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Abstract 

While organic semiconductors provide tantalising possibilities for low-cost, light-weight, flexible electronic 

devices, their current use in transistors — the fundamental building block — is rather limited as their speed and 

reliability is not competitive with their inorganic counterparts, and is simply too poor for many practical 

applications. Through self-assembly, highly ordered nanostructures can be prepared that have more competitive 

transport characteristics, but no simple, scalable method has been discovered that can produce devices based 

on such nanostructures. Here we show how transistors of self-assembled molecular nanowires can be fabricated 

using a scalable, gradient sublimation technique, which have dramatically improved characteristics compared to 

their thin film counterparts, both in terms of performance and stability. Nanowire devices based on copper 

phthalocyanine have been fabricated with threshold voltages as low as -2.1 V, high on/off ratios of 105, small 

sub-threshold swings of 0.9 V/decade and mobilities of 0.6 cm2/Vs, and lower trap energies as deduced from 

temperature-dependent properties - in line with leading organic semiconductors involving more complex 

fabrication. High-performance transistors manufactured using our scalable deposition technique, compatible 

with flexible substrates, could enable integrated all-organic chips implementing conventional as well as 

neuromorphic computation and combining sensors, logic, data storage, drivers and displays.  
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Introduction 

The ability to deposit organic semiconductors as thin films or nanostructures on a range of low cost, including 

flexible, substrates has led to applications ranging from gas sensors and smart tags to light emitting diodes and 

solar cells.1-6 Despite those successes there are still many challenges, particularly given the need to integrate the 

organic devices with transistors, providing logic, data storage and drivers, which today are almost inevitably 

inorganic.  Organic transistors have thus far not succeeded because they have yet to simultaneously achieve 

stability, reproducibility and scalability of manufacture.7 There has of course been great scientific progress on 

polymer-based electronics,8 but in principle, small aromatic molecules are more robust for processing and 

eventual use. Unfortunately, conventional polycrystalline thin film transistors, prepared using a variety of simple 

vacuum-based techniques such as organic molecular beam deposition (OMBD), typically exhibit mobilities on 

the order of 10-3 cm2/Vs, 7, 9 much too low for many applications, with the transport limited by structural defects. 

The film mobility can be increased by improving the crystallinity5 but this often entails high temperature10 or 

patterned11 growth, post-deposition annealing12 or weak epitaxy.13 All of these methods greatly restrict the 

types of devices that can be created and also the scalability of manufacture. Organic nanowires, self-assembled 

into highly crystalline nanostructures, offer the tantalising prospect of overcoming the limitations stemming 

from grain boundaries, in simple experimental conditions (e.g. low vacuum deposition or self-assembly from 

solution, room temperature substrate).14  

Earlier reports showing the potential of nanostructures focussed on the pentacene derivative 

hexathiapentacene (HTP), which lent itself to simple solution processing and drop-casting techniques for 

fabrication of large-area arrays of nanowire transistors.14, 15 P-channel devices based on HTP nanowires were 

demonstrated and later combined with n-channel perylenediimide nanowires leading to the first report of a low 

cost, scalable organic nanowire logic.16 Although these reports showed the manufacturing potential of self-

assembled nanostructure transistors, the devices displayed poor operating characteristics, rendering them 

unsuitable for commercial applications. Subsequently, numerous articles discussed alternative techniques or 

systems but, despite promising advances in sensing,17 to our knowledge none have reported a simple, low cost, 

scalable solution capable of producing devices that can rival their inorganic counterparts. 

Phthalocyanines (Pc’s) are planar aromatic molecules which are attractive for self-assembled nanowire devices 

due to their stability, flexibility and tuneability.18 Their versatility arises from the fact that they are able to host 

many metal ions at their cores19 and can exist in a variety of crystal phases, controllable through growth 

conditions,18, 19 allowing their electronic structure to be modified. Copper phthalocyanine (CuPc) has been used 

in blue dyes and paints since the 1930s due to its chemical stability and optical properties,20 and has already 

been shown to self-assemble into nanostructures with e.g. single-crystal nanoribbon devices exhibiting 

reasonable characteristics.21-29 It has a long-standing tradition in photovoltaics, with a history spanning the first 

two-layer small molecule solar cell6 to recent fundamental studies in band structure engineering.30  

Phthalocyanines are also key components in new research directions such as organic spintronics where their 
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spin can be exploited to modulate transport31, 32 or store information.33, 34 Here we demonstrate that it is possible 

to create organic field effect transistors of CuPc nanowires that have characteristics approaching those of 

polycrystalline silicon devices. The random network architecture may enable exploitation for neuromorphic 

computing,35, 36 with the nanowires representing neurons and their intersections analogous to synapses, in 

addition to conventional logic. Furthermore, as this was performed using conventional gradient sublimation with 

no post-deposition processing or expensive selection (as required for example for carbon nanotube-based 

electronics), the fabrication process is simple, low cost and scalable.  

 

Results and discussion 

Deposition of organic nanowires 

The face-to-face (π-stack) stacking in planar aromatic molecules, arising from the strong π-π interactions37 leads 

to a large overlap of the electronic wave functions in adjacent molecules. This causes an increase in the 

bandwidths which directly correlate with electrical conductivity in the coherent transport regime, thus resulting 

in high mobilities.38, 39 Due to its simplicity, organic vapour phase deposition (OVPD) is a popular technique for 

creating self-assembled nanostructures.17, 40 Although OVPD has been successful in generating a wide range of 

nanostructures of different molecules,14 high mobility transistors using conventional substrates without the 

need for post- or pre-deposition processing have so far remained elusive.14, 41 

CuPc nanostructures, grown by physical vapour transport, were first reported in 2006 yielding structures in the 

form of β-phase nano-ribbons approximately hundreds of nanometres wide and 5-10 μm in length.21, 22 The 

transport properties of individual ribbons were explored using micromanipulation and found to exhibit hole 

mobilities of the order of 0.1 cm2/Vs.23 There have been many developments since,17, 26, 27 such as air dielectrics24 

and combinations with fluorinated CuPc to demonstrate logic gates,25 but this technique, although of great 

interest for the study of fundamental transport properties, is not practical for large scale application. In 2010 a 

new type of CuPc nanostructure was reported: η-phase nanowires.28 These nanowires are approximately 10-

100 nm in width and up to a centimetre in length. These directional, high aspect ratio nanowires are ideal for 

use in organic transistors, due to the low density of structural defects, and it is the transport characteristics of 

devices prepared using these nanowires that are reported here. 
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Figure 1 shows the simple setup of a conventional OVPD system to create self-assembled nanostructures. A 

different tube furnace was used to that of the previous report,28 one with a radius more than twice larger, 

showing that this technique is, to some degree at least, scalable. An inert carrier gas, nitrogen in our case, is 

used to transport sublimed molecules from the hot end of a split tube furnace to the cool end, approximately 

1 m away. Substrates were positioned at the cool end of the chamber in a region held at approximately room 

temperature, meaning that a large range of substrates can be used. The substrates were mounted at a height 

approximately half of the tube diameter, 2 cm, although the exact position is not important as nanowires form 

across the whole tube within a region of approximately 30 cm outside the furnace. Structural characterisation 

confirmed that the nanowires were in the η-phase, with the π-stacking occurring along the long wire axis. Our 

previous work on the magnetic properties of the nanowires show that the Cu2+ ions are coupled via a small 

exchange interaction, successfully modelled by density functional theory28, which results in a Curie-Weiss-

dominated magnetic response down to low temperatures. Coupled with our optical absorption analysis, this 

result confirms the integrity of the material and the absence of impurities, e.g. copper oxides.  Although the 

nanowires had some directionality, preferentially growing between the electrodes due to the carrier gas flow, 

the devices are most appropriately described as consisting of a nanowire network. Many nanowires did not span 

fully between the electrodes and many were intertwined. The effect of the nanowire network on the transport 

properties will be discussed in detail later. 

 

Figure 1| Manufacturing nanowire transistors. a, Organic vapour phase deposition of CuPc nanowires using gradient sublimation in a 

conventional 3-zone furnace. b, photograph of CuPc nanowires growing on and around a substrate. c, 48 devices were prepared onto a 

doped silicon wafer: 8 of each length for 6 channel lengths (5-50 μm), all with a width of 500 μm. d, The devices were back-gated 3-terminal 

transistor substrates made with doped silicon, 300 nm silicon dioxide with 50 nm gold contact. A 1 nm titanium layer was used to help the 

electrodes adhere to the oxide. e, Nanowires were deposited directly onto the substrates using OVPD, with 50 nm CuPc thin film transistors 

also prepared, for comparison, using organic molecular beam deposition. f, Planar metal phthalocyanine molecule. g, Stacking of α-phase 

CuPc on silicon showing the stacking axis lie approximately parallel to the substrate. h, Stacking arrangement of CuPc nanowires in the η-

phase.  i, TEM images of CuPc thin films along with Fourier transform showing a 12.1 Å spacing corresponding to the (001) plane of α-phase 

CuPc. j, TEM images of CuPc nanowire along with Fourier transform showing a 12.0 Å spacing corresponding to the (200) plane of η-phase 

CuPc. This shows that the stacking axis lies along the long axis of the nanowires. 
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For comparison of the transport characteristics, 50 nm thick CuPc thin film devices were also prepared using 

conventional OMBD onto the same substrates (supplementary information). The polycrystalline films were 

deposited at room temperature, forming in the α-phase,42 with a median crystallite size of ~ 40 nm, determined 

using X-ray diffraction. The stacking axis was determined to be parallel to the substrate so, as in the case of the 

nanowire devices, the current preferentially flows in the plane parallel to the substrate. TEM images of the 

nanowires and thin films can be seen in figure 1.i, j, clearly showing the reduced number of structural defects of 

the nanowires. Analysis of the TEM lattice fringes confirms the molecular orientation, with the (001) spacing 

(12.0 Å) visible in the thin films and (200) spacing (11.9 Å) present for the nanowires. 

 

Performance of CuPc nanowire transistors 

We begin by emphasising that all devices were deposited at room temperature and had no post-deposition 

treatment. Some important parameters to consider when analysing the transport in thin film transistors are the 

mobility, threshold voltage, subthreshold swing and on/off ratio. In the standard Shockley FET model the linear 

𝐼𝑑
𝑙𝑖𝑛 and saturation 𝐼𝑑

𝑠𝑎𝑡currents are given by: 

𝐼𝑑
𝑙𝑖𝑛 = 𝜇𝐶𝑜𝑥

𝑊

𝐿
(𝑉𝑔 − 𝑉𝑡 −

𝑉𝑑

2
)𝑉𝑑     (1) 

𝐼𝑑
𝑠𝑎𝑡(𝑉𝑔) = 𝜇𝐶𝑜𝑥

𝑊

2𝐿
(𝑉𝑔 − 𝑉𝑡)

2
    (2) 

where Id is the drain current,  the mobility, Vd the drain bias, Vg the gate bias, Vt the threshold voltage, L the 

channel length, W the channel width and Cox the oxide capacitance per unit area. The subthreshold swing is 

defined as: 

𝑆 =
𝑑𝑉𝑔

𝑑(𝑙𝑜𝑔𝐼𝑑)
      (3) 

and gives an effective measure of the steepness of device turn-on. 

Figure 2 shows the typical transfer and output curves for CuPc nanowire and thin film transistors with a channel 

length of 50 μm. Depending on the CuPc polymorph, the devices exhibit very different input-output 

characteristics. There are several advantages for the nanowire devices. Apart from the low operating voltages, 

the most striking is the steep turn-on or small subthreshold swing. 
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Although the characteristics shown are for one transistor, the devices were found to be highly reproducible 

(supplementary information). The average device characteristics from all 48 nanowire devices are shown in table 

1, along with the parameters extracted from CuPc thin film devices. The characteristics for both sets were 

determined in the saturation regime, at a source-drain bias -10 V for the nanowire and -40 V for the thin film 

devices. It should also be noted that the nanowire device had a very weak dependence on the channel length 

(supplementary information). This most likely arises due to the fact that in longer channel length devices the 

nanowire network changes greatly, with a larger number of wires no longer spanning the full length of the 

Table 1| Comparison of CuPc thin film and nanowire transistors. 

 CuPc thin film transistor CuPc nanowire transistor 

 Median MAD Median MAD 

Threshold voltage, Vt (V) -10 2.7 -2.1 0.5 

Mobility,  (x10-3 cm2/Vs) 0.4 0.1 3.6* 0.4 

Hysteresis 4.8 0.9 0.2 0.1 

On/off ratio  104 - 105 - 

Subthreshold slope, S (V/decade) 4.3 0.8 0.9 0.4 

Threshold voltage, mobility, hysteresis, on/off ratio and subthreshold slope for CuPc thin film devices with a source-drain bias of -40V 
and CuPc nanowire devices with a source-drain bias of -10V. MAD = median absolute deviation. * This value needs correcting by a 
factor of ~150, as discussed in the text. 

Figure 2| Device characteristics at room temperature. a,b, Typical output and 

transfer curves for CuPc nanowire transistors with a channel length of 50μm. c,d, 

Typical transfer and output curves for 50nm CuPc thin film transistors grown 

onto the same substrates. The red line in figure b shows the transfer curves 

measured for CuPc nanoribbons.21 
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contact. The contact resistance was not observed to be significant in these devices, with no sub-linear rise of the 

drain current observed. 

Table 1 reveals that the nanowire devices have much lower threshold voltage, hysteresis and subthreshold 

swings. The devices exhibit fairly similar mobilities but this value of the mobility constitutes a lower limit since 

the channel width for the devices is much less than 500 μm due to incomplete coverage of the nanowires over 

the whole channel. This will be discussed in more detail in later sections but it is worth pointing out that even 

without this correction the nanowire devices are attractive candidates for applications due to their ease of 

deposition, low voltage operation and low subthreshold swing – comparable to single crystal pentacene.43 

One of the problems with conventional organic transistors is the non-linearity of the transfer curves which arises 

due to the large trap densities. This type of curving is clearly seen in the nanocrystalline CuPc thin film 

characteristics, and is somewhat expected due to the large number of grain boundaries. These non-linearities 

can make it difficult to extract values for the mobility and threshold voltage as the conventional FET models rely 

on a linear relationship of the transfer curves in the linear regime and a quadratic dependence in the saturation 

regime. The linear behaviour is clearly seen in the nanowire characteristics making these devices of particular 

interest for understanding the fundamental transport mechanisms. 

 

Stability of CuPc nanowire devices 

CuPc has been used as a dye since the 1930’s not just due to its optical properties but also for its stability, which 

also makes it an attractive molecule for electronics. As oxidising agents are known to have a significant effect on 

the transport properties of CuPc44 the effects of ageing have been explored in both the CuPc nanowire and thin 

film devices. A selection of devices was left in air, in the dark, for 6 months and the transistor characteristics re-

measured. It can be seen from figure 3 that in the thin films, ageing caused a dramatic shift in the threshold 

voltage from -10(±3) V to +30(±12) V. The threshold voltage shift is most likely due to additional internal 

potential drops derived from the absorption of oxidising gases, an effect greatly influenced by crystallinity and 

morphology as the concentration of absorption sites is related to structural defects including surfaces such as 

grain boundaries.  In particular, nanowire devices could have much greater stability due to the reduced number 

of grain boundaries. This was found to be the case, with a much smaller shift of the average threshold voltage 

from -5.5(±0.9) V to -3.8(±1.6) V observed. The mobility in all devices was found to have increased slightly by 

~ 0.14x10-3 cm2/Vs after 6 months. The exceptional stability of the nanowires makes them candidates for 

commercial applications. 
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Temperature-dependent transport 

To explore further the hole transport in the transistors, we measured the temperature dependence of the device 

performance. The devices were cooled using a Quantum Design Physical Properties Measurement System 

(PPMS), and kept in the dark under a vacuum of ~10-4 mbar. Figure 4 shows the transfer curves for the thin film 

and nanowire devices, with the source-drain bias held at -10 V, for a range of temperatures. It can be seen from 

figure 4 that the nanowire devices have better device characteristics with much weaker temperature 

dependence, much lower threshold voltages, much faster turn-on’s (low subthreshold swing) and much higher 

 
Figure 4| Temperature dependence of the devices. Transfer curves for CuPc a, thin film and b, nanowire transistors taken at a range of 

temperatures for Vd = 10 V. The extracted device parameters; c, subthreshold swing, d, threshold voltage, e, mobility; are shown as a function 

of temperature. From e, the Arrhenius plot of the mobility, activation energy was extracted. f, A comparison of the activation energies of the 

mobility for (Cu, Fe, Co, H2)Pc thin films as well as (Cu, Co)Pc nanowire transistors. 

 

 

 
Figure 3| Stability of copper phthalocyanine. Effect of ageing on the a,b, 

threshold voltage and c,d, mobility of CuPc a,c, thin film and b,d, nanowire 

transistors.  
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currents at low temperature. The weaker temperature dependence appears not just in the currents but also in 

the other parameters: as the devices are cooled the threshold voltage increases, the subthreshold slope 

increases and the current decreases much faster for the thin film counterparts. The thermally activated 

behaviour observed is typical of conventional organic devices in which the transport is dominated by traps. This 

becomes more apparent when the mobility is plotted against 1/T, following the conventional Arrhenius 

behaviour, see figure 4.f. The activation energy is only weakly dependent on the gate bias (supplementary 

information) for both sets of devices, suggesting that the transport is dominated by a discrete trap energy45. As 

expected from the increased disorder, the activation energy for the thin films ~0.23 eV is much larger than that 

for the nanowires ~0.09 eV. As the nanowires are highly crystalline one may expect to see a weak temperature 

dependence at high temperature – signatures of band-like transport, which has been previously observed and 

modelled for highly crystalline molecular semiconductors.46-48 This was not observed in these devices as the 

transport occurs across a nanowire network in which hopping between the nanowires is strongly temperature-

dependent. The activation energies shown in figure 4 were extracted for temperatures below 250K where this 

effect is less significant (see supplementary information).  

One property that makes metal Pc’s particularly interesting and useful as organic semiconductors is that these 

molecules host different types of central metal ions, allowing control of electronic, optical and magnetic 

properties via the filling of their outer (generally d) orbitals. This has been studied theoretically and there are a 

few experimental reports discussing such control in the context of magnetic properties.49-51 Determining the 

effect of the d-orbitals in thin film transistors with a large number of structural defects is, however, extremely 

challenging.52, 53 To highlight this, Co, Fe and metal-free H2Pc devices were prepared using the same deposition 

parameters as the CuPc thin films. The transistor characteristics were found to be much more non-linear with 

the activation energies varying between 0.23 – 0.34 eV and the mobilities by up to an order of magnitude 

(supplementary information). The increased variability suggests that the d-orbitals may have a strong influence 

on the transport in phthalocyanines, but to access the intrinsic materials properties a more ideal system with 

reduced defects would be needed. To address this, we measured the transport properties of CoPc nanowire 

transistors, prepared using the same vapour deposition conditions and found to have the same structure as CuPc 

(see supplementary information). Thus, the preparation of self-assembled nanostructures presented here is not 

unique to CuPc but can also be applied to other MPc’s. The CoPc nanowire devices exhibited almost identical 

characteristic to the CuPc nanowire devices, shown in figure 4f. Contrary to what was observed in the MPc thin 

film devices and perhaps expected based on knowledge of the transition metal-dependent magnetism, the gated 

charge transport is not strongly dependent on the transition metal at the centre of the phthalocyanine 

molecules. We therefore suspect that the changes in the thin film characteristics were most likely arising from 

the lower purity of the other phthalocyanines, with the self-assembled growth of the nanowires helping to 

reduce the number of impurities, in analogy with the purification which occurs upon whisker growth and zone 

refinement in metallurgy, and also because post-growth diffusion of contaminants is reduced in the absence of 

grain boundaries.  
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Nanowire image analysis 

We have mentioned previously that the extracted values of the mobility for nanowire devices  actually represent 

lower limits because the nanowires do not cover the entire channel width. As the conductance scales with 

channel width, the nanowire network geometry will have a dramatic effect on the apparent mobility. We 

explored the nanowire coverage using scanning electron microscopy, with typical images of a device shown in 

figure 5. It can be seen that there exist regions with a large density of nanowires as well as regions which are 

very sparsely covered. Apart from direct conduction paths, with one wire spanning the full channel length, there 

are also indirect conduction paths, which affect the channel width. Furthermore, the nanowires do not take a 

direct path between the electrodes, which means that the channel length also needs correcting.  Several 

methods were employed to determine the coverage of nanowires: full wire detection, counting pixel-by-pixel; 

regional sampling and extrapolation; and line-by-line counting and extrapolation (full details of the image 

analysis can be found in the supplementary information). 

The last factor that needs to be taken into account is the capacitance of the devices. When extracting a value 

for the mobility, the capacitance per unit area was assumed to be associated with a uniform dielectric of 

constant thickness. This assumption is incorrect because a significant fraction of the semiconducting material 

which connects the source and drain contact is not in direct contact with the dielectric surface and therefore 

also separated from it by either an air or vacuum gap, depending on the measurement environment. Details for 

correcting the capacitance can be found in the supplementary information. 

The resulting correction factors are estimated to increase the likely mobility as follows: channel width x27; 

capacitance x2; continuous paths x2; indirect paths x√2. The cumulative correction is therefore x153. Applying 

this correction to the mobility of the nanowire devices suggests that the mobilities are actually in the region of 

0.6 cm2/Vs. This value is larger than that reported for both CuPc nanoribbons23 and similar to that reported in 

CuPc single crystals.29 What is particularly noteworthy about this mobility value is that the gated medium in our 

devices is a nanowire network, with charge hopping between wires. Therefore the mobility in the individual 

nanowires is significantly higher than 0.6 cm2/Vs, a value itself competitive with other organic semiconductors, 

 

Figure 5| Image analysis of nanowire coverage. Wire width estimates: a, and c, 
high resolution scanning electron micrograph of low and high wire density regions 
respectively, b, low resolution scanning electron micrograph of complete NW 
device, d, and f, instantaneous pixel intensity cross-sections at marked locations 
on a, and c, and e, summary of all wire widths from complete device. 
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as will be discussed, but particularly impressive considering the ease of fabrication and the simple device 

architecture. 

 

Performance of organic transistors 

The advantage of CuPc nanowire transistors over conventional organic devices is their ease of deposition, low 

operating voltage and high stability. When taking into account the correction factors above, the extracted 

mobility is competitive with many other organic devices, particularly considering that these devices were 

prepared on conventional substrates with a silicon dioxide interface, known to lead to a large interface trap 

density. To underscore the performance of the nanowire devices, the threshold voltage, subthreshold slope and 

mobility of some of the leading organic semiconductors used in transistors are compared in figure 6, all with 

SiO2 as the dielectric interface.15, 43, 54-62 It can be seen that the low threshold voltage and subthreshold swing of 

the nanowire transistors puts them on the same level as polycrystalline pentacene54, 58 and single crystal TIPS-

pentacene59 and rubrene54, 56 devices. The mobility is similar to that of polycrystalline pentacene, which is one 

of the most popular systems for organic thin film transistors, and not far behind that of single crystal pentacene 

and rubrene. As the mobility of individual wires is expected to be significantly higher than that obtained for the 

network devices the mobility could exceed that of the leading organic semiconductors. 

 

As was already mentioned the mobility of the nanowire devices is similar to that of single crystal CuPc but the 

devices exhibit much lower threshold voltages. It is also worth pointing out that these devices perform much 

better than the previously reported CuPc nanoribbons, particularly when it comes to the subthreshold slope23. 

To the best of our knowledge, there is currently only one other report of (network-based) nanowire transistors 

that have been employed in a similar way to that reported in this paper. These devices based on HTP, however, 

 

Figure 6| Performance of CuPc nanowire devices. Comparison of the mobility, 

threshold voltage and subthreshold swing for some of the most studied, and 

currently most promising, organic materials used in field-effect transistors. 
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exhibit very high subthreshold slopes and low mobilities. A more detailed comparison of the performance of 

different organic thin film transistors can be found in the supplementary information. 

  

Conclusions 

Employing the simple method of gradient sublimation we have shown that it is possible to create self-assembled 

nanowire transistors with low threshold voltage, subthreshold slope and good mobility. We show a method for 

analysing nanowire devices, which provides to a reasonable degree correction factors for the channel width and 

length, applicable to other network transistors. After correcting for effective dimensions and the capacitance, 

the mobility is estimated to be 0.6 cm2/Vs on conventional Si/SiO2 substrates, a value comparable to single 

crystal CuPc devices and polycrystalline pentacene. The mobility for individual nanowires is likely to be much 

higher than this and could exceed that of leading organic single crystals.  After storage for 6 months, the 

nanowire devices show little degradation, demonstrating their practical suitability. Exploring the temperature 

dependence of CuPc along with other Pc’s, we showed that the transport is dominated by structurally-induced 

traps. Temperature dependent transport measurements show that the effective trap depth is significantly 

reduced in nanowire devices, compared to thin films, making them interesting for the study of fundamental 

transport mechanisms. Employing the same growth conditions, we show that it is possible to deposit other 

MPc’s, and transport analysis of CoPc devices suggests that the d-orbitals have a much weaker effect than 

suggested by thin film devices. Finally, the similarities of the random network formed by the nanowires between 

source and drain to that of neural circuits suggests further studies to consider applications for neuromorphic 

computing.35, 36 

 

Methods 

Substrate fabrication 

Doped crystalline silicon wafers were cleaned in a sulphuric acid (H2SO4)-hydrogen peroxide (H2O2) solution and 

hydrofluoric (HF) acid to remove any surface oxide, before being rinsed in DI water and blown dry with dry 

nitrogen gas. A 300nm SiO2 layer was deposited at 300°C using plasma enhanced chemical vapour deposition 

using a multi-chamber parallel plate system from MVSystems, with 13.56 MHz radio frequency source. 1nm 

titanium, followed by 50nm of gold, was then deposited using a thermal evaporator and conventional 

photolithography techniques. 

 

OMBD Sample growth 
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MPc films were deposited using conventional organic molecular beam deposition (OMBD), using a commercial 

Kurt J. Lesker SPECTROS system. Commercial powders, purchased from Sigma-Aldrich, were purified twice using 

conventional gradient sublimation in a vacuum of ~10-2 mbar and nitrogen carrier gas. 50 nm films, deposited 

at 0.5 Å/s, were grown onto silicon, glass and bottom-gate, bottom-contact transistors. The depositions were 

performed using an effusion cell, with a chamber base pressure of 3x10-7 mbar, at room temperature. The 

substrates were rotated during the deposition to ensure uniform film growth. The samples were then stored in 

nitrogen.  

 

OVPD Sample growth 

The OVPD system consists of a quartz tubular chamber (2 m long and 4 cm in diameter) inserted into a three-

zone Elite furnace where the temperature of the individual zones (each ~33 cm in length) can be independently 

controlled. The flow of the nitrogen carrier gas is controlled by a variable area flowmeter giving a rate of 1 

litre/minute. The base pressure of the chamber is ~10-2 mbar before introducing nitrogen gas and increases to 

10 mbar during the growth. The (Cu,Co)Pc powder (Aldrich) was twice purified using gradient sublimation. The 

temperature of the furnace at the first, second, and third zone during deposition is 480, 320, and 250 °C, 

respectively. Growth times are reported from the moment the heating is started from room temperature 

conditions, so that the final source temperature is attained after a growth time of 60 min. 

Conventional 3-terminal bottom-gate, bottom-contact transistor structures were placed in the region of the 

nanowires, left for up to 72 hours to allow time for the nanowires to cover a large portion of the substrate area. 

Each substrate consisted of 48 devices: 8 devices for 6 channel lengths ranging from 5 to 50 μm, all with a 

channel width of 500 μm. The devices had a 300 nm silicon dioxide layer, prepared on a p+ doped silicon 

substrate, with 50 nm gold contacts deposited using conventional photolithography techniques and thermal 

evaporation. A thin 1 nm titanium layer was used to help the electrodes adhere to the oxide surface. 

 

Electron Microscopy 

The morphology of the samples on silicon was investigated with a LEO 1525 Gemini FEGSEM (5kV), on samples 

coated with a thin (10-15 nm) chromium layer.  High resolution images of MPc’s , deposited directly onto Cu 

grids, were obtained with a JEOL 2010 TEM (200 kV). 

 

Electrical characterisation of devices 

Current-voltage (IV) measurements were carried out using a Keithley 4200 semiconductor characterisation 

system (SCS) with 4 source-measure units (SMUs), each coupled to a pre-amplifier allowing sub-fA current 
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resolution. To reduce noise, room temperature measurements were performed in conjunction with a Signatone 

shielded probe station using triax cabling. To measure the transistors at lower temperatures the devices were 

cooled using a quantum design PPMS system at a rate of approximately 20 K/hour. 
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