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Extracellular phosphate is crucial for many
bodily functions, including skeletal develop-
ment, energy metabolism, cell signalling and
the regulation of protein synthesis. Body phos-
phate homeostasis is determined by the regula-
tion of intestinal uptake of dietary phosphate,
renal phosphate reabsorption and the exchange
of phosphate between extracellular and bone
storage pools. On a day-to-day basis, phosphate
balance is achieved largely through the control
of phosphate reabsorption in the proximal
tubule: in the steady state, renal phosphate
excretion reflects dietary intake, and daily uri-
nary phosphate excretion correlates with its
absorption from the diet.

Disturbances in phosphate homeostasis can
have important clinical consequences.
Hyperphosphataemia is a common and serious
complication of chronic renal failure (CRF),1 lead-
ing to secondary hyperparathyroidism, and
increased cardiovascular morbidity and mortality.
Maintaining a normal plasma phosphate concen-
tration (and calcium-phosphate solubility prod-
uct) is critical to long-term survival in CRF.2

However, targeting the kidney to prevent hyper-
phosphataemia in CRF is made difficult by the
progressive decline in renal function. For this
reason, attention has been focused on developing
gut-related therapies to reduce plasma phosphate

levels in patients with CRF. The mainstays of this
approach are dietary restriction and/or the use of
dietary phosphate binders. However, these treat-
ments can lead to, on the one hand, malnutri-
tion, and on the other, can contribute to
accelerated vascular calcification. A more effec-
tive strategy would be to inhibit intestinal phos-
phate transport directly. Hypophosphataemia is
less common clinically, but can occur as a conse-
quence of malnutrition, malabsorption or inher-
ited disorders affecting renal phosphate
reabsorption, such as hypophosphataemic rick-
ets, X-linked hypophosphataemia and tumour-
induced osteomalacia (TIO).

Phosphate transporters
Normal phosphate balance utilises three sodium-
dependent phosphate transporters (NaPi-IIa, NaPi-
IIb and NaPi-IIc) that are differentially expressed
at the brush border membrane (BBM) of renal and
intestinal epithelial cells (see Figure 1). These
transporters are members of the solute carrier
family SLC34.3

In the kidney, the isoform NaPi-IIa is localised
throughout the proximal tubule (S1–S3 seg-
ments), with highest expression in the S1 seg-
ment.4,5 Numerous studies over the last 15 years
have established that this protein is the major
transporter involved in renal phosphate reabsorp-
tion, and that NaPi-IIa possesses molecular motifs
responsible for its rapid regulation by endocytosis
and exocytosis.6,7 Parathyroid hormone (PTH) and
dietary phosphate are the major regulators of
NaPi-IIa; however, NaPi-IIa has also been shown
to be regulated by other circulating factors,
including vitamin D, growth factors, glucocorti-
coids and thyroid hormone.6 More recently, a
group of proteins known as phosphatonins has
been identified, which, like PTH, can cause phos-
phaturia by inhibiting NaPi-IIa.8

Another renal isoform, NaPi-IIc, is expressed
only at the BBM of the S1 segment of the proxi-
mal tubule.9,10 Originally, NaPi-IIc was thought to
play a role in phosphate reabsorption only during
early growth and development, since its expres-
sion level seemed to depend on the age of the
animal.10 However, recent re-evaluation of this
transporter in renal phosphate handling has
shown that in adult rodents it is regulated by
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Figure 1. Currently identified proteins responsible for phosphate transport across
renal and intestinal epithelia. Arrow size represents the relative contribution of each
transporter to phosphate transport across the brush border membrane (BBM). All
transporters shown at the BBM are sodium dependent. The transporter responsible
for efflux of phosphate from these cells has not yet been identified 
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PTH,11 dietary phosphate,12,13 dietary magne-
sium,14 metabolic acidosis,9 and the phosphatonin
FGF-23.15 Importantly, changes in NaPi-IIc protein
levels occur over a much longer time period than
NaPi-IIa, and the mechanisms of internalisation
are also different.11–13 Interestingly, recent gene
analysis studies have identified NaPi-IIc as the
genetic cause of hereditary hypophosphataemic
rickets with hypercalciuria (HHRH).16,17 From
these studies, and the finding that heterozygous
mutations in NaPi-IIa do not result in changes in
phosphate excretion,18,19 it has been proposed that
NaPi-IIc plays a more important role in phosphate
homeostasis in man. In contrast, studies using
NaPi-IIc knockout mice suggest that this trans-
porter is more involved in the calcium/vitamin D
axis, and that in rodents it plays only a minor role
in phosphate homeostasis.20 These findings indi-
cate that the relative contribution of NaPi-IIa and
NaPi-IIc to renal phosphate reabsorption, and
thus phosphate homeostasis, is species specific.21

In the small intestine, the isoform NaPi-IIb is
believed to be the rate-limiting step for phosphate
absorption.3,22 Dietary phosphate and 1,25
(OH)2D3 (1,25-dihydroxyvitamin D3) and are
thought to be the most important physiological
stimuli of intestinal phosphate absorption,3,23

although epidermal growth factor,24,25 glucocorti-
coids,26,27 oestrogens28 and systemic metabolic aci-
dosis29,30 can also affect intestinal phosphate
absorption. Interestingly, the profile of phosphate
absorption along the rat and mouse small intes-
tine display striking differences.31,32 The profile in
the rat is much closer to that reported in man,
making the rat a more appropriate animal model
in which to study intestinal handling of phos-
phate. Indeed, there is growing recognition of the
role of the gut in phosphate balance, especially
when this is disturbed, as in renal failure; how-
ever, compared with the kidney, relatively little is
known about the mechanisms and control of
intestinal phosphate absorption.

Recent findings suggest that PiT1 and PiT2 pro-
teins, members of the SLC20 family, are also
involved in phosphate homeostasis. These pro-
teins were originally identified as receptors for
retroviruses, but have subsequently been shown
to mediate sodium-dependent phosphate trans-
port. In this context, they were originally consid-
ered to be located at the basolateral membrane
(BLM) of proximal tubule cells and enterocytes,
where they were thought to mediate the influx of
phosphate from blood, so as to maintain cellular
phosphate levels.33,34 However, studies have
shown that both PiT1 and PiT2 are expressed at
the BBM of renal and intestinal epithelia,35,36 and
that changes in dietary phosphate load can affect

the level of PiT2 protein in these tissues.35,37 The
finding that renal PiT2 (and PiT1) mRNA is also
increased in metabolic acidosis9 provides further
evidence for the involvement of this class of trans-
porter in renal phosphate handling. These find-
ings highlight the need to investigate the role of
these transporters in normal and abnormal phos-
phate homeostasis.

Phosphatonins
Recent attention has focused on the novel circulat-
ing factors known as phosphatonins, and their role
in phosphate balance. Phosphatonins are bone-
derived phosphaturic proteins that rapidly reduce
plasma phosphate concentration. They were first
identified in plasma and bone tumours from
patients with TIO, a disorder causing hypophos-
phataemia and renal phosphate wasting.38

Phosphatonins have since been
detected in diseases that are pheno-
typically similar to TIO such as X-
linked hypophosphataemic rickets.
The phosphatonins of current inter-
est are fibroblast growth factor 23
(FGF-23),39 secreted frizzled related protein 4 (sFRP-
4),40 and matrix extracellular phosphoglycoprotein
(MEPE).41 FGF-23 is the most studied phospha-
tonin to date, and has been shown to require the
associated co-receptor Klotho for its cellular
actions.42 FGF-7 is the most recent phosphaturic
growth factor to be isolated.43,44

Studies have established that the hypophos-
phataemic action of FGF-23, sFRP-4 and MEPE is
due, at least in part, to reduced NaPi-IIa protein
expression.8 Recent evidence indicates that the
small intestine is also a target for phosphatonin
action. The hypophosphataemic action of FGF-23
involves both reduced expression of NaPi-IIa and
suppression of renal 1,25 (OH)2D3 synthesis,
which itself reduces NaPi-IIb protein expression
and intestinal phosphate absorption.45

Interestingly, studies in our laboratory suggest
that other phosphatonins may more directly
influence intestinal phosphate uptake, as the
inhibitory action of MEPE on intestinal phosphate
absorption is independent of circulating 1,25
(OH)2D3 levels.46 Phosphatonins are, therefore,
likely to have interrelated actions on both the
kidney and small intestine, and are a potential
means of manipulating phosphate balance to
avoid hyperphosphataemia.

Other novel regulators of phosphate
homeostasis
A recent study showed that intraduodenal infu-
sion of sodium phosphate, but not sodium chlo-
ride, promoted renal phosphate excretion within
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20 [Units?].47 The response was not due to altered
plasma levels of phosphate, PTH, FGF-23, sFRP-4,
increased GFR, or a result of any neural reflex. The
authors concluded that raised levels of intestinal
phosphate can trigger the release of a phospha-
turic factor from the intestinal mucosa. This find-
ing raises the question whether this phosphaturic
factor can also affect intestinal phosphate trans-
port, as well as wider issues of the role of gut-renal
crosstalk in renal phosphate handling following
changes in dietary intake of phosphate. 

The Ca2+-sensing receptor and
phosphate transport
The Ca2+-sensing receptor (CaSR) was first
localised to chief cells in the parathyroid gland,
where it controls PTH secretion by detecting low
levels of extracellular calcium and transducing this
signal into increased PTH release. The receptor is
also sensitive to other divalent (for example,
Mg2+) and trivalent cations. CaSR has also been
found in both renal and intestinal epithelia,48,49

and recent studies have provided evidence that the
CaSR might also play a more direct role in the reg-
ulation of renal phosphate handling. Short-term
intravenous infusion of the calcimimetic R-568
decreased, whereas intravenous administration of
the calcilytic NPS 2143 increased, phosphate excre-
tion.50,51 The fact that changes in dietary phosphate
alter expression of both NaPi-IIa and the renal
CaSR has led to the suggestion that co-regulation
of CaSR and NaPi-IIa could be involved in the ‘fine
tuning’ of phosphate reabsorption along the proxi-
mal tubule.52 Moreover, 1,25 (OH)2D3 has been
shown to regulate the renal CaSR,53 and CaSR acti-
vation can blunt PTH-induced inhibition of renal
phosphate absorption.54 It has also been shown
recently that the upregulation of NaPi-IIc protein,
seen in response to a high magnesium diet, occurs
directly through stimulation of the renal CaSR.14

Despite the apparent association between CaSR
and renal phosphate transport, little is known
about the role of the intestinal CaSR. It may func-
tion as an amino acid ‘taste receptor’,55 but its
potential role in phosphate homeostasis is
unknown. It is just possible that the actions of
orally administered calcimimetics could involve a
more direct effect on phosphate balance via an
action on the intestinal CaSR, although this needs
to be investigated.

Finally, vascular smooth muscle cells also
express the phosphate transporters already
described, as well as the CaSR. Increased cellular
uptake of phosphate has been implicated in the
process of vascular calcification, and so direct tar-
geting of phosphate transport may have even
wider benefits for CRF n
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