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a b s t r a c t

Some of the new liquid water management systems in polymer electrolyte membrane

(PEM) fuel cells hold great potential in providing flood-free performance and internal hu-

midification. However, current water management systems entail major setbacks, which

either inhibit implementation into state-of-the-art architectures, such as stamped metal

flow-fields, or restrict their application to certain channel configurations. Here, a novel

water management strategy is presented that uses capillary arrays to control liquid water

in PEMFCs. These capillaries are laser-drilled into the land of the flow-fields and allow

direct removal (wicking) or supply of water (evaporation), depending on the local demand

across the electrode. For a 6.25 cm2 active area parallel flow-field, a ~92% improvement in

maximum power density from capillary integration was demonstrated. The proposed

mechanism serves as a simple and effective means of achieving robust and reliable fuel

cell operation, without incurring additional parasitic losses due to the high pressure drop

associated with conventional serpentine flow-fields.

© 2018 The Authors. Published by Elsevier Ltd on behalf of Hydrogen Energy Publications

LLC. This is an open access article under the CC BY license (http://creativecommons.org/

licenses/by/4.0/).
Introduction

Polymer electrolytemembrane (PEM) fuel cells are a promising

alternative source of energy conversion for a wide range of

transport, portable, and stationary power applications, due to

their high efficiency (>50%), low operating temperature

(<100 �C), and high power density [1]. However, water man-

agement remains a persistent challenge for PEM fuel cells,

especially those using perfluorosulfonic acid (PFSA) type

membranes which require effective hydration to ensure good
. Brett), m.coppens@ucl.a

r Ltd on behalf of Hydrogen En
ionic conductivity [2,3] and longevity [4,5]. If performed

properly, humidifying the inlet gases can ensure proper hu-

midification of the membrane, while any excess water that is

produced from the electrochemical reaction has to be

continuously removed to ensure efficient fuel cell operation.

Water droplets accumulating in flow-field channels can cause

system instability [6e9], flow maldistribution [10,11], and in-

crease in pressure drop across the flow-field [7,12,13], poten-

tially resulting in long-term performance degradation

[9,13e17] and depreciated fuel cell efficiency [13,18,19].
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Maintaining an adequate water balance in the system is,

therefore, imperative for enhanced fuel cell performance, ef-

ficiency, and control.

A common strategy to address flooding in PEM fuel cells is

via the incorporation of different flow-field designs in the bi-

polar plates, such as serpentine and interdigitated designs

[20e25]. Serpentine flow-fields generate high gas velocity and

pressure drop to convectively remove liquid water from the

gas channels and the electrode [18,26]. However, the high

back-pressure associated with this serpentine design in-

creases the parasitic power losses associated with blowers or

compressors [27,28] and lowers the overall fuel cell system

efficiency. The gas channels of interdigitated flow-fields are

dead-ended, forcing gas to flow through the gas diffusion layer

(GDL), thus effectively removing any liquid water that accu-

mulates under the land [29,30]. However, similar to the

serpentine configuration, interdigitated geometry also results

in high pressure drop across the channel, due to forced con-

vection through the GDL [24,25]. Furthermore, interdigitated

flow-fields sustain significant water retention in the channel

due to slow gas velocity [30,31]. For these reasons, serpentine

remains the preferred configuration for flow-fields in com-

mercial fuel cell systems [32,33].

The simplicity of a parallel flow-field design and the low

pressure drop across the channel [27,28] are advantageous for

PEM fuel cells. However, the use of parallel geometry is

impractical at high humidity operating conditions, since this

design leads to excessive flooding when there is a lack of

convective gas [6,21,31]. Typically, an air stoichiometry well in

excess of 3 is required to prevent parallel channel flooding

[34,35].

Despite significant efforts into the development of flow-

field channel configurations, such as 3D fine-mesh flow-

fields of Toyota Mirai [36e38], a design that accomplishes

effective water management at low pressure drop has not yet

emerged, primarily due to the closely intertwined nature of

these two elements; effective liquid water removal necessi-

tates a high pressure drop to convectively remove liquid water

droplets [18]. The inherent difficulty in managing liquid water

by using flow-field geometry alone has led to the development

of various advanced water management strategies, such as

flow-fields with triangular microchannels or microgrooves

[39,40]. Wicks mounted [41,42] or directly engineered [43,44]

on the channel surface of a flow-field to avoid the formation

of liquid slugs have also been tested. Although the imple-

mentation of wicking elements improves fuel cell perfor-

mance thanks to better water management, flooding persists

in the mid-current density range, suggesting that the wicks

alone do not transport all product water under certain oper-

ating regimes, possibly due to an insufficient gas pressure

gradient [43,44].

Porous carbon flow-fields with integrated water transport

channels for cooling and water removal have also been tested

[45e47]. The generated liquid water is directed from the gas

channels into internal water transport channels, due to the

pressure gradient between the two channels. Under dry

operating conditions, the porous carbon flow-fields work in

reverse, providing internal humidification as the water in the

pores evaporates into the gas channel [35,48]. The main

drawback towards commercialization of these flow-fields,
though, is the higher interfacial contact resistance of the

porous carbon (~70 mU cm2 [35]) and the requirement for

additional components, namely, a solid graphite frame [35,46]

in the fuel cell setup, which increases the overall cost and

complexity of the device.

In the present work, a water management strategy for fuel

cells is presented based on the incorporation of capillaries in

flow-fields. Capillaries are drilledwith a laser into the land of a

flow-field and hydraulically connected to water transport

channels. Liquid water fills the capillaries, and capillary

pressure blocks reactant gas entry into the water transport

channel. Depending on the local condition of the membrane

electrode assembly (MEA), capillaries either remove excess

generated water from the electrode via wicking or humidify

undersaturated gas streams via evaporation. Contrary to

porous carbon plates, capillaries impose negligible additional

interfacial contact resistance and can be integrated with a

broader range of flow-field designs, including state-of-the-art

plates that leverage stamping manufacturing procedures

[49e51]. The proposed mechanism is tested on a 6.25 cm2

active area parallel flow-field, and its performance is evalu-

ated against conventional parallel and double-serpentine

flow-fields at fully humidified conditions.
Experimental

Flow-field plate fabrication

The anode and cathode flow-fields were machined from a

1.6 mm thick printed circuit board (PCB) with a 70 mm copper

layer. PCB-based fuel cells offer the advantage of being low-

cost, light-weight, and easily tailored to specific design re-

quirements [8,52e54], which makes the proposed water

management strategy highly cost effective in comparison to

other previously proposed approaches for water manage-

ment. A single-serpentine channel was used as the anode

flow-field with channel width, spacing and depth of 1 mm.

Double-serpentine and parallel flow-fields were used in the

cathodewith channel width, spacing and depth of 1.2, 1.2, and

0.8 mm, respectively, resulting in channel/active area ratio of

0.54 (double-serpentine) and 0.53 (parallel flow-field).

Water transport channels were embedded in the cathode

flow-fields by milling 1.4 mm deep parallel channels on the

back-side of these flow-fields in such a way that the resulting

land thickness is ca. 200 mm (inset of Fig. 1). The ends of the

channel were connected by milling 0.5 mm deep perpendic-

ular channels to attain the serpentine configuration.

In the case of parallel flow-fields, bifurcating gasmanifolds

were introduced at the back-side to ensure uniform gas dis-

tribution across the parallel channels on the front-side. Cap-

illaries were laser-drilled into the lands using a Compact Laser

Micromachining System (Oxford Lasers, USA). A single laser

pulse (0.1 s laser drill time) was sufficient to drill through the

200 mm thick copper/FR4 composite layer. A 13 � 310 capillary

array was drilled into each land, which equates to a capillary

spacing of 50 mm. Increasing the capillary number is beneficial

in terms of watermanagement, as it increases the total rate of

wicking/evaporation. However, the number of capillaries

explored in this study was sufficient to mitigate flooding for
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Fig. 1 e Schematic of the parallel flow-field with capillary elements. The front-side (top left) of the plate has parallel gas flow

channels and the back-side (top right) features bifurcating gas manifolds and water transport channels. The bifurcating gas

manifolds are hydraulically connected to the parallel gas channels and ensure that gas is uniformly distributed across the

channels. The inset is a close-up view of the cross-section of the plate with the water transport channel and cylindrical

capillaries filled with liquid water. Excess liquid water in the GDL under the land is wicked into the water transport channel

through the capillaries, perpendicular to the direction of the gas transport. Where the gas stream is undersaturated,

capillaries work in reverse, providing internal humidification as the water in the capillaries evaporates into the GDL.

i n t e r n a t i o n a l j o u r n a l o f h y d r o g e n en e r g y 4 3 ( 2 0 1 8 ) 2 1 9 4 9e2 1 9 5 8 21951
the investigated fuel cell operating range, as is shown further

on (Fig. 5). Also, capillary spacing of less than 50 mmresulted in

structural failure of the flow-field land upon cell compression

during assembly. Therefore, the 13 � 310 capillary array was

deemed suitable for use in this study. The drilling process took

a total of 260min for 40300 capillaries. A SC4000 abrasive sheet

was used to remove burr andmelt zones [55,56] created on the

surface from the laser drilling.

Ni and Au electroplating

Flow-fields were electroplated in-house in nickel (Balco Engi-

neering, UK) and gold (Spa Plating, UK), prior to laser drilling.

The composition of the nickel and gold electroplating solu-

tions were 0.13 M H4N2NiO6S2 and 0.02 M KAu(CN)2. A plat-

inum coated stainless steel mesh electrode was used as the

counter electrode. The active area region of the flow-field with

a 7.5 mm margin around the perimeter was exposed to the

electroplating solution (total submerged surface area of

16 cm2). The copper layer was electroplated in nickel by

applying a current of 0.2 A for 3 min. Gold electroplating was

accomplished by applying a current of 0.08 A for 94 min to

deposit a 5 mm thick gold layer. The current was reduced for

gold plating to prevent tarnishing of gold at high potential.

Characterization of capillaries

The laser drilled capillary structure was evaluated using

scanning electron microscopy (SEM; Zeiss EVO10, USA) and

X-ray tomography (Zeiss Xradia Versa 520, Zeiss, USA).

Sample dimensions were 5 mm � 5 mm � 200 mm. The

sample for SEM measurement was sputter coated with gold

for 60 s before imaging, to reduce charging. SEM images were

generated at 15 kV. The sample for X-ray tomography was
imaged at 80 kV using a beam power of 7 Wwith an exposure

time of 45 s per radiograph. The optical magnification was

4 � with a pixel size of 2.0 mm. The High Aspect Ratio To-

mography (HART) mode was employed to improve the image

quality of the flat sample.

The solid bright region in the tomogram (Fig. 2 (b)) corre-

sponds to themetal layer, whereas the bundles of strings and

circles in dark grey, indicating a woven fiberglass structure, is

the FR4 layer. The epoxy resin that binds the fiberglass is not

detected by X-ray tomography, owing to its low attenuation

of the beam. Tomogram and SEM images reveal that the

capillaries are cylindrical with a slight taper at the top of the

copper layer where the laser entered [55e57] and have

penetrated all the way through the copper/FR4 composite

layer. The capillaries measure ~12.8 mm at the entrance

diameter and ~6.4 mm at the exit diameter, accounting for a

total loss of less than 1% in the land area. The capillary

pressure generated by the capillaries is 30.2 kPa, which is

calculated using [58]:

DPc ¼ gk ¼ g

�
1
r1

þ 1
r2

�
(1)

where g (N m�1) is the surface tension of liquid water at 70 �C

and k (m�1) is the interface curvature, which can be expressed

in terms of r1 (m) and r2 (m), the principal radii of curvature of

the interface. Increasing the capillary diameter may be ad-

vantageous in terms of water management, as it increases the

rate of wicking and evaporation. However, given the inversely

proportional relationship, increasing the capillary diameter

leads to a rapid reduction in the capillary pressure, rendering

gas breakthrough into the water transport channel more

likely. Thus, the capillary diameter of ~12.8 mm was used,

whichwas the smallest capillary diameter achievablewith the

laser system.
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Fig. 3 e Exploded view of the 6.25 cm2 fuel cell assembly.

The green, red, and blue arrows represent the direction of

air, hydrogen, and liquid water, respectively.

Fig. 2 e (a) SEM image of the capillaries on the copper layer

and (b) “xz” orthoslice from a tomogram of a cross-section

of a PCB layer with a capillary array. The solid bright region

of the tomogram corresponds to the copper layer and the

dark grey region underneath is the FR4 layer.
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Fuel cell assembly

A detailed view of the fuel cell assembly is shown in Fig. 3. It

consists of the MEA, anode and cathode flow-fields, gaskets

for sealing, a heating plate, an acrylic plate for liquid water

transport, and end-plates.

A 6.25 cm2 MEA was prepared in-house by hot-pressing a

Nafion 212 membrane (DuPont, USA) and ELE0070 gas diffu-

sion electrodes (Johnson Matthey, UK) at 130 �C for 3 min with

an applied pressure of 400 psi [59]. The membrane has a

thickness of 50 mm and the catalyst layers have a platinum

loading of 0.4 mg Pt cm�2. Tygaflor gaskets (280 mm), placed

around each gas diffusion layer (GDL), sealed gases and pre-

vented over-compression.

1/8” PTFE tubing was connected to blind holes (f¼ 5.5 mm)

on each side of the 12 mm thick acrylic plate using flangeless

fittings and ferrules (IDEX, USA). The acrylic plate allowed the

water transport channel of the cathode flow-field to be hy-

draulically connected to a syringe pump (Harvard Apparatus,

USA) and a weighing balance (HR-100AZ, A&D, UK), as shown

in Fig. 4. The weighing balance could weight a minimum of

0.1 mg and had a recording rate of 10 Hz, which provided

sufficientmeasurement resolution and frequency for accurate

quantification of the change in water mass in the water

transport channel over a period of 250 s per current density

increment of 0.1 A cm�2. The cell temperature was controlled

using a K-type thermocouple (RS pro, UK) and cartridge

heaters (RS pro, UK), which were inserted into the stainless

steel heating plate. The fuel cell was held together using

stainless steel end-plates and was tightened to a torque of
1.8 Nm. The assembly was oriented horizontally and reactant

gases were fed in co-current orientation during operation.

Test station operation

A schematic of the experimental setup is outlined in Fig. 4.

Fuel cell temperature, inlet gas flow rate, relative humidity,

and electronic load were regulated using a commercial fuel

cell test station (850e, Scribner Associates, USA). The anode

(aH2) and cathode (aair) stoichiometric ratio were maintained

at 1.2 and 3, respectively, by controlling the gas flow rate. The

fuel cell temperature and relative humidity (RH) of the inlet

gas were set to 70 �C and 100%, respectively. During operation,

the gas line temperature was kept higher than the humidifier

temperature to prevent any condensation prior to entering the

fuel cell. Table 1 lists the key experimental parameters used in

all experimental measurements.

The fuel cell operating pressure was measured at the gas

inlet using a differential pressure transducer (PX139-005D4V,

Omega, UK). An in-house computer controlled system (Lab-

VIEW, National Instruments) was used to record data using a

data acquisition card (USB 6363, National Instruments).

Polarization curves were obtained by taking data points

every 60 s at 0.1 A cm�2 intervals until either a sudden drop in

https://doi.org/10.1016/j.ijhydene.2018.10.030
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Fig. 5 e Polarization and power density curves obtained for

parallel, serpentine, and parallel modified with capillary-

containing flow-fields.

Fig. 4 e Schematic of the experimental setup.
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fuel cell performance occurred or the potential fell below

0.4 V. Pressure dropwas recorded during polarization at a data

requisition rate of 5 Hz, and the data were averaged to obtain

the mean pressure drop. Transient changes in cell potential

were recorded over a period of 250 s at each current density

with a data requisition rate of 1 Hz for each current hold

experiment.
Table 1 e Experimental parameters used for fuel cell
operation.

Parameter Value

Fuel cell temperature 70 �C
Cathode RH 100%

Anode RH 100%

Hydrogen stoichiometry (aH2) 1.2

Air stoichiometry (aair) 3

Number of cathode parallel channels 11

Number of cathode serpentine channels 2

Active area 6.25 cm2

Membrane Nafion 212

Electrode ELE0070

Cathode/anode outlet pressure 1 atm (abs)
Water balance measurements

Changes in the mass of water in the water transport channel

were measured at the outlet of the 1/800 PTFE tubing immersed

in a 10 ml beaker placed on top of a balance (Fig. 4). Data were

recorded over a period of 250 s at each current density with a

data requisition rate of 10 Hz. At the start of each experiment,

a syringe pump (10 ml min�1 flow rate) was used to fill the

PTFE tubing and water transport channel with liquid water.

Once capillaries were filled, capillary pressure prevented

breakthrough of reactant gas into the water transport chan-

nel. Any water that penetrated the gas channel was purged by

flowing air at a rate of 0.5 l min�1. Water was not pumped

across the water transport channel during the experiment to

ensure the reactant gas stream was maintained at a higher

pressure than the water transport channel. The pressure dif-

ference between the two channels caused excess liquid water

in contact with the capillaries to be wicked and transported to

the adjacent water transport channel.

Electrochemical impedance spectroscopy (EIS)

EIS was performed using a Gamry Reference 3000 and Gamry

Reference 30 K Booster (Gamry Instruments, USA). Prior to the

impedance measurement, the fuel cell was conditioned at a

constant current to reach steady state. Data points were

recorded at a frequency range of 5 kHz to 0.1 Hz (10 frequency

points/decade) and AC modulation amplitude was kept below

10% of the DC input signal to ensure a linear system response.
Results and discussion

Polarization curves

Polarization experiments were carried out to evaluate the

performance of different cathode flow-fields (Fig. 5). The

conventional parallel flow-field experiences inhibited perfor-

mance, even at a low current density (0.2 A cm�2), due to the

accumulation of excess liquid water in the electrode and gas

channels, as a result of the absence of convective gas flow into

the electrode [31,60] and across the channel [27,28]. On the

contrary, integration of capillaries in parallel flow-fields

dramatically enhances fuel cell performance as liquid water

is wicked away from the electrode before it emerges into the

channel. Thus, stable and flood-free performance is achieved

at all operating points. The parallel flow-field modified with

capillaries exhibits a peak power density of 0.46 W cm�2 at

1 A cm�2. This represents ~95% and ~7% improvement in peak

power density over conventional parallel and serpentine flow-

fields obtained at 0.5 A cm�2 and 1 A cm�2, respectively.

Galvanostatic testing and electrochemical impedance
spectroscopy (EIS) measurements

The above-mentioned improvement in fuel cell performance

by the implementation of capillaries in parallel flow-fieldswas

verified by galvanostaticmeasurements (Fig. 6). Stable fuel cell

performance is achievedwith the serpentine flow-field. This is

attributed to the faster gas flow and higher pressure drop,

https://doi.org/10.1016/j.ijhydene.2018.10.030
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Fig. 6 e Current hold experiment conducted for different

flow-fields.

Fig. 8 e Equivalent circuit diagram for impedance analysis.

RU is the Ohmic resistance, CPE is the constant phase

element, Zw is the Warburg element, and RCT,A and RCT,C are

the anodic and cathodic charge transfer resistance,

respectively.
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which facilitate convectivewater removal in the porousmedia

and channel. By comparison, the fuel cell performance of the

parallel flow-field is highly unstable, as indicated by erratic

potential fluctuations at low current density. Such transient

potential yields insight into flooding events [18,61]. A gradual

decline in fuel cell performance, followed by abrupt, tempo-

rary recovery alludes to liquid water accumulation in the

channel or manifold, which intermittently purges, once it

exceeds the critical liquid water content [62e64].

The introduction of capillaries greatly improves the tran-

sient stability of the parallel flow-field based fuel cell. Stable

fuel cell performance indicates that flooding in the gas

channel is mitigated throughout the investigated operating

region, as the liquid water is removed directly from the elec-

trode before the formation of droplets in the channel. This

result suggests that water management using capillaries re-

duces the dependence of themodified flow-field on convective

gas flow for liquidwater removal. As a result, the parallel flow-

field modified with capillaries shows greater improvement in

fuel cell performance over a serpentine flow-field at higher

current densities, implying enhanced mass transport, despite

the lack of convective gas transport within the electrode.

Electrochemical impedance spectroscopy (EIS) was con-

ducted to elucidate this improvement in performance (Fig. 7).
Fig. 7 e Nyquist plots taken at 0.5 A cm¡2 for different flow-fiel

excessive fluctuations in data points, as a result of system inst
The measured impedance spectra were fitted using the Sim-

plex method in Gamry EChem Analyst, based on the equiva-

lent circuit diagram in Fig. 8, to deconvolute the extent of the

contribution of each phenomenon to the overall fuel cell

performance losses.

The values of the charge transfer (RCT) and mass transport

(RMT) resistances for the parallel flow-field modified with

capillaries are 0.16 U cm2 and 0.41 U cm2, and for the

serpentine flow-field, they are 0.18 U cm2 and 0.44 U cm2,

respectively. Thus, the improvement in reaction rate and

mass transport is attributed to better liquid water removal in

the porous media facilitated by capillaries. Improved liquid

water removal increases catalyst utilization and enhances the

overall reaction rate, as more active sites are made available.

Mass transport within the electrode is also improved from

reduced diffusional losses, as fewer pores are blocked with

liquid water and catalytic sites are more readily available.

Although the serpentine geometry is known to achieve su-

perior water removal, local flooding is anticipated in regions

around the channel bends [26,65], which could have contrib-

uted to its higher overall system impedance.

High-frequency resistance (HFR)

High-frequency resistance (HFR) measurements were con-

ducted to ensure that membrane hydration and interfacial

contact resistance are similar for all flow-fields (Fig. 9).

Maintaining adequate membrane hydration is imperative for

proper proton conduction and oxygenmass transport [66e68].

The HFR value is highest at 0.1 A cm�2, and it gradually de-

clines as the membrane becomes more hydrated from liquid
ds. EIS was not conducted on the parallel flow-field, due to

ability. Dotted lines are fitted results.

https://doi.org/10.1016/j.ijhydene.2018.10.030
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Fig. 9 e Change in high-frequency resistance (HFR) with

respect to current density for different flow-fields.
Fig. 10 e The rate of change of water mass in water

transport channels with respect to current density for a

parallel flow-field modified with capillaries.
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water generation. The membrane starts to dehydrate slightly

at high current densities (>0.9 A cm�2), due to the increased

local temperature of the MEA [69e71], fostering water

evaporation.

A slight discrepancy in HFR values between parallel and

serpentine flow-fieldsmay have stemmed from the difference

in channel configuration, such as land/channel ratio and

channel spacing. The presence of capillaries in the parallel

flow-field leads to a small reduction in the contact area be-

tween GDL and land, which slightly increases its interfacial

contact resistance. However, such marginal difference in the

value of HFR is negligible, as it only accounts for a potential

drop of 2.7mV and 1.6mV at 0.5 A cm�2 for the serpentine and

parallel flow-field modified with capillaries, in comparison to

the parallel flow-field.

Rate of wicking and evaporation

To investigate the influence of current density on the water

balance, the mass change of water in the water transport

channel was used as a measure of the rate of wicking or

evaporation through the capillaries (Fig. 10). A positive rate of

mass change indicates that there is a net excess of water

transported from the electrode to the water transport channel

(wicking), while a negative value indicates a net excess

transport of water from the water transport channel to the

cathode flow-field (evaporation).

At low current densities (�0.5 A cm�2), the generated liquid

water is wicked into the water transport channel through

capillaries via the pressure differential between gas and water

transport channels. The rate of wicking increaseswith current

density, due to the larger amount of water generated at the

cathode. Although cathode flooding is typically associated

with high current density operation, due to increased water

production and electro-osmotic drag from the anode [18],

flooding has been shown to occur at a relatively low current

density of 0.1 A cm�2 due to low gas velocity [72]. Unoptimised

water management is one of the main causes of irreversible

performance degradation and is an issue across the full range

of current density. Here, wicking through capillary channels is
shown to be an effective means of mitigating flooding at low

current density.

The net rate of water transfer in the wicking direction de-

clines with current density at mid-range values

(0.6 � j � 0.8 A cm�2). Increased current heats the fuel cell and

causes more water to evaporate from the capillaries. This is

not a homogeneous effect and will be most pronounced in

regions where local saturation pressure is higher, due to heat

generated in the catalyst layer [70,71,73,74]. In this operating

window, capillaries internally humidify undersaturated gas

streams, while removing excess generated water in the elec-

trode. The capillaries remain saturated with liquid water by

movement of water from the water transport channel. Since

MEA temperature tends to increase towards the gas channel

outlet [74,75], a gradual transition in water management

mechanism fromwicking to evaporation is expected along the

flow path [45,73].

Beyond 0.8 A cm�2, evaporation takes over as the

dominant form of liquid water transport mechanism for the

cell as a whole, due to the rise in cell temperature. This

phenomenon agrees with the HFR results, which show

membrane dehydration above 0.8 A cm�2. Studies report a

typical cell temperature rise of 10 �C or more at high current

densities, which can lead to significant membrane dehy-

dration [70,71]. A simplified water mass balance calculation

in the cathode suggests that a 10 �C rise in MEA tempera-

ture vastly increases the evaporation rate, satisfying the

overall water mass balance without the need for wicking

(Fig. S1). This finding is consistent with neutron imaging

work that has shown that at high current densities, flooding

is partly mitigated by a temperature increase due to internal

heating [76]. These results suggest that such a capillary

system could be used to deliver internal gas humidification

for fuel cells operating on dry inlet gases. Elimination of the

gas humidification system potentially simplifies the overall

fuel cell system and is beneficial both in terms of mainte-

nance and operating cost. This will be the subject of future

work.
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Fig. 11 e Change in pressure drop across the cathode with

respect to current density for different flow-fields.
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Pressure drop

Finally, in terms of pressure drop (Fig. 11), the unmodified

parallel flow-field exhibits the highest value at low current

densities (prior to flooding). This observation is in contrast to

previous reports displaying significantly higher pressure drop

for a serpentine channel than a parallel one, due to faster gas

flow and a longer channel path [27,28,31]. We attribute this

anomaly to the constriction and blockage of the gas flow path

arising from excess liquid water in the gas channels and

bifurcating manifolds [27]. A similar pressure drop recorded

for the parallel and serpentine flow-fields at 0.1 A cm�2, where

flooding is largely mitigated, suggests that the additional hy-

draulic resistance stemming from the bifurcating manifolds

also significantly adds to the pressure drop over the parallel

flow-field.

The parallel flow-field modified with capillaries displays

the lowest pressure drop, reducing the parasitic energy con-

sumption by air blowers [77,78]. Hence, the inherent advan-

tage of the parallel flow-field is preserved, owing to the

unobtrusive design and superior water management of the

capillaries. The ability of the parallel flow-field modified with

capillaries to manage liquid water and deliver a low-pressure

drop is therefore highly desirable from the perspective of

operating cost.
Conclusions

An approach to achieve efficient water management in PEM

fuel cells using capillaries has been presented. The stability

and operating range of a parallel flow-field have been shown

to markedly improve with this advanced water management

mechanism, as channel flooding is mitigated against by direct

liquid removal from the channel. This mechanism combines

water removal in areas and impeded conditions liable to

flooding with a humidification role in regions where the gas

stream has a lower water vapour pressure, due to higher

temperature or supply of dry gas. Thus, the capillaries allow
redistribution of liquid water within the cell by removing or

supplying water, depending on the local demand across the

MEA. This demonstrates the excellent adaptability of the

mechanism to different operation conditions. The parallel

flow-field modified with capillaries exhibited ~95% and ~7%

improvement in peak power density over the conventional

parallel and serpentine flow-fields, respectively.

The proceeding work will focus on testing flow-fields

modified with capillaries under dry operating conditions to

validate the gas humidification capacity of the mechanism.

This would allow efficient and robust fuel cell operation

across a wide range of operating conditions expected to be

confronted by a PEM fuel cell during its lifetime. Further work

will concentrate on the scalability of these flow-fields, making

local measurements of current, temperature, and water;

optimisation of capillary size, density, and location; and effect

of cell orientation and the nature of channel wall materials

(hydrophobic/hydrophilic). With respect to scalability, the

capillary diameter explored in this study may not be suffi-

ciently small to prevent gas breakthrough into the water

transport channel for larger fuel cell systems, as gas pressure

significantly increases during scale-up. Fabrication of nar-

rower capillaries is therefore desirable, which will be investi-

gated in the following work, possibly with the use of a more

advanced laser system (e.g., femtosecond laser). However, the

principles are similar to those discussed here.
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