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Abstract 20 

Inbreeding (F) of and relatedness (r) between individuals are now routinely calculated from marker 21 

data in studies in the fields of quantitative genetics, conservation genetics, forensics, evolution and 22 

ecology. Although definable in terms of either correlation coefficient or probability of identity by 23 

descent (IBD) relative to a reference, they are better interpreted as correlations in marker-based 24 

analyses because the reference in practice is frequently the current sample or population whose F 25 

and r are being estimated. In such situations, negative estimates have a biological meaning, a 26 

substantial proportion of the estimates are expected to be negative, and the average estimates are 27 

close to zero for r and equivalent to FIS for F. I show that while current r estimators were developed 28 

from the IBD-based concept of relatedness, some of them conform to the correlation-based concept 29 

of relatedness and some do not. The latter estimators can be modified, however, so that they 30 

estimate r as a correlation coefficient. I also show that F and r estimates can be misleading and 31 

become biased and marker dependent when a sample containing a high proportion of highly inbred 32 

and/or closely related individuals is used as reference. In analyses depending on the comparison 33 

between r (or F) estimates and a priori values expected under ideal conditions (e.g. for identifying 34 

genealogical relationship), the estimators should be used with caution. 35 

 36 

Introduction 37 

Knowledge of the degree of relatedness between individuals due to recent common ancestry is 38 

pivotal in many research areas in quantitative genetics, conservation genetics, forensics, evolution 39 

and ecology (Ritland, 1996; Lynch & Ritland, 1999). For natural populations in which pedigree 40 

records are usually lacking, methods have been proposed (e.g. Lynch, 1988; Queller & Goodnight, 41 

1989; Li et al., 1993; Ritland, 1996; Lynch & Ritland, 1999; Wang, 2002; Thomas, 2010) and 42 

applied to estimating the genetic relatedness between a pair of individuals from their genotypes at 43 

marker loci. These simple estimators, based on allele frequency moments, were shown to provide 44 

unbiased albeit imprecise estimates of relatedness from a typical suit of microsatellite markers when 45 

the assumptions made in developing them were met (e.g. Lynch & Ritland, 1999; Van De Casteele 46 

et al., 2001; Wang, 2002). Several likelihood estimators (Milligan, 2003; Wang, 2007; Anderson & 47 

Weir, 2007) were also proposed to estimate relatedness in more complicated situations involving 48 

inbred or structured populations and imperfect markers suffering from genotyping errors and 49 

mutations. Constraining estimates to their “legitimate” range of [0, 1], these likelihood estimators 50 

are biased but can be more precise than moment estimators in certain situations. 51 



4 
 

Relatedness (r) and inbreeding (F) have by definition an implicit reference population in 52 

which all homologous genes within and between individuals are assumed to be not identical by 53 

descent (IBD). Equivalently, the reference population is assumed to consist of non-inbred and 54 

unrelated individuals. The relatedness between and inbreeding of individuals are thus measured 55 

relative to this reference. In a pedigree based analysis in practice, founders who have no known 56 

parents included in the pedigree are assumed non-inbred and unrelated, and thus act effectively as 57 

reference although they may come from different generations. Relatedness between and inbreeding 58 

of any individuals in the pedigree are calculated relative to this reference by path analysis (Wright, 59 

1922) or a recursive tabular method (Emik & Terrill, 1949). If the reference is moved a few 60 

generations backward into the past because the ancestors of some or all of the original founders are 61 

made known and used as founders, then some relatedness between and inbreeding of individuals 62 

will be increased. If the reference is moved a few generations forward because we are only 63 

interested in the most recent coalescences, then some relatedness between and inbreeding of 64 

individuals will be decreased. When we know the differentiation (FST) of the new reference relative 65 

to the old one, we can use it to adjust our estimates of relatedness and inbreeding calculated using 66 

the old reference so that they are relative to the new reference (Powell et al., 2010). However, not 67 

all relatedness and inbreeding coefficients are equally affected by a change of reference, and this 68 

FST based correction procedure works only as an approximation.  69 

In a marker based analysis, r and F estimators are also defined and calculated relative to an 70 

underlying reference population (Anderson & Weir, 2007; Wang, 2011). In addition to the 71 

assumption of non-inbred and unrelated individuals in the reference, marker based r and F 72 

estimators assume that the marker allele frequencies in the reference are known. Strictly under these 73 

assumptions, various moment estimators mentioned above are truly unbiased, as checked by 74 

simulations (e.g. Van De Casteele et al., 2001; Wang, 2002) and verified rigorously by analytical 75 

treatments (Wang, 2011). For example, the estimators give an average relatedness of 0.5 and 0.25 76 

for non-inbred diploid full and half siblings respectively, when the allele frequencies used in 77 

simulating the genotypes of unrelated and non-inbred parents of the sampled individuals are 78 

assumed known and used in the estimation. In practice, however, allele frequencies of a population 79 

are rarely known and have to be estimated from a sample of individuals. With few exceptions as 80 

verified by a survey of the literature, a sample of individuals is used first for estimating allele 81 

frequencies assuming r=F=0, and then for estimating r and F using the estimated allele frequencies. 82 

This practice effectively assumes a priori non-inbred and unrelated individuals in the sample, which 83 

is used actually as reference. In such a situation, what do r and F measure by definition? What are 84 

the marker-based estimators actually estimating?  85 
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In this study, I will first clarify the definitions of relatedness and inbreeding when a sample 86 

of individuals is used for estimating both allele frequencies and F and r. This is important in 87 

understanding what F and r really mean, in answering elementary questions such as whether or not 88 

negative F and r values make biological sense and whether or not an individual with F=-0.1 is more 89 

inbred than an individual with F=-0.2. Clarifying the definitions is also important in designing 90 

properly an experiment for r and F analysis, in interpreting and applying r and F estimates correctly 91 

in downstream analyses, and in developing and comparing rightly different estimators. I will then 92 

investigate, by analytical and simulation analyses, the properties of several r and F moment 93 

estimators in the realistic situation of using the current sample or population as reference. I will 94 

modify several r estimators so that they estimate what are supposed to be estimating in the case of a 95 

sample being used as reference. Hereafter, I focus on the simple r and F estimators that are based on 96 

marker allele frequency moments, and the term “estimators” implicitly refer to these moment 97 

estimators except when explicitly preceded by the word “likelihood”.  98 

Definitions of r and F 99 

The concept of inbreeding coefficient of an individual, F, was developed by Wright (1921). It was 100 

defined as the correlation between homologous genes of the two gametes (one from father and one 101 

from mother) uniting to form the individual, relative to the total array of such gametes in random 102 

derivatives of the foundation stock (or reference population). Later, Malecot (1948) introduced 103 

another definition of F as the probability of identity by descent (IBD) of the two homologous genes 104 

at a locus within an individual, where IBD is counted with respect to the reference population in 105 

which all homologous genes are assumed non-IBD. Genes IBD are copies of the same ancestral 106 

allele, and are thus identical in state (IIS) barring the rare events of mutations.  107 

In both the correlation and IBD definitions, the F value of an individual is independent of 108 

locus specific properties such as the mutation rate and the number and frequencies of alleles at a 109 

locus, and is determined solely by the genealogical relationship or the shared ancestry of the 110 

individual’s parents (Wright, 1965). Indeed, F is traditionally calculated by path analysis (Wright, 111 

1922) of a pedigree without referring to any locus at all. For a given individual, all loci are expected 112 

to have the same F value because they have experienced the same genealogical process. For the 113 

same reason, different individuals with exactly the same pedigree (e.g. full siblings and twins) are 114 

also expected to have the same F value at any locus. Therefore, an individual’s F value calculated 115 

from the pedigree or estimated (learned) from some marker loci can be used to make inference or 116 

explain observations at any loci, taking into account of locus specific properties (like mutations, 117 

selection, mistyping) of the latter loci if necessary. 118 



6 
 

Wright (1965) and others (e.g. Seger, 1981; Grafen, 1985) noted that the correlation and 119 

IBD concepts of F are identical in some cases, when the reference is a suitable population ancestral 120 

to the current population. They also pointed that, however, the correlation concept is more general 121 

than the IBD concept, and can give meaningful negative values in some situations. For example, the 122 

F1 hybrid individuals from crossing two differentiated parental populations will be expected to have 123 

a negative F, no matter the reference is the two parental populations combined or the current hybrid 124 

population. In a large population with mixed random selfing and outcrossing, the outbred 125 

individuals will have a negative F when the current population is used as reference. Similarly, for a 126 

population in which consanguine mating is avoided, individual F will tend to be negative on 127 

average if the current population is used as reference. These negative F values make biological 128 

sense, signifying that the probability of the two homologous genes within an individual being IBD 129 

is smaller than that of two homologous genes drawn at random from the reference population. In 130 

contrast, the IBD concept will never give a negative F, because it is a probability.  131 

In principle, the correlation concept puts no constraint on which population can be used as a 132 

reference. One can use an ancestral, the current (focal), and even a descendant population as a 133 

reference, yielding in general a decreasing F value for a given individual. Pedigree analyses 134 

invariably use an ancestral population as reference, while marker analyses frequently use the current 135 

population from which a sample of individuals is taken for F analysis as the actual reference. There 136 

is neither methodological nor conceptual difficulty in using a descendant population as the 137 

reference in a marker-based analysis. In contrast, the IBD based F has to use an ancestral population 138 

as reference, because by definition negative values are prohibited and have no meaning. If the 139 

current or a descendent population were used as reference, the F of most or all individuals would be 140 

invariably zero.  141 

The necessary but ambiguous and arbitrary nature of a reference in both the correlation and 142 

IBD concepts of F dictates that F values are always relative to an implicit reference population 143 

assumed to be composed of non-inbred and unrelated individuals such that all homologous genes in 144 

the reference are non-IBD. For any given individual, F can virtually take any value in the legitimate 145 

range [-1, 1] as a correlation coefficient, or in the range [0, 1] as an IBD coefficient, depending on 146 

the reference one chooses to measure F against. This relativity leads to the claims that F has 147 

something arbitrary in its definition (Maynard Smith, 1998, p141), to the so-called ‘inbreeding 148 

paradox’ (Seger, 1981), and the suggestion that relatedness (and F as well) is a measure of our 149 

information and not of anything real (Jacquard, 1974, p171). These claims are true to some extent, 150 

but they do not nullify the usefulness of F in population genetics theory and applications. So long as 151 

the reference is not extremely far away from the current population such that mutations and 152 
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selections become non-negligible compared with the genealogical process (inbreeding and drift), 153 

the F values suffice in most analyses such as regression and correlation analyses involving F as a 154 

variable. In these analyses, it is the relative F values of different individuals that matter and a linear 155 

transformation of F values does not alter the regression or correlation analysis result. For pedigree 156 

based analyses, however, a pedigree that is too deep or too shallow (i.e. the reference is too far 157 

away from and too close to the current population, respectively) will lead to F values close to 1 or 0, 158 

respectively, for all current individuals. Consequently, the variance of F would become much 159 

smaller than the maximum obtainable from a pedigree with an appropriate depth, resulting in under-160 

or over-estimation of inbreeding effects in regression or correlation analyses. In contrast, marker 161 

based analyses are affected only when the reference is too far away into the past, and are little 162 

affected when the reference is or is close to the current population.  163 

There are other definitions of F in the literature. Rousset (2002) noted the limitations of 164 

IBD-based concept of inbreeding, and gave a generic definition of F as ratios of differences of 165 

probabilities of genes identical in state (IIS). In ideal situations (e.g. the absence of locus specifics 166 

like mutations), it is equivalent to Wright’s correlation definition when applied to markers. 167 

However, several difficulties arise with this IIS based definition. First, gene identities and thus IIS 168 

are more or less arbitrary. For example, classical genetics recognizes three alleles, A, B, and O that 169 

determine the compatibility of blood transfusions at the gene locus for the ABO blood type 170 

carbohydrate antigens in humans. It is now recognized that each of the three alleles is actually a 171 

class of multiple alleles having different DNA sequences and coding for different proteins with 172 

identical properties. More than 70 alleles are now identified at the ABO locus (Yip, 2002). A 173 

homozygote in the old 3-allele system may well be a heterozygote in the new +70-allele system, 174 

causing a huge drop in homozygosity or probability of IIS in an individual or a population. In 175 

contrast, F defined as correlation or IBD probability due to shared ancestry is unaffected by how 176 

alleles and loci are defined, and by the polymorphisms of markers. Second, the definition is not 177 

applicable to pedigree analysis. The IBD and correlation definitions of F are broad and coherent, 178 

and apply to both pedigree and marker analyses. Using the founders of a pedigree as reference, 179 

pedigree and markers should yield the same expected value of F for a given individual. These 180 

definitions make it possible to develop likelihood or Bayesian methods to use pedigree and marker 181 

data jointly in inferring realised (rather than expected) F and relatedness, and in estimating marker 182 

genotypes and allele frequencies from incomplete pedigree and marker information (e.g. Boehnke, 183 

1991; Wang & Santure, 2009). Third, IIS based F depends not only on genealogy, but also on locus 184 

specifics. As a result, the expected F value of a given individual varies across loci, depending on 185 

locus specific properties like mutation rate and mistyping rate. In general, effects of mutations can 186 
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be negligibly small (Rousset, 2002), because in practice the time scale for F is usually much smaller 187 

than 1/u where u is the mutation rate. However, other locus properties may have a substantial effect 188 

on IIS and thus on F. In the imperfect world, genotyping errors are a rule rather than an exception 189 

(Bonin et al., 2004). Allelic dropouts and null alleles are particular common for microsatellite 190 

markers, and could cause an apparent increase in IIS and thus IIS-based F. It is true such mistypings 191 

can affect marker-based estimates of F in any concepts. However, under the correlation or IBD 192 

definition, F has the same expected value across loci such that a method can be developed to 193 

account for mistypings if the model and rate of their occurrences are known (e.g. Wang, 2007). 194 

 Closely related to F is the concept of coancestry coefficient or the coefficient of kinship, θ, 195 

between two individuals. In Wright’s correlation definition, θ between two individuals is simply 196 

equal to the expected F of their (hypothetical) offspring, and F can be regarded as the coancestry 197 

coefficient between the male and female gametes that unite to form an individual. In terms of IBD, 198 

θ is the probability that two homologous genes, one taken at random from each individual, are 199 

identical by descent. Relatedness, r, is simply r=2θ if both individuals are non-inbred (Lynch & 200 

Ritland, 1999). 201 

 It is noticeable that most marker based r estimators are developed based on the IBD concept 202 

(e.g. Lynch, 1988; Li et al., 1993; Ritland, 1996; Lynch & Ritland, 1999; Wang, 2002; Thomas, 203 

2010; Milligan, 2003; Wang, 2007; Anderson & Weir, 2007), using the full set or a subset of the 9 204 

condensed IBD states for the 4 (2 in each individual) homologous genes and their probabilities 205 

(Harris, 1964; Jacquard, 1972). These estimators implicitly assume an appropriate ancestral 206 

population as the reference, and allele frequencies from the reference are known and are used in 207 

calculating the estimators. When these assumptions are met, these estimators are unbiased as 208 

checked by both simulations (e.g. Lynch & Ritland, 1999; Wang, 2002) and rigorous analytical 209 

treatments (Anderson & Weir, 2007; Wang, 2011). Negative values from the estimators are taken as 210 

due to sampling errors (e.g. Lynch & Ritland, 1999). In a similar vein, likelihood estimators 211 

(Milligan, 2003; Wang, 2007; Anderson & Weir, 2007) of r are constrained in the “legitimate” 212 

range of [0,1] based on the IBD concept, and as a result are upwardly biased when the assumptions 213 

are violated. 214 

 In practical applications, however, r and F are frequently estimated using allele frequencies 215 

calculated from the current sample of individuals whose F and r are being estimated. This practice 216 

effectively uses the current population (or sample) as the reference. A shift of reference from an 217 

ancestral population assumed in developing the estimators to the current population (from which the 218 

individuals are sampled) or sample assumed in applying the estimators alters imperceptibly and 219 
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insidiously the meanings of r and F. The estimates thus obtained can no longer be interpreted as 220 

probabilities of IBD of homologous genes between and within individuals relative to the reference, 221 

as is in developing the estimators. Rather, they should be understood as correlations of homologous 222 

genes between and within individuals (Hardy & Vekemans, 1999; Powell et al., 2010) due to shared 223 

ancestry, as Wright (1921) originally conceived. The shift in reference to the current sample causes 224 

some F values of and some r values between individuals to be legitimately negative, and so they 225 

obviously cannot be interpreted as probabilities and should not be simply dismissed as due to 226 

sampling errors. They can be understood, however, as the correlation of homologous alleles within 227 

and between individuals. The negative values imply that homologous genes within and between 228 

individuals are IIS at a lower probability than the average, because the shared ancestors are more 229 

distant or/and fewer than the average. 230 

Using the current sample as reference, r (or F) signifies the expected relative excess (when 231 

positive) or deficit (when negative) of the occurrences of homologous genes that are IIS between 232 

(or within) individuals due to the relative excess or deficit of shared ancestry. The mean estimate of 233 

r among pairs of individuals in a sample should be close to zero, because the probability of IBD of 234 

homologous genes between individuals is on average close to that of homologous genes taken at 235 

random from the sample except when it is extremely small. The mean estimate of F among 236 

individuals in a sample should be equivalent to Wright’s FIS by definition. Given the frequency of 237 

an allele, p, at a locus in the sample, an individual i with inbreeding coefficient Fi will be 238 

homozygous for the allele at a probability of 𝑝𝐹𝑖 + 𝑝2(1 − 𝐹𝑖). This probability is smaller than, 239 

equal to, and larger than the mean, p2, when the individual has a negative, zero, and positive 𝐹𝑖, 240 

respectively. This interpretation of F is true across loci. For example, the probability of a multilocus 241 

homozygote for individual i is ∏ (𝑝𝑙𝐹𝑖 + 𝑝𝑙
2(1 − 𝐹𝑖))𝐿

𝑙=1 , where 𝑝𝑙 is frequency of the allele at locus 242 

l (=1, …, L) that is homozygous for the individual. This interpretation of F is also true among 243 

individuals. For example, the frequency of a homozygote for an allele of frequency p in the sample 244 

is 
1

𝑛
(∑ (𝑝𝐹𝑖 + 𝑝2(1 − 𝐹𝑖))𝑛

𝑖=1 ), which reduces to 𝑝2 because the average of Fi is zero in the sample 245 

of n individuals. Relatedness has a similar explanation.  246 

Estimators of r and F 247 

As shown above, r (or F) should be interpreted as correlations and should have an expected value 248 

that is equal or close to 0 (or FIS) irrespective of the genealogy of the sample, when the current 249 

population or sample is actually used as the reference. Is this true with the estimators used currently 250 

in practical applications? Below I show by analytical and simulation approaches that while some r 251 

estimators can be construed as correlation coefficient, others are not. In the latter case, however, the 252 
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estimators can be modified so that they estimate r as a correlation coefficient. In contrast, all current 253 

estimators of F can be interpreted as correlation coefficient. 254 

I assume a single marker locus with k (>1) codominant alleles, Ai (i=1~k), is used in 255 

estimating the r and F of a large sample of individuals taken from a half-sib family (The same 256 

results are obtained from a full-sib family, and the derivations are available upon request). All 257 

individuals in the sample share the same non-inbred parent of one sex but have distinctive non-258 

inbred and unrelated parents of the other sex. Both r and F can be defined and estimated using 259 

either parental or current population as reference. In the former case, individuals in the reference are 260 

non-inbred and unrelated, and the frequency of allele Ai, 𝑝̂𝑖, used in calculating r and F is the 261 

parental allele frequency pi assumed known without error. In the latter case, individuals in the 262 

reference are non-inbred half siblings, and 𝑝̂𝑖 used in calculating r and F is estimated using the 263 

genotypes of sampled individuals under the assumption of non-inbred and unrelatedness.  264 

Relatedness estimators 265 

By the IBD or correlation definition using the parental population as reference, we have an expected 266 

value of r=0.25 for each pair of individuals, and 𝑟̅=0.25 across pairs. By the correlation definition 267 

using the current population (sample) as reference, we have an expected value of r=0 for each pair 268 

of individuals, and 𝑟̅=0 across pairs. In the following, I investigate whether 𝑟̅=0 is obtained from 269 

each of a number of estimators when the current population is used as reference. 270 

Estimator by Queller and Goodnight (1989): There are a number of variants to this widely applied 271 

estimator (denoted as QG), and I choose to use the symmetric one obtained by averaging the 272 

estimates using each of the two individuals as reference. For individuals X and Y with genotypes 273 

{a,b} and {c,d}, respectively, at a locus (note that alleles Ai for i=1~k are denoted by a, b, c, d  to 274 

avoid subscripts), the estimator is 275 

𝑟̂ = (𝑟̂𝑋𝑌 + 𝑟̂𝑌𝑋)/2,                                                     (1) 276 

where estimates using individual X and Y as references are 277 

𝑟̂𝑌𝑋 = 𝑟̂[𝑐, 𝑑|𝑎, 𝑏] =
𝛿𝑎𝑐+𝛿𝑎𝑑+𝛿𝑏𝑐+𝛿𝑏𝑑−2(𝑝𝑎+𝑝𝑏)

2(1+𝛿𝑎𝑏−𝑝𝑎−𝑝𝑏)
,        (2) 278 

𝑟̂𝑋𝑌 = 𝑟̂[𝑎, 𝑏|𝑐, 𝑑] =
𝛿𝑎𝑐+𝛿𝑎𝑑+𝛿𝑏𝑐+𝛿𝑏𝑑−2(𝑝𝑐+𝑝𝑑)

2(1+𝛿𝑐𝑑−𝑝𝑐−𝑝𝑑)
,        (3) 279 

respectively, and the Kronecker delta variable ij =1 if i = j and ij = 0 otherwise. In some special 280 

cases, equations (1-3) are undefined. For a monomorphic marker (k=1) or a biallelic marker (k=2) 281 
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with both X and Y being heterozygous, both (2) and (3) are undefined and as a results (1) is also 282 

undefined. In such a case, 𝑟̂ is taken more or less arbitrarily as zero. When X and Y are a 283 

heterozygote and homozygote, respectively, at a biallelic locus, (2) is undefined and the estimator 284 

becomes 𝑟̂ = 𝑟̂𝑋𝑌. Similarly 𝑟̂ = 𝑟̂𝑌𝑋 when Y and X are a heterozygote and homozygote at a 285 

biallelic locus, respectively. 286 

  Under random mating, the genotypes of half siblings in the sample depend on the genotype 287 

of the shared parent, Gs, and allele frequencies of the parental population. Gs can be either a 288 

homozygote, {a,a}, or a heterozygote, {a,b} (a≠b). In the former case, the sibling genotypes are 289 

{a,x}, where x=a, b, …, with a probability of px. The allele frequency calculated from the sample 290 

assuming outbred and unrelated individuals is 𝑝̂𝑥 = (𝛿𝑎𝑥 + 𝑝𝑥)/2, where 𝛿𝑎𝑥 = 1 if x = a and 𝛿𝑎𝑥= 291 

0 otherwise. Given Gs ={a,a}, the average relatedness between individuals of the sample is 𝑟̅ =292 

∑ ∑ 𝑝𝑏𝑝𝑑(𝑟̂[𝑎, 𝑏|𝑎, 𝑑]𝑘
𝑑=1

𝑘
𝑏=1 + 𝑟̂[𝑎, 𝑑|𝑎, 𝑏])/2. Substituting 𝑟̂ by (2-3) and using sample allele 293 

frequencies 𝑝̂𝑥 in place of px in the estimator, I obtain 𝑟̅ ≡ 0 for k > 2, and 𝑟̅ ≡ −𝑝𝑎
2 for k=2.  294 

 Similarly, when the shared parent has a heterozygous genotype Gs ={a,b} (a≠b), the 295 

offspring genotypes, their frequencies, and the sample allele frequencies are listed in Table 1. 296 

Following the approach above, I obtain 𝑟̅ ≡ 0 for k > 2, and 𝑟̅ ≡ (12𝑝1𝑝2 − 3)/(4𝑝1𝑝2 + 3) for 297 

k=2, when allele frequencies calculated from the sample assuming unrelated and non-inbred 298 

individuals are used in the estimation. 299 

 In summary, when the current population (sample) is used as reference (i.e. the allele 300 

frequencies estimated from the sample are used in r estimation), the average r between half siblings 301 

is zero, except when k=2. For a biallelic locus (k=2), 𝑟̅ = 0 only in the special case of a 302 

heterozygote of the shared parent and equal allele frequencies (i.e. p1=p2=0.5); otherwise, 𝑟̅ < 0. 303 

The negative 𝑟̅ when k =2 occurs because the estimator is undefined with a heterozygous reference 304 

individual, and is set, more or less arbitrarily, a value of 0.  305 

Estimator by Ritland (1996): This estimator (denoted as R), derived by Li & Horvitz (1953) and 306 

Ritland (1996), is 307 

𝑟̂ =
2

𝑘−1
[(∑

𝑆𝑖

𝑝𝑖

𝑘
𝑖=1 ) − 1],                     (4) 308 

where Si gives the similarity for allele i between individuals X and Y. Si has 4 possible values, 309 

which are 0, 0.25 and 1 when both X and Y have exactly 0, 1 and 2 i alleles, and 0.5 when X and Y 310 

have a total of 3 i alleles. 311 
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 Using the genotype and estimated allele frequencies of half sib families listed in Table 1, the 312 

estimator always gives an average relatedness of 0, irrespective of the genotype of the shared parent 313 

and the number and frequencies of alleles at a locus. 314 

Estimator by Lynch and Ritland (1999): The estimator (denoted as LR) of relatedness between 315 

individuals X and Y with genotypes {a,b} and {c,d} respectively is given by (1), where the 316 

estimates using X and Y as references are 317 

𝑟̂𝑌𝑋 = 𝑟̂[𝑐, 𝑑|𝑎, 𝑏] =
𝑝𝑎(𝛿𝑏𝑐+𝛿𝑏𝑑)+𝑝𝑏(𝛿𝑎𝑐+𝛿𝑎𝑑)−4𝑝𝑎𝑝𝑏

(1+𝛿𝑎𝑏)(𝑝𝑎+𝑝𝑏)−4𝑝𝑎𝑝𝑏
,       (5) 318 

𝑟̂𝑋𝑌 = 𝑟̂[𝑎, 𝑏|𝑐, 𝑑] =
𝑝𝑐(𝛿𝑑𝑎+𝛿𝑑𝑏)+𝑝𝑑(𝛿𝑐𝑎+𝛿𝑐𝑏)−4𝑝𝑐𝑝𝑑

(1+𝛿𝑐𝑑)(𝑝𝑐+𝑝𝑑)−4𝑝𝑐𝑝𝑑
,       (6) 319 

respectively. Applying the estimator to a large half sib family as listed in Table 1 yields an average 320 

relatedness of 0, irrespective of the genotype of the shared parent, except for the special case of a 321 

biallelic locus with equal allele frequencies. In this special case, the LR estimator becomes 322 

undefined when the reference individual is a heterozygote (Lynch & Ritland, 1999). 323 

Estimator by Lynch (1988) and Li et al. (1993): This estimator (denoted as LL), proposed by Lynch 324 

(1988) and improved by Li et al. (1993), estimates r using a similarity index SXY. This index is 325 

defined as the average fraction of alleles at a locus in a reference individual, X or Y, for which there 326 

is another allele in the other individual, Y or X, that is IIS. Thus, SXY has a value of 1 for genotype 327 

pairs {AiAi, AiAi} or {AiAj, AiAj}, 0.75 for {AiAi, AiAj}, 0.5 for {AiAj, AiAk}, and 0 for {AiAj, 328 

AkAl}, where different subscripts i, j, k, l indicate distinctive alleles. The estimator for individuals X 329 

and Y is 330 

𝑟̂ =
𝑆𝑋𝑌−𝑆0

1−𝑆0
,            (7) 331 

where 0 2 32S a a   (with 
1

n m

m ii
a p


  for m = 2, 3) is the expected similarity index for unrelated 332 

individuals. 333 

Applying the estimator to a large half-sib family (Table 1), I obtain, after tedious algebra, an 334 

average relatedness 𝑟̅[𝑖, 𝑖] =
1−𝑝𝑖−𝑝𝑖

2+𝑎3

5−5𝑝𝑖+3𝑝𝑖
2−4𝑎2+𝑎3

  and  𝑟̅[𝑖, 𝑗] =
1−(𝑝𝑖+𝑝𝑗)−2(𝑝𝑖

2+𝑝𝑗
2)+4𝑎3

25−13(𝑝𝑖+𝑝𝑗)+6(𝑝𝑖
2+𝑝𝑗

2)−16𝑎2+4𝑎3
 when 335 

the shared parent has a homozygote genotype {Ai,Ai} and a heterozygote genotype {Ai,Aj} 336 

(j≠i=1~k), respectively. It can be shown that 𝑟̅ > 0 in both cases, and the magnitude depends on the 337 

number and frequencies of alleles. This means that LL estimator does not estimate r as a correlation 338 
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coefficient when the current sample (population) is used as reference. Otherwise, the expected r 339 

should be zero, like the QG, R, and LR estimators. 340 

To understand how much the LL estimator deviates from the expected value of 𝑟̅ = 0 if it 341 

were a correlation estimator, let’s consider the simple case of a biallelic locus. Combining the three 342 

possible genotypes of the shared parent, I obtain an overall average relatedness of 𝑟̅ =343 

∑ 𝑝𝑖
2𝑟̅[𝑖, 𝑖]2

𝑖=1 + 2𝑝1𝑝2𝑟̅[1,2], which simplifies to 𝑟̅ =
𝑝1𝑝2(7−4𝑝1𝑝2)

(1+𝑝1)(1+𝑝2)(1+2𝑝1)(1+2𝑝2)
. Figure 1 plots 𝑟̅ as 344 

a function of allele frequency p1 (=1-p2), and shows simulation values for comparison. As expected, 345 

simulation and analytical values agree very well. Except when allele frequency is close to zero or 346 

one such that the marker gives little information, 𝑟̅ is substantially higher than 0. The maximal 347 

value of 𝑟̅ is 1/6 when p1 = p2 =0.5. It is clear that the LL estimator applies to the IBD definition of 348 

relatedness only, and becomes meaningless when the current sample contains a high proportion of 349 

related individuals and is used as the reference because in such a case the estimates depend heavily 350 

on allele frequencies. It also implies that LL relatedness estimates for pairs of individuals are 351 

incomparable if these individuals have missing data at different loci. 352 

 It is possible to modify LL estimator so that, like QG, LR and R estimators, it applies to the 353 

more general definition of relatedness in terms of correlation (Wright, 1921). The original LL 354 

estimator is calculated using a constant 𝑆0, which is the expected similarity for unrelated individuals. 355 

For a reference population (such as an appropriate ancestral population) of non-inbred and unrelated 356 

individuals, 𝑆0 can be calculated as 0 2 32S a a   from allele frequencies. For a more general 357 

reference that may contain related and inbred individuals, S0 should be replaced by the average 358 

observed similarity over all possible pairs of individuals, Sa. When the reference is a large random 359 

mating ancestral population as assumed in deriving the LL estimator, we have Sa = 360 

∑ ∑ ∑ ∑ 𝑝𝑎𝑝𝑏𝑝𝑐𝑝𝑑𝑆(𝑎,𝑏),(𝑐,𝑑)
𝑘
𝑑=1

𝑘
𝑐=1

𝑘
𝑏=1

𝑘
𝑎=1  at a locus with k codominant alleles, where 𝑆(𝑎,𝑏),(𝑐,𝑑) is 361 

the same as SXY in (7) and denotes the similarity index for a genotype {a,b} and a genotype {c,d}. It 362 

can be shown, after some algebra, that Sa reduces to 0 2 32S a a   as expected. When the reference 363 

is the current sample of n individuals being calculated for relatedness, then  364 

𝑆𝑎 =
2

𝑛(𝑛−1)
∑ ∑ 𝑆𝑖𝑗

𝑛
𝑗=𝑖+1

𝑛
𝑖=1 ,          (8) 365 

where 𝑆𝑖𝑗 is defined similarly to 𝑆𝑋𝑌 in (7).  366 

Replacing S0 by Sa, (7) gives relatedness estimates relative to a reference chosen by a 367 

researcher. When the reference is an ancestral, the current, and a descendent population, the average 368 
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relatedness across pairs of individuals in a sample tends to be greater than, equal to, and smaller 369 

than zero respectively, independent of markers and their allele frequencies.  370 

 Consider the half sib family listed in Table 1 as an example. When the shared parent has a 371 

homozygote genotype {Ai,Ai} at a locus with k alleles, the half siblings have an average observed 372 

similarity index 𝑆𝑎 = ∑ ∑ 𝑝𝑗
𝑘
𝑙=1

𝑘
𝑗=1 𝑝𝑙(1 + 𝛿𝑗𝑙)/2 which, after some algebra, reduces to 𝑆𝑎 = (1 +373 

𝑎2)/2. The average relatedness is 𝑟̅ = ∑ ∑ 𝑝𝑗
𝑘
𝑙=1

𝑘
𝑗=1 𝑝𝑙 (

1+𝛿𝑗𝑙

2
− 𝑆𝑎) /(1 − 𝑆𝑎), which reduces to 374 

𝑟̅ ≡ 0. It can be shown similarly that 𝑟̅ ≡ 0 when the shared parent has a heterozygote genotype 375 

{Ai,Aj} (j≠i).  376 

Estimator by Wang (2002): This estimator (denoted by W) uses the similarity index of Lynch (1988) 377 

and Li et al. (1993) but can estimate both two- and four-gene relatedness, and thus the total 378 

relatedness r. Using the same similarity index as LL estimator, W estimator is similar to LL 379 

estimator and applies to the IBD definition of relatedness only. When the current sample is used as 380 

reference, W estimator gives an average relatedness larger than 0 when relatives are included in the 381 

sample. However, unlike LL estimator, W estimator is complicated and it is difficult to derive its  𝑟̅ 382 

even for the simple case of a sample of individuals having the same relationship, such as a half 383 

siblings. Simulations showed that W estimator has a 𝑟̅ similar to LL estimator, as shown in Figure 1 384 

for a biallelic locus. 385 

 To modify W estimator such that it is relative to a reference no matter the reference is an 386 

ancestral or current population (sample), I transform the original 2- or 4-gene relatedness or total 387 

relatedness estimates, w, from W estimator to (𝑤 − 𝑤̅)/(1 − 𝑤̅), where 𝑤̅ is the average of the 388 

original estimates across all dyads.  389 

Inbreeding estimators 390 

In the IBD or correlation definition using the parental population as reference, we have an expected 391 

value of F=0 for each individual in the sample and thus 𝐹̅=0. In the correlation definition using the 392 

current population (sample) as reference, we have an expected value of F<0 for each individual and 393 

thus 𝐹̅<0 because the two homologous genes within an individual have a lower IBD probability 394 

than two genes taken at random from the sample (i.e. individuals are more heterozygous than 395 

expected at Hardy-Weinberg equilibrium, FIS<0).  396 

A number of estimators (Li & Horvitz, 1953; Ritland, 1996; Wang, 2011) have been 397 

developed to estimate F from marker data. Herein I choose to analyze a few. I show that these 398 

estimators estimate F as a correlation coefficient (Wright, 1921), and the average F among 399 
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individuals is expected to be smaller than zero when the current sample (population) containing 400 

highly related individuals is used as reference. However, these estimators may give misleading 401 

results in such a case because the estimates become dependent on allele frequencies of the markers. 402 

Estimator by Li & Horvitz (1953) and Ritland (1996): This estimator (denoted as LHR) was derived 403 

based on the proportion of alleles in homozygous condition at a single locus, ∑
𝑧𝑖𝑖

𝑝𝑖

𝑘
𝑖=1 = 1 + 𝐹(𝑘 −404 

1), where 𝑧𝑖𝑖 = (1 − 𝐹)𝑝𝑖
2 + 𝐹𝑝𝑖 is the proportion of homozygotes for allele Ai and pi is the 405 

frequency of allele Ai. In the expression for zii, F can be interpreted as correlation and can take a 406 

negative value for an individual having less homozygosity than an individual expected in the 407 

reference population under Hardy-Weinberg equilibrium. Solving for F gives an estimator 408 

𝐹 =
1

𝑘−1
∑

𝑆𝑖−𝑝𝑖
2

𝑝𝑖

𝑘
𝑖=1  ,           (9) 409 

where Si =1 if the individual is homozygous for allele i and Si = 0 if otherwise. For the half sib 410 

family considered in Table 1, all individuals have an expected F=0 because their parents are 411 

unrelated. Estimator (9) gives indeed F=0 when the allele frequencies of the parental population are 412 

known without error and are used in the estimation. For a shared parent with a homozygous {Ai,Ai} 413 

and heterozygous {Ai,Aj} genotype, the averages of individual F values calculated by (9) are  414 

−1

𝑘−1
(1 − 𝑝𝑖) +

1

𝑝𝑖
−1

𝑘−1
(𝑝𝑖) and  

−1

𝑘−1
(1 −

𝑝𝑖

2
−

𝑝𝑗

2
) +

1

𝑝𝑖
−1

𝑘−1
(

𝑝𝑖

2
) +

1

𝑝𝑗
−1

𝑘−1
(

𝑝𝑗

2
), respectively. Both reduce to 415 

zero as expected, regardless of the number and frequencies of alleles at a locus. 416 

However, when the observed allele frequencies in the sample are used in the estimation, (9) 417 

gives 𝐹 =
−(1−𝑝𝑖)

(𝑘−1)(1+𝑝𝑖)
  and  𝐹 =

−(1−4𝑝𝑖𝑝𝑗)

(𝑘−1)(1+2𝑝𝑖)(1+2𝑝𝑗)
  when the shared parent is a homozygote {Ai,Ai} 418 

and heterozygote {Ai,Aj}, respectively. In both cases F < 0 in general, and F = 0 only when the 419 

shared parent has a heterozygous genotype at a biallelic locus with equal allele frequencies. Figure 420 

2 plots the average F when the shared parent has a homozygous and heterozygous genotype, and 421 

has the two kinds of genotypes at frequencies under Hardy-Weinberg equilibrium. As is clear, F is 422 

negative in general, and its magnitude depends on parental allele frequencies. This means different 423 

markers with different numbers and frequencies of alleles will yield different expected F estimates. 424 

This negative and marker-dependent F is caused by using allele frequencies calculated from the 425 

current sample which is assumed to contain unrelated individuals.  426 

Estimator by Li & Horvitz (1953) and Carothers et al. (2006): This estimator (denoted as LHC), 427 

based on the consideration of expected heterozygosity h, is 428 



16 
 

1ˆ h S
F

h

 
 ,                    (10) 429 

where S = 1 if the individual is a homozygote and S = 0 if otherwise. Similar to (9), (10) is an 430 

unbiased estimator of F as a correlation coefficient when individuals in the reference population are 431 

non-inbred and unrelated (Carothers et al., 2006). If some individuals in the reference are related, 432 

however, the expected value of (10) is greater and smaller than zero when the actual inbreeding is 433 

higher and lower than average relatedness in the reference, respectively. With a significant level of 434 

relatedness among individuals in the reference, (10) becomes marker dependent and does not reflect 435 

purely the level of inbreeding. 436 

 Consider the half sib case of Table 1 and use the current population (sample) as reference. 437 

When the shared parent is a homozygote, {Ai,Ai}, and heterozygote, {Ai,Aj}, the expected 438 

heterozygosity of the sample can be obtained from Table 1 as  ℎ = (3 − 2𝑝𝑖 − 𝑎2)/4 and ℎ = (7 −439 

2𝑝𝑖 − 2𝑝𝑗 − 2𝑎2)/8, respectively. Using these and (10), I obtain the average F of the sample 440 

𝐹̅ = − ∑
𝑝𝑖

2(1+𝑎2−2𝑝𝑖)

3−𝑎2−2𝑝𝑖

𝑘
𝑖=1 − ∑ ∑

2𝑝𝑖𝑝𝑗(1+2𝑎2−2𝑝𝑖−2𝑝𝑗)

7−2𝑎2−2𝑝𝑖−2𝑝𝑗

𝑘
𝑗=𝑖+1

𝑘
𝑖=1 . 441 

For a biallelic locus, this is identical to the average F from estimator (9). For a locus with k 442 

equifrequent alleles, the average F values calculated by (10) and (9) are plotted as a function of k in 443 

Figure 3. As can be seen, both estimators are negative and marker-dependent when the current 444 

sample containing related individuals is used as reference.  445 

The magnitude of r and F values 446 

The above analytical treatment considered a sample containing a single large family, and all 447 

sampled individuals have the same expected inbreeding and relatedness. When a sample containing 448 

individuals of variable relatedness and inbreeding coefficients is used as reference, the magnitude of 449 

r and F estimates should be taken with caution, because they are not determined purely by the 450 

actual relatedness between and inbreeding of individuals involved, but also dependent on the actual 451 

relatedness and inbreeding of other individuals in the sample, and may also be affected by the allele 452 

frequencies of markers.  453 

Let’s consider a simple example. Suppose a sample containing N individuals taken at 454 

random from n half-sib families in a population, with each family contributing m=N/n (integer) half 455 

siblings who share the same father but have distinctive mothers. All parents of the half sib families 456 

are non-inbred and unrelated. When the current sample is used as reference (i.e. its allele 457 

frequencies are calculated assuming F=r=0 and used in the estimation), the average estimated 458 
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relatedness 𝑞𝑟̅ℎ𝑠 + (1 − 𝑞)𝑟̅𝑛𝑠 = 0, where 𝑞 =
𝑛𝑚(𝑚−1)/2

𝑁(𝑁−1)/2
  is the proportion of half-sib dyads and 459 

𝑟̅ℎ𝑠 and 𝑟̅𝑛𝑠 are the average relatedness for half-sib and non-sib dyads, respectively. 𝑟̅ℎ𝑠 and 𝑟̅𝑛𝑠 are 460 

smaller than 0.25 and 0 respectively, the expected values when the parental population is used as 461 

reference or when the reference does not contain related and inbred individuals. The values of 𝑟̅ℎ𝑠 462 

and 𝑟̅𝑛𝑠 depend on the genetic structure of the sample (n and m), and the estimator and markers used.  463 

 Simulations were conducted to check the above analytical predictions. I fixed m at 50, and 464 

varied n between 2 and 10. Ten markers, each having k=3~10 alleles in a triangular frequency 465 

distribution of 𝑝𝑖 = 𝑖/(2𝑘(𝑘 + 1)) in the parental population were simulated. Allele frequencies at 466 

each locus were calculated from the sample assuming unrelated non-inbred individuals and were 467 

used in calculating the LR, R, and QG estimators. Values of 𝑟̅ℎ𝑠 and 𝑟̅𝑛𝑠 across 100 replicate runs 468 

are shown in Figure 4. As can be seen, with an increase in n, 𝑟̅ℎ𝑠 and 𝑟̅𝑛𝑠 for each estimator increase 469 

towards to the expected values of 0.25 and 0 when the reference contains no related individuals. 470 

Different estimators give different values of 𝑟̅ℎ𝑠 and 𝑟̅𝑛𝑠, the difference being large between QG and 471 

the other estimators. 𝑟̅ℎ𝑠 and 𝑟̅𝑛𝑠 are also marker dependent. Markers with a higher polymorphism 472 

tend to give higher values of 𝑟̅ℎ𝑠 and lower values of  𝑟̅𝑛𝑠, especially for R and LR estimators. The 473 

estimate of average relatedness across all possible pairs of individuals (data not shown) is very 474 

close to zero, regardless of the estimators, the family structure of the sample, and the markers. 475 

Discussions 476 

Although marker based relatedness estimators are developed using the IBD concept of relatedness, 477 

they are better interpreted in terms of Wright’s (1921) original correlation concept of relatedness. 478 

This is because the IBD definition has to use an appropriate ancestral population as the reference, 479 

and assume non-inbred and unrelated individuals in the reference. In practice, this definition poses 480 

no problem when a pedigree of sufficient depth is analysed for relatedness. However, when marker 481 

data are analysed for relatedness, frequently genotype or allele frequency data are unavailable from 482 

an ancestral population, and allele frequencies used in calculating relatedness have to be estimated 483 

from the current sample in which relatedness between individuals is being calculated. This practice 484 

effectively uses the current population (sample) as reference, and an estimator conforming to the 485 

correlation concept of relatedness should give an average estimate of zero. This is true regardless of 486 

the actual relatedness among individuals in the sample, as shown by simulation and analytical 487 

results in this study. Relatedness between two individuals can be understood as the probability of 488 

IBD between two genes, one taken at random from each individual, relative to the probability of 489 

IBD between two genes taken at random from the reference population. A negative value signifies 490 
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that the individuals are less related in ancestry than the average, and as a result have genotypes less 491 

similar in expectation than the average. 492 

 The shift of reference from an ancestral to the current population also entails that the 493 

constraint of IBD coefficients in the range of [0,1] used by likelihood estimators of r (Milligan, 494 

2003; Wang, 2007; Anderson & Weir, 2007) is not justified, and may lead to biased r estimates. 495 

This bias is caused by the presence of related or/and inbred individuals in a sample which are 496 

assumed absent in calculating allele frequencies, and persists even if genomic data with millions of 497 

SNPs are used. For a sample taken at random from a large outbred population, most individuals will 498 

be unrelated or only loosely related (Csillery et al., 2006), and the bias of likelihood estimators 499 

should be small and could be negligible compared with the typically large sampling variance of r. 500 

For small or inbreeding (e.g. partial selfing) populations, however, the bias can be substantial. In 501 

general, the higher the variance in actual relatedness and/or inbreeding in a sample, the higher the 502 

bias will the likelihood estimators yield. Operationally it is simple to extend the legitimate range of 503 

r to [-1,1] in searching for the maximum likelihood estimate of r (Konovalov & Heg, 2008), and 504 

such a procedure will undoubtedly reduce estimation bias. However, it is unclear how to determine 505 

the exact range of values for each of the 9 IBD coefficients for a pair of possibly inbred individuals, 506 

and how to ensure r estimates are constrained in the range [-1,1] as a result. More work is needed in 507 

this direction.  508 

 The present study shows that the practice of using the current sample as reference causes 509 

two difficulties in the estimation and interpretation of r. The first difficulty is that r should be 510 

defined and interpreted as correlation as conceived originally by Wright (1921), rather than a 511 

probability of IBD as currently widely perceived. As correlation, the average r across pairs of 512 

individuals in the entire sample is always close to zero, and negative r values have biological 513 

meanings. Accordingly, r estimators should be estimating r as a correlation coefficient rather than a 514 

probability of IBD. I showed that indeed some estimators (e.g. QG, LR and R) can be interpreted as 515 

such, while others using similarity index (e.g. LL and W) cannot. The latter estimators, however, 516 

can be modified to conform to the correlation definition of relatedness. The second difficulty comes 517 

from the assumption of unrelated individuals in the current sample (inbreeding has negligible effect 518 

compared with relatedness because it is the latter that predominantly determines the probability of 519 

IBD of genes taken at random from the sample), which is necessary for estimating allele 520 

frequencies. The use of the same sample for estimating relatedness and allele frequencies introduces 521 

circularity, and violates the basic assumption of independence of r and allele frequencies in all 522 

estimators. Simulations show that, in the presence of a high proportion of related individuals in a 523 

sample, r estimates should be treated with caution because they depend on the actual genetic 524 
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structure and allele frequencies of the sample as well as on relatedness estimators. However, when 525 

most individuals are unrelated, the problem is minor and can be ignored as a good approximation. 526 

In practice, random sampling from a large outbred population is expected to produce a sample 527 

containing only a small fraction of highly related individuals (e.g. Csillery et al., 2006). However, 528 

for some species, family members (especially juveniles) tend to cluster spatially and sampling 529 

without realising and accounting for this family structure may lead to a sample containing just a few 530 

large families, as exemplified for a brown trout population (Hansen et al., 1997). 531 

 It is tempting to estimate r and allele frequencies jointly to solve the 2nd problem. However, 532 

a proper account of the genetic structure in a sample in estimating allele frequencies requires a full 533 

pedigree of all individuals in the sample, not just the pairwise relatedness (Boehnke, 1991; Ritland, 534 

1996). For a sample of individuals with some simple genetic structures such as a 2-generation 535 

pedigree, it proves to be possible and effective to estimate both relationship and allele frequencies 536 

iteratively (Wang, 2004). Algorithms have also been developed to estimate allele frequencies and 537 

inbreeding jointly, assuming unrelated individuals within a population (Hill et al., 1995) or a 538 

subpopulation (Gao et al., 2007). However, no accurate method is available that allows for the joint 539 

estimation of pairwise relatedness and allele frequencies from the same sample. As a rough 540 

approximation, one may take a 3-step approach. First, r is calculated using crude allele frequencies 541 

estimated by assuming all individuals in a sample are unrelated. Second, a group of sampled 542 

individuals that are mutually unrelated or lowly related are identified using the crude r estimates, 543 

and is used for refining allele frequencies. Third, the refined allele frequencies are then used for 544 

calculating r. There are however several difficulties with this approach. First, r is a continuous 545 

quantity and it is unclear which threshold value should be used in selecting “unrelated” or “lowly 546 

related” individuals. Second, it can be difficult in practice to choose sufficiently many mutually 547 

unrelated individuals for accurate estimates of allele frequencies. Due to genuine genealogical 548 

relationships or merely sampling errors, the crude r estimates may indicate that individual X1 is 549 

related to X2, X2 to X3, …, Xn-1 to Xn, while the other pairs of the n individuals may be unrelated as 550 

indicated by the r estimates. In such a case, one has to discard n-1 individuals in calculating allele 551 

frequencies, which may become very inaccurate because of a small sample size when n is large. 552 

Third, simply discarding related individuals throws away information for allele frequencies. 553 

 Another problem caused by the practice of using the current sample as reference is the 554 

sampling errors of allele frequencies due to a finite sample size. Using the same individuals for 555 

estimating relatedness and allele frequencies introduces a negative covariance between them 556 

(Ritland, 1996). Effectively, the relatedness between two individuals is estimated by using the 557 

sample, including the two individuals, as reference. As a result, relatedness is underestimated by an 558 
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amount in the order of 1/N, where N is the sample size. This bias can be removed by excluding the 559 

focal individuals in calculating allele frequencies used in estimating their relatedness (Queller & 560 

Goodnight, 1989; Ritland, 1996). However, the frequency of an allele present only in the focal 561 

individuals will be estimated to be zero by this exclusion procedure, which causes some estimators 562 

to become undefined. 563 

 Understanding the concepts of relatedness and inbreeding, especially their relative nature 564 

defined by the reference, is pivotal in correctly interpreting and applying the estimates in practice. 565 

First, relatedness and inbreeding should be understood as correlations between gametes between 566 

and within individuals caused by recent coancestry (coalescent). Essentially any two organisms are 567 

related and any individual is inbred on the earth because of the existence of recent or remote 568 

common ancestors. However, the relevant time scale for relatedness and inbreeding is the recent 569 

past (i.e. ≪1/u generations where u is the mutation rate). This relatively short time scale was not 570 

explicitly spelt out by Wright (1921, 1922), but is necessary for relatedness and inbreeding to be 571 

useful in most practical applications. For example, an individual with inbreeding coefficient F is 572 

expected to be homozygous for an allele with frequency p (in the reference) at a probability of 𝑝𝐹 +573 

𝑝2(1 − 𝐹). This function applies when mutations are unimportant relative to drift and inbreeding, 574 

implying the most distant reference should be much smaller than 1/u. Otherwise, mutations have to 575 

be accounted for in this probability. In practice, the time scale is invariably much shorter than 1/u, 576 

no matter in pedigree or marker based analyses. Within this time scale, how many generations as a 577 

minimum should we trace back for relatedness and inbreeding estimation? Obviously, the further 578 

the genealogy is traced back into the past, the higher the r and F estimates for all individuals in the 579 

current generation. However, for most applications, it is the relative values of r and F of the current 580 

focal individuals that are important. So long as the variance of r and F estimates becomes constant, 581 

then there is no need to trace pedigree further back. For a population with a mating system that 582 

allows well mixing of the genes (i.e. random mating), it is necessary to trace just ~5 ancestral 583 

generations (e.g. Balloux et al., 2004) to obtain genealogical F and r values that correlate highly 584 

with estimates obtained from a much deeper pedigree. This is understandable because a more 585 

remote ancestor will tend to contribute more evenly to all current descendants (Wray & Thompson, 586 

1990), and thus has smaller effect on the variance of r and F. However, for a population with a 587 

mating system that does not allow quick and extensive mixing of genes, such as subdivision with 588 

little migration, then a deeper pedigree with many more ancestral generations might be needed to 589 

provide a reliable description of the relative levels of inbreeding and relatedness. For example, Toro 590 

et al. (2002) showed that genealogical r estimates from a shallow pedigree of 5 generations are less 591 

correlated with molecular r estimates than those from a deep pedigree of 19~20 generations, 592 
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because the 62 pigs in the analysis were taken from two stains that were isolated. Assuming non-593 

inbred and unrelated founders in a shallow pedigree may lead to distorted r and F estimates when 594 

the assumption is violated.   595 

 Second, it is the relative values of r and F that are relevant in most applications. For 596 

example, r and F estimates from pedigree or marker analyses are usually correlated with or 597 

regressed to a phenotype of a fitness component in investigations of inbreeding depression (Nielson 598 

et al., 2012; Brekke et al., 2010) and of a quantitative trait in estimating its heritability (Ritland, 599 

2000). The estimates are also compared between groups of individuals, such as between sexes or 600 

age classes, in studying the social and population structures. For example, Surridge et al. (1999) 601 

found that the average relatedness is negative between males and is positive between females in a 602 

European wild rabbit population, and interpreted the result as indicating male biased migration 603 

among social groups and female philopatry. In conservation management of endangered species, r 604 

and F estimates can be used to optimise the selection and mating scheme for maximising the genetic 605 

diversity (e.g. Fernández et al., 2003). In all these applications, the magnitute of r and F values is 606 

irrelevant, and a linear transformation of the estimates (by adding or multiplying a constant non-607 

zero value) does not affect a downstream analysis. This means that, in a pedigree-based analysis, 608 

any reference generation suffices so long as the pedigree is sufficiently deep and thus variation of r 609 

and F is close to its maximum. In a marker based analysis, allele frequencies at any reference 610 

generation can be used in r and F estimation if the estimators conform to the correlation definitions.  611 

Third, caution must be exercised in applications in which the magnitudes of r and F values 612 

have more definite biological meanings. One such application is to classify pairs of individuals into 613 

well-separated relationship categories such as first- and second-degree relationships (e.g. Blouin et 614 

al., 1996; Glaubitz et al., 2003; van Dan et al., 2008) from pairwise relatedness estimates. If a dyad 615 

has an estimated r of 0.52 and 0.28, for example, it is classified as first (e.g. parent-offspring, full-616 

sib) and second (e.g. half-sib, avuncular) degree relationship, respectively. However, the 617 

misclassification rate is generally very high even many markers are used (Blouin et al., 1996; 618 

Glaubitz et al., 2003; van Dan et al., 2008; Csillery et al., 2006), because of the high sampling 619 

variance of r and thus the wide overlap in distributions of possible r values between even well-620 

separated relationships. This study shows further that the magnitudes of r values are more or less 621 

arbitrary, depending on the reference allele frequencies. When the current sample is used as 622 

reference, r is usually underestimated such that the average value of r for the sample is zero. These 623 

biases depend on the actual fine genetic structure of the sample, and the markers being used (Figure 624 

4). A better approach is to estimate relationships directly from marker data with a pairwise (e.g. 625 

Marshall et al., 1998; Goodnight & Queller, 1999) or full (e.g. Wang & Santure, 2009) likelihood 626 
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method. This direct approach is much more robust to misspecifications of reference allele 627 

frequencies, and has the option to jointly estimate relationship and allele frequencies. 628 

 In this study, I investigated a few F and r estimators that are developed from population 629 

genetics models. When the underlying assumptions are met, they provide unbiased and marker-630 

independent estimates of F and r. It is noticeable that some marker-based surrogate statistics are 631 

also proposed and applied in indicating the levels of inbreeding and relatedness. These include, for 632 

example, multilocus heterozygosity (MLH) or its complement for indicating inbreeding (e.g. 633 

Hansson & Westerberg, 2002) and similarity indexes (including the one used in (7)) (e.g. Ellegren, 634 

1999) for indicating relatedness. Compared with model-based estimators, these non-model based 635 

measurements may have a similar correlation coefficient with genealogical F and r estimates in 636 

some circumstances (Wang, 2011). However, these surrogate statistics are undesirable in several 637 

aspects. First, they do not estimate, although correlate with, F and r, and as a result have limited 638 

uses in practice. For example, MLH or its complement calculated from a set of markers as a 639 

surrogate for F cannot be used directly in predicting the probability of a genotype or the 640 

heterozygosity at another locus with given allele frequencies. Second, they are highly marker 641 

dependent. For the same individual, MLH is always higher for highly (e.g. microsatellites) than 642 

lowly (e.g. SNPs) polymorphic markers. For the same two individuals, similarity indexes and 643 

molecular coancestry are always lower for highly (e.g. microsatellites) than lowly (e.g. SNPs) 644 

polymorphic markers. This causes problems in comparing estimates involving individuals with 645 

missing data at different loci. An individual with data missing at highly polymorphic loci will tend 646 

to have a lower MLH, and higher similarity indexes and molecular coancestry with another 647 

individual, than an individual with no missing data or with missing data at lowly polymorphic loci. 648 

This marker-dependency also causes difficulties in comparisons within and across studies. Third, 649 

being empirical statistics lacking an underlying population genetics model, they have difficulty in 650 

weighing information among loci. In contrast, F and r estimators can weigh the information from 651 

different loci properly, using for example the inverse of the expected sampling variance of a locus 652 

(e.g. Ritland, 1996; Lynch & Ritland, 1999). The weighting becomes important when markers vary 653 

substantially in polymorphism. In view of these shortcomings, these surrogate statistics should be 654 

discouraged in practical applications. 655 
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Table 1 Genotypes and frequencies of a large half-sib family 748 

Shared parent Half-sib offspring Offspring sample 

allele frequency, 𝑝̂𝑥 
Genotype Allelic state Frequency Genotype Allelic state Frequency 

ii ∀𝑖 𝑝𝑖
2 ix ∀𝑖, ∀𝑥 px 1

2
(𝛿𝑖𝑥 + 𝑝𝑥) 

ij ∀𝑖, ∀𝑗 ≠ 𝑖 2pipj {ix,jx} ∀𝑖, ∀𝑗 ≠ 𝑖, ∀𝑥 {1

2
𝑝𝑥, 1

2
𝑝𝑥} 1

4
(𝛿𝑖𝑥 + 𝛿𝑗𝑥) +

1

2
𝑝𝑥 

 749 


