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Abstract 

Background: Criteria for the Sepsis-3 definition of septic shock include vasopressor treatment to maintain a mean 
arterial pressure > 65 mmHg and a lactate concentration > 2 mmol/L. The impact of hyperoxia in patients with septic 
shock using these criteria is unknown.

Methods: A post hoc analysis was performed of the HYPER2S trial assessing hyperoxia versus normoxia in septic 
patients requiring vasopressor therapy, in whom a plasma lactate value was available at study inclusion. Mortality was 
compared between patients fulfilling the Sepsis-3 septic shock criteria and patients requiring vasopressors for hypo-
tension only (i.e., with lactate ≤ 2 mmol/L).

Results: Of the 434 patients enrolled, 397 had available data for lactate at inclusion. 230 had lactate > 2 mmol/L and 
167 ≤ 2 mmol/L. Among patients with lactate > 2 mmol/L, 108 and 122 were “hyperoxia”- and “normoxia”-treated, 
respectively. Patients with lactate > 2 mmol/L had significantly less COPD more cirrhosis and required surgery more 
frequently. They also had higher illness severity (SOFA 10.6 ± 2.8 vs. 9.5 ± 2.5, p = 0.0001), required more renal replace-
ment therapy (RRT), and received vasopressor and mechanical ventilation for longer time. Mortality rate at day 28 was 
higher in the “hyperoxia”-treated patients with lactate > 2 mmol/L as compared to “normoxia”-treated patients (57.4% 
vs. 44.3%, p = 0.054), despite similar RRT requirements as well as vasopressor and mechanical ventilation-free days. 
A multivariate analysis showed an independent association between hyperoxia and mortality at day 28 and 90. In 
patients with lactate ≤ 2 mmol/L, hyperoxia had no effect on mortality nor on other outcomes.

Conclusions: Our results suggest that hyperoxia may be associated with a higher mortality rate in patients with 
septic shock using the Sepsis-3 criteria, but not in patients with hypotension alone.
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Background
According to the Third International Consensus Defini-
tions (Sepsis-3), a diagnosis of septic shock requires a 
need for vasopressor treatment to maintain mean arterial 
pressure (MAP) > 65 mmHg and a plasma lactate concen-
tration > 2 mmol/L despite adequate volume resuscitation 
[1]. The latter takes into account the notion that circula-
tory shock “represents an imbalance between oxygen sup-
ply and oxygen requirements” typically associated with 
hyperlactatemia, which “reflects abnormal cellular func-
tion” [2]. Applying these more rigorous criteria for septic 
shock could affect the results of treatment comparisons 
in randomized controlled trials (RCT). Indeed, a recent 
post hoc analysis of the VASST trial comparing vasopres-
sin and norepinephrine in septic shock [3] demonstrated 
that their sample size would have decreased by about half 
using the Sepsis-3 criteria with a higher overall mortal-
ity. Notably, day 28 mortality was significantly lower in 
vasopressin-treated patients with baseline lactate lev-
els ≤ 2 mmol/L, whereas no difference was seen in those 
patients with lactate > 2 mmol/L [4].

Our recently published multicenter RCT of “Hyper-
oxia and Hypertonic Saline in Patients with Septic Shock 
(HYPER2S)” compared mechanical ventilation either 
with an inspiratory oxygen concentration of 100%  (FiO2 
1.0; “hyperoxia”) during the first 24 h and  FiO2 set to tar-
get an arterial hemoglobin oxygen saturation of 88–95% 
(“normoxia”) [5]. All patients enrolled had septic shock as 
characterized by the need of vasopressor support (nor-
epinephrine or epinephrine ≥ 0.1  μg/kg/min) despite 
20  mL/kg of crystalloid fluid resuscitation, but without 
threshold values for lactatemia at inclusion. The trial was 
stopped prematurely for safety reasons, with a higher 
mortality at day 28 in the “hyperoxia” group.

Hyperoxia administration in critically ill patients 
remains controversial. On the one hand, hyperoxia 
administration was thought to be crucial to compensate 
the imbalance between oxygen supply and demand [2, 
6], and might be interesting in improving host defense 
against microbes (increase in phagocytosis and killing 
rate [7]) by the effect of the increased formation of reac-
tive oxygen species [8–10]. On the other hand, there is 
growing evidence that hyperoxia may be toxic in such 
situation. The physiological effects of hyperoxia are mul-
tiple and are detailed in previous reviews [8, 11, 12]. A 
U-shaped relationship exists between oxygen arterial 
pressure during the first 24 h and mortality in ICU [13, 
14]. More recently, studies have suggested that a restric-
tive administration of oxygen could be associated with 
lower mortality in ICU [15, 16].

Therefore, we hypothesized that in patients with 
septic shock and tissue hypoxia due to dysoxia, mir-
rored by increased arterial lactate, the effects of high 

oxygen concentration might be detrimental and related 
to increase the formation of reactive oxygen species.

Using the database of the HYPER2S-trial, we aimed 
at comparing the effects of hyperoxia on mortality and 
organ failures in patients with septic shock according to 
the Sepsis-3 criteria (lactate levels > 2 mmol/L).

Methods
For all participating centers, the study design of the 
HYPER2S trial was approved by the ethics committee of 
the Angers University Hospital. Written informed con-
sent was obtained from all patients, their next of kin, 
or another surrogate decision maker, as appropriate. If 
patients were unable to provide informed consent and 
the next of kin or a designated person was not available, 
the inclusion procedure for emergency situations was 
applied. Post hoc consent was obtained in these latter 
patients. The HYPER2S trial was registered with Clinical-
trial.gov (NCT 01722422).

Patient Cohort HYPER2S
We performed a retrospective analysis of data prospec-
tively recorded during the HYPER2S trial. This RCT 
compared, in a two-by-two factorial design, mechanical 
ventilation with “hyperoxia”  (FiO2 1.0) versus “normoxia” 
 (FiO2 set to target an arterial hemoglobin oxygen satura-
tion of 88–95%) during the first 24 h of septic shock, and 
hypertonic saline versus isotonic saline for fluid resuscita-
tion during the first 72 h of septic shock [5]. Septic shock 
had been identified by the need for vasopressor support 
(norepinephrine or epinephrine ≥ 0.1 μg/kg/min) despite 
20 mL/kg of crystalloid fluid resuscitation. The trial was 
stopped prematurely for safety reasons after enrolment of 
442 patients (434 analyzable), as both mortality at day 28 
(p = 0.12) and mortality at day 90 (p = 0.16) were higher 
in the hyperoxia-treated patients.

For the present post hoc analysis, we compared mor-
tality rates in the 397 patients in whom lactate levels 
were available at baseline, representing 91.5% of the 
total study population. These patients were then subdi-
vided into a Sepsis-3 shock subset (lactate > 2  mmol/L, 
n = 230 [53.0%]) or those with vasopressor-dependent 
hypotension only (lactate ≤ 2  mmol/L, n = 167 [38.5%]) 
[1] (Fig. 1). There was no significant difference in the dis-
tribution of the treatment arms between the two lactate 
groups (p = 0.110, χ2 test) (Fig. 1).

Statistical analysis
In this post hoc analysis, only patients with available lac-
tates at inclusion were included. Quantitative data were 
expressed as mean, standard deviation, median and inter-
quartile range (IQR) for parametric and nonparamet-
ric distributions, respectively, and were compared using 



Page 3 of 10Demiselle et al. Ann. Intensive Care  (2018) 8:90 

Student’s t tests or Wilcoxon rank-sum tests as appro-
priate. Qualitative variables were compared using χ2 or 
Fisher’s exact test. Time-to-death was illustrated with 
Kaplan–Meier survival curves and group comparisons 
were performed using the log-rank test.

To identify factors associated with survival differences 
from inclusion to day 28 (primary endpoint) and from 
inclusion to day 90 as hazard ratios (HRs), Cox regres-
sion models were computed in landmark analyses. The 
assumption of proportional hazards was tested by ana-
lyzing Schoenfeld residuals. In the first step, univariate 
analyses were conducted for every inclusion character-
istics variable (including randomization arm) indepen-
dently of each other. In the second step, multivariate 
Cox regression models were built using variables with p 
value < 0.2 in univariate analysis. When some covariates 
were strongly correlated (i.e., lactate and arterial pH), 
the most associated with survival was kept in the mul-
tivariate model. Since there was missing data for SAPS 
III (SAPS III was secondarily collected in the HYPER2S 
trial), SAPS II was chosen for the multivariate analyses. 
However, SAPS II and SAPS III values were well corre-
lated (data not shown).

Results
Patients with lactate > 2 mmol/L were more likely to have 
cirrhosis, but less likely to have coronary artery disease 
and COPD (Additional file  1: Table  S1). They were also 

more likely to have undergone surgery, in particular 
emergency surgery reflecting a much higher contribution 
of abdominal sepsis as the source of septic shock. They 
were more hypotensive, albeit nonsignificant, tachy-
cardic, more acidotic and required higher norepinephrine 
infusion rates (Additional file 1: Table S1). Creatinine lev-
els and the  PaO2/FiO2 ratio were higher (Additional file 1: 
Table  S1). However, the number of patients with ARDS 
(as defined by a  PaO2/FiO2 < 200 mmmHg) and bilirubin 
were similar in patients with lactate > 2 or ≤ 2  mmol/L. 
Accordingly, at inclusion, both SAPS II and SOFA scores 
were significantly higher in patients with baseline lac-
tate > 2 mmol/L (Additional file 1: Table S1).

Throughout their ICU stay, patients with baseline lac-
tate > 2 mmol/L needed renal replacement therapy (RRT) 
twice as frequently as patients with lactate ≤ 2  mmol/L 
and had fewer days free of vasopressor support and 
mechanical ventilation (Additional file  2: Table  S2). 
Accordingly, daily SOFA scores were higher on days 1, 2, 
3, and 5 (Additional file 2: Table S2). Patients with base-
line lactate > 2 mmol/L had a higher mortality at day 28 
(50.4% vs. 24.0%; p < 0.0001) and day 90 (55.2% vs. 30.5%; 
p < 0.0001) compared to patients with lactate ≤ 2 mmol/L 
(Additional file 3: Figure S1).

Except for sex ratio, no significant differences in 
baseline variables were seen between “hyperoxia” and 
“normoxia” groups for patients with lactate > 2 mmol/L 
(Table  1). Results were similar in patients with 

Fig. 1 Study population
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Table 1 Baseline characteristics of patients according to lactate level (≤ 2 or > 2 mmol/L)

Lactate ≤ 2 mmol/L (n = 167) Lactate > 2 mmol/L (n = 230)

Normoxia 
(n = 75)

Hyperoxia 
(n = 92)

p Normoxia 
(n = 122)

Hyperoxia (n = 108) p

Age (years)

  Mean (SD) 66 (13) 66 (12) 0.877 67 (14) 69 (13) 0.360

  Median (IQR) 68 (56.5–76) 67 (59.5–74.25) 0.842 68.5 (60.25–78.75) 71 (61–79.25) 0.501

Men, n (%) 48 (64.0%) 72 (78.3%) 0.041 80 (65.6%) 57 (52.8%) 0.048

Weight (kg)

  Mean (SD) 69.6 (16.4) 72 (17.1) 0.351 75.4 (15.5) 72.1 (16.5) 0.120

  Median (IQR) 66 (59.5–74.5) 70.5 (60–80.8) 0.208 76 (65–81.8) 70 (60–80) 0.047

SAPS III

  Mean (SD) 69.6 (10) 68.9 (9.4) 0.666 74.4 (11.5) 74 (12) 0.797

  Median (IQR) 68 (63.8–75.2) 70 (62.5–75) 0.921 73 (66.2–80.8) 71 (67–82) 0.614

SOFA

  Mean (SD) 9.5 (2.5) 9.6 (2.4) 0.851 10.6 (2.9) 10.6 (2.8) 0.987

  Median (IQR) 9 (8–11) 9 (8–11) 0.782 11 (8–12) 11 (8–12) 0.850

Mc Cabe Score

  1 45 (60.0%) 62 (67.4%) 0.308 79 (64.8%) 70 (64.8%) 0.927

  2 24 (32.0%) 20 (21.7%) 30 (24.6%) 28 (25.9%)

  3 6 (8.0%) 10 (10.9%) 13 (10.7%) 10 (9.3%)

Recent surgical history, n (%)

  No 57 (76.0%) 75 (81.5%) 0.422 82 (67.2%) 67 (62.0%) 0.661

  Elective 7 (9.3%) 4 (4.3%) 5(4.1%) 4 (3.7%)

  Emergency 11 (14.7%) 13 (14.1%) 35 (28.7%) 37 (34.3%)

Preexisting disorders, n (%)

  Immunosuppression 14 (18.7%) 14 (15.2%) 0.553 28 (23.0%) 20 (18.5%) 0.409

  Cancer 26 (34.7%) 24 (26.1%) 0.228 36 (29.8%) 35 (32.4%) 0.664

  Heart failure 5 (9.3%) 7 (7.6%) 0.815 8 (6.6%) 4 (3.7%) 0.491

  Chronic kidney failure 6 (8.0%) 7 (7.6%) 0.925 15 (12.4%) 12 (11.1%) 0.763

  COPD 19 (25.3%) 17 (18.5%) 0.284 11 (9.1%) 16 (14.8%) 0.180

  Coronary artery disease 10 (13.3%) 15 (16.3%) 0.592 12 (10.0%) 9 (8.3%) 0.678

  Cirrhosis 0 (0%) 2 (2.2%) 0.502F 11 (9.1%) 5 (4.6%) 0.186

Source of infection, n (%)

  Lung 44 (58.7%) 57 (62.0%) 0.866 39 (26.2%) 37 (34.3%) 0.739

  Abdomen 10 (13.3%) 15 (16.3%) 39 (32.0%) 35 (32.4%)

  Urinary tract 6 (8.0%) 6 (6.5%) 8 (6.6%) 10 (9.3%)

  Other community 
acquired infection

15 (20.0%) 14 (15.2%) 36 (29.5%) 26 (24.1%)

Mean arterial pressure (mmHg)

  Mean (SD) 75 (12) 75 (12) 0.949 72 (16) 72 (16) 0.872

  Median (IQR) 74 (67–80) 73.5 (67–81) 0.810 71 (64–83) 70 (61.5–81) 0.761

Heart rate (beats per min)

  Mean (SD) 96 (24) 99 (25) 0.411 108 (25) 107 (22) 0.669

  Median (IQR) 94 (82–109) 96 (82–110.5) 0.578 110 (91–124) 105 (93–123) 0.688

Arterial pH

  Mean (SD) 7.33 (0.11) 7.32 (0.09) 0.766 7.25 (0.12) 7.26 (0.11) 0.222

  Median (IQR) 7.33 (7.26–7.40) 7.32 (7.26–7.37) 0.716 7.27 (7.18–7.32) 7.28 (7.20–7.33) 0.177

Lactate (mmol/L)

  Mean (SD) 1.4 (0.4) 1.4 (0.4) 0.774 5.2 (3.6) 4.8 (3.8) 0.467

  Median (IQR) 1.4 (1.0–1.7) 1.5 (1.0–1.7) 0.736 3.7 (2.8–6.5) 3.4 (2.7–5.2) 0.231
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lactate ≤ 2  mmol/L except for a lower  PaO2/FiO2 ratio 
in the “hyperoxia” group (Table 1).

Despite a lower SOFA score at days 5 and 7 in the 
patients with lactate > 2  mmol/L treated with hyper-
oxia, mortality at day 28 tended to be higher in these 
patients (44.3% vs. 57.4%, p = 0.054) (Fig. 2a). There was 
no difference between groups for RRT requirements, 
nor for the number of RRT, vasopressor support and 
mechanical ventilation-free days.

In patients with baseline lactate ≤ 2  mmol/L, hyper-
oxia had no impact on mortality (Fig. 2b), need for RRT 
nor days free of RRT or vasopressor support (Table 2). 
However, hyperoxia was associated with fewer days free 
of mechanical ventilation and higher SOFA scores at 
days 2 and 3 (Table 2). SOFA components are detailed 
daily in the Additional file 4: Table S3.

During the ICU stay, infectious events occurred in 69 
(17.6%) patients (108 proven infectious events). There 
were more infectious events in the lactate ≤ 2 mmol/L 
group when compared to lactate > 2  mmol/L group 
(24% versus 12.6%, p = 0.003), without difference in 
the delay between randomization and infectious event. 
Nosocomial infection’s characteristics are presented in 
Additional file 5: Table S4.

The multivariate analysis showed that patients with 
lactate > 2  mmol/L treated with hyperoxia had higher 
risk of mortality at day 28 and 90 (HR 1.79 [1.21–2.63], 
p < 0.003, and HR 1.57 [1.09–2.28], p = 0.016, respec-
tively) (Table  3). Upon the reviewing request, arguing 
a decrease in lactate clearance in patients with cirrho-
sis and septic shock, we have done the same analysis 
excluding cirrhotic patients. This analysis showed also 
a higher mortality at day 28 and 90 in patients with lac-
tate > 2 mmol/L treated with hyperoxia (HR 1.95 [1.29–
2.95], p < 0.002, and HR 1.69 [1.15–2.50], p = 0.006, 
respectively) (See Additional file 6: Table S5).

Discussion
This post hoc analysis of the HYPER2S trial aimed to 
assess the impact of the new Sepsis-3 septic shock crite-
ria (vasopressor-dependent hypotension and hyperlac-
tatemia despite adequate fluid resuscitation [1]) on the 
number of patients enrolled in the study and their mor-
tality rate, and the effect of hyperoxemia. The Sepsis-3 
criteria were fulfilled in 58% of the total study popula-
tion, with mortality at day 28 being more than double 
that of the patients with vasopressor-dependent hypoten-
sion without a raised lactate level. Hyperoxia was asso-
ciated with a higher mortality rate in patients fulfilling 

The Chi-square or Fisher test was used for qualitative data. The quantitative data were compared by t test for the mean comparison, Mann–Whitney test for median 
comparisons. p values are reported without correction of the α risk despite multiple comparisons, p values are presented for the comparison between “normoxia” and 
“hyperoxia” treatment in the lactate ≤ 2 mmol/L and lactate > 2 mmol/L groups, respectively. F Fisher, IQR interquartile range, COPD chronic obstructive pulmonary 
disease, SAPS simplified acute physiological score, SOFA sequential organ failure assessment

Table 1 (continued)

Lactate ≤ 2 mmol/L (n = 167) Lactate > 2 mmol/L (n = 230)

Normoxia 
(n = 75)

Hyperoxia 
(n = 92)

p Normoxia 
(n = 122)

Hyperoxia (n = 108) p

Crystalloid fluid treatment before inclusion (mL)

  Mean (SD) 2883 (1397) 2631 (1298) 0.234 2876 (1392) 3003 (1522) 0.511

  Median (IQR) 2500 (2000–3500) 2250 (2000–3000) 0.147 2500 (2000–3500) 2500 (2000–3625) 0.684

Serum sodium (mmol/L)

  Mean (SD) 138 (5) 138 (3) 0.652 139 (6) 139 (4) 0.611

  Median (IQR) 138 (134–142) 139 (136–141) 0.431 139 (136–142) 139 (136–142) 0.545

Serum chloride (mmol/L)

  Mean (SD) 107 (6) 106 (6) 0.471 106 (7) 106 (6) 0.645

  Median (IQR) 106 (103–111) 105.5 (103–109) 0.448 105 (102–109) 105 (102–111) 0.355

Dose of norepinephrine (µg/kg/min)

  Mean (SD) 0.44 (0.38) 0.56 (0.65) 0.137 0.79 (0.82) 0.75 (0.74) 0.701

  Median (IQR) 0.31 (0.2–0.5) 0.35 (0.2–0.65) 0.367 0.55 (0.27–1.04) 0.50 (0.30–0.88) 0.930

PaO2/FiO2 ratio (mmHg)

  Mean (SD) 227 (102) 191 (73) 0.012 231 (108) 232 (110) 0.934

  Median (IQR) 207 (143–265) 175 (131–235) 0.023 198 (143–301) 202 (149–293) 0.876

Patients with 
 PaO2 > 120 mmHg, n (%)

37 (49.3%) 37 (40.2%) 0.238 72 (59.0%) 61 (56.5%) 0.698

ARDS with  PaO2/FiO2 
ratio < 200 mmHg, n (%)

36 (48.0%) 56 (64.1%) 0.096 61 (50.0%) 52 (48.1%) 0.779
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the Sepsis-3 shock criteria, while this association was not 
observed in patients with vasopressor-dependent hypo-
tension alone (Additional file 6: Table S5).

The Sepsis-3 shock criteria were derived using 
the Surviving Sepsis Campaign database of 18.840 

unselected septic patients with organ dysfunc-
tion [17]. Patients requiring vasopressors to 
maintain MAP > 65  mmHg and with persisting hyper-
lactatemia > 2 mmol/L despite adjudged adequate fluid 
resuscitation had a 42.3% hospital mortality compared 

Fig. 2 Kaplan–Meier survival curve of the “hyperoxia” (red line) and “normoxia” (black line) groups for: a the subgroup of patients with 
hyperlactatemia > 2 mmol/L at baseline. Log-rank test between the two randomization arms, p = 0.054 and p = 0.171 at day 28 and 90, respectively. 
b The subgroup of patients with lactatemia ≤ 2 mmol/L at baseline. Log-rank test between the two randomization arms, p = 0.680 and p = 0.513 at 
day 28 and 90, respectively
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Table 2 Evolution of  the  clinical characteristics and  illness severity scores of  patients according to  lactate level (≤ 2 
or > 2 mmol/L) and normoxia or hyperoxia treatment

Lactate ≤ 2 mmol/L (n = 167) Lactate > 2 mmol/L (n = 230)

Normoxia (n = 75) Hyperoxia (n = 92) p value Normoxia (n = 122) Hyperoxia (n =T108) p value

Mortality at d28 17 (22.7%) 23 (25.0%) 0.680¥ 54 (44.3%) 62 (57.4%) 0.054¥

Mortality at  d90¥ 21 (28.0%) 30 (32.6%) 0.513¥ 63 (51.6%) 64 (59.3%) 0.171¥

RRT 14 (18.9%) 25 (27.8%) 0.185 50 (42.7%) 44 (41.5%) 0.853

Days without vasopressor, mean (SD) 21 (10) 19 (9) 0.323 14 (12) 12 (12) 0.149

Days without mechanical ventilation, 
mean (SD)

16 (9) 13 (10) 0.04 11 (11) 9 (11) 0.131

Days without RRT, mean (SD) 24 (9) 22 (10) 0.12 16 (12) 13 (12) 0.139

Survival at day 28 without organ 
support, n (%)

54 (73.0%) 61 (67.8%) 0.47 58 (49.6%) 41 (38.7%) 0.102

SOFA h0

  Mean (SD) 9.5 (2.5) 9.6 (2.4) 0.851 10.6 (2.9) 10.6 (2.8) 0.987

  Median (IQR) 9 (8–11) 9 (8–11) 0.782 11 (8–12) 11 (8–12) 0.85

  n 75 92 122 108

SOFA h24

  Mean (SD) 9.4 (2.6) 9.8 (3) 0.273 11.9 (3.3) 11.6 (3.4) 0.526

  Median (IQR) 9 (7–11) 9 (8–12) 0.335 11 (10–14) 12 (9–14) 0.693

  n 75 89 112 104

SOFA h48

  Mean (SD) 7.8 (3.3) 9.6 (3.6) 0.001 10.8 (4.1) 10.8 (3.6) 0.962

  Median (IQR) 7 (6–10) 9 (7–12) 0.002 10 (8–14) 10 (9–14) 0.99

  n 71 82 93 80

SOFA h72

  Mean (SD) 6.6 (3.9) 8.4 (4.4) 0.008 9.9 (4.6) 9.2 (4.4) 0.374

  Median (IQR) 6 (4–9) 8 (5–11) 0.014 10 (6.8–13) 9 (6–13) 0.43

  n 65 82 88 71

SOFA d4

  Mean (SD) 6.3 (4.2) 6.9 (4.4) 0.436 8 (4.7) 6.9 (3.8) 0.136

  Median (IQR) 5 (3–8) 6 (4–10) 0.396 7 (4–11) 7 (4–9) 0.29

  n 53 67 69 57

SOFA d5

  Mean (SD) 5.9 (3.9) 6.1 (3.9) 0.815 8.3 (4.8) 6.4 (3.9) 0.024

  Median (IQR) 5.5 (3–8) 5 (3–8) 0.819 7 (5–11) 6 (4–9) 0.044

  n 44 63 62 51

SOFA d6

  Mean (SD) 5.5 (3.8) 5.8 (3.9) 0.704 7.8 (4.8) 6.4 (4) 0.108

  Median (IQR) 6 (3–7) 4 (3–9) 0.695 7 (4.5–10) 5.5 (3–9) 0.155

  n 37 55 59 44

SOFA d7

  Mean (SD) 5.4 (3.6) 5.8 (4.2) 0.726 8.1 (5) 4.9 (3.4) 0.001

  Median (IQR) 5 (3–7) 5 (3–8) 1 7 (4–10.2) 4 (2–7) 0.002

  n 29 47 48 34

PaO2 h0

  Mean (SD) 148.4 (95.1) 126.4 (63.8) 0.09 170 (105) 151.1 (82.9) 0.139

  Median (IQR) 116 (92–172) 113 (85–144) 0.289 139 (90–202) 130 (93–184) 0.295

  n 75 92 122 108

PaO2 h12

  Mean (SD) 97.1 (29.4) 265.4 (119) < 0.0001 105.8 (44.9) 274.6 (136) < 0.0001

  Median (IQR) 89 (75–117) 273 (172–367) < 0.0001 96 (70–124) 277 (158–364) < 0.0001
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to 30.1% with vasopressor-dependent hypotension 
alone. Comparable data were seen on retrospec-
tive analysis of the VASST study database [4] and the 
HYPER2S study. These higher mortality rates in the 
Sepsis-3 shock subset were reflected by the higher ill-
ness severity scores at baseline, and the requirement for 
more organ support therapy.

The retrospective analysis of the VASST study [4] 
revealed a significant outcome benefit from vasopres-
sin only in those patients with vasopressor-dependent 
hypotension alone. Mortality was identical in patients 
fulfilling the Sepsis-3 shock criteria.

In this present analysis, we confirm that treatment 
effect may vary according to the criteria used for defining 
septic shock. Indeed, hyperoxia had no effect on mortal-
ity albeit a longer requirement for mechanical ventilation 
in vasopressor-dependent hypotensive patients, whereas 
there was a near-significant increase in mortality (57.4% 
vs. 44.3% normoxia; p = 0.054) in the Sepsis-3 shock 
cohort. Hyperlactatemia despite adequate fluid resuscita-
tion is considered to reflect more severe cellular and met-
abolic abnormalities, and thus places affected patients at 
higher mortality risk [17].

There is a growing evidence that hyperoxia may be 
associated with higher mortality and that conservative 

For mortality at day 28 and 90, respectively, an analysis in landmark with a log-rank test was used. For survival at day 28 without organ support and/or renal 
replacement therapy (RRT) a χ2 test was used. For the number of days without vasopressor therapy, without mechanical ventilation, and without RRT, respectively, a 
Student’s t test was used. ¥ = log-rank test; for mortality at day 28 in patients with a lactate > 2 mmol/L: χ2 test; d day, h hour

Table 2 (continued)

Lactate ≤ 2 mmol/L (n = 167) Lactate > 2 mmol/L (n = 230)

Normoxia (n = 75) Hyperoxia (n = 92) p value Normoxia (n = 122) Hyperoxia (n =T108) p value

  n 69 86 109 103

PaO2 h24

  Mean (SD) 89.3 (27.7) 221.3 (115.8) < 0.0001 101.0 (46.2) 229.8 (131.8) < 0.0001

  Median (IQR) 82 (73–98.5) 211 (133–295) < 0.0001 91 (77–109.2) 210.5 (119.8–322.8) < 0.0001

  n 67 83 100 92

PaO2 h72

  Mean (SD) 88.9 (24.7) 96.5 (54.6) 0.306 88.6 (25.2) 92.4 (29.4) 0.431

  Median (IQR) 84 (71–101) 82 (74–107) 0.801 84.5 (71.8–96.8) 86 (74–98) 0.481

  n 55 69 72 61

Table 3 Data analysis by  using a  Cox regression model with  survival data censored at  28  days and  then censored 
at 90 days in succession

HR hazard ratio, CI confidence interval, F female, M male

Inclusion d28 Inclusion d90

HR 95% CI p value HR 95%CI p value

Univariate Cox model (universal analysis)

  Sex (F vs M) 1.59 1.12 2.24 0.013 1.51 1.06 2.14 0.021

  Weight (per 10 kg increase) 1 0.89 1.13 0.999 1.04 0.93 1.16 0.503

  pH (per 0.1 increase) 0.97 0.95 0.98 < 0.001 0.97 0.95 0.98 < 0.001

  Hyperoxia vs normoxia 1.44 1.00 2.07 0.051 1.28 0.91 1.82 0.160

  SAPS 2 1.05 1.03 1.06 < 0.001 1.05 1.04 1.06 < 0.001

  Mac Cabe 1.25 0.97 1.62 0.089 1.25 0.98 1.61 0.073

  PaO2/FiO2 1 0.99 1.00 0.860 1 0.99 1.00 0.660

  Autoimmune disease 1.17 0.76 1.80 0.480 1.262 0.84 1.89 0.260

Multivariate Cox model

  Sex (F vs M) 1.55 1.06 2.27 0.022 1.53 1.06 2.22 0.024

  pH (per 0.1 increase) 0.96 0.95 0.98 < 0.001 0.97 0.95 0.98 < 0.001

  Hyperoxia vs normoxia 1.79 1.21 2.63 0.003 1.57 1.09 2.28 0.016

  SAPS 2 1.05 1.04 1.06 < 0.001 1.05 1.04 1.06 < 0.001

  Mac Cabe 1.07 0.82 1.39 0.613 1.06 0.83 1.37 0.640
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strategies may contribute to lower mortality [16, 17]. 
However, there is no certainty on the implicated patho-
physiological mechanisms in oxygen toxicity. Indeed, the 
disparity in outcomes with hyperoxia only seen in those 
fulfilling the Sepsis-3 shock criteria suggests an additional 
toxic impact of oxygen in this more severe subset. Oxy-
gen administration has long been considered a corner-
stone in the management of patients with septic shock [9]. 
Circulatory shock is considered to “represent an imbal-
ance between oxygen supply and oxygen requirements” [2]. 
While hyperoxia increases tissue oxygen tension, even 
in shock states with profound reduction of tissue oxygen 
transport [18], it can compromise macro- and microcir-
culatory blood flow [8, 11, 19]. After fluid resuscitation, 
septic shock generally has a “distributive shock” pat-
tern, where the “main deficit lies in the periphery, …with 
altered oxygen extraction” [2]. In most cell types, other 
than erythrocytes, oxygen is crucial for sufficient adeno-
sine triphosphate synthesis via the mitochondrial oxida-
tive phosphorylation, acting as the final electron acceptor 
in the respiratory chain. Oxygen is also one of the strong-
est oxidizing agents capable of damaging any biological 
molecule due to excess production of reactive oxygen spe-
cies (ROS) [20]. Although ROS can also be generated with 
hypoxia, ROS formation is directly related to the level of 
arterial and tissue oxygen tension [21]. It is tempting to 
speculate that under conditions of profound alterations 
of cellular oxygen extraction and utilization—perhaps 
manifest clinically as hyperlactatemia—hyperoxia, with 
an increase in available oxygen, may lead to excessive 
ROS formation with subsequent oxidative stress-induced 
damage. In septic shock, ROS production and damage 
may be amplified by impaired mitochondrial respiration 
and depleted antioxidant defenses [22]. Even if this study 
has several limitations, discussed thereafter, it could be 
hypothesized that hyperoxia toxicity, with an increased 
oxidative stress due to ROS formation, may be delayed. 
This mid- or long-term harmful effect of hyperoxia may 
explain that most variates are not significantly differ-
ent between oxygenation groups, except for some major 
patient-centered outcome variables. Hyperlactatemia may 
be due to excessive peripheral production or decrease 
clearance such as in cirrhosis. It was suggested by a 
reviewer to test our hypothesis without cirrhotic patients, 
and these additional results support our hypothesis.

Some limitations must be underlined in this analy-
sis. First, the HYPER2S trial was stopped prematurely 
for safety reason. From a strict statistical point of view, 
mortality difference with hyperoxia in the Sepsis-3 shock 
cohort was not significant (p = 0.054). However, this is 
no longer true when results are adjusted on confound-
ers (multivariate analysis). This is likely related to lack 
of power, as the absolute and relative mortality at day 

28 rates increased by 13.1% and 29.6%, respectively, in a 
sizeable number of patients (264). This suggests a clini-
cal relevance of our results. Second, the post hoc char-
acter of the analysis, in a retrospective setting, may have 
missed some masked imbalance between groups and the 
frailty of multivariate analysis as well as multiple test-
ing should be taken in account. Therefore, it is wise to 
consider these results as hypothesis generating, as the 
study has not the statistical power to conclude on a link 
between hyperoxia and mortality.

Conclusions
Results of this post hoc analysis of the HYPER2S trial 
suggest that hyperoxia treatment for 24 h in patients with 
septic shock fulfilling the Sepsis-3 definition may be asso-
ciated with a higher mortality rate. Toxic effects of oxy-
gen were not found in patients with sepsis and without 
hyperlactatemia, requiring vasopressors. Our results sug-
gest a differential effect of oxygen according to the under-
lying cellular and metabolic status of the patient and may 
vary according to SEPSIS 2 or 3 definition. Due to post 
hoc design of our study, our results should be considered 
as hypothesis generating.
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