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ABSTRACT: Measuring small forces is a major challenge in cell bio-
logy. Here we improve the spatial resolution and accuracy of force
reconstruction of the well-established technique of traction force micro-
scopy (TFM) using STED microscopy. The increased spatial resolution
of STED-TFM (STFM) allows a greater than 5-fold higher sampling of
the forces generated by the cell than conventional TFM, accessing the
nano instead of the micron scale. This improvement is highlighted by
computer simulations and an activating RBL cell model system.
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It is becoming increasingly clear that mechanical force plays a
crucial role in many biological processes, including adhesion,

migration, and cell signaling.1−3 Forces act across many length
scales, from tissue to the single cell and ultimately down to
the molecular level, as is true for cells of the immune system
where individual cell−cell and receptor−ligand interactions are
crucial.4−6 In order to understand the role of forces within a given
biological system, it is important that we have the appropriate
tools and techniques that allow quantification of mechanical forces
at the relevant length scales. A commonly used technique to
measure forces on the micron-scale in cell biological systems is
traction forcemicroscopy (TFM) (or simply tractionmicroscopy).
Beginning with the pioneering work of Harris et al., flexible

substrates, such as polyacrylamide (PAA) gels, have been used to
investigate cellular tractions and forces for over 30 years.7 In a
typical TFM experiment, a thin (20−30 μm) elastic gel is formed
on a glass coverslip onto which proteins facilitating cell adher-
ence can be attached (Figure 1a).8 Within the gel, fluorescent
beads serve as fiducial markers and imaging of the bead positions
over time during the application of cellular tractions allows the
displacement of the gel to be quantified. By combining the
measured displacement field with knowledge of the mechanical
properties of the gel, the tractions responsible for the displace-
ments can be calculated. The optimal theoretical treatment of the
traction solution has been the subject of much research.9−11

Dembo et al. provided a rigorous mathematical framework for
the use of elastic materials to measure traction forces,9 which was
further developed with the introduction of Fourier transform
traction cytometry (FTTC) whose treatment of the force

reconstruction in Fourier space allowed for greatly decreased
computation time.10 Owing to the inverse nature of the problem,
work has shown the need for regularization to control the
influence of experimental noise in the measured displacements
on the traction solution.11 In addition to FTTC, other methods
of traction reconstruction have been developed whereby
experimental knowledge of the traction locations is used to aid
the traction recovery, for example, traction reconstruction with
point forces (TRPF)11 and more recently, model based traction
force microscopy (MBTFM).12 These methods are only appli-
cable in cases where the traction location can be inferred from
fluorescent data, as in the case of fluorescently labeled focal
adhesions. In the more general case, where no knowledge of the
traction location is assumed, FTTC is more suitable and is the
methodology used in this work.
The greatest shortcoming of classical TFM is its limited

sensitivity due to the finite density at which the displacement
field can be sampled within the gel.13 The density of fiducial
markers must be high enough to reflect the complexity of the
traction field that is applied by the cell. If the bead density is too
low, areas of the gel will move without being reported by any
bead movement and the traction information is lost. This can be
thought of as a sampling problem, where to meet the Nyquist
criteria the spatial sampling frequency of the displacement field
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must be twice that of any details that may be resolved in the
displacement field (Figure 1b).13 Experimentally, this limit is
imposed by the finite size point spread function (PSF) that
results from each marker bead. At high densities, the PSF of each
individual bead begin to overlap, meaning nearby beads can no
longer be resolved individually, obscuring details of their
relative displacement. A first attempt to overcome this limitation
involved the use of two different colors of marker beads which
proved that the recovery of micron sized tractions are feasible.13

However, due to its reliance on the spectral separation of the
beads, this technique is ultimately limited by the spectral range of
the microscope. Because the beads must be imaged at the top
surface of the gel, this requires a microscope technique that can
operate away from the coverslip, meaning TIRF or near-field
microscopy are not suitable. Cellular traction fields are typically
on the nanoscale range rather than on the micron-scale. Conse-
quently, there remains a need to improve the spatial resolution
of TFM. While improved analysis tools might introduce some
advancements in resolving force fields (e.g., using TRPF
involving knowledge from additional fluorescence data of the
sample, as outlined above), these approaches are experimentally
still limited by the finite size of the PSF as given by diffraction for
conventional optical microscopes (i.e., they only push the TFM
read-out to its ultimate limit as given by diffraction). To over-
come these challenges, here we improved the spatial resolution
and accuracy of force reconstruction of TFM by using super-
resolution optical STED microscopy.14

To examine the effects of the sampling density on traction
force recovery, we first conducted computer simulations in
which a gel of defined stiffness (3 kPa) was exposed to a uniform
circular traction field (T) (0.3 kPa) of varying spatial sizes (0.1−
4.0 μm). The resulting displacement field was then calculated
using the mathematical framework provided by FTTC
(Supporting Information, eq S3) (Figure 2a). To simulate the
discrete nature of bead sampling, the displacement field was
subsampled at random points, with sampling densities corre-
sponding to those attainable by confocal or STED microscopy:
15 beads per μm2 for high, theoretically achievable STED reso-
lution (40 nm), 3 beads per μm2 for STED resolution achievable
in the current experiments (80 nm), and 0.5 beads per μm2 for
confocal. The subsampled displacement field was then trans-
formed back into a traction field (Supporting Information,
eq S5). The recovered and simulated traction field were then

compared, and the difference quantified via a metric known as
the deviation of tractionmagnitude (DTM), where a DTMof−1
represents a complete underestimation and 0 represents a perfect
recovery of the traction.13
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By calculating the DTM for circular traction zones of varying
diameters at the three different sampling densities, it is evident
that increasing the sampling density allows for the successful
recovery of spatially more confined tractions (Figure 2b). By
adding artificial Gaussian distributed noise to the displacement
field at a level consistent with the experiment (10% of the
maximum) and using the regularized solution, it is clear that the
relationship between sampling density and traction recovery is
maintained (Supporting Information, eq S7) (Figure 2c). For
each sampling density, defining a DTM of −0.2 as the minimum
required to recover a traction, it is possible to plot the corre-
sponding traction size on Figure 1b, which displayed good
agreement between simulation and the Nyquist limit. To further
demonstrate this improvement, the simulation and recovery is
shown for a circular traction (0.3 kPa) of 1 μm diameter at the
three different sampling densities (Figure 2d). We also show the
simulation and corresponding recovery of a more complex
periodic traction field (0−0.3 kPa) with a wavelength of 1 μm
(Figure 2e). In all cases, we find that the higher the sampling
density, the more detail is recovered in the traction field.
In addition to the sampling density, another important factor

in determining the accuracy of TFM is the method used to
recover the displacement of the beads from the fluorescent
images. The most common methods of extracting bead dis-
placements are those based on single particle tracking (SPT),
where each individual bead must be localized, and those methods
based on statistical comparisons of fluorescent images, such as
particle image velocimetry (PIV). To this end, the image is
divided into a grid, and each grid element is spatially correlated
between frames to assess the degree of movement. PIV does not
require localization of each bead but is limited spatially by the size
of the grid elements required to give accurate correlations. It can
be shown that the increased resolution of STED allows for more
accurate recovery of the displacement field and hence a more
accurate force field in both SPT and PIV (Supporting
Information, Figure S3 and Table S1). Note, the magnitude of

Figure 1. Theoretical characterization of STFM. (a) Schematic representation of a typical TFM setup. An elastic polyacrylamide gel filled with
fluorescent marker beads is covalently attached to a glass coverslip and functionalized with proteins that facilitate cell adherence. Traction forces applied
by the cell to the top surface of the gel results in lateral displacements of the gel which can be quantified by imaging the displacement of the beads within
the gel. (b) Theoretical relationship between the sampling density and the Nyquist limit (dashed line), with three different bead densities highlighted
(red, blue, green as labeled), exemplifying that a bead density of 15 μm−2 would allow the recovery of tractions 500 nm in size. Crosses show the smallest
recoverable tractions from simulations performed at the three bead densities shown in Figure 2. Open circles show the smallest recoverable traction from
simulations where noise is added and regularization used.
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PIV recovered high bead density based force fields can be close to
the simulated values but increased spatial accuracy necessitates
STED.
To observe the effect of increased sampling experimentally in

the single cell environment, RBL cells, which express high levels
of the Fcε receptor-1 (FcεRI), were allowed to interact with a

3 kPa gel loaded with 40 nm red-fluorescent beads and coated
with the antibody, IgE (Figure 3a). The Fc portion of IgE binds
with high affinity (equilibrium constant Ka = 1010 M−1, off-rate
koff = 10−5 s−1) to the FcεRI present on the RBL cell surface,
which results in cell spreading and activation.15,16 By fluo-
rescently labeling actin filaments via Lifeact-citrine, we were able

Figure 2.Outline of the simulation process. (a) A uniform circular traction field Tsimulated(x) is simulated and the corresponding displacement field u(x)
calculated (heat map; high traction magnitude warm colors, low traction magnitudes cold colors, white arrows: traction direction). The displacement
field is then subsampled at a confocal and STED density (red dots: bead positions, black arrows: bead displacements), the traction field recovered
Trecovered(x) and the simulation and recovery compared by the deviation of traction magnitude (DTM). Scale bar 1 μm. (b) DTM for varying traction
diameters at three sampling densities, confocal (red), medium STED (blue), and maximum STED (green). A DTM of 0 represents a perfect traction
recovery, whereas a DTMof−1 represents a complete underestimation. Dotted line: DTM for no subsampling. Line deviates from zero at large tractions
due to artifacts introduced by the finite size of the simulated gel area. (c) Same as b with the addition of artificial noise and using the regularized solution,
showing very similar dependency as b except for the no subsampling case (dotted line), where regularization masks the recovered tractions at length
scales matching that of the artificial noise. (d) Simulation and traction recovery for a 1 μm diameter circular traction zone (0.3 kPa). Scale bar 2 μm.
(e) Simulation and traction recovery for a 1 μm wavelength periodic traction pattern (0−0.3 kPa). Scale bar 2 μm.
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to visualize the dynamically spreading cell edge as the cell-gel
contact area increased (Figure 3b). On visual inspection
(Movie S1), the beads within this area are seen to move
elastically in a directed manner toward the direction of cell
motion, indicating forces being applied by the cell to the
compliant gel beneath via the FcεRI-IgE interaction. By using a
water immersion objective, optical aberrations from imaging
through the gel layer were low, allowing STED imaging with
a spatial resolution of around 80 nm (Figure S1), and we
have observed no visible sign of cell degradation (such as cell
contraction) during the around 120 s long recordings.
Next, to demonstrate the influence of the bead sampling

density, we introduce four different scenarios; low density confocal
and STED (0.4 beads μm−2) (Movies S2 and S3), and high density

confocal and STED (2.2 beads μm−2) (Figure 3c) (Movies S4
and S5). Here we define low density as the maximum trackable
density by confocal, and high density as the maximum trackable
density of our current STED experiments. Note, bead sampling
values in the scenario of high density STED were a moderate and
robust choice considering the experimental optical conditions and
needs of the biological specimen. However, they were below the
computationally predicted possible advances of STFM. Specifi-
cally, the bead densities are a function of the microscopes PSF size
and could be improved in future work by optimizing the imaging
conditions, e.g., minimizing optical aberrations (see discussion).
To assess the displacement of the beads we chose to use SPT

as it allows the movements of each individual bead to be cap-
tured. PIV is generally best suited to tractions where collective

Figure 3. Experimental demonstration of STFM. (a) Gel functionalization. (Left) Scheme: The roughly 30 μm thick PAA gel layer (light blue) was
loaded with 40 nm-large red fluorescent beads (red dots) and surface-coated with poly-L-lysine (light green) followed by attachment of IgE (green).
(Middle, right) Confocal z−x profile images of the gel cross-section showing concentration of Alexa488 labeled IgE (green, middle) and red fluorescent
beads (red, right) at the top surface of the gel. Scale bar 30 μm. (b) Representative confocal image of fluorescent F-actin (Lifeact-citrine) expressing RBL
cell (green) interacting with IgE coated 3 kPa PAA gel loaded with the red fluorescent beads (red). Scale bar 10 μm. (c) Time-lapse imaging of the
spreading cell edge results in the displacement of the beads within the gel, monitored for different conditions as labeled. (Left panels) Confocal images of
fluorescent F-actin (green) and confocal or STED images of red fluorescent beads (red) at a certain time point together with the temporal displacement
tracks of the beads (time color-coded as labeled), for low (0.4 μm−2) and high (2.2 μm−2) bead density. Scale bar 2 μm. For confocal at high bead density
(lower left) no bead tracks could be resolved; instead a bar chart is shown, quantifying the ability to successfully locate and track beads in the high density
confocal case compared to the high density STED case (total number of beads: 140 STED, 60 confocal). (d) Recovered traction field for the high density
STED tracking of c (left) and extrapolated low density effective confocal tracking (right) with force color-coded in kPa. (e) Quantification of the F-actin
flow from the high density STED recording of c by optical flow (left) and correlation (color coded with 1.0 showingmaximum correlation) with the bead
displacement (right).
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bead movements are expected, for example focal adhesions. For
RBL cells, forces may arise from localized receptor−ligand inter-
actions and may be spatially complex. In the low density case,
applying a custom written MATLAB SPT algorithm allowed the
displacements of all beads within the field of view to be measured
in both the confocal and STED image sequences (Supporting
Information and Figure S2). In the high density case, confocal
imaging resulted in a significant number of overlapping PSFs,
preventing reliable bead tracking. However, on applying the
STED beam, beads were resolved individually and the tracking
was successful (Figure 3c). In all cases, bead tracks were inter-
polated onto a regular mesh and the corresponding traction
field calculated using the appropriate degree of regularization
(Figure S4). Obviously, in the high density case only the STED
imaging yielded a traction field (Figure 3d). To directly compare
the effect of sampling density on the ability to accurately recover
the traction field of the same cell, beads in the high density STED
case were randomly deleted until the bead density was equal to
that attainable by confocal tracking (Figure 3d). It is clear that
this reduces the information content present in the displacement
field, and hence reduces the fine detail in the traction field.
Finally, to identify the origin of mechanical force generation

in RBL cells, we combined fluorescent imaging and STFM.
The technique of optical flow enables the spatial change in pixel
intensity to be quantified over time and is commonly applied in
computer vision to assess the spatial shift between image frames.
Here, we apply this technique to extract the retrograde flow
vector field of fluorescently labeled filamentous actin (Lifeact-
citrine). This vector field was then correlated via a dot product
with the displacement field of the beads in the gel, yielding a
spatial correlation of actin and bead displacement (Figure 3e).17

The correlation highlights that areas of the cell showing the most
dynamic actin coincide with the areas of greatest bead displace-
ment, highlighting that it was indeed the flow of actin within the
cell that was responsible for the observed tractions. As in the case
of traction forces, the higher bead density leads to a higher
information content in the displacement field and hence a more
reliable correlation between the two vector fields.
In summary, the increase in accuracy of STFM is important

when considering cellular forces on small length scales, as is the
case for receptor-antagonist interactions in immune cells.18

Using STFM, we are now better able to make links between the
forces generated by the cell, and those molecules which are
responsible for force generation. This is particularly valuable
when force measurements are coupled to fluorescent data, as is
shown in Figure 3e.
We have focused on the experimental aspects of TFM.

Moreover, recent work has suggested that theoretical aspects
may be equally important in optimizing the accuracy of
force reconstruction.19 For example, in the case of sparse focal
adhesions, it has been demonstrated that the L1-norm is
favorable to the L2-norm used to assess to degree of regula-
rization,20,21 owing to a greater retention of the high resolution
detail in the force maps. We had no prior knowledge of the
traction field induced by the RBL cells, therefore we choose
L2-norm regularization as the more general case. However,
further work should focus on optimizing both experimental and
computational aspects of the technique to further increase the
accuracy of STFM.
Notably, increasing the location accuracy of STFM is

theoretically not limited since it scales with the applied STED
power.14 This needs to be balanced with other optical factors
such as maximal bead density within the gel, the ability to track

the beads, and fluorescence light sensitivity of the biological
specimen. Moreover, the nature of the (S)TFM setup requires all
imaging to be done at the top surface of the gel, meaning imaging
is subject to aberrations induced by the mismatch in refractive
index of the gel and the immersion media. Improvements in
aberration correction, for example using adaptive optics would
reduce the effect of these aberrations and would result in an
improved STED resolution, possibly along all three spatial
dimensions,22 allowing even higher bead densities to be used and
the accuracy of experiments to approach those shown possible by
simulations. This also presents the opportunity of performing
3D-TFM in high resolution. In the same way that 2D-STED
can increase the accuracy of the tangential force reconstruction,
using 3D-STED would allow for a greater sampling of the forces
perpendicular to the gel surface.
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Materials and methods, a description of the bead tracking
software, additional simulations comparing bead tracking
algorithms and force recovery, and a description of the
fluorescence-force correlation analysis (PDF)
Representative large field-of-view confocal time-lapse
movie of an RBL cell expressing Lifeact-citrine (green)
spreading on an IgE coated 3 kPa PAA gel loaded with
40 nm red fluorescent beads (red) at a low density
(0.4 μm−2). The beads are seen to move beneath the cell,
indicating that forces are being transferred by the cell to
the gel. Scale bar 10 μm. Frame rate 0.2 s−1. Total
acquisition time 200 s (AVI).
Representative close-up confocal time-lapse movie of a
RBL cell expressing Lifeact-citrine (green) spreading on
an IgE coated 3 kPa PAA gel loaded with 40 nm red
fluorescent beads (red) at a low density (0.4 μm−2). Again,
the beads are seen to move beneath the cell, indicating that
forces are being transferred by the cell to the gel. Scale bar
2 μm. Frame rate 0.2 s−1. Total acquisition time 120 s
(AVI).
Equivalent time-lapse movie to that shown in Supple-
mentary Movie S2, this time imaged with STED
microscopy in the case of the beads. Scale bar 2 μm.
Frame rate 0.05 s−1. Total acquisition time 120 s (AVI).
Representative close-up confocal time-lapse movie of a
RBL cell expressing Lifeact-citrine (green) spreading on
an IgE coated 3 kPa PAA gel loaded with 40 nm red
fluorescent beads (red) at a high bead density (2.2μm−2).
A signicant number of beads are seen to overlap,
preventing their reliable tracking. Scale bar 2 μm. Frame
rate 0.06 s−1. Total acquisition time 48 s (AVI).
Equivalent time-lapse movie to that shown in Supple-
mentary Movie S4, this time imaged with STED
microscopy in the case of the beads. The improved spatial
resolution made possible using STED now means that all
beads in the field of view are trackable. Scale bar 2 μm.
Frame rate 0.05 s−1. Total acquisition time 120 s (AVI).
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