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Abstract 

Many plants and some animal species are polyploids. Non-disomically inherited markers (e.g. 

microsatellites) in such species cannot be analysed directly by standard population genetics 

methods developed for diploid species. One solution is to transform the polyploid 

codominant genotypes to pseudo diploid dominant genotypes, which can then be analysed by 

standard methods for various purposes such as spatial genetic structure, individual relatedness 

and relationship. Although this data transformation approach has been used repeatedly in the 

literature, no systematic study has been conducted to investigate how efficient it is, how 

much marker information is lost and thus how much analysis accuracy is reduced. More 

specifically, it is unknown whether or not the transformed data can be used to infer parentage 

and sibship jointly, and how different sampling schemes (number and polymorphism of 

markers, number of individuals) and ploidy level affect the inference accuracy. This study 

analyzes both simulated and empirical data to examine the effects of polyploid levels, actual 

pedigree structures, and marker number and polymorphism on the accuracy of joint parentage 

and sibship assignments in polyploid species. We show that sibship, parentage and selfing 

rates in polyploids can be inferred accurately from a typical set of microsatellite loci. We also 

show that inferences can be substantially improved by allowing for a small genotyping error 

rate to accommodate the distortion in assumed Mendelian inheritance of the converted 

markers when large sibship groups are involved. The results are discussed in the context of 

polyploid data analysis in molecular ecology. 

 

Introduction 

Many population genetics methods have been widely applied in ecology, evolutionary and 

conservation biology to infer population structure (e.g. Pritchard et al. 2000; Vekemans & 

Hardy 2004; Waples & Gaggiotti 2006; Guillot et al. 2009), individual relatedness (Queller 

& Goodnight 1989; Lynch & Ritland 1999; Wang 2002), and relationship (Marshall et al. 

1998; Goodnight & Queller 1999; Wang 2004) from a sample of marker genotypes. Almost 

invariably these methods are developed for diploid species, by calculating a likelihood or 

moment estimator derived explicitly from Mendelian principles for diploids. Without 

modifications, these established diploid model based methods do not apply to polyploid 

species in which markers show non-disomically inheritance.  
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There are several difficulties in extending these methods to apply to polyploid species. 

One primary difficulty comes from the identification of individual marker genotypes. For a k-

allele codominant marker such as microsatellites, all possible k (k +1)/2 genotypes, 

including k homozygotes and k (k -1)/2 heterozygotes, are distinguishable in diploid species 

in the absence of null alleles. Allele frequencies can thus be calculated directly from allele 

counting in genotype data, and expected genotype frequencies can be calculated from allele 

frequencies with or without deviation from Hardy-Weinberg proportions. In polyploid 

species, in contrast, a phenotypic heterozygote may have several possible underlying 

genotypes that vary in the number of copies of one or more alleles. In tetraploids, for example, 

the 3-band phenotype ABC at a microsatellite locus can have 3 alternative genotypes ABBC, 

AABC and ABCC which cannot be easily and reliably distinguished experimentally. In 

octaploids, the same phenotype ABC can have 21 possible genotypes which are 

indistinguishable using current experimental approaches.  

The uncertainty and polyploidy of the genotype data make most population genetics 

analyses developed for diploid species inapplicable to polyploids. This is unfortunate because 

polyploids are estimated to be 30–80% among plant species (Meyers & Levin 2006; 

Rieseberg & Willis 2007), and less frequent (Mable 2004) but an evolutionarily significant 

(Ohno 1999) factor associated with diversification among animal species. Many important 

crops, such as cotton, wheat, sweet potato, kiwifruit and certain strawberries, are polyploids. 

Polyploidy is widespread and has evolved repeatedly during the development and 

diversification of fishes (Leggatt & Iwama 2003), especially in primitive taxa such as 

sturgeons (family Aciperserformes, Ludwig et al. 2001). 

How to analyze polyploid genotype data in applications widely used in diploids is an 

important question. One solution is to modify each population genetics method developed for 

diploids to accommodate the polyploid inheritance model and the uncertainty of genotype 

data. While not impossible, this is a formidable task as there are many population genetics 

methods developed and enjoyed by researchers working with diploid species and each needs 

to be modified individually. Furthermore, for some sophisticated methods involving a high 

computational load such as the Bayesian population clustering analysis (Pritchard et al. 2000) 

and the joint likelihood sibship and parentage analysis (Wang 2004; Wang & Santure 2009), 

accounting for polyploid inheritance and genotype uncertainty could incur a dramatic 

increase in computational cost (see discussion below).  
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Another solution is to convert the polyploid genotypes to pseudo diploid genotypes 

such that many methods developed for diploids are applicable without modification. In theory, 

this option is inferior to the alternative one because any transformation of data would mean a 

loss of information and thus a reduction in analysis accuracy. However, this option is 

appealing because it is simple and universally applicable to many methods. Rodzen et al. 

(2004) proposed such a scheme to convert microsatellite genotypes in the polyploid white 

sturgeon (Acipenser transmontanus) to pseudo diploid dominant genotypes. Essentially the 

same data transformation scheme was independently applied in several earlier studies (e.g. 

Mengoni et al. 2000; Buteler et al. 2002). In this scheme, effectively each allele (or band) at a 

codominant marker locus is treated as an independent dominant “locus” with 2 alleles 

(dominant and recessive), 3 genotypes, and 2 phenotypes (band present and absent). The 

converted data can then be analysed by methods developed for diploid dominant markers for 

various purposes as reviewed by Bonin et al. (2007), such as population structure 

(Zhivotovsky 1999; Falush et al. 2007; Milot et al. 2008), relatedness and relationship 

(Lynch & Milligan 1994; Hardy 2003; Gerber et al. 2003; Wang 2004; Nybom 2004; 

Kosman & Leonard 2005), and hybridization (Anderson 2008; Sun & Lo 2011). Indeed 

several studies (Mengoni et al. 2000; Buteler et al. 2002; Rodzen et al. 2004; Hanson et al. 

2008) have demonstrated using empirical data that accurate parentage assignments and 

relatedness estimates for polyploids could be obtained from the converted data using standard 

methods developed for diploid dominant markers.  

The data transformation by the scheme of Rodzen et al. (2004) leads to an inherent 

loss of information on heterozygosity (Hanson et al. 2008), and possibly some reduced 

inferential power and accuracy when applied, for example, to parentage and population 

structure analyses. No systematic study has been conducted to investigate how efficient this 

data conversion is, and how much marker information is lost and thus how much analysis 

accuracy is reduced by this approach. More specifically, it is unknown whether or not the 

transformed data can be used to infer full and half sibship directly rather than indirectly by 

clustering individuals based on pairwise relatedness (as per Rodzen et al. 2004), and to infer 

parentage jointly with sibship. This study aims to fill the gaps. By applying Rodzen’s et al. 

(2004) scheme to both simulated and empirical data in polyploids, we investigate the effects 

of polyploid levels and marker number and polymorphism on the accuracy of parentage and 

sibship assignments and of selfing rate estimates. We show that sibship and parentage 

assignments can be substantially improved by allowing for a small genotyping error rate to 
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accommodate the distortion in the assumed Mendelian inheritance of the converted markers 

when large sibship is involved. The results are discussed in the context of polyploid data 

analyses used in molecular ecology. 

Methods 

Data conversion 

Following Rodzen et al. (2004), we convert a polyploid individual phenotype at a k-allele 

codominant locus to diploid phenotypes at k dominant “loci”. Each converted locus has 2 

“alleles”, one dominant (indexed by 1) and the other recessive (indexed by 0). The locus has 

thus 2 possible phenotypes determined by three genotypes. The dominant phenotype 

(presence of a band, denoted by 1) has two unordered genotypes {1,1} and {0,1}, while the 

recessive phenotype (absence of a band, denoted by 0) has a single genotype {0,0}. Indexing 

the k bands as independent loci by 1, 2, …, k, we obtain an individual’s diploid phenotype at 

locus i (=1, 2, …, k) as 1 and 0 when band i is present in and absent from the individual’s 

original polyploid phenotype, respectively. For example, an individual phenotype showing 

bands 2, 4 and 7 at an 8-band microsatellite locus will thus have phenotypes {0, 1, 0, 1, 0, 0, 

1, 0} at 8 pseudo diploid dominant loci.   

Simulations 

Simulated data were generated and analyzed to investigate the accuracy of sibship, parentage, 

and selfing rate inferred from the pseudo-diploid dominant marker phenotypes converted 

from polyploid phenotypes at codominant marker loci. We considered the impact of species 

polyploidy, dioecy and monoecy with selfing, marker information content (numbers of alleles 

and loci), and the actual family structure in the data. To understand how much information is 

lost and how much inference accuracy is thus reduced by the data conversion, we also 

considered diploid species and comparatively analysed the original codominant phenotypes 

and the converted dominant phenotypes. Such a comparative analysis of the converted and 

non-converted data would indicate the loss of information and accuracy due purely to data 

transformation rather than polyploidy. The level varies between diploids (2N) to decaploids 

(10N) for ploidy, dioecy vs monoecy, 5 to 25 for the number of alleles per locus, and 5 to 25 

for the number of loci, small (family size≤8 siblings) and large (family size=125 siblings) full 

sibships and half sibships for the actual relationship structure. For monoecy, the level of 

selfing rate varies from low (0.05), medium (0.33) to high (0.50). These levels of marker 
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information cover the typical range commonly used for microsatellite loci in the literature 

(Blouin 2003). The dioecy and monoecy with variable selfing rates, the polyploid models and 

the family structures evaluated in simulations also represent a comprehensive suite of 

empirical possibilities in nature (Brown 1989; Otto & Whitton 2000; Leggatt & Iwama 2003). 

For dioecious species, the simulated data contain either full sib families only (FS 

model) when both sexes are monogamous, or both half and full sib families (HS model) when 

one or both sexes are polygamous. The FS model considered two family structures. In 

structure 1 (denoted by FS1), a sample contained 4 sets of families, with set i (i=1~4) 

consisting of 26-i full sib families and each family having 2i-1 full siblings. The offspring 

sample has thus 128 individuals, distributed in 32, 16, 8 and 4 families of size 1, 2, 4 and 8 

siblings, respectively. In structure 2 (denoted by FS2), a sample contains 5i-1 full sib families 

and each family has 54-i full siblings, where i=1~4. The offspring sample has thus 600 

individuals, distributed in 125, 25, 5 and 1 families of size 1, 5, 25 and 125 siblings, 

respectively. Both samples in FS1 and FS2 contain mixed full sibships of various sizes, 

including numerous singletons and a very large full sib family (FS2 only). Such samples can 

be realistic and common in practice, and are particularly challenging for marker-based 

sibship reconstruction because both false sibship assignments (i.e. true non-siblings being 

assigned to a sibship) and false sibship exclusions (i.e. true siblings being not assigned to a 

sibship) are potentially common (Wang 2013). FS2 has a much larger sample size than FS1, 

and contains a very large sibship that might be spuriously split into 2 or more reconstructed 

sibships when marker information is insufficient (Wang 2013). 

Many species have a polygamous mating system, and both full and half siblings can 

exist in a sample. Half siblings are intermediate in relatedness between non-siblings and full 

siblings, and are thus more challenging to identify (Blouin 2003). We considered a HS model 

in which a sample contains 8 half sib families. In each family, each of 3 males mates with 

each of 3 females. The full sib family from the mating between male i (=1, 2, 3) and female j 

(=1, 2, 3) has 1 and 2 offspring when i ≠ j and i = j, respectively. Thus, each half sib family 

has 12 offspring, and a sample has a total number of 96 offspring. 

In both FS1 and HS models, male parents were not sampled. Female parents were 

sampled in half of the full sib families in each set for the FS1 model, and for the first 4 of the 

8 half sib families for the HS model, respectively. Sampled female parents were genotyped 

and included in the candidate mother sample. Additionally, 100 unrelated individuals of each 
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sex were included in the candidate samples. Thus the candidate father sample has 100 

individuals, who are unrelated to any individual in the offspring and candidate samples. The 

candidate mother sample has 130 and 112 individuals, including 30 and 12 true mothers, for 

the FS1 and HS models respectively. No parents and no candidates were included for FS2. 

For monoeious species with a mixed outcrossing and selfing mating system (Clegg 

1980), we considered an offspring sample containing 6 half sib families. In each family, 3 

outbred parents (i =1, 2, 3) contributed both male and female gametes which combined to 

form the sampled offspring. The number of offspring from the mating between individual i 

and j was always 1 when i ≠ j (outcrossing), and variable when i = j (selfing). For the case of 

a low selfing rate, each of 2 of the 18 parents in the 6 families contributed 1 selfing offspring. 

For the cases of medium and high selfing rates, each of the 18 parents in the 6 families 

contributed 1 and 2 selfing offspring, respectively. In the low, medium, and high selfing 

scenarios, therefore, a sample has 38, 54 and 72 offspring including 2, 18, and 36 selfing 

offspring, respectively, resulting in an actual selfing rate of 0.05, 0.33, and 0.50, respectively. 

No true parents and no candidates were included, which made the inference of selfing rate 

from pedigree reconstruction even more challenging. 

The frequencies of the k alleles at a locus were assumed to be in a triangular 

distribution, with 𝑝𝑖 = 𝑖/(𝑘(𝑘 + 1)/2) for allele i (=1, 2, …, k). Given allele frequencies, the 

genotype of a parent at a locus is generated by sampling randomly and independently 2N 

gene copies. Genotypes at multiple loci were generated independently. A gamete of N 

homologues was obtained by random sorting of the parental 2N homologues, and an offspring 

of 2N homologues was formed by combining a male gamete and a female gamete. The 

possible values of 2N considered in the simulations were 2, 4, 6, 8, and 10. 

The simulated polyploid parent and offspring phenotypes at any locus were perfect, 

having no genotyping errors, mutations, and missing data. These phenotypes at a k-allele 

codominant locus were converted to phenotypes at k diploid dominant “loci” as described 

above before conducting relationship analysis. The data were analysed for relationship 

assuming the absence of genotyping errors, except for the case of FS2 that involves very 

large full sib families. For FS2, although no genotyping errors were introduced in simulating 

the data, a variable mistyping rate (0-0.16) was used for each converted locus when analyzing 

the data. The allowance of (false) genotyping errors was used to accommodate expected 

Mendelian segregation distortions created by the data conversion (more details below). 
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There are so many possible parameter combinations involving family structures, 

ploidy levels, selfing rates, number of loci and number of alleles, that it is impossible to 

explore all of them even in a simulation study. We chose to investigate the impact of each 

factor individually, fixing all the other factors. Except when explicitly stated, the standard 

levels of the factors were octaploids (8N), dioecious species, 10 micosatellite loci, 10 alleles 

per locus, and the FS1 family structure. 

For each parameter combination, 100 datasets were simulated and analysed by the full 

likelihood (FL) and pairwise likelihood (PL) methods implemented in the computer program 

Colony version 2.0.4.4 (Jones & Wang 2002). The FL method assigns all sampled individuals 

to candidate relationships (parent-offspring, full siblings, half siblings, unrelated) jointly. It 

uses a simulated annealing algorithm to construct relationship configurations and search for 

the one that has the maximum likelihood (Wang 2004; Wang & Santure 2009). The PL 

method assigns sibship or parentage to a pair or trio of individuals in isolation (e.g. McPeek 

& Son 2000; Marshall et al. 1998), with or without controlling for false assignments.  Most 

of the default parameter settings (e.g. diploid, no inbreeding, a single run of medium length, 

medium likelihood precision, no sibship prior, no update of allele frequencies) in Colony 

were accepted in analysing the data. Specifically, the probabilities of a male and female 

parent included in the candidates were set as 0.1 and 0.5 respectively, both sexes were set as 

monogamous and polygamous for the FS and HS models respectively, and dioecious and 

monoecious models were adopted for such simulated data. Except when FL and PL are 

compared in accuracy, analysis results are presented for the FL method only. 

Accuracy measurements 

The accuracy of sibship and parentage assignments was measured by the statistic, P(a|b), the 

frequency of dyads assigned relationship a when their actual relationship is b (Thomas & Hill 

2000; Wang 2004). Thus, P(a|b) gives the frequency of correct and incorrect inference of 

dyadic relationship b when b=a and b≠a, respectively. For sibship inference among offspring, 

accuracy is measured by P(FS|FS), P(HS|HS), and P(UR|UR), where FS, HS, and UR are full 

sibs, half sibs, and unrelated offspring, respectively. For parentage inference, accuracy is 

measured by the frequencies that parentage is correctly assigned, P(PO|PO), or correctly 

excluded (unassigned), P(XO|XO), when the actual parent is included in and excluded from 

the candidate pool, respectively. The values of P(a|b) were calculated for each replicate, and 

averaged across replicates in the report. 
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The accuracy of selfing rate estimates was also assessed for monoecious species. The 

FL method infers the parents of each offspring, who is thus inferred to come from selfing and 

outcrossing reproduction when its two parents are identical and different, respectively. The 

proportion of the inferred selfing offspring in a sample acts as an estimate of selfing rate, �̂�, 

of the population from which the sample is drawn representatively or at random. We 

calculated the mean and root mean square error (RMSE) of �̂� across n=100 replicates as 

�̅� =
1

𝑛
∑ �̂�𝑖

𝑛
𝑖=1 , 

RMSE = √
1

𝑛
∑ (�̂�𝑖 − 𝑠)2𝑛

𝑖=1 , 

where s is the true simulated selfing rate. A comparison between 𝑠̅ and s shows whether �̂� is 

biased or not, and the direction and extent of bias. RMSE measures the overall accuracy of �̂�, 

including both sampling errors and bias. 

Empirical data analyses 

Simulations are valuable in evaluating the accuracy, robustness, computation efficiency and 

statistical behaviour of an estimator, because many different population and sampling 

scenarios can be considered easily and the true (simulated) parameter values are known. 

However, the assumptions of a simulation model may be unrealistic and thus the simulated 

data may deviate from the reality, which is usually much more complicated. How well an 

estimator fares with a real dataset is of more interest to empiricists, and is the ultimate 

question to be addressed before the estimator is recommended for application in practice. 

  We applied the data transformation scheme to a lake sturgeon dataset before 

conducting a sibship analysis. Lake sturgeon (Acipenser fulvescens) was reported to have an 

octoploid (Blacklidge & Bidwell 1993) or tetraploid (Fontana et al. 2004) genome, but 

microsatellites in the species can be either disomically or non-disomically inherited (e.g. 

Pyatskowit et al. 2001; Welsh & May 2006). Larvae from 7 full-sib families of a lake 

sturgeon population were sampled and genotyped at 10 non-disomically inherited 

microsatellite loci (details in online document). Each of 5 families has 8 offspring, and each 

of 2 families has 7 offspring included in the sample, resulting in a total sample size of 54. The 

numbers of alleles at the 10 loci observed in the 54 individuals were 3, 6, 8, 9, 14, 14, 15, 15, 

20, and 21. Transforming the phenotypes to pseudo diploid dominant marker data, we obtain 

individual phenotypes at 125 loci, which were analysed in two ways. 
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First, the phenotypes at each locus were permuted among individuals to obtain 54 new 

multilocus phenotypes. These 54 artificial individuals are obviously unrelated (UR), but were 

analysed by program Colony to check whether false sibships were inferred. A variable 

number of the original 125 loci were used in the permutation simulations to investigate how 

false sibship classification rates varied with the number of markers. For a given number of 

loci L, a permuted dataset was generated by first selecting at random L out of the 125 loci, 

and then permute the original phenotypes of the 54 individuals at each selected locus. The 

permuted 54 multilocus phenotypes at the selected L loci were then analysed for sibship. For 

each L, 100 permutated datasets were generated and analysed to obtain an average value of 

P(UR|UR). 

Second, the original transformed data were analysed by using a variable number of 

loci, L, to see how much marker information is needed to fully recover the actual sibship 

structure. For each L (≤125), 100 bootstrapping samples were formed and analysed. Each 

sample was generated by drawing at random L loci, and the individual phenotypes of these 

selected L loci were used in sibship reconstruction. Accuracy was measured by average 

P(FS|FS) and P(UR|UR) values across 100 replicate samples. 

Results 

Effects of number of loci 

The accuracy for both full sibship and parentage assignments increased rapidly with an 

increasing number of loci (Figure 1). Five microsatellites, each having 10 alleles, was 

insufficient for accurate relationship inference, but at least 90% of all of the possible dyadic 

relationships including PO, XO, FS, UR were correctly identified with 10 loci. 

 It is revealing to compare the parentage assignment and exclusion accuracies for 

offspring with different numbers of siblings included in a sample, and between the full (FL) 

and pairwise (PL) likelihood methods (Figure 2). As expected, FL method correctly assigns 

and excludes, when true parents are included in and excluded from candidates respectively, 

parentage at an increasing frequency for offspring in sibships with an increasing size. This is 

because more siblings, when considered jointly, provide more information about their 

common parentage and thus allow for more accurate parentage assignments or exclusions. In 

contrast, the PL method yields essentially the same parentage inference accuracy regardless 

of sibship sizes, because it considers each offspring in isolation no matter how many siblings 
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are present in the sample. For singletons, FL and PL have similar parentage assignment 

accuracies, P(PO|PO). For offspring with one or more siblings, FL yields much more 

accurate parentage assignments using any number of loci. FL gives an increasing frequency 

of correct parentage exclusion, P(XO|XO), with an increasing number of loci, regardless of 

sibship size. PL shows an interesting property that P(XO|XO) is high when the number of 

loci is either low (L =5) or high (L =25), and is low when the number of loci is intermediate 

(L =10~15). This is because PL, designed to assign parentage with confidence, tends to be 

conservative for parentage assignments and liberal for parentage exclusion, especially when 

marker information is scarce. Even when L=25, however, the PL method still has a P(XO|XO) 

value of around 0.9, much lower than the FL method. This means that PL tends to yield a 

substantial proportion of false parentage assignments even when a large number of loci are 

used in polyploid species. 

Effects of number of alleles 

The inference accuracy for all types of relationship increases rapidly with an increasing 

number (k) of alleles per locus (Figure 3). When marker information is scarce (k=5), most 

parents are unassigned although they are included in the candidates, resulting in a low value 

of P(PO|PO) = 0.22. This value jumps to 0.91 when each locus has 10 alleles. Similar to the 

results shown in Figure 2, the pairwise likelihood approach to parentage assignments 

proposed by Marshall et al. (1998), implemented in Colony (Wang 2004) and FAMOZ 

(Gerber et al. 2003) programs for both dominant and codominant markers, yields lower 

P(PO|PO) values than the full likelihood approach that considers joint sibship and parentage 

assignments among all sampled individuals, and gives a value of 0.01 and 0.73 for k =5 and 

10, respectively. 

Effects of polyploid levels 

For diploids, transforming codominant marker phenotypes to dominant ones incurs a sizable 

decrease in parentage assignment and exclusion accuracies (Figure 4), but has a much smaller 

effect on sibship assignments for the FS1 model. Polyploid levels also have a much larger 

impact on parentage than sibship analyses. True parents included in the candidates become 

unassigned at an increasing frequency and sibship inference deteriorates with an increasing 

polyploid level. This is unsurprising given that the original polyploid phenotypes are 

increasingly uncertain in their underlying genotypes, and the transformed phenotypes display 

more and more distorted Mendelian proportions (see below), with increasing levels of ploidy. 
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To achieve the same sibship and parentage inference accuracy, more marker information is 

needed for species with a higher level of ploidy. 

Effects of large full sib families 

The transformation of polyploid codominant phenotypes to diploid dominant phenotypes 

could cause an apparent distortion of Mendelian segregation, and thus may lead to the 

spurious split of large full sib families in the likelihood sibship reconstruction. The higher the 

polyploid levels and the larger the true sibship size, the more severe will be the distortion and 

the more likely will be the sibship splitting. Using hexaploid species as an example, parents 

of the same genotype AAABBB will generate offspring free of allele A at a probability of 

1/400 in the absence of double reductions. The frequencies of converted phenotypes 1 (band 

presence) and 0 (band absence) of the offspring at the transformed locus corresponding to 

allele A are therefore 399/400 and 1/400, respectively. In contrast, heterozygous parents at a 

true diploid dominant locus will produce 1 and 0 phenotype offspring with a probability of ¾ 

and ¼, respectively. This means, when the true sibship with heterozygous polyploid parents 

is large, the frequency of the common phenotype can be too high and the frequency of the 

rare phenotype can be too low compared with the expectations of Mendelian segregation laws 

for diploids. As a result, this phenotype configuration will have a very low probability 

calculated according to Mendelian inheritance on diploids. Splitting the sibship into two full 

sib families, each containing individuals with identical phenotypes at this A locus, is highly 

likely to result in a higher likelihood. As a result, a large sibship could be split into 2 or more 

full sib families in reconstruction. However, when a small mistyping rate is permitted at each 

locus, then the rare phenotype will be considered to be due to genotyping errors, and the large 

sibship will not be incorrectly split in reconstruction. 

Simulations verify our reasoning above. When the transformed data were regarded as 

perfect diploid data without mistypings (i.e. e = 0), large sibships were split by the full 

likelihood method, resulting in a low P(FS|FS) value of 0.55 (Figure 5). Sibship 

reconstruction improves rapidly by allowing for a small mistyping rate, and the actual sibship 

structure was almost completely recovered when e = 0.04. Further increase in e incurs a slight 

decrease in P(UR|UR), meaning some unrelated individuals were mis-assigned as siblings. 

For comparison, Figure 5 also shows the accuracy of the pairwise likelihood (PL) 

method, which considers the likelihood of full-sib and unrelated relationships for each pair of 

individuals in isolation of other individuals. With an increasing value of e, P(FS|FS) 
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increases but P(UR|UR) decreases rapidly. There seems to be no benefit by introducing a 

small mistyping rate in the PL sibship analysis. This is in sharp contrast with the FL method, 

and is understandable because the apparent Mendelian segregation distortion due to data 

transformation becomes severe only when sibship size is large. The distortion has trivial 

effects on the PL method because it considers just 2 individuals each time. Allowing for a 

small error rate in analysis may well reduce the overall accuracy of the PL method because 

most often a sample contains more non-sib than sib dyads.  

Effects of half siblings in polygamous mating systems 

Half sibship can also be inferred from the transformed data for polyploids (Figure 6). 

Comparing analyses of diploids with and without data transformation, however, it becomes 

clear that the transformation incurs a substantially reduced accuracy in both full and half 

sibship inferences, while it has little effect on parentage inference accuracy. This is in 

contrast to the results in Figure 4, where parentage assignments suffer much more than full 

sibship assignments. This discrepancy comes from the difference in the simulated true sibship 

structures. In Figure 4, a simulated sample contains numerous singleton offspring who have 

no siblings, and who have or have no parents included in the candidates. Parentage 

assignment or exclusion for a singleton is difficult, because the information comes from just 

this single offspring and a candidate parent. In such a case, the full likelihood method for 

sibship and parentage assignments is similar to the pairwise likelihood approach and has no 

extra information to use. In Figure 6, each offspring has 3 paternal siblings and 3 maternal 

siblings, and therefore its parentage assignment or exclusion, when the true parent is included 

in or excluded from the candidates respectively, is made much easier as the siblings also 

provide parentage information. Therefore, even if marker information is scarce or reduced by 

the transformation, parentage can still be reliably inferred. 

Similar to the FS1 model shown in Figure 4, an increasing ploidy level leads to a 

decreasing accuracy in full and half sibship inference. Parentage inferences are little affected 

by polyploidy, because as explained above little marker information is needed for the full 

likelihood method to infer parentage when siblings are present. For accurate half and full 

sibship inference, more markers are needed for species with a higher ploidy level. 

Accuracy of selfing rate estimates in monoecious species  
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Selfing rates are estimated with a decreasing bias and an increasing accuracy for both 

diploids and octaploids with an increasing number of loci (L), and almost perfect (no bias and 

very low RMSE) estimates are obtained when L ≥15 (Figure 7). The estimates obtained with 

L=10 are also satisfactorily accurate, no matter the actual selfing rate is high, medium or low. 

When marker information is scarce (L ~5), however, selfing rate is underestimated and 

overestimated when it is high and low respectively, and RMSE is always high. Overall, 

ploidy levels have little effect on the quality of selfing rate estimates. 

Empirical lake sturgeon data analyses 

Almost perfect sibship reconstruction was achieved using just 80 of the 125 transformed loci 

(Figure 8), which means about 4 microsatellites are needed to recover the sibships completely. 

This high assignment power is not surprising given the uniformly large full sib families (7-8 

siblings per family) of the sample, and the fact that the full likelihood method is particularly 

powerful for such a case. Permuting genotypes among individuals at each locus generates a 

dataset containing unrelated individuals (singletons). Analyses of these permutated datasets 

show that the rate of false sibship discovery is low, only about 1% when all 125 transformed 

loci are used (Figure 9). Combining the results in Figures 8-9 suggests that 10 or more 

microsatellites are required to accurately infer full sibships if the sample is large and contains 

many singletons, but only ~4 microsatellites are needed if full sibships in a sample are 

uniformly large. When full sibships are very large (>100 siblings per family), more than 4 

microsatellites would be necessary to prevent the splitting of large sibship in reconstruction. 

Discussion 

In this study, simulated and empirical data were analysed to investigate the accuracy of 

sibship, parentage and selfing rate inference from the pseudo diploid dominant marker data 

that were transformed from disomically or non-disomically inherited codominant marker data 

in diploids and polyploids. In reality, most polyploid species may fall somewhere on a 

continuum between the two extreme inheritance modes. Autopolyploids result from genome 

duplication events and should in principle follow the non-disomical inheritance. However, 

accrual of mutational differences in microsatellite motif size and at priming sites (Estoup & 

Cornuet 1999) can lead to loss of amplification products in different gene copies, and to an 

apparently disomical inheritance of markers. Allopolyploids are due to hybridization events 

and thus should in principle follow the disomical inheritance. However, the hybridizations are 

typically between closely related species with similar genomes, and thus allopolyploids may 
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still display non-disomical inheritance to some extent. In many vertebrates there is evidence 

for partial diploidiation (Wolfe 2001). Our results show that in both inheritance modes, the 

marker data transformation proposed by Rodzen et al. (2004) works well for both sibship and 

parentage assignments. With a typical suit of 10-20 microsatellites, sibship and parentage can 

be accurately recovered for polyploids using the full likelihood methods developed for 

diploids. Therefore, polyploid marker data can always be transformed by the scheme of 

Rodzen et al (2004) before conducting a relationship analysis, when the marker inheritance 

mode is non-disomical, unknown, uncertain or partially disomical. Polyploid marker data in 

disomical inheritance can be analysed similarly, but are better analyzed without applying the 

transformation because of the loss of information. 

The accurate sibship and parentage inferences from the transformed data shown in the 

present simulation study do not mean the transformation scheme (Rodzen et al. 2004) is 

perfect and works for other analyses. This data transformation is not biologically accurate in 

several aspects, and at least it leads to some information loss. Different bands at a 

codominant marker locus are obviously dependent in frequencies which sum to 1. Converting 

these bands to different and independent “loci” not only violates the dependence, but also 

changes “allele” and “genotype” frequencies dramatically. These frequencies are inevitably 

increased on average by the conversion. Consequently, some analyses such as estimating 

inbreeding (FIS) from genotype frequencies are severely affected and become invalid (see 

below). Another consequence is that the transformed pseudo diploid dominant genotypes do 

not follow the exact Mendelian inheritance of either diploids or polyploids. Fortunately, some 

analyses, such as relatedness and relationship as demonstrated by the simulations, are little 

affected by this data conversion, because they rely mainly on the genotypic similarity 

between individuals which largely survives the data conversion. The data conversion leads to 

some distortion in Mendelian segregation proportions, which becomes severe and more 

frequent in large full sib families. However, we demonstrate that this apparent distortion can 

be affectively accounted for by introducing a small mistyping rate in data analysis. 

 Similar to the case of diploid species (Wang & Santure 2009), the power of a 

sibship/parentage analysis in polyploid species depends on many interacting factors, as 

shown in this simulation study. First, marker informativeness, determined by the number, 

polymorphism as well as the missing and mistyping rates of the markers, is the primary factor 

that affects the inference accuracy of all types of relationships. Usually less than 5 

microsatellites or 50 SNPs are insufficient for relationship inference, except for a sample 
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consisting of uniformly large full sibships. Second, among different close relatives, parentage 

is the easiest to infer, followed by the inferences of full sibship and half sibship relationships. 

This is because the probabilities of sharing 2, 1, 0 alleles that are identical by descent (IBD) 

at a diploid locus are 0, 1 and 0 for a parent-offspring (PO) dyad, 0.25, 0.5, and 0.25 for a full 

sib (FS) dyad, and 0, 0.5, 0.5 for a half sib (HS) dyad. PO dyads have a high coancestry 

coefficient (0.5) and no variation in IBD sharing patterns, which make them much easier to 

infer. HS dyads have a lower coancestry coefficient (0.25) and higher variation in IBD 

sharing patterns, which make them much more difficult to distinguish from other dyads such 

as unrelated and FS dyads. Our simulations (Figures 4 and 6) showed that allowing for 

polygamy to infer half sibship reduces the inferential power substantially, and more markers 

would be needed to reach the same power as that for monogamy. Third, family size is also 

critically important in determining the power, as shown in Figure 2. More offspring sharing 

the same parent (half siblings) or parents (full siblings) provide more information about their 

common parentage (parental genotypes), and allow better inference of both sibship and 

parentage. Family size has, however, little effect on the accuracy of pairwise approaches, 

which infer the relationship of a pair of individuals in isolation. Unfortunately, in practice the 

family types (full or half sibship), structures, and sizes in a dataset are often unknown and are 

indeed the particular subjects to infer from marker data. 

As a result of accurate sibship and parentage assignments, selfing rate in monoecious 

polyploid species is also accurately estimated from the transformed marker data. There are 

several marker based methods available for estimating selfing rates in diploid species, and the 

pedigree reconstruction (PR) method performs the best when marker information is sufficient 

(Wang et al. 2012). The simulations in the present study further confirm that this method 

works well also for polyploid species using transformed data. The inbreeding (FIS) method 

estimates s based on the excess of homozygosity caused by selfing. When a large diploid 

population reproduces at a constant selfing rate s for a sufficient number of generations, it 

will reach an inbreeding equilibrium at which the average inbreeding is 𝐹𝐼𝑆 = 𝑠/(2 − 𝑠) 

(Hedrick & Cockerham 1986). Therefore, one can infer s by estimating FIS from marker data 

and solving for s (e.g. Clegg 1980; Penteado et al. 1996). However, this inbreeding method 

does not apply to dominant marker data, because allele frequencies at a dominant marker 

locus have to be estimated assuming Hardy-Weinberg equilibrium (i.e. the absence of 

inbreeding). With such estimated allele frequencies, FIS is expected to be zero, irrespective of 

the mating system or actual selfing rate. The identity disequilibrium (ID) method (David et al. 
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2007) also relies on diploid codominant markers to work, and does not apply to dominant 

marker data. The Bayesian population assignment (PA) method that allows for inbreeding 

could potentially use dominant marker data to infer selfing rates. However, the current 

implementation of this method in the program InStruct (Gao et al. 2007) does not have this 

capability. Currently, there are no alternative methods for estimating s from dominant 

markers with which our pedigree reconstruction method can be compared.  

Our simulated data of monoecious species with a mixed mating system were 

generated without assuming inbreeding equilibrium (IE). Unlike some other methods (e.g. FIS, 

ID) which require IE, our PR method and the PA method of Gao et al. (2007) do not rely on 

IE and apply to populations with or without IE (Wang et al. 2012). The simulations 

considered a single population practicing mixed selfing and outcrossing reproduction without 

biparental inbreeding. However, previous simulations showed that both PR and PA methods 

were robust to the presence of biparental inbreeding (Wang et al. 2012), because an offspring 

from a single parent (i.e. selfing) is distinguishable from an offspring from two parents (i.e. 

outcrossing) even if they are highly related (e.g. full siblings). In contrast, both FIS and ID 

methods are sensitive to the presence of biparental inbreeding, which could lead to an 

overestimate of selfing. Similarly, the presence of multiple populations should have little 

effect on the PR method, except when the populations are highly differentiated. The PR 

method also makes no assumption about the relatedness among pollen received by the same 

individual maternal parent (Schoen & Clegg 1984). The pollen may come from different 

related or unrelated individuals (as in wind-pollinated plants), or from the same individual (as 

in certain insect-pollinated plants). The higher accuracy and robustness and fewer 

assumptions of PR method in comparison with other methods makes it a good choice in 

studying plant and animal mating systems (Wang et al. 2012). However, this method is 

computationally much more demanding, especially for a large sample of individuals. It also 

requires more marker information to obtain unbiased and accurate inferences. 

The comparison between analyses of untransformed and transformed data in diploids 

verifies some loss of information and thus some reduction in sibship and parentage inference 

accuracy (Figures 4 and 6). This is understandable because diploid individuals have 

unambiguous genotypes at codominant loci that would allow both parentage and sibship 

exclusions. This exclusion power is lost for sibship and much reduced for parentage 

inferences once the data are transformed to dominant loci. For polyploid species, the 

transformation is likely to incur less information loss because the original untransformed 
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genotypes may be uncertain anyway. A proper evaluation of the extent of information loss 

and thus accuracy reduction by the data transformation for polyploids as shown for diploids 

in Figures 4 and 6 requires the development and implementation of a polyploid likelihood 

model for relationship inference from codominant markers (see below). 

 The data transformation causes an apparent distortion of Mendelian segregation, 

where the dominant and recessive phenotypes of the offspring of heterozygous parents do not 

appear in the expected proportions of ¾ and ¼ for diploids at a dominant locus. The higher 

the ploidy level is, the lower will be the probability of the recessive phenotype. This problem 

becomes severe when sibship size is large. For the pairwise likelihood method, this problem 

is irrelevant, because no matter how large the sibship is, the method deals with each pair of 

individuals in isolation. For the full likelihood method that considers the entire sample of 

individuals jointly for sibship assignments, however, this problem may lead to the spurious 

splitting of a large sibship. We show in simulations (Figure 5) that this problem can be 

satisfactorily resolved by allowing for a small mistyping rate in data analysis. In a large full 

sib family with a very low but non-zero proportion of the recessive phenotype, the rare 

recessive phenotype would be treated effectively as due to mistyping when it is permitted in 

analysis, and the sibship will not be spuriously split in reconstruction.  

In polyploidy species, allele dosage in microsatellite profiles could be useful to obtain 

genotypes (rather than phenotypes, each of which may contain several alternative genotypes). 

The peak height for each allele could be measured and used to infer the number of allele 

copies at a locus in each individual (after calibration). The uncertainty of the allele copy 

number can be accounted for by using a suitable genotyping error model similar to the 

stepwise mutation model. To analyse such polyploid genotype data, a likelihood method 

specifically designed for joint sibship and parentage assignments needs to be developed and 

implemented. In principle, such a method should be very similar to that developed for 

diploids (Wang 2004; Wang & Santure 2009), only the likelihood function needs to be 

modified. The likelihood function for a pure full sibship with unknown parental genotypes at 

a single 2N-ploidy locus of k alleles is 

 𝐿(FS|𝑔, 𝑚) = Pr(𝑔, 𝑚|FS) = 

 ∑ 𝑝𝑥1 ∑ 𝑝𝑥2

𝑘

𝑥2=1

…

𝑘

𝑥1=1

∑ 𝑝𝑥𝑎

𝑘

𝑥𝑎=1
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𝑘
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where a=2N, data 𝑔 = (𝑔1, 𝑔2, … , 𝑔𝑑) and 𝑚 = (𝑚1, 𝑚2, … , 𝑚𝑑) are the d distinctive 

polyploid phenotypes and their counts respectively observed among the inferred siblings, xi 

and yj index the alleles in the two parents (where i ,j=1~a). The probability of an offspring 

phenotype gl given parental alleles xi and yj (i, j=1~a), Pr(𝑔𝑙|𝑥1, 𝑥2, … 𝑥𝑎; 𝑦1, 𝑦2, … , 𝑦𝑎), 

can be derived assuming independent sorting of the a homologous genes in gamete formation, 

with the possibility of accommodating genotyping errors (Wang 2004). For the more 

complicated cases of half sibship and assigned parents with genotype data, similar equations 

to those for diploids can also be derived. However, the computation of these likelihood 

functions is highly computationally costly for polyploids, and quickly becomes prohibitive 

with increasing ploidy (value of a). The number of parental genotype combinations that must 

be considered in calculating the likelihood function is in the order of 𝑘2𝑎. For a locus with 

k=10 alleles, the numbers of parental genotype combinations are 104 and 1016 for diploid and 

octoploid species, respectively. Although the number of parental genotype combinations can 

be reduced substantially by merging unobserved alleles in a sibship when mistypings are 

absent or comply with certain simple models (Wang 2004), it still increases very rapidly with 

a and quickly becomes too large to deal with in likelihood computation. Furthermore, marker 

inheritance in many polyploid species is unknown, but may fall into the continuum between 

disomical and non-disomical (Hanson et al. 2008). It is therefore of dubious value to develop 

such a highly computationally demanding method for parentage and sibship inference in 

polyploids given the uncertain and variable inheritances of markers.  

 In conclusion, our simulation and empirical data analyses show that accurate sibship 

and parentage assignments as well as good selfing rate estimates can be made based on a 

typical set of microsatellites (e.g. 10 markers, each with 10 alleles) using the full likelihood 

method and the data transformation scheme of Rodzen et al. (2004) for polyploid species. 

The transformation does cause some loss of information, and distortion of Mendelian 

segregation proportions for diploids. The latter may cause the splitting of large sibship in 

reconstruction, but can be effectively accommodated by allowing for a small mistyping rate 

in data analysis. 

In this study we have focused on sibship and parentage assignments and evaluated the 

effect of various factors on the assignment accuracy. It is worth pointing out that in practice 

sibship and parentage assignments are not the final goal of many practical applications, but 

are used for further analyses such as estimating the effective number of breeders and the 

current effective population size (Wang 2009; Wang et al. 2010), male and female mating 
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system and reproductive skews (e.g. Gottelli et al. 2007), genetic parameters of quantitative 

traits (e.g. Thomas 2005), and migration rate (e.g. Saenz-Agudelo et al. 2009). In all these 

downstream analyses, accurate sibship and parentage assignments and exclusions are 

critically important in determining the biasness, precision and power. In effective population 

size (Ne) inference, for example, false sibship assignments and false sibship exclusions will 

cause an overly high and overly low frequency of siblings and thus an underestimation and 

overestimation of Ne, respectively (Wang 2009).  
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Figure 1: Accuracy of full-sib and parentage assignments as a function of the number of loci. 

Each locus has 10 codominant alleles in a triangular frequency distribution. Individual 

genotypes at a variable number of microsatellite loci (x axis) were simulated using the FS1 

model for octaploids, and were converted to diploid dominant phenotypes before conducting 

relationship analysis. 

 

5 10 15 20 25
0.5

0.6

0.7

0.8

0.9

1.

 ∆: P(FS|FS) 

: P(UR|UR) 

 ◊: P(PO|PO) 

 □: P(XO|XO) 

Number of loci 

A
cc

u
ra

cy
 



28 
 

 

 

Figure 2: Comparison of parentage inference accuracies between methods for sibships of 

different sizes. Correct parentage assignment (A: P(PO|PO)) and exclusion (B: P(XO|XO)) 

frequencies from the full (FL) and pairwise (PL) likelihood methods for offspring in sibships 

of various sizes (1, 2, 4, 8) are plotted as a function of the number of loci used in the 

inferences. Each locus has 10 codominant alleles in a triangular frequency distribution. 

Individual genotypes at a variable number of microsatellite loci (x axis) were simulated using 

the FS1 model for octaploids, and were converted to diploid dominant phenotypes before 

conducting relationship analysis.  
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Figure 3: Accuracy of full-sib and parentage assignments as a function of the number of 

alleles per locus. Data were simulated using the FS1 model for octaploids. Each individual 

was genotyped at 10 loci, with each locus having a variable number (x axis) of codominant 

alleles in a triangular frequency distribution.   
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Figure 4: Accuracy of full-sib and parentage assignments as a function of species ploidy 

levels. For diploid species, individual phenotypes at 10 codominant marker loci were either 

untransformed or transformed to phenotypes to 100 dominant marker loci, indicated by 2* 

and 2 on the x axis, respectively. Data were simulated using the FS1 model and 10 loci, each 

having 10 codominant alleles in a triangular frequency distribution.   
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Figure 5: Accuracy of full-sib assignments as a function of mistyping rate at each locus used 

in data analysis. Genotype data were simulated, under the FS2 model for octaploids, for 10 

loci, each having 10 alleles in a triangular frequency distribution. The polyploid codominant 

genotypes were generated with no mistyping, but were converted to diploid dominant 

genotypes and were analysed assuming a variable mistyping rate (x axis) by the full 

likelihood (FL) and pairwise likelihood (PL) sibship assignment methods.  
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Figure 6: Accuracy of sibship and parentage assignments as a function of species ploidy 

levels in simulations of the HS model. For diploid species, the phenotype data at 10 

codominant marker loci were either untransformed or transformed to phenotypes to 100 

dominant marker loci, indicated by 2* and 2 on the x axis, respectively. Data were simulated 

using the HS model and 10 loci, each having 10 codominant alleles in a triangular frequency 

distribution.  
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Figure 7: Accuracy of selfing rate estimates as a function of number of loci for diploid (2N) 

and octaploid (8N) monoecious species. The actually simulated selfing rates are 0.05 (low), 

0.33 (medium) and high (0.50), indicated by horizontal dotted lines. Each locus has 10 

codominant alleles in a triangular frequency distribution. The original codominant diploid 

and octaploid genotype data were converted to pseudo diploid dominant phenotypes before 

conducting relationship analysis. 
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Figure 8: Sibship assignment accuracy in the sturgeon dataset using a variable number of loci 

(x axis) randomly selected from the original 125 transformed loci.  
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Figure 9: Sibship exclusion accuracy obtained from the sturgeon permuted datasets. Each 

dataset was generated from genotypes permutated among individuals at each of a variable 

number of randomly selected loci (x axis).  
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