the Jewish-population. Population panel-testing 25 for BRCA1/BRCA2/RAD51C/RAD51D/BRIP1/PALB2 gene mutations is the most cost-effective 26 genetic-testing strategy in general-population women and can prevent thousands more 27 breast/ovarian cancers than current clinical-criteria based approaches. A few ongoing studies are 28 evaluating population-based genetic-testing for multiple cancer susceptibility genes in the general-29 population but more implementation studies are needed. A future population-testing programme 30 could also target other chronic diseases.

31

32 Keywords: Population testing, genetic testing, BRCA, Jewish, general population, cancer33 prevention, primary prevention

34

35 1. Introduction

A number of moderate to high penetrance cancer-susceptibility genes (CSG) with wellestablished clinical utility have been identified over the last two decades, and testing for these is widely available in clinical practice. The prime, most well-known exemplars have been *BRCA1* and *BRCA2*. *BRCA1/BRCA2* carriers have a 17-44% risk of ovarian cancer (OC) and 69-72% risk of breast cancer (BC) till age 80 years.[1] The current model for genetic testing is still predominantly driven by family-history (FH) or clinical-criteria with testing undertaken in hospitals or specialist genetic clinics following informed pre-test counselling. These FH-based criteria have been used to calculate 43 mutation probability with genetic testing offered over a pre-defined probability threshold. Clinical-44 criteria have been loosened and this threshold for offering testing has fallen over the years (from an 45 earlier high of 20%), with most countries/health systems now offering BRCA-testing at about a 10% 46 BRCA-mutation probability. A number of different models, ranging from standardized criteria to 47 complex mathematical (Empirical/Mendelian) methodologies have been used to calculate mutation 48 probability and are used in clinical practice. Carrier identification has numerous potential clinical 49 benefits, which have been the main drivers for genetic testing. Effective options for prevention and/or 50 screening are well-established for these mutation-carriers in clinical practice. Unaffected BRCA-51 mutation carriers can opt for: risk-reducing salpingo-oophorectomy (RRSO) to reduce their OC-52 risk;[2] as well as MRI/mammography screening, and chemoprevention with selective estrogen-53 receptor-modulators (SERM)[3] or risk-reducing mastectomy (RRM)[4] to reduce their BC-risk. 54 Additionally, mutation identification enables informed reproductive and contraceptive choices 55 which can impact risk, including timing of pill use, planning a family, as well as prenatal and pre-56 implantation genetic-diagnosis (PGD)[5]. Cancer affected carriers can opt for novel drugs like PARP 57 inhibitors which improve survival as well as gain access to newer precision medicine based targeted 58 therapeutics through clinical trials.[6-8]

59 Pre-test genetic-counselling is a fundamental element of international guidelines[9] for informed 60 decision-making before genetic-testing. The model for counselling has evolved over the years, with 61 the original Huntingdon Model involving a minimum of two 60 minute face-to-face pre-test 62 counselling sessions[10] now archived as a fixture of the past. Telephone counselling, DVD-based 63 and group based approaches have been found to be non-inferior to traditional 1:1 face-to-face 64 counselling.[11-16] Over the years a wide variety of decision aids have been used as adjuncts to help 65 informed decision making, such as booklets, pamphlets, audiotapes, computer-based programmes 66 and web-based platforms. Another important recent development is the move away from traditional 67 genetics clinics towards non-genetic clinicians undertaking routine pre-test counselling and testing 68 at cancer diagnosis.[17]

69

70 1.1. The need for change

71 The current Clinical-criteria/FH-based system of genetic testing has many limitations. It is only 72 moderately effective at identifying mutations and poor at ruling out the presence of one.[18] We[19] 73 and others[20,21] have shown current testing-criteria miss >50% BRCA-carriers with a relevant cancer 74 and an even higher proportion of unaffected carriers don't fulfil current genetic-testing criteria. There 75 are a number of reasons for this including paternal inheritance, poor communication within and 76 between families, inability to access health records, population migration, smaller nuclear families, 77 lack of awareness and pure chance. Besides number of carriers are missed because they will have a 78 probability below the clinical testing threshold (their BRCA probability is not nil or 0). Additionally 79 the current approach requires individuals to be aware of their FH of cancer, understand its 80 importance, and contact their GP or relevant health professional. The health professional in turn 81 needs to understand the importance of this history and needs to refer to an appropriate genetics 82 centre/ clinician. This gate keeper approach requires people to jump through a number of hoops. Lack 83 of public and health professional awareness and complexity/inefficiency of the current structure and

84 testing pathway has led to restricted access and massive under-utilisation of genetic testing 85 services.[22,23] Childers et al estimate that >70% BC and >80% OC patients eligible for genetic testing 86 in the USA have never discussed this with a health professional.[22] We recently analysed recent NHS genetic-laboratory BRCA-testing data from 1993-2014 across a 16 million Greater-London 87 88 population and found that <3% of estimated BRCA-carriers had been identified to date.[23] Our 89 forecasting models suggest detection-rates using the current system are inadequate to identify all 90 BRCA-carriers in the population and even doubling them will need 165-years to identify the 91 'clinically detectable' proportion of BRCA-carriers (~50% don't fulfil clinical-testing criteria, 92 remaining undetectable).[23] Given the small proportion of unaffected individuals getting cancer 93 annually, even addition of unselected case series testing while useful in identifying the pool of 94 individuals without strong FH of cancer, will require ~250 years to identify residual undetected BRCA 95 carriers.[23] Why do we need to wait for decades for people to develop cancer before identifying 96 mutation carriers and their at risk family members? With the effective options for cancer-risk 97 management and prevention available for high-risk women, this raises serious questions about the 98 adequacy of the current clinical-criteria/FH-based approach. A number of these limitations can be 99 overcome by offering unrestricted/unselected population based testing.

100 Next generation sequencing driven high throughput testing coupled with advances in 101 bioinformatics has technologically enabled large scale population wide testing. Falling costs of testing 102 and increasing population awareness of cancer genetics and its implications offers a timely 103 opportunity to apply this knowledge and technology on a broad population-scale to provide an 104 important impetus in healthcare towards disease prevention. We present a systematic review of the 105 literature on population-based germline testing for *BRCA* gene mutations. We also explore future 106 applicability and potential for this strategy across other CSGs/chronic disease.

107 2. Methods

108

109 2.1. Search strategy and selection criteria

110 We systematically reviewed the current literature on population-based germline testing for 111 BRCA-mutations using a comprehensive three step search strategy to identify relevant studies. First 112 we searched the following five databases from inception to August 30 2018: MEDLINE, EMBASE, 113 Pubmed, CINAHL, and PsychINFO. A common search strategy (Table-1) was developed for database 114 searching using a combination of free text and controlled vocabulary (MeSH terms). Second, 115 reference lists of publications retrieved in the first step were screened for relevant studies. Third, we 116 searched additional web-based platforms including specialised journals, Google searches for grey 117 literature, conference proceedings and clinical trial registries (ISRCTN registry/ClinicalTrials.gov 118 registry).

Data sources A systematic review of articles with the use of MEDLINE (1946 to August 2018), EMBASE (1974 to August 2018), Pubmed (1996 to August 2018), CINAHL (1937 to August 2018), PsychINFO (1806 to August 2018) Search strategy 49 searches were undertaken using the below PICO framework: Participants: unaffected men/women Intervention: unselected population genetic testing Comparison: family history/clinical criteria genetic testing 1. (LOW RISK),ti,ab 2. exp "LOW RISK"/ 3. (POPULATION RISK),ti,ab 4. exp "POPULATION RISK'/ 5. 1 OR 2 OR 3 OR 4 6. (CANCER),ti,ab 7. exp "COVLATION GENETIC TESTING),ti,ab 10. exp "POPULATION GENETIC TESTING),ti,ab 11. (UNSELECTED GENETIC TESTING'/ 13. 9 OR 10 OR 11 OR 12 14. 8 AND 13 15. (FAMILY HISTORY),ti,ab	Objective	To identify published literature on unselected population based germline testing
Search strategy 49 searches were undertaken using the below PICO framework: Participants: unaffected men/women Intervention: unselected population genetic testing Comparison: family history/clinical criteria genetic testing Outcomes: acceptability; detection rate; satisfaction; quality of life; cost-effectiveness of unselected genetic testing 1. (LOW RISK), ti, ab 2. exp "LOW RISK), ti, ab 4. exp "POPULATION RISK), ti, ab 4. exp "POPULATION RISK"/ 5. 1 OR 2 OR 3 OR 4 6. (CANCER), ti, ab 7. exp "CANCER"/ 8. 6 OR 7 9. (POPULATION GENETIC TESTING), ti, ab 10. exp "POPULATION GENETIC TESTING), ti, ab 11. (UNSELECTED GENETIC TESTING), ti, ab 12. exp "UNSELECTED GENETIC TESTING"/ 13. 9 OR 10 OR 11 OR 12 14. 8 AND 13 15. (FAMILY HISTORY), ti, ab	Data sources	A systematic review of articles with the use of MEDLINE (1946 to August 2018), EMBASE (1974 to August 2018), Pubmed (1996 to August 2018), CINAHL (1937 to August 2018), PsychINFO (1806 to August 2018)
 Participants: unaffected men/women Intervention: unselected population genetic testing Comparison: family history/clinical criteria genetic testing Outcomes: acceptability; detection rate; satisfaction; quality of life; cost-effectiveness of unselected genetic testing (LOW RISK), ti,ab exp "LOW RISK"/ (POPULATION RISK), ti,ab exp "POPULATION RISK"/ 1 OR 2 OR 3 OR 4 (CANCER), ti,ab 6 (CANCER), ti,ab 8 6 OR 7 9. (POPULATION GENETIC TESTING), ti,ab 10. exp "POPULATION GENETIC TESTING), ti,ab 11. (UNSELECTED GENETIC TESTING), ti,ab 12. exp "UNSELECTED GENETIC TESTING"/ 13. 9 OR 10 OR 11 OR 12 14. 8 AND 13 15. (FAMILY HISTORY), ti,ab 	Search strategy	49 searches were undertaken using the below PICO framework:
Intervention: unselected population genetic testing Comparison: family history/clinical criteria genetic testing Outcomes: acceptability; detection rate; satisfaction; quality of life; cost- effectiveness of unselected genetic testing 1. (LOW RISK).ti,ab 2. exp "LOW RISK"/ 3. (POPULATION RISK).ti,ab 4. exp "POPULATION RISK"/ 5. 1 OR 2 OR 3 OR 4 6. (CANCER).ti,ab 7. exp "CANCER"/ 8. 6 OR 7 9. (POPULATION GENETIC TESTING).ti,ab 10. exp "POPULATION GENETIC TESTING"/ 11. (UNSELECTED GENETIC TESTING).ti,ab 12. exp "UNSELECTED GENETIC TESTING"/ 13. 9 OR 10 OR 11 OR 12 14. 8 AND 13 15. (FAMILY HISTORY).ti,ab		Participants: unaffected men/women
Comparison: family history/clinical criteria genetic testing Outcomes: acceptability; detection rate; satisfaction; quality of life; cost- effectiveness of unselected genetic testing 1. (LOW RISK).ti,ab 2. exp "LOW RISK"/ 3. (POPULATION RISK).ti,ab 4. exp "POPULATION RISK"/ 5. 1 OR 2 OR 3 OR 4 6. (CANCER).ti,ab 7. exp "CANCER"/ 8. 6 OR 7 9. (POPULATION GENETIC TESTING).ti,ab 10. exp "POPULATION GENETIC TESTING"/ 11. (UNSELECTED GENETIC TESTING).ti,ab 12. exp "UNSELECTED GENETIC TESTING"/ 13. 9 OR 10 OR 11 OR 12 14. 8 AND 13 15. (FAMILY HISTORY).ti,ab		Intervention: unselected population genetic testing
Outcomes: acceptability; detection rate; satisfaction; quality of life; cost-effectiveness of unselected genetic testing 1. (LOW RISK).ti,ab 2. exp "LOW RISK"/ 3. (POPULATION RISK).ti,ab 4. exp "POPULATION RISK"/ 5. 1 OR 2 OR 3 OR 4 6. (CANCER).ti,ab 7. exp "CANCER"/ 8. 6 OR 7 9. (POPULATION GENETIC TESTING).ti,ab 10. exp "POPULATION GENETIC TESTING!/ 11. (UNSELECTED GENETIC TESTING!/ 12. exp "UNSELECTED GENETIC TESTING!/ 13. 9 OR 10 OR 11 OR 12 14. 8 AND 13 15. (FAMILY HISTORY).ti,ab		Comparison: family history/clinical criteria genetic testing
 (LOW RISK),ti,ab exp "LOW RISK"/ (POPULATION RISK),ti,ab exp "POPULATION RISK"/ 1 OR 2 OR 3 OR 4 (CANCER),ti,ab (CANCER),ti,ab exp "CANCER"/ 6 OR 7 (POPULATION GENETIC TESTING),ti,ab exp "POPULATION GENETIC TESTING),ti,ab exp "POPULATION GENETIC TESTING),ti,ab exp "UNSELECTED GENETIC TESTING],ti,ab exp "UNSELECTED GENETIC TESTING"/ 9 OR 10 OR 11 OR 12 8 AND 13 (FAMILY HISTORY),ti,ab 		Outcomes: acceptability; detection rate; satisfaction; quality of life; cost- effectiveness of unselected genetic testing
 exp "LOW RISK"/ (POPULATION RISK).ti,ab exp "POPULATION RISK"/ 1 OR 2 OR 3 OR 4 (CANCER).ti,ab (CANCER).ti,ab exp "CANCER"/ 6 OR 7 (POPULATION GENETIC TESTING).ti,ab exp "POPULATION GENETIC TESTING).ti,ab exp "POPULATION GENETIC TESTING).ti,ab exp "UNSELECTED GENETIC TESTING).ti,ab exp "UNSELECTED GENETIC TESTING"/ 9 OR 10 OR 11 OR 12 8 AND 13 (FAMILY HISTORY).ti,ab 	1. (LOW RISK).ti,ab	
 (POPULATION RISK).ti,ab exp "POPULATION RISK"/ 1 OR 2 OR 3 OR 4 (CANCER).ti,ab exp "CANCER"/ 6 OR 7 9. (POPULATION GENETIC TESTING).ti,ab 10. exp "POPULATION GENETIC TESTING).ti,ab 11. (UNSELECTED GENETIC TESTING).ti,ab 12. exp "UNSELECTED GENETIC TESTING).ti,ab 13. 9 OR 10 OR 11 OR 12 14. 8 AND 13 15. (FAMILY HISTORY).ti,ab 	2. exp "LOW RISK"/	
 4. exp "POPULATION RISK"/ 5. 1 OR 2 OR 3 OR 4 6. (CANCER).ti,ab 7. exp "CANCER"/ 8. 6 OR 7 9. (POPULATION GENETIC TESTING).ti,ab 10. exp "POPULATION GENETIC TESTING"/ 11. (UNSELECTED GENETIC TESTING).ti,ab 12. exp "UNSELECTED GENETIC TESTING"/ 13. 9 OR 10 OR 11 OR 12 14. 8 AND 13 15. (FAMILY HISTORY).ti,ab 	3. (POPULATION RIS	K).ti,ab
 5. 1 OR 2 OR 3 OR 4 6. (CANCER).ti,ab 7. exp "CANCER"/ 8. 6 OR 7 9. (POPULATION GENETIC TESTING).ti,ab 10. exp "POPULATION GENETIC TESTING"/ 11. (UNSELECTED GENETIC TESTING).ti,ab 12. exp "UNSELECTED GENETIC TESTING"/ 13. 9 OR 10 OR 11 OR 12 14. 8 AND 13 15. (FAMILY HISTORY).ti,ab 	4. exp "POPULATION	RISK"/
 6. (CANCER).ti,ab 7. exp "CANCER"/ 8. 6 OR 7 9. (POPULATION GENETIC TESTING).ti,ab 10. exp "POPULATION GENETIC TESTING"/ 11. (UNSELECTED GENETIC TESTING).ti,ab 12. exp "UNSELECTED GENETIC TESTING"/ 13. 9 OR 10 OR 11 OR 12 14. 8 AND 13 15. (FAMILY HISTORY).ti,ab 	5. 1 OR 2 OR 3 OR 4	
 7. exp "CANCER"/ 8. 6 OR 7 9. (POPULATION GENETIC TESTING).ti,ab 10. exp "POPULATION GENETIC TESTING"/ 11. (UNSELECTED GENETIC TESTING).ti,ab 12. exp "UNSELECTED GENETIC TESTING"/ 13. 9 OR 10 OR 11 OR 12 14. 8 AND 13 15. (FAMILY HISTORY).ti,ab 	6. (CANCER).ti,ab	
 8. 6 OR 7 9. (POPULATION GENETIC TESTING).ti,ab 10. exp "POPULATION GENETIC TESTING"/ 11. (UNSELECTED GENETIC TESTING).ti,ab 12. exp "UNSELECTED GENETIC TESTING"/ 13. 9 OR 10 OR 11 OR 12 14. 8 AND 13 15. (FAMILY HISTORY).ti,ab 	7. exp "CANCER"/	
9. (POPULATION GENETIC TESTING).ti,ab 10. exp "POPULATION GENETIC TESTING"/ 11. (UNSELECTED GENETIC TESTING).ti,ab 12. exp "UNSELECTED GENETIC TESTING"/ 13. 9 OR 10 OR 11 OR 12 14. 8 AND 13 15. (FAMILY HISTORY).ti,ab	8. 6 OR 7	
10. exp "POPULATION GENETIC TESTING"/ 11. (UNSELECTED GENETIC TESTING).ti,ab 12. exp "UNSELECTED GENETIC TESTING"/ 13. 9 OR 10 OR 11 OR 12 14. 8 AND 13 15. (FAMILY HISTORY).ti,ab	9. (POPULATION GE	NETIC TESTING).ti,ab
11. (UNSELECTED GENETIC TESTING).ti,ab 12. exp "UNSELECTED GENETIC TESTING"/ 13. 9 OR 10 OR 11 OR 12 14. 8 AND 13 15. (FAMILY HISTORY).ti,ab	10. exp "POPULATION	GENETIC TESTING"/
12. exp "UNSELECTED GENETIC TESTING"/ 13. 9 OR 10 OR 11 OR 12 14. 8 AND 13 15. (FAMILY HISTORY).ti,ab	11. (UNSELECTED GEI	NETIC TESTING).ti,ab
13. 9 OR 10 OR 11 OR 12 14. 8 AND 13 15. (FAMILY HISTORY).ti,ab	12. exp "UNSELECTED	GENETIC TESTING"/
14. 8 AND 13 15. (FAMILY HISTORY).ti,ab	13. 9 OR 10 OR 11 OR 1	2
15. (FAMILY HISTORY).ti,ab	14. 8 AND 13	
	15. (FAMILY HISTORY).ti,ab

16.	exp "FAMILY HISTORY "/
17.	15 OR 16
18.	(GENETIC TESTING).ti,ab
19.	exp "GENETIC TESTING"/
20.	18 OR 19
21.	8 AND 17 AND 20
22.	(BRCA).ti,ab
23.	exp "BRCA"/
24.	(BRCA AND "1 OR 2").ti,ab
25.	exp "BRCA AND 1 OR 2"/
26.	(BRCA AND 1).ti,ab
27.	exp " BRCA AND 1"/
28.	(BRCA AND 2).ti,ab
29.	exp "BRCA AND 2"/
30.	22 OR 23 OR 24 OR 25 OR 26 OR 27 OR 28 OR 29
31.	8 AND 30
32.	14 OR 21 OR 31
33.	(ACCEPTABILITY).ti,ab
34.	exp "ACCEPTABILITY"/
35.	33 OR 34
36.	(DETECTION RATE).ti,ab
37.	exp "DETECTION RATE"/
38.	36 OR 37
39.	(SATISFACTION).ti,ab
40.	exp "SATISFACTION"/
41	39 OR 40

	•
42. (QUALITY OF LIFE).ti	,ab
43. exp "QUALITY OF LIF	Έ"/
44. 42 OR 43	
45. (COST EFFECTIVE).ti,	ab
46. exp "COST EFFECTIVI	Ε"/
47. 45 OR 46	
48. 35 OR 38 OR 41 OR 44	OR 47
49. 5 AND 32 AND 48	
Eligibility criteria	Unselected, unaffected individuals at population level risk undergoing genetic
	testing for cancer predisposing genes; full text articles in English language.
Data extraction	Citations, abstracts extracted and reviewed by FG. Relevant papers reviewed
	by authors FG and RM.
Conclusion	Population genetic testing can overcome the limitations of family
	history/clinical criteria genetic testing. The technology to test populations on a
	large scale is available and the cost of testing is falling. Population based BRCA
	testing has been evaluated in the Jewish population and found to be
	acceptable, clinically effective, safe and cost-saving. However, these data
	cannot be 'directly' extrapolated to the non-Jewish general population. While
	recent data suggest genetic testing for breast/ovarian cancer gene mutations
	could be cost-effective in general population women too, additional research
	including implementation studies in the general population are needed to
	address various knowledge gaps before that step can be considered.

120 Table-1. Search strategy for literature search

Predefined inclusion criteria were unselected, unaffected individuals at population level risk undergoing genetic-testing for cancer predisposing genes. Outcomes investigated in relation to population genetic testing were: 1) acceptability, 2) testing uptake, 3) mutation detection rate, 4) satisfaction, 5) quality-of-life, 6) psychological health, 7) genetic counselling, 8) knowledge, 9) risk perception, 10) cost-effectiveness.

126

127 2.2. Data extraction and quality assessment

Data were extracted using a standardised, predesigned data extraction sheet in Microsoft Excel
 2013. Four main categories of data were extracted: methodological characteristics of each study, study
 population, details of interventions and reported outcome measures pertaining to population genetic

testing. The quality of the studies was assessed depending on study design, using the following
checklists: Quality of Health Economic Studies (QHES) checklist,[24] Critical Appraisal Skills
Programme (CASP) qualitative research checklist, [25]Jadad scale for reporting randomized
controlled trials[26] and Methodological Index for Non-Randomized Studies (MINORS)
checklist.[27]

136 2.3. Data analysis

137 We tabulated characteristics and reported outcome measures of all studies for qualitative138 synthesis.

139 3. Results

Figure-1 provides the flow chart outlining the search outcomes and study selection process. Searches of electronic databases and reference lists generated 323 references. On evaluation of all titles and abstracts, 32/323 articles were potentially eligible for detailed assessment. 26/32 met our inclusion criteria for qualitative synthesis.[19-21,28-50] Relevant studies on population testing and design/outcomes/quality are summarised in Table-2. Table-3 encapsulates the main findings/conclusion from each study.

146

147 3.1. The Jewish BRCA Model

148 The majority of the evidence base for population-based testing currently comes from BRCA 149 founder mutation testing (as the genetic disease model) in the Jewish population (population model). 150 Six studies describe attitudes, interest, intention, barriers, and facilitators of BRCA testing in the AJ 151 population (Table-2, Table-3).[29,30,45-47,51] Four main studies have evaluated the impact of 152 unselected population-based BRCA-testing in the Jewish population: Two Israeli cohort studies (8195 153 men & 1771 women/men)[20,52]; One Canadian cohort study (2080 women)[21]; and one UK 154 randomised controlled trial (RCT) (1034 women and men)[19]. Details of these studies and published 155 outputs are described in Table-2 and Table-3. These studies demonstrate that population-based 156 BRCA-testing in the Jewish population is feasible, acceptable, safe, can be undertaken in a community 157 setting, and identifies >50% additional BRCA-carriers who would have been missed by traditional 158 clinical-criteria. RCT data show no significant difference in psychological well-being and quality-of-159 life outcomes between population-based and FH/Clinical-criteria based BRCA-testing 160 approaches.[19] Overall anxiety and uncertainty with BRCA-testing were found to decrease with 161 time.[19] Israeli and Canadian cohort data show increased anxiety and distress in identified mutation 162 carriers at 6 months/1 year.[52,53] However, overall satisfaction rates are high for all participants 163 (>91%) and similar to non-carriers.[52] Hence, outcomes seen with population-based testing appear 164 to be similar to those reported from high-risk clinics.[54]

Both Israeli and UK data suggest testing uptake and satisfaction rates are higher for testing undertaken through self-referral in ambulatory or community centres compared to hospital ascertainment.[19,52] Qualitative data re-confirm overall satisfaction with population-based *BRCA*testing reported with quantitative analyses, with 81% carriers and 90% non-carriers interviewed expressing unequivocal positive attitudes towards the *BRCA*-testing experience.[51] Barriers and facilitators reported with population-testing are similar to those found in high risk clinics. Other
emergent themes reported include the need for incorporating testing into routine practice through
primary care and via non-genetic clinicians as well as preservation of autonomy in decision
making.[51] Familial communication following testing has been found to be associated with overall
satisfaction with the process and FH of cancer. Initial cascade testing rates are higher in first-degree
than second-degree relatives.[33]

Figure-1. Flowchart of study selection

Publication/register	Country	Sample size	Study design	Population	Intervention	Outcomes	Follow up	Quality of study
ed study		(n)						methodology
Brown, 1995[28]	US	N/A	Cost-	General population	PGT for MSH2/MLH1	Cost per life year gained	N/A	31/100 [£]
			effectiveness					
			analysis					
Cousens, 2017[29]	Australia	370	Prospective,	AJ women	Survey on BRCA1/BRCA2 PGT	Attitudes; acceptability; interest	None	13/16#
			survey					
Gabai-Kapara,	Israel	8195 (& 694	Prospective	AJ men/women	PGT for AJ BRCA1/BRCA2 founder	Risk of BC/OC in female carriers	Not	12/16#
2014[20]		relatives of	cohort		mutations	ascertained through an unaffected male	reported	
		carriers)				index subject		
Lehmann, 2002[30]	US	200	Prospective,	AJ women	Telephone survey on	Attitudes; acceptability	None	12/16#
			survey		BRCA1/BRCA2 PGT			
Lieberman,	Israel	36	Qualitative	AJ men/women	Semi structured interviews in	Motivators/barriers to testing; satisfaction	18 months	Good~
2017[31]					individuals undergoing PGT for AJ			
					BRCA1/BRCA2 founder mutations			
Lieberman,	Israel	1,771	Prospective	AJ men/women	PGT for AJ BRCA1/BRCA2 founder	Uptake; post-test counselling compliance;	6 months	12/16#
2017[32]			cohort		mutations	satisfaction; anxiety; distress; increase in		
						knowledge		
Lieberman,	Israel	1,771	Prospective,	AJ men/women	PGT for AJ BRCA1/BRCA2 founder	Familial communication; cascade testing	2 years	12/16#
2018[33]			cohort		mutations			

Manchanda, 2015 [19]	UK	1,034	Randomised controlled trial	AJ men/women	PGT versus FH based testing of AJ BRCA1/BRCA2 founder	Acceptability; psychological impact; QoL	3 months	5/5*
(ISRCTN73338115)					mutations			
Manchanda,	UK	N/A	Cost-utility	AJ women	PGT versus FH based testing for AJ	Incremental cost effectiveness	N/A	96/100£
2015[34]			analysis		BRCA1/BRCA2 founder mutations	ratio per quality adjusted life year		
(ISRCTN73338115)								
Manchanda,	UK	936	Cluster	AJ men/women	DVD assisted versus face-to-face	Uptake; cancer risk perception; increase	N/A	4/5*
2016[35]			randomised		pre-test counselling in individuals			
			non-inferiority		undergoing PGT of AJ	in knowledge; counselling time;		
(ISKC1N/3338115)			trial		BRCA1/BRCA2 founder mutations	satisfaction		
Manchanda,	UK, US	N/A	Cost-utility	AJ women	PGT versus FH based testing for AJ	Incremental cost effectiveness	N/A	90/100£
2017[36]			analysis		BRCA1/BRCA2 founder mutations			
					with differing AJ ancestry	ratio per quality adjusted life year		
Manchanda,	UK, US	N/A	Cost-utility	General population women	PGT versus FH based testing of	Incremental cost effectiveness	N/A	96/100£
2018[37]			analysis		BRCA1/BRCA2/	ratio per quality adjusted life year		
					RAD51C/RAD51D/BRIP1/PALB2			
					mutations			
Meisel, 2016[38]	UK	829	Prospective,	General population women	Survey	Interest; attitudes	None	12/16#
			cohort					

Meisel, 2017[39]	UK	1031	Randomised experimental survey	General population women	Brief information versus lengthier information to inform decision making about participating in a study (PROMISE study) on PGT for OC	Knowledge; intention; attitudes towards taking part in the PROMISE study	None	3/5*
Meisel, 2017[40]	UK	837	Cross-sectional survey	General population women	Survey on <i>BRCA1/BRCA2</i> PGT	Anticipated health behaviour change; perceived control to disclosure of OC/BC risk	None	11/16#
Metcalfe, 2010[21]	Canada	2080	Prospective, cohort	AJ/SJ women	PGT for Jewish <i>BRCA1/BRCA2</i> founder mutations	Mutation prevalence	None	14/16#
Metcalfe, 2010[41]	Canada	2080	Prospective, cohort	AJ/SJ women	PGT for Jewish <i>BRCA1/BRCA2</i> founder mutations	Satisfaction; cancer related distress; cancer risk perception	1 year	14/16#
Metcalfe, 2012 [42]	Canada	2080	Prospective, cohort	AJ/SJ women	PGT for Jewish <i>BRCA1/BRCA2</i> founder mutations	Cancer related distress; uptake of cancer risk reduction options	2 years	14/16#
Patel, 2018[43]	UK, US	N/A	Cost-utility analysis	SJ women	PGT versus FH based testing for SJ BRCA1 founder mutations	Incremental cost effectiveness ratio per quality adjusted life year	N/A	90/100 £
Rubinstein, 2009[44]	US	N/A	Cost-utility analysis	AJ women	PGT for AJ <i>BRCA1/BRCA2</i> founder mutations versus 'no' genetic testing	Incremental cost effectiveness	N/A	71/100 [£]

						ratio per quality adjusted life year		
Schwartz, 2001[45]	US	391	Randomised controlled trial	AJ women	PGT for BRCA1/BRCA2 educational material versus	Knowledge; perception of	1 month	3/5*
						risks and limitations; interest		
					general BC education control			
					material			
Shkedi-Rafid,	Israel	14	Qualitative	Unaffected BRCA1/BRCA2	Semi structured in-depth interviews	Emotional implications;	None	Good~
2012[46]				AJ female carriers	on PGT for AJ BRCA1/BRCA2	mativations		
				ascertained following a	founder mutations	mouvations;		
				positive test result in a male		consequences;		
				family member who				
				underwent PGT		attitudes		
Tang, 2017[47]	US	243	Cross-sectional	Orthodox AJ women	Survey on PGT for BRCA1/BRCA2	Knowledge; perceived BC risk/worry;	None	13/16#
			survey			religious/cultural factors affecting decision		
						making		
Warner, 2005[48]	Australia	300	Prospective,	AJ men/women	PGT for APC I1307K mutation, but	Acceptability; facilitators and barriers to	None	10/16#
			cohort		non-disclosure of results	testing		
PROMISE Feasibility	UK	100	Prospective,	General population women	PGT for	Acceptability; risk perception; cancer	6 months	N/A
Study[49]			cohort		BRCA1/BRCA2/RAD51C/RAD51D/B	worry; QoL; stratification of OC risk;		
(ISRCTN54246466)					RIP1 and subsequent risk stratified	uptake of risk management options;		
					screening and prevention	satisfaction/regret; follow up completion		
						rate; telephone helpline use; decision aid		
						use		

The Screen	Canada	10,000	Prospective,	General population	PGT for BRCA1/BRCA2	Satisfaction; cancer worry	Not	N/A
Project[50]			cohort	men/women			reported	

181 **Table-2.** Publications and registered studies reporting population genetic testing outcomes

182 PGT – population genetic testing; FH – family history; AJ – Ashkenazi Jewish; SJ – Sephardi Jewish; QoL – quality of life; BC – breast cancer; OC – ovarian cancer;

183 PROMISE - Predicting risk of ovarian malignancy improved screening and early detection feasibility study; ICER – incremental cost-effective ratio; QALY – quality

184 adjusted life year

- 185 [£]Quality of study assessed using Quality of Health Economic Studies (QHES) checklist
- 186 Quality of study assessed using the Critical Appraisal Skills Programme (CASP) qualitative research checklist
- 187 *Quality of study assessed using the Jadad scale for reporting randomized controlled trials
- 188 [#]Quality of study assessed using the Methodological Index for Non-Randomized Studies (MINORS) checklist

Publication/registered	Findings
study	
Brown, 1995[28]	Exploratory analysis for cost effectiveness of PGT for MMR gene mutations MLH1/MSH2 compared to FH testing. PGT may be cost-effective if the base case analysis assumes
	a restrictive set of assumptions most favourable to the outcome with respect to prevalence, costs, clinical efficacy of screening and preventive interventions.
Cousens, 2017[29]	96.8% support a Jewish BRCA1/BRCA2 testing program; 65.6 % interested in undergoing PGT. Interest in population based BRCA testing was higher in women <50 years
	than women >50 years.
Gabai-Kapara, 2014[20]	For female relatives with BRCA1/BRCA2 mutations identified through unaffected AJ male relatives, cumulative risk of developing BC/OC by age 60 and 80 respectively were
	0.60/0.83 for BRCA1; 0.33/0.76 for BRCA2 carriers. 2.17% AJ carry a BRCA1/BRCA2 mutation.
Lehmann, 2002[30]	40% AJ women interested in PGT for BRCA1/BRCA2, 40% not interested, and 20% uncertain. Increased interest associated with desire to obtain information on children's risk
	and valuing information for its own sake. 17% expressed concern or discomfort about Jews being offered BRCA1/2 testing. Increased concern about genetic discrimination
	associated with highly educated women.
Lieberman, 2017[31]	Motivators for BRCA testing: knowledge of BRCA status to enable cancer risk reduction; health-empowerment. Barriers: lack of physician awareness/support. Routinization
	of testing can overcome medical and social barriers. Importance of maintaining/safeguarding autonomy of choice and providing adequate post-test services was highlighted.
Lieberman, 2017[32]	BRCA testing uptake 67%. Post-test counselling compliance 100% for carriers; 89% for non-carriers with FH. All groups had high satisfaction (>90%). At 6 months, carriers
	had significantly increased distress/anxiety; greater knowledge; similar satisfaction to non-carriers. 90% recommended PGT for BRCA in the AJ community. Proactive
	recruitment through a clinical service captured older women more unselected for FH compared to self-referral based recruitment.
Lieberman, 2018[33]	97% carriers informed at least one relative. FH and higher Satisfaction With Health Decision scores predicted results communication. FDRs had a higher rate of
	cascade/predictive testing than SDRs. Female relatives had a higher level of cascade testing than male relatives.
Manchanda, 2015[19]	Compared with FH based testing, PGT for BRCA1/BRCA2 AJ founder mutations, does not adversely affect short-term psychological/QoL outcomes and may detect 56%
(ISRCTN73338115)	additional BRCA carriers. 56% of carriers do not fulfil clinical criteria for genetic testing, and the BRCA1/2 prevalence is 2.45%.

Manchanda, 2015[34] (ISRCTN73338115)	PGT for AJ <i>BRCA1/BRCA2</i> founder mutations is cost saving with a baseline discounted ICER of -£2079/QALY. PGT lowered OC/BC incidence by 0.34% and 0.62% respectively. Assuming 71% testing uptake, this leads to 276 fewer OC and 508 fewer BC cases. Overall, reduction in treatment costs leads to a discounted cost savings of £3.7 million in the UK population.
Manchanda, 2016[35] (ISRCTN73338115)	DVD assisted counselling for PGT is non-inferior to face-to-face counselling for increase in knowledge; counselling satisfaction; risk perception and is equivalent for uptake. 98% found DVD length/information satisfactory. 85–89% felt it improved understanding of risks/benefits/implications/purpose of PGT. 95% would recommend it to others.
Manchanda, 2017[36]	PGT for <i>BRCA</i> mutations is cost-saving in AJ with 2-4 grandparents (22-33 days life gained) in the UK and 1-4 grandparents (12-26 days life-gained) in the US. It is extremely cost-effective in women in the UK with 1 AJ grandparent with ICER=£863/QALY; 15 days life gained. PGT remains cost-effective in the absence of reduction in BC risk from RRSO; at lower RRM (13%) or RRSO (20%) rates.
Manchanda, 2018[37]	Population panel genetic testing for <i>BRCA1/BRCA2/RAD51C/RAD51D/BRIP1/PALB2</i> mutations is the most cost-effective genetic testing strategy compared with current policy: ICER=£21,599.96/QALY or \$54,769.78/QALY (9.34 or 7.57 days' life-expectancy gained). PGT for <i>BRCA1/BRCA2/RAD51C/RAD51D/BRIP1/PALB2</i> testing can prevent 1.86%/1.91% of BC and 3.2%/4.88% of OC in UK/US women: 657/655 OC cases and 2420/2386 BC cases prevented per million.
Meisel, 2016[38]	85% reported they would 'probably' or 'definitely' take up PGT for OC which increased to 88% if test also informed BC risk. 92% anticipated they would 'probably' or 'definitely' participate in risk-stratified OC screening. University level education is associated with lower anticipated uptake of PGT.
Meisel, 2017[39]	No significant differences between participants receiving brief versus lengthier information to inform decision making in terms of OC knowledge/intention to participate in OC screening following PGT. 74% reported they would participate in OC screening based on PGT assessment.
Meisel, 2017[40]	UK women anticipate that they would engage in positive health behaviour changes in response to BCOC risk disclosure.72% reported 'I would try harder to have a healthy lifestyle'; 55% felt 'it would give me more control over my life'. Associations were independent of demographic factors or perceived risk of OC/BC.
Metcalfe, 2010[21]	Overall BRCA1/BRCA2 prevalence in unselected Jewish women undergoing PGT was 1.1% (0.5% for BRCA1 and 0.6% for BRCA2). Only 45% met clinical testing criteria.
Metcalfe, 2010[41]	In Jewish <i>BRCA</i> carriers, mean BC risk perception increased significantly from 41.1% to 59.6% after receiving a positive result. Among non-carriers, BC risk perception decreased non-significantly, from 35.8% to 33.5%. Cancer related distress increased significantly for carriers, but not in non-carriers. 92.8% satisfied with PGT.

Metcalfe, 2012[42]	Within 2 years of receiving a positive Jewish BRCA founder mutation result, 11.1% had RRM; 89.5% RRSO. Mean BC risk estimated to be 37.2% at time of testing versus 20.9%
	at 2 years post-testing. Distress decreased between 1 and 2 years for women with RRM/RRSO and for women with only RRSO but not for those with no surgery.
Patel, 2018[43]	PGT is cost-effective for SJ BRCA1 founder mutation. It results in 12 months (QALY=1.00) gain in life expectancy. Baseline discounted ICER for UK PGT = £67.04/QALY; US
	population= \$308.42/QALY. PGT remains cost effective in UK/US, even if premenopausal RRSO doesn't reduce BC risk or if HRT compliance is nil.
Rubinstein, 2009[44]	Compared to a no testing policy, PGT for AJ BRCA1/BRCA2 founder mutations is cost-effective and would result in 2,811 fewer cases of OC, with a life expectancy gain of
	1.83 QALYs among carriers. At a cost of \$460 for founder mutation testing, the cost of the program is \$8,300/QALY.
Schwartz, 2001[45]	Compared to the BC education control material, the PGT education material led to increased knowledge; increased perception of the risks/limitations of testing; and a
	decreased interest in obtaining a <i>BRCA1/BRCA2</i> test.
Shkedi-Rafid, 2012[46]	Having no FH of cancer was a source of optimism but also confusion; engaging in intensified medical surveillance and undergoing preventive procedures was perceived as
	health promoting but also induced a sense of physical/psychological vulnerability; overall support for population BRCA testing in the AJ community, with some reservations.
Tang, 2017[47]	49% had adequate genetic testing knowledge; 46% had accurate BC risk perceptions. 20% reported they probably/definitely will get tested; 28% probably/definitely will not
	get tested; 46% had not thought about BRCA testing. Adequate genetic testing knowledge, higher BC risk, and overestimation of risk is associated with PGT intention.
	Cancer prevention and effect on children were the most important factors affecting testing intention.
Warner, 2005[48]	Following pre-test counselling 94% acceptability for PGT for colorectal cancer, but participants were not disclosed results. Facilitators: desire for information for their families;
	to decrease personal cancer risk. Barriers: insurance discrimination; test accuracy; confidentiality.
PROMISE Feasibility	Not reported. Study closed to recruitment and in follow up phase.
Study[49]	
(ISRCTN54246466)	
The Screen Project[50]	Not reported. Study actively recruiting.

Table-3. Findings of publications and registered studies reporting population genetic testing outcomes

- 191 PGT population genetic testing; FH family history; AJ Ashkenazi Jewish; QoL quality of life; BC breast cancer; OC ovarian cancer; FDR first degree
- 192 relative; SDR second degree relative; ICER incremental cost-effective ratio; QALY quality adjusted life year

193 For large-scale, population-based genetic-testing to become feasible/practical it is necessary to 194 move away from the cost and time intensive 'traditional face-to-face' genetic-counselling[55] 195 approach. A UK non-inferiority cluster-randomised trial, in the Jewish population showed that DVD-196 based pre-test counselling for population BRCA-testing is an effective, acceptable, non-inferior, time-197 saving and cost-efficient alternative to traditional genetic-counselling.[15] Other studies in high-risk 198 women have established telephone-counselling is an effective non-inferior alternative to traditional 199 genetic-counselling.[13] The Israeli and Canadian population-based studies successfully undertook 200 BRCA-testing without pre-test counselling, and provided post-test counselling. Around 50% of 201 BRCA-carriers and 20% of overall participants in the Canadian population-based study expressed a 202 preference for pre-test counselling after receiving their results.[53] Nevertheless, high satisfaction 203 rates (91-95%) are reported in all (UK/Israeli/Canadian) population-based BRCA-testing studies. A 204 recent UK pilot study has shown acceptability of a web decision-aid plus helpline and post-test 205 counselling approach for population-based testing.[56] Robust RCT data comparing pre-test 206 counselling with decision-aid and helpline or post-test only counselling alone are lacking.

207 An initial paper confirms the cost-utility of population testing compared to no testing.[44] Three 208 published analyses have evaluated cost-effectiveness of population-based BRCA-testing compared to 209 current standard of clinical-criteria/FH testing in: the AJ population,[57] the AJ-population with 210 varying AJ-ancestry[58] and the Sephardi-Jewish population.[59] These show that BRCA-testing in 211 the Jewish-population is extremely cost-effective compared to FH-based testing. In fact in most 212 published scenarios the intervention is cost-saving for both UK and USA health systems,[58] saving 213 both lives and monies. Overall data thus strongly support the introduction of population-based 214 BRCA-testing in the Jewish population. It is time guidelines change to reflect this.

215 The challenge of implementation: There is no single best/ideal model for implementing 216 population-based BRCA-testing in the Jewish community. It is likely that different/bespoke models 217 will be needed for various health systems and contexts. Implementation will need development of 218 testing pathways through a community or primary care based approach outside the traditional 219 hospital based genetics clinic model, particularly in regions with large or dense Jewish populations. 220 Areas with small or sparse populations could even be absorbed within the current clinical genetics 221 system through changes in testing criteria. Implementation will require significant efforts towards 222 engagement of community leaders, charities, stakeholders, opinion makers and Rabbis across all 223 sections of the community. Additionally downstream pathways for management of unaffected 224 carriers (including genetics services, gynaecologists, breast clinicians and screening and prevention 225 services) will need expanding or establishing. This will need integration into GP networks to ensure 226 adequate infrastructure and coherent pathways for managing newly identified mutation carriers. 227 This needs to be coupled with information campaigns to increase both public and health professional 228 awareness.

229

230 3.2. Other founder populations

231 Specific *BRCA* founder mutations have been described in a number of other founder populations232 (in addition to the Jewish population). These include Polish, French, Swedish, Norwegian, Dutch,

233 Hispanic, Malaysian, Afro-American, Pakistani, Filipino, Inuit and Bahamian populations.[60-62]

234 Findings of BRCA founder mutation testing studies from the Jewish population could also have 235 implications for BRCA-testing in other founder populations. However, it is difficult to currently 236 generalise these beyond this to the rest of the non-founder general population. The Polish 'Twoj Styl' 237 study offered Polish BRCA1 founder mutation testing to 5024 women through a magazine 238 advertisement.[63] Post-test counselling was provided to mutation carriers identified and high 239 satisfaction rates (97%) reported overall. However, this was not true unselected population testing as 240 there was ascertainment bias with testing offered only to women with cancer or a FH of 241 breast/ovarian cancer.

242 3.2. General Population and Panel Testing

243 Next generation sequencing has enabled testing of multiple CSGs at the same time, i.e. Panel 244 testing. This is now being implemented in clinical genetics for women at increased risk fulfilling usual 245 clinical-criteria. Population-based testing too can incorporate multiple genes on a NGS panel. The 246 panel of genes needs to have established analytic validity (sensitivity, specificity, reliability, and 247 assay robustness- to reliably and accurately measure the genotype) and clinical validity (test's ability 248 to reliably and accurately predict the associated disorder/ phenotype).[64] A key unassailable 249 principle underpinning extending panel testing to a population-based setting is only testing for those 250 genes which have well-established 'clinical utility' i.e. demonstrable clear net clinical benefit 251 (clinically effective) which can impact disease outcome.[64] A number of genes widely available or 252 offered through panels by gene testing companies/laboratories do not yet have well-established 253 clinical utility. However, the list of genes with proven clinical utility will evolve and expand in the 254 coming years.

255 A number of other moderate/high penetrance CSGs (in addition to BRCA1/BRCA2) can be 256 incorporated into a population testing panel. Amongst the BC genes, PALB2 confers non-syndromic 257 quasi-Mendelian susceptibility to BC (BC-risk till age 80 years =44%)[65] for which equivalent 258 interventions of MRI screening / preventive mastectomy are now offered to mutations carriers, and 259 hence, PALB2 can be incorporated. Although ATM and CHEK2 are offered on some commercial 260 panels, clinical testing of these genes is not currently routinely undertaken in most centres as the risks 261 conferred by mutations in these genes are moderate (RR~1.5-2) and MRI/mastectomy not routinely 262 offered for this. Hence, these are probably currently best left out of a population testing panel. 263 Amongst the newer moderate risk OC genes, risk estimates for RAD51C, RAD51D and BRIP1 (OC-264 risks ~6-11%) have been recently validated. We showed that surgical prevention (RRSO) is cost-265 effective at ≥4-5% OC-risk.[66,67] This enables clinical-utility for clinical-testing for these newer 266 moderate OC-risk genes and the option of surgical prevention in unaffected women. Testing for these 267 genes is now incorporated into clinical practice[68] and can be included in a population-based panel. 268 Additionally Lynch-Syndrome (LS) MLH1/MSH2/MSH6 mismatch-repair (MMR) genes have a 40-269 60% risk of colorectal-cancer, 30-45% risk of EC and 6-14% risk of OC.[69] LS/MMR-carriers can 270 benefit from 1-2 yearly colonoscopies for colorectal-cancer screening and opt for daily aspirin[70] or 271 prophylactic hysterectomy-&-oophorectomy for cancer prevention.[71] Amsterdam-II or Bethesda 272 criteria used to identify MLH1/MHS2/MSH6 carriers in clinical practice miss 55-70% or 12-30% 273 (respectively) of these MLH1/MHS2/MSH6 carriers[72] even amongst those with cancer. Thus, 274 MLH1/MHS2/MSH6 are also potential candidate CSGs that can be included in an extended

population germline testing panel. Overall these mutations account for around 15%-20% OC,[73] 6%
BC,[74] 4-6% EC[75] and 4% bowel-cancers.[76]

277 Initial survey based data suggest that population-testing for OC gene mutations for risk 278 stratification may be acceptable to 75% women[39] and 72% women anticipate they would engage in 279 positive health behaviour changes in response to BC/OC risk disclosure following genetic testing.[40] 280 An ongoing UK pilot study (ISRCTN54246466) shows feasibility of counselling and recruitment for 281 panel genetic-testing for multiple moderate-high penetrance OC genes in unselected general-282 population women ascertained through primary care.[56] The team in Toronto have implemented 283 unselected BRCA testing for general population Canadian women and men over 18 years who are 284 willing to pay for this themselves, through a Direct to Consumer testing model within 'The Screen 285 Project' (http://www.thescreenproject.ca/) study. We recently evaluated the cost-effectiveness of 286 OC BC population-based panel testing for and gene mutations 287 (BRCA1/BRCA2/RAD51C/RAD51D/BRIP1/PALB2) by comparing this strategy to the usual clinical-288 criteria/FH based testing for both UK and US health systems.[37] Modelling showed that population-289 based panel testing for BC/OC CSGs was more cost-effective than any currently used clinical-290 criteria/FH-based strategy: either clinical-criteria/FH-based BRCA-testing or clinical-criteria/FH-291 based panel testing. The ICER (incremental cost-effectiveness ratio) were well below the UK 292 £30,000/QALY (ICER= £21,599.96/QALY) and USA \$100,000/QALY (ICER=\$54,769.78/QALY) 293 thresholds in the UK and USA respectively. Sensitivity analyses demonstrated that population-294 testing was the cost-effective and the preferred strategy in 84% UK and 93% USA simulations 295 respectively. This could potentially prevent thousands more BC and OC cases over and above current 296 policy. This was estimated to be 17505 OC and 64493 BC cases prevented in UK women, and 65221 297 OC and 237610 BC cases prevented in US women.

298 However, cost-effectiveness modelling, like all such analyses incurs assumptions, and further 299 research is necessary for prospective validation of some key assumptions. Jewish data cannot be 300 directly extrapolated or generalised to the non-Jewish general-population and general population 301 implementation studies are necessary to evaluate the impact and reconfirm cost-effectiveness of 302 population-based panel testing. More data are needed on uptake rates of screening and prevention 303 options in mutation carriers without a strong FH of cancer. A critical issue which needs addressing 304 is the management of variants of uncertain significance (VUS). Further research is needed around 305 giving VUS results back to individuals, their ability to deal with uncertainty, the impact of this result, 306 developing a robust platform for VUS monitoring and evolving an acceptable long-term management 307 pathway for this.

308 3.3. Return of 'incidental' or 'secondary' findings of cancer gene mutations in population research 309 studies

Some studies have offered return of incidental or secondary findings of post hoc genetic testing undertaken in patients recruited for other research purposes. Thompson et al undertook post-hoc genetic testing for *BRCA* mutations in 1997 women and Rowley et al reported testing in 5908 women over 40 years (mean age 59.2 years) undergoing mammographic screening for BC in the Australian Life-pool study.[77,78] Secondary findings of *BRCA* testing in 50,726 men and women have also been reported through the MyCode Community Health Initiative.[79,80] Preliminary outcomes from such 316 studies show acceptability of returning clinically relevant genetic research results or secondary 317 findings along-with engagement with screening/preventive services and are supportive of the 318 concept of broadening access towards a population based approach. These studies give a good idea 319 of mutation rates. In the 100,000 Genomes Project 'additional looked-for findings' are being offered 320 as part of the whole genome analysis (and include 10 cancer-susceptibility genes).[81] Additionally 321 in many studies the sub-groups opting for return of incidental/secondary looked-for findings are 322 highly selective and not generalizable to an unselected unaffected general-population. For e.g. the 323 100,000 Genomes-Project is not a true population-cohort but comprises of individuals with cancer 324 and families with rare paediatric diseases. However, this 'bolt-on' paradigm of returning additional 325 secondary-findings is very different and not equivalent/identical to prospective uptake of testing 326 CSGs in an unselected unaffected population. Data from these studies cannot be equated to outcomes 327 of impact of true population-based testing. Such an approach does not address in an unbiased and 328 prospective manner key questions of population testing around logistics; information giving, consent 329 and true uptake; VUS management; and subsequent uptake of screening and prevention 330 interventions. These outcomes could potentially be very different when apriori consent is sought for 331 genetic testing for specific clinically actionable gene mutations, compared to vague/less-informed/un-332 informed consent related to imprecisely defined secondary outcomes in post-hoc research studies.

333 3.4. A potential strategy for chronic disease prevention

334 According to the US Centres for Disease Control & Prevention (CDC), 50% US adults have ≥1 and 335 25% US adults have ≥2 chronic health conditions and the latter accounts for >90% Medicare 336 expenditure. CDC suggests that chronic diseases and injuries contributed to 2.7 million deaths in 337 2015.[82] Corresponding treatment costs and resulting lost productivity amounted to \$1.3 trillion. In 338 England chronic conditions account for 50% of GP appointments, 64% outpatient appointments, 70% 339 inpatient bed days, and 70% of the total health and care spend.[83] The increasing prevalence of 340 long-term/chronic conditions is the biggest challenge facing the UK National Health Service 341 (NHS)[83] and many other health systems. Addressing this is critical to put health systems in a better 342 position to remain viable for the future. The Milken Institute (a non-profit, nonpartisan economic 343 think tank) have projected that by 2023 if we improved prevention, the US could avoid 40 million 344 cases of chronic disease, cut treatment costs by \$220 billion, and increase GDP by \$900 billion.[84] 345 According to the CDC commissioned National Vitals Statistics Reports the top five causes of deaths 346 from chronic disease in 2015 were: 1) heart disease 2) cancer 3) lung disease 4) accidents 5) strokes.[82] 347 Many of these can be prevented. WHO estimates that by 2030 the number of deaths due to heart 348 disease, cancer, lung disease, accidents and strokes would rise by 24%, 37%, 32%, 14% and 29% in the 349 Americas and by 23%, 45%, 41%, 23% and 28% worldwide respectively.[85] As validated disease 350 specific models for risk prediction improve or develop and evolve, they can be used for population 351 stratification to target the proportion of the population at highest risk of chronic disease. A prime 352 example is cardiovascular disease. Testing for familial hypercholesterolemia could be added to any 353 other genetic testing strategy. In addition going forward complex models incorporating 354 epidemiological, lifestyle and single nucleotide polymorphism (SNP) data may reach broad mass 355 based clinical applicability for population stratification and targeted primary prevention. A future 356 population testing programme could target other diseases in addition to cancer. Implementing a new

357 comprehensive population testing strategy can herald a paradigm change in approach which358 shifts/nudges the needle of healthcare towards prevention.

359

360 Addressing the increasing burden of chronic disease poses a major challenge for the future. 361 Different organizations at times give conflicting recommendations which in turn can be exacerbated 362 by the advocacy positions of special interest groups, leading to uncertainty amongst clinicians and 363 inconsistent implementation. Clinicians due to increasing time pressures and employers/payers 364 struggling with accelerating health care costs may question the value of some preventive 365 interventions. Insurance coverage for individual preventive services, especially new technologies, is 366 inconsistent.[86,87] Public messages conveyed are often inconsistent and increasingly coloured by 367 commercial self-interest. Racial and ethnic minorities, socio-economically deprived and other 368 underserved populations have a higher burden of chronic disease and need special attention to reach 369 their full health potential.[88] To this end, it is vital to also address social determinants of health, 370 including economic, social, and geographic factors that influence the health of populations and 371 contribute to chronic diseases and injury.

372

373 3.5. Population Risk Stratification: beyond high penetrance genes

374 Newer risk prediction models incorporating validated SNPs (as a polygenic risk score) and 375 epidemiological/clinical factors have improved the precision on individualised risk prediction. This 376 allows division of the population into risk strata, such that the highest risk strata have a significant 377 higher risk relative to the lower strata, enabling a) targeted risk stratified screening and/or b) targeted 378 prevention for the higher risk strata, as long as the risks of individuals in these strata lie above a well-379 defined threshold of clinical utility (benefit and effectiveness). It may also identify a low-risk stratum 380 who may benefit for less intense or no screening. This can be useful for making both individualised 381 risk based decisions and population-based screening or prevention programmes. For example, 382 models have been developed for breast, prostate and ovarian cancer. The Predicting the Risk of 383 Cancer At Screening (PROCAS) study (UKCRN-ID 8080) showed that the addition of SNPs and 384 mammographic breast density to the Tyrer-Cuzick model improves BC risk prediction and could be 385 used for risk stratified screening in general-population women taking part in a national (NHS) Breast 386 Screening Programme.[89] This was associated with lower- anxiety but slightly higher cancer worry 387 than comparison women, with no consistent effect on intention to change behaviour, considerable 388 variation in understanding of test results but high overall satisfaction.[90] The PROMISE Feasibility 389 Study is evaluating the acceptability and feasibility of undertaking a study to stratify an unselected 390 general population on the basis of their predicted lifetime OC-risk as well as offer risk management 391 options of screening and prevention. The population is stratified into low (<5% OC-risk), intermediate 392 (5-10% OC-risk) and high (>10% OC-risk) risk groups, using a model incorporating SNP based 393 polygenic-risk score, BRCA1/BRCA2/RAD51C/RAD51D/BIP1 mutations and epidemiological data. 394 Personalised SNP based profiles are also being used for melanoma risk stratification. The SOMBRA 395 (Skin health Online for Melanoma: Better Risk Assessment) RCT, investigates personalised SNP 396 testing for melanoma risk versus un-tested controls,[91] in terms of short-term sun protection/self-397 examination, communication, beliefs, test comprehension/recall, satisfaction and cancer related 398 distress following testing.[91] An Australian pilot RCT (ACTRN12615000356561), evaluated the

399 feasibility and acceptability of communicating personalised SNP derived polygenic-risk scores for 400 melanoma to the public, and its preliminary impact on health behaviour and psychosocial outcomes 401 in 118 individuals.[92] Participants were randomised to intervention (personalised booklet & genetic 402 counselling presenting melanoma polygenic risk) and control (non-personalised educational 403 materials) arms.[92] Results showed no significant difference in behavioural effects, skin cancer 404 related worry or psychological distress at 3 months.[92] A lot more research is needed to evaluate 405 risk model based stratified screening and prevention, including implementation studies evaluating 406 clinical effectiveness, impact, cost-effectiveness, health behaviour, psychology, ethical and social 407 consequences.

408 4. Conclusions

409 Our healthcare structure is currently focused predominantly towards improving diagnosis & 410 treatment of disease rather than illness prevention. The current clinical model for genetic testing is 411 based on FH and serial referral through healthcare services. It requires people to develop cancer 412 before identifying unaffected individuals in the family to target prevention. This process is inefficient, 413 resource intense and misses a large proportion of individuals/mutation carriers at risk. Population 414 testing can overcome these limitations. The ability to test populations on a large scale is now 415 available, testing costs are falling and the acceptability/awareness of testing is rising. Population-416 based BRCA testing in the Jewish population has been extensively evaluated and found to be 417 acceptable, feasible, clinically effective, safe, associated with high satisfaction rates and cost-effective. 418 There are not many medical interventions that have the potential to save both lives and monies, but 419 BRCA-testing in the Jewish population is one of them. Available data support change in guidelines 420 to population based BRCA testing in the Jewish community.

421 Ongoing studies are evaluating population based genetic testing for CSGs in the general 422 population. Initial analysis suggest this approach is potentially cost-effective for a panel of BC and 423 OC gene mutations. The increasing appreciation and recognition of complexities of tumour 424 heterogeneity, tumour evolution and resistant mutations associated with metastatic disease has 425 moderated the initial anticipated impact of precision oncology driven drug therapy based 426 approaches. Population-testing for established cancer-genes can provide an impetus to increase 427 carrier detection-rates to maximise prevention and reduce cancer burden. A cancer prevention 428 population-based genetic testing programme can serve as an important model, with programme 429 outputs subsequently informing potential applicability and development of programmes for other 430 chronic diseases.

431 While population testing holds great promise, several challenges need to be addressed along the 432 way for this to materialise. To maximise the impact of population testing a future multi-gene and/or 433 multi-disease panel testing approach/strategy needs to ensure: A) Clinical utility: Net clinical benefit 434 on disease outcome taking into account benefits and harms of the intervention. B) Equal access: 435 Ensuring equal access to disease prevention initiatives for all communities regardless of ethnicity, 436 socio-economic background or gender, etc. C) Broadening research: For effective prevention and 437 eradicating chronic disease it is critical to prioritise high quality research into disease prevention. 438 There needs to be rebalancing of research funding from diagnosis/treatment towards prevention. For 439 e.g., only 5% UK research funding goes into prevention.[93] The impact of panel germline population 440 testing needs to be better understood and evaluated. D) Robust implementation pathways: these need 441 to be context and health-system/population specific. E) Cost-effectiveness: Sustainable prevention 442 strategies, need to be underpinned by evidence-based approaches that are economically viable and 443 maximise the number of years lived in health. Policy makers and funders need to be educated about 444 the significant cost savings that result from modest increases in prevention funding and potential 445 savings & increased productivity that can result from employers/insurers/health funders promoting 446 prevention. F) Consistent coherent messaging: Public messages need to be consistent, not be 447 biased/swayed by commercial/vested interests, need to increase health professional and public 448 awareness, and pay special attention to minority, socio-economically deprived and underserved 449 populations or others with higher burden of disease. 450 451 452 453 454

455	Author contributions:
456	Literature search: FG, RM
457	Preparation of tables and figures: FG, RM
458	Initial draft of manuscript: RM
459	Manuscript writing and approval: RM, FG
460	
461	Funding:
462	This work received no external funding.
463	
464	Acknowledgements:
465	The study is supported by researchers at the Barts Cancer Research UK Centre for Excellence, Queen
466	Mary University of London (C16420/A18066).
467	
468	Conflict of Interest Statement
469	RM declares research funding from The Eve Appeal and Cancer Research UK into population testing
470	and from Barts & the London Charity and Rosetrees Trust outside this work, as well as an honorarium
471	for grant review from Israel National Institute for Health Policy Research. FG declares no conflict of
472	interest.
473	Ethics Approval Statement
474	This is a review of the published literature. Hence, no ethics approval was needed.
475	
476	
477	
478	
479	
100	
400	
481	
482	
483	
484	
185	
100	
486	
487	

488 References

489 1. Kuchenbaecker, K.B.; Hopper, J.L.; Barnes, D.R.; Phillips, K.A.; Mooij, T.M.; Roos-Blom, M.J.; 490 Jervis, S.; van Leeuwen, F.E.; Milne, R.L.; Andrieu, N., et al. Risks of Breast, Ovarian, and 491 Contralateral Breast Cancer for BRCA1 and BRCA2 Mutation Carriers. JAMA 2017, 317, 492 2402-2416, doi:10.1001/jama.2017.7112. 493 2. Rebbeck, T.R.; Kauff, N.D.; Domchek, S.M. Meta-analysis of risk reduction estimates 494 associated with risk-reducing salpingo-oophorectomy in BRCA1 or BRCA2 mutation 495 carriers. J Natl Cancer Inst 2009, 101, 80-87. 496 3. Cuzick, J.; Sestak, I.; Bonanni, B.; Costantino, J.P.; Cummings, S.; DeCensi, A.; Dowsett, M.; 497 Forbes, J.F.; Ford, L.; LaCroix, A.Z., et al. Selective oestrogen receptor modulators in 498 prevention of breast cancer: an updated meta-analysis of individual participant data. 499 Lancet 2013, 381, 1827-1834, doi:10.1016/S0140-6736(13)60140-3. 500 4. Rebbeck, T.R.; Friebel, T.; Lynch, H.T.; Neuhausen, S.L.; van 't Veer, L.; Garber, J.E.; Evans, 501 G.R.; Narod, S.A.; Isaacs, C.; Matloff, E., et al. Bilateral prophylactic mastectomy reduces 502 breast cancer risk in BRCA1 and BRCA2 mutation carriers: the PROSE Study Group. J Clin 503 Oncol 2004, 22, 1055-1062, doi:10.1200/JCO.2004.04.188. 504 5. Menon, U.; Harper, J.; Sharma, A.; Fraser, L.; Burnell, M.; Elmasry, K.; Rodeck, C.; Jacobs, I. 505 Views of BRCA gene mutation carriers on preimplantation genetic diagnosis as a 506 reproductive option for hereditary breast and ovarian cancer. Hum Reprod 2007. 507 6. Ison, G.; Howie, L.J.; Amiri-Kordestani, L.; Zhang, L.; Tang, S.; Sridhara, R.; Pierre, V.; 508 Charlab, R.; Ramamoorthy, A.; Song, P., et al. FDA Approval Summary: Niraparib for the 509 Maintenance Treatment of Patients with Recurrent Ovarian Cancer in Response to 510 Platinum-Based Chemotherapy. Clin Cancer Res 2018, 10.1158/1078-0432.CCR-18-0042, 511 doi:10.1158/1078-0432.CCR-18-0042. 512 7. Coleman, R.L.; Oza, A.M.; Lorusso, D.; Aghajanian, C.; Oaknin, A.; Dean, A.; Colombo, N.; 513 Weberpals, J.I.; Clamp, A.; Scambia, G., et al. Rucaparib maintenance treatment for 514 recurrent ovarian carcinoma after response to platinum therapy (ARIEL3): a randomised, 515 double-blind, placebo-controlled, phase 3 trial. Lancet 2017, 390, 1949-1961, 516 doi:10.1016/S0140-6736(17)32440-6. 517 8. Ledermann, J.; Harter, P.; Gourley, C.; Friedlander, M.; Vergote, I.; Rustin, G.; Scott, C.L.; 518 Meier, W.; Shapira-Frommer, R.; Safra, T., et al. Olaparib maintenance therapy in patients 519 with platinum-sensitive relapsed serous ovarian cancer: a preplanned retrospective 520 analysis of outcomes by BRCA status in a randomised phase 2 trial. Lancet Oncol 2014, 15, 521 852-861, doi:10.1016/S1470-2045(14)70228-1. 522 9. American Society of Clinical Oncology policy statement update: genetic testing for cancer 523 susceptibility. J Clin Oncol 2003, 21, 2397-2406. 524 International Huntington Association and the World Federation of Neurology Research 10. 525 Group on Huntington's Chorea. Guidelines for the molecular genetics predictive test in 526 Huntington's disease. J Med Genet 1994, 31, 555-559. Calzone, K.A.; Prindiville, S.A.; Jourkiv, O.; Jenkins, J.; DeCarvalho, M.; Wallerstedt, D.B.; 527 11. 528 Liewehr, D.J.; Steinberg, S.M.; Soballe, P.W.; Lipkowitz, S., et al. Randomized comparison 529 of group versus individual genetic education and counseling for familial breast and/or

530		ovarian cancer, Journal of clinical oncology : official journal of the American Society of
531		Clinical Oncology 2005 23 3455-3464 doi:10.1200/JCO.2005.04.050
532	12	lenkins L: Calzone K A: Dimond E: Liewehr D L: Steinberg S M: Jourkiy $O:$ Klein P:
532	12.	Schalle D.W. · Prindiville S.A. · Kirsch J.B. Pandomized comparison of phone versus in-
534		person BRCA1/2 predisposition genetic test result disclosure counseling. <i>Genetics in</i>
525		medicine : official journal of the American College of Medical Constitutions 2007 0, 487,495
535		doi:10.1007/GIM.0b012o21812o6220
530	12	Kinnov A.V.: Butler K.M.: Schwartz M.D.: Mandelblatt, J.S.: Poucher K.M.: Dappas, J.M.:
520	15.	Common A : Kohlmann W : Edwards S L : Stroup A M at al Expanding access to
520		BECA1/2 genetic coupseling with telephone delivery: a cluster randomized trial. <i>LNatl</i>
539		Cancer Inst 2014 , 106, doi:10.1002/insi/diu228
540	14	Curren mist 2014 , 100, doi:10.1095/jiiCl/dju528.
541	14.	Rinney, A.Y.; Stenen, L.E.; Brunnbach, B.H.; Kommann, W.; Du, R.; Lee, J.H.; Gammon, A.;
542		Butter, K.; Buys, S.S.; Stroup, A.M., et al. Randomized Nonimeriority final of Telephone
545		Follow Up / Clin Oncol 2016, 34, 2014, 2024, doi:10.1200/UCO.2015.65.0557
544	15	Follow-Op. J Cliff Official 2016, 34, 2914-2924, doi:10.1200/JCO.2015.05.9557.
545	15.	S - Side L - Delegue N - Kumer A - et al. Cluster rendemiced nen inferiority trial
540		S.; Side, L.; Baloguil, N.; Kumar, A., et al. Cluster-randomised non-interiority trial
547		toripating DVD-assisted and traditional genetic courselling in systematic population
548		testing for BRCA1/2 mutations. J Med Genet 2016 , 53, 472-480, doi:10.1136/jmedgenet-
549	10	2015-103740.
550	16.	Schwartz, M.D.; Valdimarsdollir, H.B.; Peshkin, B.N.; Mandelblatt, J.; Nusbaum, R.; Huang,
551		A. I.; Chang, Y.; Graves, K.; Isaacs, C.; Wood, M., et al. Randomized noninteriority trial of
552		telephone versus in-person genetic counseling for nereditary breast and ovarian cancer. J
553	47	Clin Oncol 2014 , 32, 618-626, doi:10.1200/JCO.2013.51.3226.
554	17.	George, A.; Riddell, D.; Seal, S.; Talukdar, S.; Manamdaille, S.; Ruark, E.; Cloke, V.; Slade, I.;
555		Kemp, 2.; Gore, M., et al. Implementing rapid, robust, cost-effective, patient-centred,
550		routine genetic testing in ovarian cancer patients. Sci Rep 2016 , 6, 29506,
557	10	dol:10.1038/srep29506.
558	18.	Kang, H.H.; Williams, R.; Leary, J.; Ringland, C.; Kirk, J.; Ward, R. Evaluation of models to
559	10	predict BRCA germline mutations. Br J Cancer 2006 , 95, 914-920.
560	19.	Manchanda, R.; Loggenberg, K.; Sanderson, S.; Burnell, M.; Wardle, J.; Gessler, S.; Side, L.;
561		Balogun, N.; Desal, R.; Kumar, A., et al. Population testing for cancer predisposing
562		BRCA1/BRCA2 mutations in the Ashkenazi-Jewish community: a randomized controlled
563	20	trial. J Nati Cancer Inst 2015 , 107, 379, doi:10.1093/Jnci/dju379.
564	20.	Gabal-Kapara, E.; Lanad, A.; Kaufman, B.; Friedman, E.; Segev, S.; Renbaum, P.; Beerl, R.;
565		Gal, M.; Grinsnpun-Conen, J.; Djemal, K., et al. Population-based screening for breast and
500		ovarian cancer risk due to BRCA1 and BRCA2. <i>Proc Natl Acad Sci U S A</i> 2014 , <i>111</i> , 14205-
56/	24	14210, doi:10.10/3/pnas.14159/9111.
568	21.	ivietcaire, K.A.; Poll, A.; Koyer, K.; Liacuachaqui, M.; Tuiman, A.; Sun, P.; Narod, S.A.
569		Screening for founder mutations in BKCA1 and BKCA2 in unselected Jewish women. J Clin
570		Uncon 2010 , 28, 387-391, 001:10.1200/JCO.2009.25.0712.

571	22.	Childers, C.P.; Childers, K.K.; Maggard-Gibbons, M.; Macinko, J. National Estimates of
572		Genetic Testing in Women With a History of Breast or Ovarian Cancer. J Clin Oncol 2017,
573		<i>35,</i> 3800-3806, doi:10.1200/JCO.2017.73.6314.
574	23.	Manchanda, R.; Blyuss, O.; Gaba, F.; Gordeev, V.S.; Jacobs, C.; Burnell, M.; Gan, C.; Taylor,
575		R.; Turnbull, C.; Legood, R., et al. Current detection rates and time-to-detection of all
576		identifiable BRCA carriers in the Greater London population. J Med Genet 2018,
577		10.1136/jmedgenet-2017-105195, doi:10.1136/jmedgenet-2017-105195.
578	24.	Chiou, C.F.; Hay, J.W.; Wallace, J.F.; Bloom, B.S.; Neumann, P.J.; Sullivan, S.D.; Yu, H.T.;
579		Keeler, E.B.; Henning, J.M.; Ofman, J.J. Development and validation of a grading system for
580		the quality of cost-effectiveness studies. <i>Med Care</i> 2003, 41, 32-44,
581		doi:10.1097/01.MLR.0000039824.73620.E5.
582	25.	Critical Appraisal Skills Programme. In CASP Qualitative Checklist, Oxford, 2018.
583	26.	Clark, H.D.; Wells, G.A.; Huet, C.; McAlister, F.A.; Salmi, L.R.; Fergusson, D.; Laupacis, A.
584		Assessing the quality of randomized trials: reliability of the Jadad scale. Control Clin Trials
585		1999 , <i>20</i> , 448-452.
586	27.	Slim, K.; Nini, E.; Forestier, D.; Kwiatkowski, F.; Panis, Y.; Chipponi, J. Methodological index
587		for non-randomized studies (minors): development and validation of a new instrument.
588		ANZ J Surg 2003 , 73, 712-716.
589	28.	Brown, M.L.; Kessler, L.G. The use of gene tests to detect hereditary predisposition to
590		cancer: economic considerations. Journal of the National Cancer Institute 1995, 87, 1131-
591		1136.
592	29.	Cousens, N.; Kaur, R.; Meiser, B.; Andrews, L. Community attitudes towards a Jewish
593		community BRCA1/2 testing program. <i>Fam Cancer</i> 2017 , <i>16</i> , 17-28, doi:10.1007/s10689-
594		016-9918-0.
595	30.	Lehmann, L.S.; Weeks, J.C.; Klar, N.; Garber, J.E. A population-based study of Ashkenazi
596		Jewish women's attitudes toward genetic discrimination and BRCA1/2 testing. Genet Med
597		2002 , <i>4</i> , 346-352.
598	31.	Lieberman, S.; Lahad, A.; Tomer, A.; Cohen, C.; Levy-Lahad, E.; Raz, A. Population screening
599		for BRCA1/BRCA2 mutations: lessons from qualitative analysis of the screening experience.
600		Genet Med 2017 , 19, 628-634, doi:10.1038/gim.2016.175.
601	32.	Lieberman, S.; Tomer, A.; Ben-Chetrit, A.; Olsha, O.; Strano, S.; Beeri, R.; Koka, S.; Fridman,
602		H.; Djemal, K.; Glick, I., et al. Population screening for BRCA1/BRCA2 founder mutations in
603		Ashkenazi Jews: proactive recruitment compared with self-referral. Genet Med 2017, 19,
604		754-762, doi:10.1038/gim.2016.182.
605	33.	Lieberman, S.; Lahad, A.; Tomer, A.; Koka, S.; BenUziyahu, M.; Raz, A.; Levy-Lahad, E.
606		Familial communication and cascade testing among relatives of BRCA population screening
607		participants. <i>Genet Med</i> 2018, 10.1038/gim.2018.26, doi:10.1038/gim.2018.26.
608	34.	Manchanda, R.; Legood, R.; Burnell, M.; McGuire, A.; Raikou, M.; Loggenberg, K.; Wardle,
609		J.; Sanderson, S.; Gessler, S.; Side, L., et al. Cost-effectiveness of population screening for
610		BRCA mutations in Ashkenazi jewish women compared with family history-based testing.
611		Journal of the National Cancer Institute 2015 , 107, 380.
612	35.	Manchanda, R.; Burnell, M.; Loggenberg, K.; Desai, R.; Wardle, J.; Sanderson, S.C.; Gessler,
613		S.; Side, L.; Balogun, N.; Kumar, A., et al. Cluster-randomised non-inferiority trial

<i></i>		
614		comparing DVD-assisted and traditional genetic counselling in systematic population
615		testing for BRCA1/2 mutations. <i>Journal of medical genetics</i> 2016 , <i>53</i> , 472-480.
616	36.	Manchanda, R.; Patel, S.; Antoniou, A.C.; Levy-Lahad, E.; Turnbull, C.; Evans, D.G.; Hopper,
617		J.L.; Macinnis, R.J.; Menon, U.; Jacobs, I., et al. Cost-effectiveness of population based
618		BRCA testing with varying Ashkenazi Jewish ancestry. American journal of obstetrics and
619		gynecology 2017 , 217, 578.
620	37.	Manchanda, R.; Patel, S.; Gordeev, V.S.; Antoniou, A.C.; Smith, S.; Lee, A.; Hopper, J.L.;
621		MacInnis, R.J.; Turnbull, C.; Ramus, S.J., et al. Cost-effectiveness of Population-Based
622		BRCA1, BRCA2, RAD51C, RAD51D, BRIP1, PALB2 Mutation Testing in Unselected General
623		Population Women. <i>J Natl Cancer Inst</i> 2018 , <i>110</i> , 714-725, doi:10.1093/jnci/djx265.
624	38.	Meisel, S.F.; Rahman, B.; Side, L.; Fraser, L.; Gessler, S.; Lanceley, A.; Wardle, J.; team, Ps.
625		Genetic testing and personalized ovarian cancer screening: a survey of public attitudes.
626		BMC women's health 2016 , 16, 46.
627	39.	Meisel, S.F.; Freeman, M.; Waller, J.; Fraser, L.; Gessler, S.; Jacobs, I.; Kalsi, J.; Manchanda,
628		R.; Rahman, B.; Side, L., et al. Impact of a decision aid about stratified ovarian cancer risk-
629		management on women's knowledge and intentions: a randomised online experimental
630		survey study. <i>BMC Public Health</i> 2017 , <i>17</i> , 882, doi:10.1186/s12889-017-4889-0.
631	40.	Meisel, S.F.; Fraser, L.S.M.; Side, L.; Gessler, S.; Hann, K.E.J.; Wardle, J.; Lanceley, A.; team,
632		P.s. Anticipated health behaviour changes and perceived control in response to disclosure
633		of genetic risk of breast and ovarian cancer: a quantitative survey study among women in
634		the UK. <i>BMJ Open</i> 2017 , <i>7</i> , e017675, doi:10.1136/bmjopen-2017-017675.
635	41.	Metcalfe, K.A.; Poll, A.; Llacuachagui, M.; Nanda, S.; Tulman, A.; Mian, N.; Sun, P.; Narod,
636		S.A. Patient satisfaction and cancer-related distress among unselected Jewish women
637		undergoing genetic testing for BRCA1 and BRCA2. <i>Clinical genetics</i> 2010 , 78, 411-417.
638	42.	Metcalfe, K.A.: Mian, N.: Enmore, M.: Poll, A.: Llacuachaqui, M.: Nanda, S.: Sun, P.: Hughes,
639		K.S.: Narod. S.A. Long-term follow-up of Jewish women with a BRCA1 and BRCA2 mutation
640		who underwent population genetic screening. <i>Breast Cancer Res Treat</i> 2012 , 133, 735-740.
641		doi:10.1007/s10549-011-1941-0.
642	43	Patel S : Legood R : Evans D G : Turnbull C : Antoniou A C : Menon U : Jacobs L :
643		Manchanda, R. Cost effectiveness of population based BRCA1 founder mutation testing in
644		Senhardi Jewish women American journal of obstetrics and avnecology 2018 , 218, 431
645	ЛЛ	Rubinstein W S : liang H : Dellefave L : Rademaker A W Cost-effectiveness of
646		nonulation-based BRCA1/2 testing and ovarian cancer prevention for Ashkenazi lews: a
647		call for dialogue Genet Med 2009 11 629-639 doi:10 1097/GIM 0b013e3181afd322
6/8	15	Schwartz M.D.: Benkendorf I.: Lerman C.: Isaacs C.: Ryan-Robertson A.: Johnson J.
640	45.	Impact of educational print materials on knowledge attitudes and interact in
650		PPCA1 (PPCA2: testing among Achkonazi Jowich women, Cansor 2001 , 02, 022, 040
650		doi:10.1002/1007.01/2/20010815/02/4-022::AID_CNC01402:2.0.C0:2.0.[pii]
051	40	uol:10.1002/1097-0142(20010815)92:4<932::AID-CNCR1403>3.0.CO;2-Q [pli].
652	40.	Sinkeur-Kanu, S.; Gabai-Kapara, E.; Grinsipun-Conen, J.; Levy-Lanau, E. BKCA genetic
053		testing of individuals from families with low prevalence of cancer: experiences of carriers
654 655		and implications for population screening. Genet Nied 2012, 14, 688-694,
655		aoi:10.1038/gim.2012.31.

656	47.	Tang, E.Y.: Trivedi, M.S.: Kukafka, R.: Chung, W.K.: David, R.: Respler, L.: Leifer, S.:
657		Schechter, I.: Crew, K.D. Population-Based Study of Attitudes toward BRCA Genetic Testing
658		among Orthodox Jewish Women, <i>Breast J</i> 2017 , <i>23</i> , 333-337, doi:10.1111/tbi.12736.
659	48	Warner, B.J.: Curnow, J.J.: Polglase, A.J.: Debinski, H.S. Factors influencing uptake of
660	10.	genetic testing for colorectal cancer risk in an Australian Jewish population. <i>Journal of</i>
661		aenetic counselina 2005 14 387-394
662	4 9	Manchanda R. Predicting risk of ovarian malignancy improved screening and early
663	49.	detection feasibility studyISECTN Registry: ISECTN5/2/6/66_2017
664		http://www.jsrctn.com/JSRCTN5/2/6/66_Accessed 2 7 17
665	50	Antoniou A C · Shenton A · Maher E B · Watson E · Woodward E · Lalloo E · Faston
666	50.	DE: Evans D.G. Parity and breast cancer risk among BRCA1 and BRCA2 mutation carriers
667		Breast Cancer Res 2006 & R72 doi:10.1186/bcr1630
668	51	Lieberman S \cdot Labed A \cdot Tomer A \cdot Cohen C \cdot Levy-Labed E \cdot Raz A Population screening
669	51.	for BRCA1/BRCA2 mutations: lessons from qualitative analysis of the screening experience
670		Genet Med 2016 10 1028/gim 2016 175 doi:10.1028/gim 2016 175
671	52	Lieberman S · Tomer A · Ben-Chetrit A · Olsha O · Strang S · Beeri R · Koka S · Eridman
672	52.	H · Diemal K · Glick L et al. Population screening for RPCA1/RPCA2 founder mutations in
672		Ashkenazi lews: proactive recruitment compared with self-referral <i>Genet Med</i> 2016
674		10.1028/gim 2016 182 doi:10.1028/gim 2016 182
675	E 2	Motcalfo K A · Doll A · Llacuachagui M · Nanda S · Tulman A · Mian N · Sun D · Narod
676	55.	S A Dationt satisfaction and sansor related distress among unselected lowish women
677		undergoing genetic testing for PPCA1 and PPCA2. <i>Clin Genet</i> 2010 , 78, 411-417
678		doi:10.1111/i 1200.0004.2010.01400 \times
670	51	Nelson H.D.: Eu R.: Goddard K.: Mitchell J.D.: Okinaka-Hu, J.: Dappas, M.: Zakher P. In
690	54.	Pick Assessment Constic Counceling, and Constic Testing for PPCA Polated Cancer:
601		Sustangtic Paviaw to Undate the U.S. Proventive Services Task Force Percommendation
601		Pochvillo (MD) 2012
682	55	Nelson H D : Huffman I H : Eu P : Harris E L Constic rick assessment and BBCA mutation
601	55.	testing for breast and ovarian cancer suscentibility: systematic ovidence review for the
685		LLS Proventive Services Task Force Ann Intern Med 2005 142 262-270
696	56	Manchanda, P. Dredicting risk of ovarian malignancy improved screening and early
697	50.	detection foacibility study In ISPCTN Praistry, ISPCTN54246466, BioMod Control.
600		London LIK 2017
680	57	London, OK, 2017. Manchanda R.: Legood R.: Burnell M.: McGuire, A.: Baikou, M.: Loggenberg, K.: Wardle
600	57.	L Sanderson S Cossler S Side L et al Cost effectiveness of nonulation screening for
601		PPCA mutations in Ashkonazi jowich women compared with family bictory based testing /
602		Natl Cancer Inst 2015 107 280 doi:10.1002/inci/diu280
602	50	Manchanda \mathbf{P} : Patel S: Antoniou A C: Level abad E: Turnbull C: Evans \mathbf{D} G: Honner
604	58.	Manchanda, K., Pater, S., Antoniou, A.C., Levy-Lanau, E., Turnbuil, C., Evalis, D.G., hopper,
60F		BECA testing with varying Ashkanazi lowish ansastry. Am J Obstat Cynasol 2017 , 217, 578
606		571-578 512 doi:10.1016/i piog.2017.06.029
607	EO	es/1-s/6 es12, uui.tu.tu.tu/j.ajug.2017.00.058.
600	59.	Pater, S., Legoou, K.; Evans, D.G.; Turnbuil, C.; Antoniou, A.C.; Menon, O.; Jacobs, I.;
698		ivianchanda, K. Cost effectiveness of population based BRCA1 founder mutation testing in

699		Sephardi Jewish women, Am J Obstet Gynecol 2018 , 218, 431 e431-431 e412.
700		doi:10.1016/i ajog 2017.12.221
701	60	Ferla R · Calo V · Cascio S · Rinaldi G · Radalamenti G · Carreca L · Surmacz E · Colucci
702	00.	G : Bazan V : Russo A Founder mutations in BRCA1 and BRCA2 genes Ann Oncol 2007 18
703		Sunni 6 vi93-98
704	61	Trottier, M : Lunn, L : Butler, R : Curling, D : Turnquest, T : Francis, W : Halliday, D : Rover
705	01.	R.: Zhang, S.: Li, S., et al. Prevalence of founder mutations in the BRCA1 and BRCA2 genes
706		among unaffected women from the Bahamas. <i>Clin Genet</i> 2016 , <i>89</i> , 328-331.
707		doi:10.1111/cge.12602.
708	62.	Harboe, T.L.: Eiberg, H.: Kern, P.: Eilertsen, B.: Nedergaard, L.: Timmermans-Wielenga, V.:
709	•	Nielsen, I.M.: Bisgaard, M.L. A high frequent BRCA1 founder mutation identified in the
710		Greenlandic population. <i>Fam Cancer</i> 2009 . <i>8</i> . 413-419. doi:10.1007/s10689-009-9257-5.
711	63.	Gronwald, J.; Huzarski, T.; Byrski, T.; Debniak, T.; Metcalfe, K.; Narod, S.A.; Lubinski, J.
712		Direct-to-patient BRCA1 testing: the Twoi Styl experience. <i>Breast Cancer Res Treat</i> 2006 .
713		<i>100</i> , 239-245, doi:10.1007/s10549-006-9261-5.
714	64.	Teutsch, S.M.; Bradley, L.A.; Palomaki, G.E.; Haddow, J.E.; Piper, M.; Calonge, N.; Dotson,
715		W.D.; Douglas, M.P.; Berg, A.O.; Group, E.W. The Evaluation of Genomic Applications in
716		Practice and Prevention (EGAPP) Initiative: methods of the EGAPP Working Group. Genet
717		Med 2009 , <i>11</i> , 3-14, doi:10.1097/GIM.0b013e318184137c.
718	65.	Antoniou, A.C.; Casadei, S.; Heikkinen, T.; Barrowdale, D.; Pylkas, K.; Roberts, J.; Lee, A.;
719		Subramanian, D.; De Leeneer, K.; Fostira, F., et al. Breast-cancer risk in families with
720		mutations in PALB2. <i>N Engl J Med</i> 2014 , <i>371</i> , 497-506, doi:10.1056/NEJMoa1400382.
721	66.	Manchanda, R.; Legood, R.; Antoniou, A.C.; Gordeev, V.S.; Menon, U. Specifying the
722		ovarian cancer risk threshold of 'premenopausal risk-reducing salpingo-oophorectomy' for
723		ovarian cancer prevention: a cost-effectiveness analysis. J Med Genet 2016, 53, 591-599,
724		doi:10.1136/jmedgenet-2016-103800.
725	67.	Manchanda, R.; Legood, R.; Pearce, L.; Menon, U. Defining the risk threshold for risk
726		reducing salpingo-oophorectomy for ovarian cancer prevention in low risk
727		postmenopausal women. Gynecol Oncol 2015, 139, 487-494,
728		doi:10.1016/j.ygyno.2015.10.001.
729	68.	Manchanda, R.; Menon, U. Setting the Threshold for Surgical Prevention in Women at
730		Increased Risk of Ovarian Cancer. Int J Gynecol Cancer 2018, 28, 34-42,
731		doi:10.1097/IGC.000000000001147.
732	69.	Barrow, E.; Hill, J.; Evans, D.G. Cancer risk in Lynch Syndrome. Fam Cancer 2013, 12, 229-
733		240, doi:10.1007/s10689-013-9615-1.
734	70.	Burn, J.; Gerdes, A.M.; Macrae, F.; Mecklin, J.P.; Moeslein, G.; Olschwang, S.; Eccles, D.;
735		Evans, D.G.; Maher, E.R.; Bertario, L., et al. Long-term effect of aspirin on cancer risk in
736		carriers of hereditary colorectal cancer: an analysis from the CAPP2 randomised controlled
737		trial. <i>Lancet</i> 2011 , <i>378</i> , 2081-2087, doi:10.1016/S0140-6736(11)61049-0.
738	71.	Vasen, H.F.; Blanco, I.; Aktan-Collan, K.; Gopie, J.P.; Alonso, A.; Aretz, S.; Bernstein, I.;
739		Bertario, L.; Burn, J.; Capella, G., et al. Revised guidelines for the clinical management of
740		Lynch syndrome (HNPCC): recommendations by a group of European experts. Gut 2013,
741		62, 812-823, doi:10.1136/gutjnl-2012-304356.

742	72.	ACOG Practice Bulletin No. 147: Lynch syndrome. Obstet Gynecol 2014 , 124, 1042-1054,
743		doi:10.1097/01.AOG.0000456325.50739.72.
744	73.	Harter, P.; Hauke, J.; Heitz, F.; Reuss, A.; Kommoss, S.; Marme, F.; Heimbach, A.; Prieske,
745		K.; Richters, L.; Burges, A., et al. Prevalence of deleterious germline variants in risk genes
746		including BRCA1/2 in consecutive ovarian cancer patients (AGO-TR-1). PLoS One 2017 , 12,
747		e0186043. doi:10.1371/iournal.pone.0186043.
748	74.	Buys. S.S.: Sandbach, J.F.: Gammon, A.: Patel, G.: Kidd, J.: Brown, K.L.: Sharma, L.: Saam, J.:
749		Lancaster, J.: Daly, M.B. A study of over 35.000 women with breast cancer tested with a
750		25-gene panel of hereditary cancer genes. <i>Cancer</i> 2017 . <i>123</i> . 1721-1730.
751		doi:10.1002/cncr.30498.
752	75.	Ferguson, S.E.: Aronson, M.: Pollett, A.: Eiriksson, L.R.: Oza, A.M.: Gallinger, S.: Lerner-Ellis,
753	-	J.: Alvandi, Z.: Bernardini, M.Q.: MacKay, H.J., et al. Performance characteristics of
754		screening strategies for Lynch syndrome in unselected women with newly diagnosed
755		endometrial cancer who have undergone universal germline mutation testing. <i>Cancer</i>
756		2014 , <i>120</i> , 3932-3939, doi:10.1002/cncr.28933.
757	76.	Hampel, H.: Frankel, W.L.: Martin, E.: Arnold, M.: Khanduja, K.: Kuebler, P.: Clendenning,
758	-	M.: Sotamaa, K.: Prior, T.: Westman, J.A., et al. Feasibility of screening for Lynch syndrome
759		among patients with colorectal cancer. J Clin Oncol 2008 , 26, 5783-5788.
760		doi:10.1200/JCO.2008.17.5950.
761	77.	Thompson, E.R.; Rowley, S.M.; Li, N.; McInerny, S.; Devereux, L.; Wong-Brown, M.W.;
762		Trainer, A.H.; Mitchell, G.; Scott, R.J.; James, P.A., et al. Panel Testing for Familial Breast
763		Cancer: Calibrating the Tension Between Research and Clinical Care. J Clin Oncol 2016, 34,
764		1455-1459, doi:10.1200/JCO.2015.63.7454.
765	78.	Rowley, S.M.; Mascarenhas, L.; Devereux, L.; Li, N.; Amarasinghe, K.C.; Zethoven, M.; Lee,
766		J.E.A.; Lewis, A.; Morgan, J.A.; Limb, S., et al. Population-based genetic testing of
767		asymptomatic women for breast and ovarian cancer susceptibility. Genet Med 2018,
768		10.1038/s41436-018-0277-0, doi:10.1038/s41436-018-0277-0.
769	79.	Buchanan, A.H.; Manickam, K.; Meyer, M.N.; Wagner, J.K.; Hallquist, M.L.G.; Williams, J.L.;
770		Rahm, A.K.; Williams, M.S.; Chen, Z.E.; Shah, C.K., et al. Early cancer diagnoses through
771		BRCA1/2 screening of unselected adult biobank participants. Genet Med 2018, 20, 554-
772		558, doi:10.1038/gim.2017.145.
773	80.	Schwartz, M.L.B.; McCormick, C.Z.; Lazzeri, A.L.; Lindbuchler, D.M.; Hallquist, M.L.G.;
774		Manickam, K.; Buchanan, A.H.; Rahm, A.K.; Giovanni, M.A.; Frisbie, L., et al. A Model for
775		Genome-First Care: Returning Secondary Genomic Findings to Participants and Their
776		Healthcare Providers in a Large Research Cohort. Am J Hum Genet 2018, 103, 328-337,
777		doi:10.1016/j.ajhg.2018.07.009.
778	81.	Turnbull, C.; Scott, R.H.; Thomas, E.; Jones, L.; Murugaesu, N.; Pretty, F.B.; Halai, D.; Baple,
779		E.; Craig, C.; Hamblin, A., et al. The 100 000 Genomes Project: bringing whole genome
780		sequencing to the NHS. <i>BMJ</i> 2018 , <i>361</i> , k1687, doi:10.1136/bmj.k1687.
781	82.	CDC. Deaths: Final Data for 2015. 2017 , 66.
782	83.	Department of Health Long Term Conditions Team. Long Term Conditions Compendium of
783		Information. Third Edition ed.; Department of Health: Leeds, 2012; p

784		https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/216528/
785		<u>dh_134486.pdf</u> .
786	84.	Milken Institute. Checkup Time: Chronic Disease and Wellness in America. 2014 .
787	85.	WHO. Projections of mortality and causes of death, 2015 and 2030. World Health
788		Organisation: 2018; p
789		http://www.who.int/healthinfo/global_burden_disease/projections/en/.
790	86.	Borry, P.; Stultiens, L.; Goffin, T.; Nys, H.; Dierickx, K. Minors and informed consent in
791		carrier testing: a survey of European clinical geneticists. J Med Ethics 2008, 34, 370-374,
792		doi:10.1136/jme.2007.021717.
793	87.	Shiri-Sverdlov, R.; Oefner, P.; Green, L.; Baruch, R.G.; Wagner, T.; Kruglikova, A.; Haitchick,
794		S.; Hofstra, R.M.; Papa, M.Z.; Mulder, I., et al. Mutational analyses of BRCA1 and BRCA2 in
795		Ashkenazi and non-Ashkenazi Jewish women with familial breast and ovarian cancer. Hum
796		Mutat 2000 , <i>16</i> , 491-501.
797	88.	Ganguly, T.; Dhulipala, R.; Godmilow, L.; Ganguly, A. High throughput fluorescence-based
798		conformation-sensitive gel electrophoresis (F-CSGE) identifies six unique BRCA2 mutations
799		and an overall low incidence of BRCA2 mutations in high-risk BRCA1-negative breast
800		cancer families. <i>Hum Genet</i> 1998 , <i>102</i> , 549-556.
801	89.	Evans, D.G.; Astley, S.; Stavrinos, P.; Harkness, E.; Donnelly, L.S.; Dawe, S.; Jacob, I.; Harvie,
802		M.; Cuzick, J.; Brentnall, A., et al. Improvement in risk prediction, early detection and
803		prevention of breast cancer in the NHS Breast Screening Programme and family history
804		clinics: a dual cohort study. In Programme Grants for Applied Research, NIHR Journals
805		Library: Southampton (UK), 2016; 10.3310/pgfar04110.
806	90.	French, D.P.; Southworth, J.; Howell, A.; Harvie, M.; Stavrinos, P.; Watterson, D.; Sampson,
807		S.; Evans, D.G.; Donnelly, L.S. Psychological impact of providing women with personalised
808		10-year breast cancer risk estimates. Br J Cancer 2018, 118, 1648-1657,
809		doi:10.1038/s41416-018-0069-y.
810	91.	Hay, J.L.; Berwick, M.; Zielaskowski, K.; White, K.A.; Rodríguez, V.M.; Robers, E.; Guest,
811		D.D.; Sussman, A.; Talamantes, Y.; Schwartz, M.R., et al. Implementing an Internet-
812		Delivered Skin Cancer Genetic Testing Intervention to Improve Sun Protection Behavior in
813		a Diverse Population: Protocol for a Randomized Controlled Trial. JMIR research protocols
814		2017 , <i>6</i> , e52.
815	92.	Smit, A.K.; Espinoza, D.; Newson, A.J.; Morton, R.L.; Fenton, G.; Freeman, L.; Dunlop, K.;
816		Butow, P.N.; Law, M.H.; Kimlin, M.G., et al. A Pilot Randomized Controlled Trial of the
817		Feasibility, Acceptability, and Impact of Giving Information on Personalized Genomic Risk
818		of Melanoma to the Public. Cancer Epidemiol Biomarkers Prev 2017, 26, 212-221,
819		doi:10.1158/1055-9965.EPI-16-0395.
820	93.	NCRI. NCRI Partners' research spend in 2016. National Cancer research Institute: London,
821		UK, 2017; pp http://www.ncri.org.uk/cancer-research-database/ncri-partners-research-
822		spend-in-2016/.
022		
823		