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A B S T R A C T

Leaf angle distribution (LAD) is an important property which influences the spectral reflectance and radiation
transmission properties of vegetation canopies, and hence interception, absorption and photosynthesis. It is a
fundamental parameter of radiative transfer models of vegetation at all scales. Yet, the difficulty in measuring
LAD causes it to be also one of the most poorly characterized parameters, and is typically either assumed to be
random, or to follow one of a very small number of parametric ‘archetype’ functions. Terrestrial LiDAR scanning
(TLS) is increasingly being used to measure canopy structure, but LAD estimation from TLS has been limited thus
far. We introduce a fast and simple method for detection of LAD information from terrestrial LiDAR scanning
(TLS) point clouds. Here, it is shown that LAD information can be obtained by simply accumulating all valid
planes fitted to points in a leaf point cloud. As points alone do not have any normal vector, subsets of points
around each point are used to calculate the normal vectors. Importantly, for the first time we demonstrate the
effect of distance on the reliable LAD information retrieval with TLS data. We test, validate, and compare the
TLS-based method with established leveled digital photography (LDP) approach. We do this using data from both
real trees covering the full range of existing leaf angle distribution type, but also from 3D Monte Carlo ray
tracing. Crucially, this latter approach allows us to simulate both images and TLS point clouds from the same
trees, for which the LAD is known explicitly a priori. This avoids the difficulty of assessing LAD manually, which
being a difficult and potentially error-prone process, is an additional source of error in assessing the accuracy of
LAD extraction methods from TLS or photography. We show that compared to the LDP measurement technique,
TLS is not limited by leaf curvature, and depending on the distance of the TLS from the target, is potentially
capable of retrieving leaf angle information from more complex, non-flat leaf surfaces. We demonstrate the
possible limitation of TLS measurement techniques for the retrieval of LAD information for more distant ca-
nopies, or for taller trees (h>20m).

1. Introduction

The leaf angle distribution (LAD) is a key property of vegetation
canopies, and is therefore vital for models used to represent and un-
derstand the plant canopy processes of photosynthesis, evapo-
transpiration, radiative transfer (RT), and hence spectral reflectance
and absorptance (Warren Wilson, 1959; Lemeur and Blad, 1974; Ross,
1981; Myneni et al., 1989; Asner, 1998; Stuckens et al., 2009). Yet,
despite the strong sensitivity of many of these models to variability in
LAD, the difficulty in measuring LAD often causes it to be one of the
most poorly constrained parameters in structural models of canopy
radiative transfer (see e.g. Ollinger, 2011). As a result, LAD is very often

assumed to be random, or spherical in order to simplify the process of
modelling RT in vegetation, without clear justification or quantified
impact of the resulting uncertainty. Improving methods for measuring
LAD is thus essential for advancing ecological understanding of its role
within the biophysical interaction of sunlight and the forest canopy,
and how we can better represent it within canopy models.

Various methods and instruments have been proposed over the
years for in situ measurement of leaf inclination angles (e.g., Lang,
1973; Smith and Berry, 1979; Kucharik et al., 1998; Falster and
Westoby, 2003; Hosoi and Omasa, 2007; Müller-Linow et al., 2015).
However, their wide-spread use has been generally hampered by dif-
ficulties in applying them to tall (and closed) canopies, their
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unsatisfactory ability to reproduce measurements, or high costs.
Ryu et al. (2010) proposed a robust, simple method to identify leaf

angles from leveled digital photography (LDP) and to provide reliable
LAD information for broadleaf trees. The LDP method was also found to
be comparable to manual clinometer measurements (Pisek et al., 2011).
McNeil et al. (2016) implemented the LDP method successfully on
images collected with digital cameras mounted onboard unmanned
aerial vehicles (UAV). While this method has been shown to be more
efficient compared to the earlier approaches mentioned above (Zou
et al., 2014), the need for manual, non-automated identification of
suitable leaves for LAD determination, and the regulatory and piloting
challenges with UAVs still pose drawbacks that hinder more effective
and widespread use of the LDP method.

With mm-level ranging accuracy and fine resolution allowing the
capture of very detailed 3-D structural information of a canopy, ter-
restrial LiDAR scanning (TLS) technology might be able to overcome
the shortcomings of the conventional means of measuring LAD profile
of the canopy. So far, TLS has been shown to be able to provide more
detailed information about tree properties such as diameter at breast
height (DBH) (Bauwens et al., 2016), height (Király and Brolly, 2007;
Prasad et al., 2016; Palace et al., 2016), aboveground biomass (Calders
et al., 2013, 2015; Tanago et al., 2018; Disney et al., 2018) and overall
structure (Côté et al., 2012; Raumonen et al., 2013; Hackenberg et al.,
2014a,b; Malhi et al., 2018). There have been already several attempts
to measure leaf orientation with TLS data. Jin et al. (2015) estimated
leaf angles from averaging normal vectors of clustered leaves and ob-
tained a correlation coefficient of 0.96 for a validation using a single
camphorwood tree. Zheng and Moskal (2012) also proposed the use of
normal vectors to estimate leaf angle but calculated from subsets of
points. This latter method was able to predict leaf inclination with R
squares of 0.73 and 0.573 for big leaf maple tree and sugar maple,
respectively. Bailey and Mahaffee (2017) is another example of ap-
proach using normal vectors but estimated for triangulated surfaces
from the point cloud. Zhao et al. (2015) presented a physical-statistical
approach using Maximum Likelihood Estimates to infer leaf properties
from TLS data. Although all these methods showed potential, their in-
creased algorithm complexity and possible uncertainties must be noted:
dependency of clustering or triangulation algorithms in preliminary
steps (Jin et al., 2015; Bailey and Mahaffee, 2017); dependency of
model and parameters selection (Zhao et al., 2015); or presence of noisy
data (Bailey and Mahaffee, 2017). Also, only a very limited set of trees,
usually of small size, and simple simulations were used for validation of
these methods. Effects caused by larger laser footprint, i.e. larger trees
(> 40m) or longer scanning distances, have also not been tested and
have the potential to limit accuracy.

In this work, we introduce a method that is based on simple as-
sumptions and fast (i.e. processing times under 2min per tree on a
consumer-grade processor) for detection of LAD information from TLS
point clouds. Importantly, for the first time we demonstrate the effect of
TLS distance on the retrieval of accurate LAD information from TLS
data. We test, validate, and compare the TLS-based method with the
LDP approach by Ryu et al. (2010) using real trees covering the full
range existing leaf angle distribution types. Crucially, we also address
one of the key issues that can hinder validating LAD measurement: the
difficulty of obtaining accurate known LAD information to compare
with values derived from LDP, TLS etc. Here, we augment the com-
parison of methods using real trees, by using very detailed 3D model
trees to simulate LDP and TLS measurements, but with LAD known a
priori. This allows us to compare LAD estimates against ‘true’ values
without having to worry about the uncertainty of the true values.

2. Materials and methods

2.1. Study sites and tree species

We measured leaf inclination angles on four broadleaf tree species

from the Royal Botanic Gardens, Kew, the United Kingdom (51.478 °N,
0.295 °W). We also used model representations of another five tree
species used to reconstruct actual canopy of the Järvselja birch stand in
Estonia (58.277 °N; 27.341 °E) (Kuusk et al., 2013) in the fourth phase
of RAdiative transfer Model Intercomparison (RAMI-IV) exercise
(Widlowski et al., 2015).

The leaf inclination angle measurements from the Royal Botanic
Gardens at Kew were made on individual trees with separate tree
crowns on 17 October 2017. The sampled tree species included
Japanese hop hornbeam (Ostrya japonica), date plum (Diospyros lotus),
maidenhair tree (Ginkgo biloba), and Wollemi pine (Wollemia nobilis).

2.2. Terrestrial laser scanner data: simulated and measured

2.2.1. Simulated terrestrial laser scanner point clouds
Synthetic TLS clouds were generated for five 3D scenes, which are

comprised of a single tree model in the origin of an infinite plane. These
stands have been generated as part of the 4th phase of the Radiative
Transfer Model Intercomparison (RAMI) exercise2, to provide realistic
scenes for canopy model benchmarking (Widlowski et al., 2015). Here,
we used the RAMI-IV representations of the Järvselja birch stand
(summer)3. The full RAMI 1 ha scene contains 1029 trees, comprising
18 individual variant trees of 7 species: Norway maple (Acer plata-
noides, ACPL), common alder (Alnus glutinosa; RAMI-IV representation
code ALGL3), Silver birch (Betula pendula; BEPE2), common ash
(Fraxinus excelsior; FREX), and small-leaved lime (Tillia cordata; TICO2).
Here, we use a subset of 5 of these trees to simulate TLS point clouds,
using the librat, Monte-Carlo ray tracing (MCRT) library (Fig. 1) (Lewis,
1999; Disney et al., 2006, 2011). The librat model is one of two models
that provide the ‘most credible’ full 3D RT model solutions in the RAMI
exercise and form the basis of the RAMI Online Model Checker (ROMC),
a community tool for benchmarking more approximate RT models
(Widlovski et al., 2008). Librat has been used to simulate canopy
properties and LiDAR point clouds for a number of applications (Disney
et al., 2009, 2010; Hackenberg et al., 2014a,b; Woodgate et al., 2016).
The leaves of each of the RAMI-IV trees are oriented explicitly for each
tree, and so their individual angles are known exactly a priori.

Librat TLS simulations were performed at 120 different locations
around each tree, set in a regular grid with 10m spacing (Fig. 2). As
each simulated cloud has material information, only leaf points were
kept in further steps for LAD estimates. The simulated scan angle re-
solution was 0.04°, resulting in a point cloud with point density and
resolution similar to the measured point cloud. In order to avoid in-
troducing uncertainties from partial returns, beam divergence was in-
finitely small. Although this is not realistic, the fact that our field data is
also filtered to reduce the number of points that resulted from partial
hits makes this assumption less relevant in the validation of our
method. For each tree, we used combinations of 4 point clouds, located
90° apart at the same 10m interval (Fig. 2 and Fig. 3A).

2.2.2. Measured TLS data
Real tree LiDAR data was obtained at Kew using a Riegl VZ-400

laser scanner (RIEGL Laser Measurement Systems GmbH, Horn,
Austria). This scanner has a range close to 700m, wavelength of
1550 nm, beam divergence of 0.35mrad and in the case of this study an
angular resolution of 0.04° was used. The scanner was supported by a
tripod at 1.5 m above the ground and placed in 4 different locations,
approximately 90° apart and around 5m from each tree. A set of 5
cylindrical reflectors supported by garden poles were placed around
each tree to assist in co-registration of the 4 separate point clouds.

2 http://rami-benchmark.jrc.ec.europa.eu/HTML/
3 http://rami-benchmark.jrc.ec.europa.eu/HTML/RAMI-IV/

EXPERIMENTS4/ACTUAL_CANOPIES/JARVSELJA_SUMMER_BIRCHSTAND/
JARVSELJA_SUMMER_BIRCHSTAND.php)/.
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Scans were co-registered and filtered by pulse shape deviation to
remove “noisy” data, i.e. partial laser hits (Pfennigbauer and Ullrich,
2010) using RiSCAN Pro (RIEGL Laser Measurement Systems GmbH,
Horn, Austria). Trees were manually extracted from registered point
clouds in CloudCompare (CloudCompare) (Fig. 3B). Materials were
separated using TLSeparation Python package (Vicari, 2017) and only
leaf points were kept.

2.2.3. Leaf inclination angle retrieval from TLS data
Our algorithm (Fig. 4) assumes that LAD can be obtained by simply

accumulating all valid planes fitted to points in a leaf point cloud. As
points alone do not have any normal vector, subsets of points around
each point are used to calculate the normal vectors. The LAD algorithm
starts by performing a Nearest Neighbors search around each point in
the leaf cloud, using a fixed number of neighbors (kNN) for each point
neighborhood. kNN values were tested in a sensitivity analysis (Section
2.2.4) and a value of 10 points was selected for our point clouds. The
value of this parameter should be a compromise between a neighbor-
hood of points small enough as to reduce the occurrence of angles
calculated from more than a single leaf, but still with a number of
points sufficient to minimize the impact of noise in the data. We opted
for a fixed kNN value in our method in order to speed up processing
while also being robust (see Section 2.2.4.). Even though a fixed kNN
setting might generate neighborhoods of variable size, pre-processing
steps and the further filtering of neighborhoods (see below) help to
mitigate negative impacts which this parameter might cause on angle
estimates.

Next, Singular Value Decomposition (SVD) is used to perform a
surface regression analysis (plane fitting) on each subset of points
(Fig. 5). Through SVD a set of eigenvalues and eigenvectors is calcu-
lated for each point. Eingenvectors relative to the smallest of 3 eigen-
values, in a 3D space, are equivalent to the normal vector of the fitted
plane (Mandel, 1982; Klasing, 2009). As normal vectors calculated
using SVD are susceptible to outliers, a filtering step ensures that only
normal vectors from points that are close enough to a plane are kept.
The smallest eigenvalue, in a 3D space, is a direct expression of how
close to a plane the set of points is. To standardize all eigenvalues into a

Fig. 1. Example of simulated RAMI IV tree representations; A – Acer platanoides
(ACPL); B – Betula pendula (BEPE2).

Fig. 2. Locations of simulated scans selected to validate our TLS method.

Fig. 3. Examples of simulated point cloud, Norway maple (Acer platanoides;
ACPL) - A; and scanned point cloud, Wollemi pine (Wollemia nobilis) - B.

Fig. 4. LAD retrieval algorithm from TLS data. SVD refers to Singular Value
Decomposition.
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common range (0 to 1), the eigenvalue ratios were calculated for each
point, dividing each eigenvalue by the sum of all three eigenvalues. The
sensitivity analysis was also used to select this parameter’s value and,
therefore, only points with the third eigenvalue ratio lower than 0.1,
were kept (Fig. 6). This filtering step ensures that points in intersecting
regions or with strong presence of noise are not used in the LAD esti-
mation.

Filtered vectors ( ⃑N ) pointing downwards, i.e. negative z-axis
component, were inverted by multiplying them by -1:
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The inclination angle, in degrees, for each point (αi) is obtained by
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The algorithm produces one inclination angle value for each valid
plane in the leaf point cloud (Fig. 7). This means that every leaf will
produce multiple inclination angles, one for each valid plane patch. To

generate the final LAD, point-wise angles are aggregated (Fig. 8D).
In order to better understand how robust our TLS method is, given

different input parameters, we performed a sensitivity analysis using
the simulated point clouds. Also, as an example of possible application
of our TLS method, Fig. 8E shows azimuth angles for different height
slices along the tree height.

2.2.4. Sensitivity analysis of LAD estimates from simulated data
The sensitivity analysis was performed using the same simulated

point clouds as in the LAD comparison. A set of values for kNN (5, 10,
15, 20, 25, 50, 100) and eigenvalue ratio threshold (0.05, 0.1, 0.15, 0.2,
0.25, 0.3, 0.5) were combined iteratively and used to process every tree
point cloud, from different scanning distances, generating 1225 esti-
mates in total. Resulting distributions were binned in intervals of 5° and
compared against their respective reference LAD using Mean Absolute
Error (MAE).

We also investigated the impact of scanning distance in the TLS LAD
estimates by calculating the difference between each tree’s LAD for
scanning distances of 10 and 50m. The difference was calculated, using
MAE, for all simulated point clouds, except those from tree model
FREX. Point clouds from this tree were not considered in the distance
analysis because its leaves model employs 11 leaves with different area,
and so, could not be assessed in the same way as for the other trees.

A validation test was also developed to evaluate the TLS LAD ac-
curacy for different leaf curvatures. We used the single leaves from the
same leaf models from the four RAMI-IV trees used in our simulated
dataset. A set point clouds were simulated for each leaf, varying point
density and leaf curvature, and also varying knn values used to estimate
the leaf angles. Pointwise angles were estimated for each leaf point
cloud and aggregated into LADs. Each LAD was quantitatively com-
pared (MAE) to the expected LAD from its respective simulated curved
leaf. In the case of this validation leaf curvature was defined in terms of
the fraction of leaf area that covers a sphere with known radius. For a
flat leaf, the radius is infinite and so the curvature is assumed as 0%. A
completely curved leaf, i.e. 100%, covers a sphere in a way that its
extremities are touching each other.

2.3. Simulated digital photography images

Simulated LDP images of the RAMI-IV trees were also generated
using the librat MCRT model (Fig. 1). Images were simulated at an
equivalent resolution of 1M P i.e. image size of 1024×1024 from a
distance of 1.5 m from the trees in each case. Images were simulated
from 4 locations around each tree for every 1m of live crown, and with
1 ray per pixel. This means that total number of images varied from 24
(TICO2) to 48 (ALGL3). Librat image simulations have been used for
various modelling applications, particularly for comparison with other

Fig. 5. Example of a set of eigenvectors calculated for a random set of points
that represent a plane. Sub-indices of e represent eigenvectors relative to ei-
genvalues from largest (0) to smallest (2). In this example, e2 represents the
normal vector of a plane fitted to all points shown.

Fig. 6. Example of normal vectors filtering by
eigenvalue ratio threshold. Vectors relative to
points with third eigenvalue ratio higher than
0.1 were removed. To define local neighbor-
hoods and calculate the eigenvalues, 10 points
around each point shown in this figure were
selected (knn=10) (For interpretation of the
references to colour in this figure legend, the
reader is referred to the web version of this
article).

M.B. Vicari et al. Agricultural and Forest Meteorology 264 (2019) 322–333

325



canopy measurement properties such as DHP estimates of gap fraction
and LAI as well as with field-measured properties (Disney et al., 2011;
Woodgate et al., 2016; Origo et al., 2017).

2.4. Leveled digital photography (LDP) measurements

We used a leveled digital camera approach (Ryu et al., 2010) to
measure leaf inclination angles and validate the results obtained with
TLS data (Section 2.2.3). Beside the simulated images for RAMI-IV tree
representations described in Section 2.2.1, we took a series of leveled
digital images of tree crowns for four tree species at Kew during calm
conditions (to prevent wind effects on leaves; Tadrist et al., 2014) along
their full vertical tree profile. We compared two approaches to obtain

leveled digital photography: a Nikon CoolPix 4500 digital camera
(4M P) leveled and tripod-mounted, and images taken by a hand-ba-
lanced (i.e. determined by observer's feeling) Sony Xperia Z5 Compact
phone equipped with 23M P 1/2.3-inch multi-aspect BSI CMOS sensor,
paired with an F2.0 lens. None of the lenses were evaluated for dis-
tortions.

Next, both simulated images of the RAMI-IV tree representations
and photos obtained at Kew were visually inspected for the presence of
leaves with their surfaces oriented approximately perpendicular to the
viewing direction of the digital camera (Fig. 9). Inclination angles of
suitable leaves were measured using the public domain image proces-
sing software ImageJ (http://imagej.nih.gov/ij/). It has been suggested
that hundreds of leaves should be measured to obtain an accurate

Fig. 7. Normal vectors calculated for a single leaf from field scanned Diospyros lotus point cloud (A) and from two neighboring leaves from TICO2 simulated point
cloud (B). Respective leaf angle distributions calculated from point-wise angle are shown under each respective set of points.

Fig. 8. Diospyros lotus TLS data and results. (a) Extracted point cloud. (b) Separated leaf points. (c) Examples of normal vectors (1000 vectors randomly sampled for
visualization purposes only, out of around 350 thousand). (d) Pointwise leaf angle. (e) Azimuth leaf angle distribution over height slices.
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representation of the leaf inclination angles (Kucharik et al., 1998).
However, a more recent study suggests that around 75 leaves may be
sufficient to obtain a representative leaf inclination angle distribution at
single crown (Pisek et al., 2013). In the current work, approximately
100 leaves were measured whenever possible. Tables 1 and 2 provide
the exact number of leaves collected for each species in this study.

2.5. Leaf inclination angle distribution and G-function

We estimated leaf inclination angle distribution assuming a uniform
distribution of leaf azimuth angle and leaf inclination angle being in-
dependent of leaf size. The measured leaf inclination angles were fitted
with the two-parameter Beta distribution (Goel and Strebel, 1984),
which was shown to be the best suited for describing the probability
density of θL (by Wang et al., 2007):

= − − −f t
B μ ν

t t( ) 1
( , )

(1 )μ v1 1

(3)

where =t θ π2 /L . The Beta-distribution function B μ ν( , ) is defined as:
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0

1 1 1
(4)

where Γ is the Gamma function and μ and ν are two parameters cal-
culated as:
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where σ0
2 is the maximum standard deviation with expected mean t̄ (σ0

2

= t̄ (1- t̄ )) and σt
2 is variance of t (Wang et al., 2007).

Following Goel (1988), leaf inclination angle distributions can be
described using six parametric ‘archetype’ functions based on empirical

evidence of the natural variation of leaf normal distributions: spherical,
uniform, planophile, plagiophile, erectophile and extremophile. For
spherical canopies, the relative frequency of leaf inclination angles is
the same as the relative frequency of the inclinations of the surface
elements of a sphere; for uniform canopies, the proportion of leaf in-
clination angles is the same at any angle; planophile canopies are
characterized by a predominance of horizontally oriented leaves; pla-
giophile canopies are dominated by inclined leaves, erectophile ca-
nopies are dominated by vertically oriented leaves, and extremophile
canopies by high frequencies of both horizontally and vertically or-
iented leaves (Lemeur and Blad, 1974). As these classical distributions
are widely used and easier to interpret than the parameter values of the
Beta distribution, we classified all estimated leaf inclination angle dis-
tributions by finding the closest archetype distribution. For each mea-
sured distribution, the deviation from the distributions suggested by de
Wit ( fdeWit)) was quantified using a modified version of the inclination
index provided by Ross (1975):

∫= −χ f θ f θ dθ| ( ) ( )|L

π

L deWit L L0
2

(7)

3. Results and discussion

3.1. LAD retrieval from TLS and LDP: simulated tree representations

It should be noted that the simulated leaves had no curvature, which
removed one source of uncertainty for estimating the leaf angles with
the LDP measurement technique in particular. Overall, the agreement
between TLS- and LDP-based measurement techniques using the 3D tree
simulations was with R squares between 0.45 (ALGL3; Fig. 10B) and 0.8
(ACPL, Fig. 10A) for actual measurements. Importantly, the simulated
trees covered the full range of possible leaf angle probability density
functions (PDFs), and both approaches agreed on the assigned de Wit
type (1965), except the ACPL tree representation (LDP – spherical; TLS -
erectophile) (Table 1). Even in this case the difference in the mean
values between the two approaches was less than 6°, which is within the
limits of the previously identified uncertainty of the LDP measuring
technique by Raabe et al. (2015). The TLS-based PDFs agreed to within
84% with the prescribed leaf element frequencies of the RAMI-IV trees
(Fig. 10). The agreement between the prescribed and retrieved PDFs
was linked to the foliage density. The ALGL3 and BEPE2 RAMI-IV trees
had very dense foliage, which can obscure and make it more

Fig. 9. A schematic diagram of the protocol used to measure leaf inclination
angle from leveled digital photography (illustrated on Diospyros lotus).

Table 1
Statistical moments (i.e., number of observations, mean, standard deviation, two parameters μ, ν) of the leaf angle measurements and the LAD function type (after De
Wit, 1965) from the LDP and TLS approaches for the simulated RAMI IV tree representations. PL – planophile, PG – plagiophile, U – uniform, S – spherical, E –
erectophile.

LDP TLS

Tree representation n Mean S.D. u v Type n Mean S.D. u v Type
ACPL 279 55.71 24.80 0.80 1.30 S 177342 61.42 21.11 0.93 2.01 E
ALGL3 183 48.66 23.55 1.21 1.42 U 164372 42.98 21.32 1.8 1.65 U
BEPE2 224 40.26 18.24 2.77 2.25 PG 73685 42.54 19.18 2.37 2.12 PG
FREX 152 31.21 21.49 1.94 1.03 PL 252275 33.62 23.18 1.58 0.94 PL
TICO2 116 40.83 17.84 2.90 2.41 PG 228446 46.67 18.9 2.24 2.42 PG

Table 2
Optimal parameter values for TLS LAD estimates, detected by sensitivity ana-
lysis using simulated data. MAE stands for Mean Absolute Error.

Distance (m) kNN Eigenvalue ratio threshold MAE mean MAE std

10 10 0.15 0.013 0.008
20 10 0.10 0.011 0.007
30 5 0.10 0.012 0.008
40 5 0.10 0.015 0.009
50 10 0.15 0.018 0.012
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challenging to sample leaves located deeper within the tree crowns. The
dense foliage of these trees, and the way individual leaves were re-
presented in the simulated images with sometimes not so distinct out-
lines (see Fig. 1B for an example), posed additional challenges to
identifying suitable leaves and sample the whole crown space evenly
with the LDP measurement approach. This was mainly due to the de-
creased contrast between the potential target and background (Fig. 1B).
Still, both TLS and LDP measurement techniques were able to provide
PDFs that correctly approximated even the bi-modal PDF prescribed for
the BEPE2 tree simulation (Fig. 10C). Fig. 10 also illustrates the
agreement between the PDFs and the fitted beta distributions. This
shows similar results to Wang et al. (2007), who evaluated the two-
parameter beta distribution as the more consistent and robust predictor
over other approaches.

Fig. 11 demonstrates the effect of TLS distance on the LAD in-
formation retrieval. There is a tendency towards more vertical PDF

retrieval by TLS with an increasing distance of the sensor from the
target. If the LAD of a given target can be described as spherical or
erectophile, then our simulation results indicate that TLS can provide
good quality information even at a distance of 50m (Fig. 11A). How-
ever, the results get progressively worse with distance if the ‘true’ LAD
can be described as rather horizontally oriented (Fig. 11B–E). For the
planophile case (FREX; Fig. 11E), the TLS-derived LAD type shifts to a
different one (uniform) already at the distance of 20m. We found that
leaf size/area plays an important role in this change of LAD along dif-
ferent scanning distances. In fact, there is a linear relationship
(R2= 0.99) between individual leaf areas, provided in the reference
data for each tree model (Widlowski et al., 2015), and the variation of
each tree’s LAD over distance. In this case MAE is inversely proportional
to leaf area, which means that LAD estimates from small leaves will
have a larger degradation of accuracy over scanning distance.

Variations in scanning distance also affect the capability of a LiDAR

Fig. 10. Frequency and fitted beta distributions of leaf angle for the simulated tree representations for RAM-IV Järvselja birch stand. Differences in the distributions
between LDP (black), TLS (blue) and RAMI IV (red) representations as tested by Chi-square two sample test were non-significant at p < 0.05 for all measured species
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article).
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Fig. 11. Effect of varying TLS-target distance on the LAD retrieval from TLS for the select RAMI IV tree representations.

Fig. 12. Box whisker showing Mean Absolute
Error (MAE) of TLS LAD estimates method over
a range of kNN and eigenvalues ratio
threshold. Results were aggregated from all
simulated point clouds used in the validation
of our TLS method. The box dimensions show
the quartiles for 25% to 75% of MAE, the
center line represents median MAE and the
whiskers show minimum and maximum MAE.
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scanner to detect and resolve leaves of different inclination angles.
Using a hypothetical leaf at 10m from the ground, a laser beam will
have an inclination angle of 45° at 10m from the tree and an angle of
11.3° at 50 m from the tree. This means that leaves with a low in-
clination angle, i.e. horizontal leaves, will have a considerably smaller
projected area on the laser sensor. Also, as the scanning angle resolu-
tion was the same for all simulations, the point density (number of
points per unit of area) scaled down based on the area of a scanned
hemisphere. So in the case of our simulated point clouds, the point
density was reduced by an average of 86% (± 8%) when changing
scanning distances from 10m to 50m. The combination of these factors
means that with increasing distance from the tree, leaves with lower
inclination angles will be less likely to be intersected by a laser beam,
which helps to explain why there is a shift towards erectophile LADs for
longer scanning distances. The lower individual leaf area for ALGL3 and
BEPE2 is contributing factor that makes this effect even more pro-
nounced for these trees.

3.2. Sensitivity analysis of LAD retrieval from TLS

We used the simulated point clouds to perform a sensitivity analysis
of our TLS method over a range of kNN and eigenvalues ratio threshold.
Results of the sensitivity tests (Fig. 12) show that our TLS method is
able to estimate LAD with an average MAE of 0.018 (standard deviation
of 0.012). Fig. 12 also helps to understand how changes in each para-
meter impact the accuracy in LAD estimates. The results suggest that
lower values for kNN, e.g. 5 or 10, and filtering thresholds of above 0.1
are optimal. However, we note that the assessment of the impact of
threshold values (Fig. 12b) might have been limited due to the lack of
noise and overlapping leaves in our simulated data. A set of optimal
parameters values was also generated for each scanning distance
(Table 2) and a comparison of LAD estimates using these parameters
against the RAMI-IV reference data is shown in Fig. 13.

The curvature analysis showed that the TLS method is able to pre-
dict LAD from curved leaves with MAE lower than 0.11 for all cases
(Fig. 14). The curvature validation suggests that our TLS method is able
to accurately predict LAD from curved leaves and that point density is a
major constraining factor in the accuracy of LAD estimates. For a
comparison, the point density of a single scan using an angular step
resolution of 0.04° is around 20,000 points/m² at 10m and 1000
points/m² at 50m. Fig. 8 shows that even for a hypothetical completely
curved leaf point cloud, with point density relative to a 50m single
scan, the MAE of a TLS LAD is still lower than 0.11. In tests with higher
point densities the MAE lowers to below 0.04. Also, for a completely
flat leaf the MAE is lower than 0.001 overall. However, we note that

this was an hypothetical point cloud with no noise, occlusion or over-
lapping leaves. In actual point clouds the MAE is expected to be higher,
especially for leaves scanned from longer distances (e.g. > 30m). The
impact of point density also suggests that the use of multiple scans
should improve the accuracy of LAD estimates.

3.3. LAD retrieval from TLS and LDP: real trees

Next, we compared LDP and TLS measurement techniques using real
trees. Similarly, to the model tree representations described above, the
pool of sampled real trees at Kew contained a wide range of LAD types,
from broadly plagiophile (Diospyros lotus) to erectophile (Ostrya japo-
nica) case. Results show that very similar results (fitted Beta distribu-
tions) can be obtained using different LDP measurement techniques
(images taken with a digital camera mounted on a tripod or a hand-
balanced smart phone; Fig. 15). Compared to tripod-based camera ap-
proach, smart phone based acquisition provides up to ten times faster
and more flexible approach, and it is encouraging these advantages are
not offset by the accuracy of the method, if a large enough sample pool
is collected (Table 3).

Results show that the agreement between TLS and LDP measure-
ment techniques were lower than those obtained from the simulated
tree representations. Compared to the simulated cases, the sampled
trees at Kew possessed leaves with various curvatures, and the effect of
leaf curvature was clearly captured in the agreements between TLS and
LDP measurement techniques for given species. The agreement between
the fitted Beta distributions for the TLS and LDP approaches for
Wollemia nobilis (Fig. 15) was 97%. Wollemia nobilis possesses relatively
short leaves with no transverse curvature. The sampled Diospyros lotus
tree had leaves with various curvature rates, and the bent leaves of
Ginkgo biloba were the most challenging for applying the LDP mea-
surement technique, which relies on identifying rather flat leaves or-
iented approximately perpendicular to the viewing direction of the
digital camera/lens. This challenge was subsequently reflected in the
greater difference between both retrieved PDFs and fitted Beta dis-
tributions for Diospyros lotus and Gingko biloba, compared to Wollemia
nobilis (Fig. 15). However, it is notable that the LDP and TLS mea-
surement techniques agreed in the assigned de Wit type in all cases bar
one (Table 3). The only exception was Ginkgo Biloba, where LDP as-
signed spherical and TLS assigned erectophile LAD type. This was si-
milar to the ACPL case from the simulated trees described above in
Section 3.1. It should be noted that the resulting leaf projection or G
function (Ross, 1981), which describes the projection of unit foliage
area on the plane perpendicular to the view direction (Myneni et al.,
1989; Ross, 1981), is rather similar between spherical and erectophile

Fig. 13. 1:1 simulated trees TLS LAD comparison grouped by tree. Solid lines
represent linear regression fitted to each tree’s LAD comparison scatter points.
Shaded areas represent a confidence interval of 95% for each regression.

Fig. 14. Box whisker showing Mean Absolute Error (MAE) of TLS LAD esti-
mates method for different leaf curvatures and point densities. Results were
aggregated for all hypothetical leaves used in the curvature tests. The box di-
mensions show the quartiles for 25%–75% of MAE, the center line represents
median MAE and the whiskers show minimum and maximum MAE.
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canopies (Ryu et al., 2010; Pisek et al., 2013).

3.4. Implications for the future potential of TLS to retrieve LAD information

Our results are very encouraging with respect to using our proposed
TLS measurement technique for the retrieval of LAD information. At the
same we also discuss the potential limits of the method. The validation
of previously proposed methods to retrieve LAD information with TLS
data (e.g. Zheng and Moskal, 2012; Jin et al., 2015; Bailey and
Mahaffee, 2017) was done with smaller, isolated trees or shrubs with
TLS positioned at a close distance to targets. Here, for the first time we
demonstrate the possible limitation of TLS measurement techniques for
the retrieval of LAD information for more distant canopies, or for taller
trees (h> 20m).

Compared to the LDP measurement technique, TLS is not limited by
leaf curvature, and depending on the distance might be even capable of
retrieving leaf angle information from more complex leaf surfaces.
Consequently, TLS might provide more accurate information about LAD
than LDP in these cases, albeit the assigned de Wit may well still be the
same for LDP and TLS (Table 1). TLS might be also applicable in cases
where LDP is not an option (severely bent, twisted leaves). This way
TLS measurements might allow us to extend greatly the pool of plant
species for which we could retrieve LAD information, particularly for
taller trees, which is so crucial for correct RT modelling in vegetation
canopies (Govind et al., 2013). It remains to be seen if TLS can provide
us with good quality information about needleleaf canopies as well. Our
TLS method can also provide further information about leaf angles,
such as 3D partitioning of the leaf points, which could assist on further
insights into how leaf angle changes over height or different directions
(Fig. 8E). An example of inclination and azimuth angles partitioning
across crown height is shown in Fig. 16, which shows not only how leaf
angles vary for different partitions but also how much each partition

represents in the total amount of leaf material. We note that azimuth
angles estimates are not within the scope of this paper and such in-
formation is just provided as an example of possible outcomes of our
TLS leaf angle method. One final issue to consider is that currently, TLS
instruments are in general much more expensive than cameras, and
their operation characteristics are also more variable e.g. time-of-flight
v phase shift, beam divergence, angular resolution etc. Consequently,
the point clouds from different sensors and acquisitions will have
varying potential for LAD retrieval. These aspects will need to be ex-
plored further in order to allow better understanding of the resulting
uncertainties, and to allow direct comparison between different studies.

4. Conclusions

In this study we introduce a fast and simple method for detection of
LAD information from terrestrial LiDAR scanning (TLS) point clouds.
Our findings provide support for the following conclusions:

1) LAD information can be obtained by simply accumulating all valid
planes fitted to points in a leaf point cloud.

2) Compared to the LDP measurement technique, TLS is not limited by
leaf curvature, and depending on the distance of the scanner (i.e. the
footprint of the TLS at the target), might be even capable of re-
trieving leaf angle information from more complex leaf surfaces.

3) TLS measurement techniques might be limited for the retrieval of
accurate LAD information for more distant canopies, or for taller
trees (h>20m). We recommend keeping the scanning distance
within 20m from the target canopy and the use of multiple (> 2)
scans from different positions around the trees to improve leaf de-
tection.

Fig. 15. Frequency (top) and fitted beta dis-
tributions (bottom) of leaf angle for the four
tree species at Kew, measured from the tripod-
stabilized leveled digital photography (LDPt –
green line), hand-balanced digital photography
(LDPh – pink line) and terrestrial laser scanner
(TLS – blue line) (For interpretation of the re-
ferences to colour in this figure legend, the
reader is referred to the web version of this
article).

Table 3
Statistical moments (i.e., number of observations, mean, standard deviation, two parameters μ, ν) of the leaf angle measurements and the LAD function type (T), after
De Wit (1965) from the tripod-stabilized leveled digital photography (LDPt), hand-balanced digital photography (LDPh) and terrestrial laser scanner (TLS) ap-
proaches at the Kew Royal Botanical Gardens. PG – plagiophile, U – uniform, S – spherical, E – erectophile. ID represents the tree identifier: DL - Diospyros lotus, GB -
Ginkgo biloba, OJ - Ostrya japonica, WN - Wollemia nobilis.

LDPt LDPh TLS

ID n Mean S.D. M ν T n Mean S.D. μ ν T n Mean S.D. μ ν T

DL 100 39.59 11.00 8.68 6.82 PG 120 41.67 9.52 11.39 9.82 PG 212595 50.85 14.64 3.6 4.68 PG
GB 78 57.67 18.90 1.52 2.70 S 80 56.28 18.78 1.64 2.74 S 277167 65.92 16.95 1.21 3.31 E
OJ 90 66.37 11.63 2.78 7.81 E 120 68.09 10.92 2.80 8.70 E 165189 63.68 17.79 1.26 3.04 E
WN 80 46.71 22.05 1.52 1.64 U 123 44.44 23.06 1.42 1.39 U 205368 41.25 21.82 1.75 1.48 U
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