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The hERG (human ether-a-go-go-related gene) encoded potassium ion (K+) channel

plays a major role in cardiac repolarization. Drug-induced blockade of hERG has been

a major cause of potentially lethal ventricular tachycardia termed Torsades de Pointes

(TdPs). Therefore, we presented a pharmacoinformatics strategy using combined ligand

and structure based models for the prediction of hERG inhibition potential (IC50) of new

chemical entities (NCEs) during early stages of drug design and development. Integrated

GRid-INdependent Descriptor (GRIND) models, and lipophilic efficiency (LipE), ligand

efficiency (LE) guided template selection for the structure based pharmacophore models

have been used for virtual screening and subsequent hERG activity (pIC50) prediction of

identified hits. Finally selected two hits were experimentally evaluated for hERG inhibition

potential (pIC50) using whole cell patch clamp assay. Overall, our results demonstrate a

difference of less than ±1.6 log unit between experimentally determined and predicted

hERG inhibition potential (IC50) of the selected hits. This revealed predictive ability and

robustness of our models and could help in correctly rank the potency order (lower µM

to higher nM range) against hERG.

Keywords: hERG inhibitors, trosade de pointes, long QT syndrom, pharmcophore, GRIND, molecular docking,

patch clamp

INTRODUCTION

The human ether-a-go-go-related gene (hERG) encoded potassium ion (K+) channel is an
important component of the pore-forming α-subunits that conduct the rapidly activated delayed
rectifier potassium current (IKr) which is a major repolarization current of the cardiac action
potential (Sanguinetti et al., 1995; Vandenberg et al., 2012).

A prolongation of the cardiac action potential and the QT interval on the surface
electrocardiogram (ECG) has been associated with loss of function mutations in hERG (Yang
et al., 2009; Sun et al., 2013; Zhang et al., 2013) or drug-trapping inside the central cavity of the
hERG potassium channel and thus, may predispose to life-threatening ventricular tachyarrhythmia
“Torsade-de-points” (TdP) (Roden, 2004; De Bruin et al., 2005). Other factors such as,
electrolyte imbalance, ischemia are also reported (Sauer and Newton-Cheh, 2012). Several drugs
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GRAPHICAL ABSTRACT | Integrated ligand and structure based pharmacoinformatic approach for the identification of hERG inhibition potential of New Chemical

Entities (NCEs).

including antibiotics (grepafloxacin Bischoff et al., 2000),
antihistamine (astemizole Zhou et al., 1999), antimalarial
(quinine Sǎnchez-Chapula et al., 2003, halofantrine Nosten et al.,
1993), antipsychotic (sertindole, haloperidol, thioridazine, and
pimozide Alvarez and Pahissa, 2010), and class III arrhythmia
drugs (dofetilide Jurkiewicz and Sanguinetti, 1993 quinidine
Roden et al., 1986) have been withdrawn from the market
(De Ponti et al., 2002; Roden, 2004) due to drug induced QT
prolongation. Furthermore, fifteen percent of drugs still on
the market can cause QT prolongation and 4% are associated
with Torsade-de-points (TdP) arrhythmia risk (data from www.
crediblemeds.org). Moreover, it has been estimated that about
60% of drugs in development show hERG block. Therefore, there
is considerable interest in screening for hERG block amongst
future drug candidates (Redfern et al., 2003; Guth, 2007; Raschi
et al., 2008).

Abbreviations: hERG, human ether-a-go-go-related gene; TdPs, torsades de
pointes; IC50, half maximal inhibitory concentration; NCE, new chemical
entities; GRIND, GRid INdependent molecular Descriptor; LipE, lipophilic
efficiency; LE, ligand efficiency; µM, micromolar; nM, nanomolar; IKr , rectifier
potassium current; ECG, electrocardiogram; ICH, international conference
on harmonization; 2D QSAR, 2-dimensional quantitative structure activity
relationship, 3D QSAR, 3-dimensional quantitative structure activity relationship;
CoMSIA, comparative molecular similarity indices analysis; CoMFA, comparative
molecular field analysis; hQSAR, hologram quantitative structure activity
relationship; PCA, principal component analysis; MIFs, molecular interaction
fields; VRS, virtual receptor site; PLS, partial least square analysis; LOO, leave one
out; SDEP, standard deviation of error prediction; FFD, fractional factorial design;
LV, latent variables; OSM, open source malaria; pIC50, log of inhibitory potency
values; HEK, human embryonic kidney; CHO, chinese hamster ovary; CLACC,
consistently large auto and cross-correlation; FQ, fit quality

The International Conference on Harmonization (ICH), S7A
(Food and Drug Administration, 2001) and S7B (Food and
Drug Administration, 2005a) guidelines regarding technical
requirements for registration of pharmaceuticals for human use
requires preclinical assessment of QT prolongation risk prior to
first administration in human. Although, hERG inhibition and
the resulting risk of QT prolongation does not preclude clinical
development, there are significant costs associated with this since
any drugs that show hERG block must also be assessed clinically
using a thoroughQT/QTc study (Food andDrug Administration,
2005b) Furthermore, a compound without hERG liability is at a
commercial advantage as compared to a competitor compound
known to block the hERG channel.

According to the current guidelines on pre-clinical testing,
the experimental hERG blockade ability of a compound is
typically quantified in terms of concentration of the half-maximal
inhibition (IC50) that is the most simple and amendable way
(Redfern et al., 2003). However, kinetics of the channel, state
dependent binding properties (Lee et al., 2016) and temperature
dependent properties are also important factors in determining
pro-arrhythmic risk assessment (Windley et al., 2018). The
gold-standard method for the assessment of hERG liability is
the patch-clamp electrophysiological assay (Hamill et al., 1981)
on hERG transfected cells. However, this assay is costly, and
not well-suited for extensive screening. Various other strategies
including radiolabeled binding assays (Finlayson et al., 2001;
Chiu et al., 2004), functional assays (Tang et al., 2001), and
rubidium efflux assays (Chaudhary et al., 2006) have been
developed but, these assays often result in significant under
or overestimation of hERG potency when compared with
electrophysiological methods (Hancox et al., 2008).
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To overcome these limitations, several in silico models
including, classification or machine learning approaches (Dubus
et al., 2006; Sun, 2006; Li et al., 2008, 2017; Thai and Ecker,
2008a; Kireeva et al., 2013; Liu et al., 2014; Chavan et al.,
2016; Wang et al., 2016; Sun et al., 2017; Alves et al., 2018;
Lu et al., 2018; Siramshetty et al., 2018; Wacker and Noskov,
2018), pharmacophore models (Cavalli et al., 2002; Aronov,
2005, 2006; Tan et al., 2012; Kratz et al., 2014; Wang et al.,
2016; Chemi et al., 2017), 2D QSAR (Keserü, 2003; Bains et al.,
2004; Seierstad and Agrafiotis, 2006; Song and Clark, 2006)
and 3D QSAR (Ekins et al., 2002; Pearlstein et al., 2003) such
as, comparative molecular similarity indices analysis (CoMSIA;
Pearlstein et al., 2003), comparative molecular field analysis
(CoMFA; Cavalli et al., 2002) and hologram QSAR (hQSAR;
Keserü, 2003) have been developed to assess the pro-arrhythmia
properties of drugs and their derivatives (Raschi et al., 2009).
However, a generic 3D descriptors model on diverse data set of
hERG inhibitors possessing good statistical parameters has not
been reported yet. Here, we aim to develop a protocol using both
ligand and structure based pharmacoinformatics approaches for
the identification of general 3D structural features involved in
hERG inhibition. Toward this goal, various GRid INdependent
molecular Descriptor (GRIND) models have been developed
using a diverse dataset of 207 hERG blockers extracted from
the literature. Compounds with best activity/molecular weight
(Hopkins et al., 2004) and activity/lipophilicity ratio (Leeson and
Springthorpe, 2007; see Figure 1) were selected for building a
pharmacophore hypothesis of hERG liability. Finally, proposed
pharmacophore was validated by testing our identified hits using
whole-cell patch clamp analysis on transfected hERG-CHO cells.
Our model predictions show a difference of 1.6 and <0.1 log
units from the experimentally determined pIC50 values of hits
in the nanomolar (nM) to micromolar range (µM), respectively.
Overall, our model can aid in the correct prediction of the hERG
liability trends of NCEs from nM to µM range.

MATERIAL AND METHODS

Dataset Collection and Refinement
A dataset of 1,428 compounds with known hERG inhibitory
potency (IC50) values were collected from literature databases
including, 938 compounds from the ChEMBL database (Bento
et al., 2013), 140 compounds from the Fenichel database http://
www.fenichel.net/pages/Professional/subpages/QT/Tables/
pbydrug.htm) and 350 compounds from publications by Kramer
et al. and Polak et al. (Kramer et al., 2008; Polak et al., 2009) as
shown in Figure S1.

Inconsistencies in the dataset were removed by the application
of various data refinement steps see Figure S2. Initially, all
duplicates and fragments (molecular weight<200) in the data set
were removed followed by manual correction of stereochemistry
of stereoisomers. In order to remove any bias in the biological
experiments, only those compounds for which hERG inhibitory
potency (IC50) was determined using whole cell patch clamp
technique were shortlisted. However, IC50 values of the selected
compounds against hERG were calculated using two different
mammalian expression system namely, Human Embryonic

Kidney (HEK293) cell lines and the Chinese Hamster Ovary
(CHO). Overall, a strong positive correlation R2 = 0.91 has been
observed between reported pIC50 values of compounds tested
using both HEK293 and CHO cell lines (Kramer et al., 2008;
Polak et al., 2009; Figure S3). Therefore, compounds tested by
whole cell patch clamp experiment using both HEK293 and CHO
cell lines were kept in the final data set of 207 hERG inhibitors
(see Supporting Information SMILES.csv file).

The 3D structures of all compounds in the dataset were
generated using software MOE (I, 2013). Protonation and
correction of partial charges were performed followed by energy
minimization using MMFF94x force field (Halgren, 1996).
Diverse subset selection procedure as reported by K.M. Thai
et al. (Thai and Ecker, 2008b) was used to divide the data set
into 80% training and 20% test set for further GRid-Independent
Molecular Descriptor Analysis (GRIND).

Grid-Independent Molecular Descriptor
(GRIND)
GRIND are alignment-free molecular descriptors, linked with
3D structural conformations of the dataset (Caron and Ermondi,
2007). Therefore, we used standard 3D conformations (Gasteiger
et al., 1990), 3D energy minimized conformations (Gill et al.,
1981), induced fit docking conformations (Sherman et al.,
2006) in open state cryo-structure of hERG (Wang and
MacKinnon, 2017), and molecular conformations obtained from
stochastic search algorithm (Ferguson and Raber, 1989; see
Supporting Information for conformational analysis details)
to develop four different GRIND models. Briefly, molecular
interaction fields (MIF) using four different probes including,
“DRY” (hydrophobic), “N1” as (neutral flat amide: hydrogen
bond donor hotspots), O (sp2 carbonyl oxygen: hydrogen bond
acceptor) and TIP (molecular shape) were computed by software
package Pentacle v 1.07 (Durán Alcaide, 2010). Total energy at
each point was computed as the sum of Lennard-Jones (Elj),
electrostatic (Eel), and hydrogen bond (Ehb) as described in
Equation (1) by iteratively placing each probe at different GRID
steps.

Exyz = 6Elj + 6Eel + 6Ehb (1)

AMANDA algorithm (Durán et al., 2008) was applied for
the extraction of the most relevant MIF using default energy
cut-offs −0.5, −2.6, −4.2, −0.75 values for DRY, O, N1, and
TIP probes, respectively. Consistently Large Auto And Cross
Correlation (CLACC) algorithm was used to encode the pre-
filtered nodes into four auto (DRY-DRY, O-O, N1-N1, TIP-TIP)
and six cross (DRY-O, DRY-N1, DRY-TIP, O-N1, O-TIP, N1-
TIP) correlograms (Durán Alcaide, 2010). These correlograms
depict favorable/unfavorable interactions at Virtual Receptor Site
(VRS). In order to reduce any redundancies in the large GRIND
variable matrix, original variables are converted into default
five principal components (PC) and latent variables (LV) for
principal component analysis (PCA) and partial least square
(PLS), respectively (Mannhold et al., 2006). Each independent
GRIND model was built using Leave One Out (LOO) cross
validation procedure of partial least square (PLS) analysis.
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FIGURE 1 | The hERG blockers with the best activity/molecular weight (ligand efficiency, LE) and activity/lipophilicity (Lipophilic efficiency, LipE) ratios.

Overall, the statistical significance of the model was
determined by q2 and r2 and standard deviation error prediction
(SDEP). The q2 is the predictive ability of a model obtained by
cross-validation procedure. Whereas, r2 is an index of model
fitting on the training set defined as correlation coefficient
of determinent. However, the standard deviation error of the
predictions (SDEP) is an index of the model predictive ability
obtained by cross-validation (Durán Alcaide, 2010).

In order to further probe the robustness of our final
training model, two independent test sets were used for
external validation. Test set I (41 compounds) was obtained
after diverse subset selection procedure of the original
dataset of know hERG inhibitors (Supporting Information

SMILES.csv file) whereas, test set II (8 compounds)
consists of an antimalarial Triazolopyrazine (TP) analogs
possessing hERG liability as shown in Figure 4 taken from
publically available data of Open Source Malaria (OSM)
database (Williamson et al., 2016).

Template Selection for Pharmacophore
In order to correlate VRS with 3D structural features of the
hERG inhibitors, various pharmacophore models have been
developed using selected templates with best activity/lipophilicity

(LipE) and activity/molecular weight (LE) ratio (see details—in
Supporting InformationMethodology section and Figure S4).

Ligand-protein interaction guided pharmacophore models
were developed using docked conformations of the selected
templates (Figure 1) in open state cryo-structure (Wang and
MacKinnon, 2017) and closed state homology model of hERG
proposed by Stansfeld et al. (2007). The complete docking
protocol and pose evaluation procedure have been discussed in
Supporting Information (Figure S5).

Pharmacophore Modeling
The pharmacophoric sites and Gaussian radius size were
used for optimizing the pharmacophoric hypothesis. Each
pharmacophore model was tested against 207 compounds in
our data set by setting an active threshold value of IC50

≤ 40µM. Quality of each pharmacophore was assessed by
calculating Mathews correlation coefficient (MCC) as described
in Equation (2).

MCC =
TP ∗TN − FP ∗ FN

√
(TP + FP)(TP + FN)(TN + FP)(TN − FN)

(2)

Overall, a final model with best statistical parameters was further
used for virtual screening.
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Virtual Screening
Finely selected pharmacophore model was used for virtual
screening of the online ChemBridge database (Groom
et al., 2016; http://www.chembridge.com/internal/) and
Open Source Malaria (OSM) database (Williamson et al.,
2016; https://ses.library.usyd.edu.au/handle/2123/15389).
After pharmacophore screening 4,095 and 300 hits were
obtained by Chembridge and OSM database, respectively.
Various hit selection filters like Lipinski rule of five were
applied to identify drug-like compounds (Lipinski et al., 2012),
prediction of pIC50 values through GRIND model in order
to consider potent compounds. The hERG inhibitory potency
(pIC50) values of obtained hits were predicted by our final
GRIND model using Pentacle software (Durán Alcaide, 2010).
Finally, two compounds including one from ChemBridge (ID:
5931690) and one from OSM database (ID: OSM-S-31) with
predicted IC50 values in nanomolar (nM) and micromolar
(µM) range were selected for experimental evaluation by
whole cell patch clamp technique. The NMR spectrum and
associated data of both selected hits have been provided in
Figures S7, S8.

BIOLOGICAL SECTION

Whole Cell Patch Clamp Assay
Molecular Biology/Cell Culture
Chinese hamster ovary (CHO) cells stably transfected Kv11.1
were purchased from American Type Culture Collection (ATTC
reference PTA-6812). Whereas, the CHO cells were cultured
in Hams F12 nutrient mix (ThermoFisher Scientific, Waltham,
USA) containing 5% fetal bovine serum (Sigma-Aldrich, Sydney,
Australia) and maintained at 37◦C in 5% CO2. All chemicals
were purchased from Sigma-Aldrich (Sydney, Australia) unless
otherwise stated.

Electrophysiology
CHO cells were prepared 24 h before the experiment. The
whole cell patch clamp electrophysiology studies were performed
at 22◦C. Glass capillary patch electrodes with resistance 2–4
M� were pulled with borosilicate glass using vertical two-stage
puller (Harvard Apparatus, Holliston, USA). The pipettes were
filled with internal solution containing (in µM):120 potassium
gluconate, 20 KCl, 10 HEPES, 5 EGTA, 1.5 Mg-ATP and pH
adjusted to 7.2 with KOH. The cells were superfused with external
bath solution that contained (in µM): 130 NaCl, 12.5 glucose, 10
HEPES, 5 KCl, 1 MgCl2, 1 CaCl2, and pH was adjusted to 7.4
with NaOH. The calculated liquid junction potential for these
solutions was −15mV (Barry, 1994) and corrected by adjusting
voltage pulse protocol for all experiments.

The whole-cell patch clamp mode was applied to cells in
the voltage clamp configuration using Axopatch 200B amplifier
(Molecular Devices, Sunny Vale, USA). Current signals were
digitized at 5 kHz, filtered at 1 kHz and stored on IBM-
compatible PC interfaced with a Digidata 1440A analog to digital
converter (Molecular Devices, Sunny Vale, USA). Initial series
resistance values were 2–5 M� which was compensated by at
least 80% in all experiments. Leak subtraction was performed

manually offline using acquisition software pClamp 10.2
(Molecular Devices, Sunny Vale, USA). A reusable microfluidic
device (Dynaflow Resolve, Collectricon, Mölandal, Sweden) with
<30ms solution exchange time (Hill et al., 2014) was used
for drug delivery. With the dynaflow system, different drug
concentrations under laminar flow can be delivered to the
cell.

Compounds Solution
Both test compounds were prepared as a stock solution by
dissolving in DMSO with a final concentration of 0.01% (v/v)
in recording solution. The final concentration of DMSO if below
0.1% (v/v) has no effect on the activity of hERG channel (Walker
et al., 1999).

Voltage Protocol
To measure drug block “Step-Ramp” protocol was used (Crumb
et al., 2016). Cells were depolarized from a holding potential to
−80 to +20mV for 500ms to fully activate the channels. Cells
were again repolarized to−80mV over 250ms.

Data Analysis
For the analysis of drug block Clamp fit 10.2 software (Molecular
Devices, Sunny Vale, USA) was used. Hill equation (Equation 3)
was used for analyzing steady state dose response

y =
1

1+ ([x]/IC50)nH
(3)

Where [x] represents the concentration of compound and nH is
the Hill coefficient (the slope parameter). The IC50 represents the
concentration where there is a 50% blockage of channel current.
Prism software was used for carrying out the statistical analysis.

FIGURE 2 | A plot between first two principal components (PC) illustrating

descriptor space of 166 training set (hollow circles) and 41 test set (filled

circles).
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TABLE 1 | Statistical parameters of four different PLS models developed from GRIND using different 3D conformational inputs.

Conformational

method

Fractional factorial design (FFD) cycle Comment FFD2 (LV2)

Complete variable FFD1 FFD2

q2
LOO

r2 SDEP q2
LOO

r2 SDEP q2
LOO

r2 SDEP

Minimum energy

conformation

0.38 0.51 1.09 0.45 0.56 1.09 0.45 0.56 1.09 Non-consistent with

respect to auto and

cross-correlogram

Stochastic search

conformation

0.34 0.45 1.08 0.42 0.51 1.01 0.46 0.53 0.91 Non-consistent with

respect to auto and

cross-correlogram

Docking

conformations

0.32 0.46 1.12 0.39 0.51 1.08 0.47 0.56 1.41 Non-consistent with

respect to auto and

cross-correlogram

Standard 3D

conformations

0.54 0.62 0.94 0.61 0.67 0.86 0.63 0.69 0.84 Consistent with respect to

TIP-TIP,

DRY-TIP,

and N1-N1

correlogram (Figure 6)

The bold number represents finally selected model.

FIGURE 3 | Plot representing the correlation between q2 and r2 values of the

final GRIND model at different latent variables (LV-1-5).

RESULT

The structural variance of the training data was determined by
principal component analysis (PCA; Wold et al., 1987) using
complete sets of GRIND variables. Principal component scores
of the training data vary from −5.8 to 6.2 as shown in Figure 2.
Also projection of test set I and II reflect a principal component
space. Briefly, principal component scores of first two principal
components of GRIND variables explained only 37% of 3D
structural variance of the dataset and divided it into three main
clusters (I, II and III) as shown in Figure 2.

The chemical scaffolds of compounds in cluster I exhibit
one hydrogen bond donor group that is complementary to O
(carbonyl oxygen) probe at VRS that defines the most relevant
regions for ligand-protein interactions. Compounds in cluster
II exhibit one hydrogen bond acceptor and one hydrogen bond

donor group in respective chemical scaffolds that depicts a
complementary N1 (amide nitrogen) and O (carbonyl oxygen)
probe, respectively at VRS. The remaining compounds in cluster
III contain a maximum of three hydrogen bond acceptors and
four hydrogen bond donor groups but otherwise cover a diverse
range of chemical scaffolds. One representative compound from
each cluster and the GRIND descriptor features of first two
principal components are shown in Figure S10.

The importance of hydrogen bonding properties in hERG
inhibition is already evident from various investigations (Aronov
and Goldman, 2004; Choe et al., 2006; Farid et al., 2006; Chemi
et al., 2017). However, the impact of the number of hydrogen
bond acceptor and donor groups and their mutual distances in
a given chemical scaffold on the hERG inhibition (IC50) has
not been reported so far. Therefore, in the present investigation,
the impact of number and mutual distances of hydrogen bond
acceptor/donor groups on hERG inhibition potency of diverse
chemical scaffolds has been illustrated with the help of the partial
least square analysis (PLS) of GRid-INdependent molecular
Descriptors (GRIND).

Grid-Independent Molecular Descriptor
(GRIND) Analysis
Partial least square (PLS) analysis using Leave One Out
(LOO) cross-validation procedure (Elisseeff and Pontil, 2003)
on individual set of molecular conformations of the data was
performed to develop four independent GRIND models using
the software package Pentacle v 1.07 (Durán Alcaide, 2010).
However, only the GRIND model that was developed using
standard 3D molecular conformational set of data showed
statistically acceptable results with q2 of 0.54, r2 of 0.62 and
Standard Deviation of Error Prediction (SDEP) of 0.94 (see
Table 1). In order to further improve the statistical parameters
and to remove the respective inconsistent GRIND variable, the
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FIGURE 4 | Experimental and predicted hERG inhibitory potential (pIC50) values of OSM database (test set II).

fractional factorial design (FFD) algorithm (Baroni et al., 1993)
was applied to each model as described by Pastor et al. (Pastor
et al., 2000). Briefly, mutual comparison of statistical parameters
of respective models after 1st and 2nd FFD cycles revealed a
statistically significant final GRIND model with standard 3D
molecular conformations of the data set after 2nd cycle of FFD
as shown in Table 1.

Figure 3 shows a graph between q2 and r2 values of the final
GRIND model up to the fifth latent variables (LV5). It illustrates
a gradual increase in r2 values up to LV5. However, q2 values

showed a decreasing trend after LV2. Therefore, a model with
optimum statistics (q2 = 0.63, r2 = 0.69 and standard error
of prediction (SDEP) = 0.84) was achieved at second latent
variable (LV2), which was further used to correlate the structural
variance of the data in general, and impact of number andmutual
distances of hydrogen bond acceptors and donors in particular,
with the hERG inhibition potential (pIC50).

The plot between experimental vs. predicted hERG inhibitory
potency values (pIC50) of the training set and test set I
(Information SMILES.csv file) and test set II (Figure 4) obtained
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after Leave One Out (LOO) cross-validation (Elisseeff and Pontil,
2003) and external validation procedure (Kiralj and Ferreira,
2009), respectively is shown in Figure 5. All compounds in
training (R2: 0.67) as well as test set I (R2: 0.60) were predicted
within a range of ±1.6 log units between experimental and
predicted hERG inhibitory potency (pIC50) values. However,
one compound of the test set II OSM-S-189 showed an outlier
behavior with a difference of 1.8 log unit differences between
experimental (pIC50: 4.4) predicted (pIC50: 6.2) hERG inhibition
potential. Subsequently, the experimental protocol using whole
cell patch clamp technique also delineates that our model may
overestimate the affinity of drugs with experimentally determined
pIC50 values in the high µM range.

The final GRIND model was used to probe 3D structural
features of the data that might contribute to the drug trapping
phenomena. Briefly, PLS coefficient profiles of auto and cross-
correlograms in Figure 6 illustrates that DRY-DRY, TIP-TIP,
DRY-TIP, and DRY-N1 pairs of variables map the 3D structural
features of the data that play a major role in hERG inhibition
potential (IC50). Whereas, O-N1 and N1-N1 variables depict the
3D structural features of the data that aremore prominent in least
potent hERG inhibitors (IC50: 214–3,000µM).

The highest peak in DRY-DRY auto correlogram in Figure 6

delineates the presence of two hydrophobic regions at a distance
of 14.0–14.4 A◦ in virtual receptor site of hERG inhibitors
exhibiting IC50 values from 0.001 to 86µM. In the present dataset
of hERG inhibitors, this complements the distance between two
or more aryl or aromatic moieties. However, these features are
present at a shorter distance (5.6–6.0 A◦) in virtual receptor site
around least active hERG inhibitors. Similarly, the highest peak
in TIP-TIP auto correlogram in Figure 6 represents the pair of
steric hotspots that define the 3D molecular shape of the hERG
blockers. It elucidates the presence of two steric hotspot regions
at a mutual distance of 20.0–20.4 A◦ around hERG inhibitors

FIGURE 5 | The plot of observed vs. predicted pIC50 values of the test set I

(filled square), test set II (filled diamonds) projected on observed vs. predicted

pIC50 values of the training set (hollow square).

with IC50 values ranges from 0.01 to 300µM. Overall, both DRY-
DR and TIP-TIP variables revealed the presence of polyaromatic
rings on either side of the molecules as shown in Figure 7. It may
point that hydrophobic molecular boundaries, perhaps owe to
the unique shape of the hERG binding site as approximated by
David et al. (Fernandez et al., 2004) by correlating the variation
in hERG inhibition potential of various drugs with the change
in van der Waals hydrophobic surface area of side chain residue
Tyr_652 and Phe_656.

Similarly, DRY-N1 correlogram (Figure 6) maps the distance
of a hydrophobic hotspot from a hydrogen bond donor hotspot
region present at the VRS as shown in Figure 7. It has been
observed that these two contours are present at a distance of
10.8–11.8 A◦ in VRS of highly potent hERG inhibitors with
IC50 range from 0.023 to 0.74µM whereas, in least active hERG
blockers (IC50 > 100µM) these two contours are present at
5.2–5.6 A◦ apart. Overall, our results show that one of the
hydrophobic region (DRY1: yellow hotspots, enclosed by a
circle Figure 7) might represent the most crucial contour as
the distance of other pharmacophoric features including second
hydrophobic region (DRY2), the steric molecular hotspot (TIP1)
and a hydrogen bond donor (N1) contour has been calculated
from this region. Thus, it is tempting to speculate that this
hydrophobic region (DRY1) may provide an anchoring point for
hydrophobic/aromatic interaction and the ligand may change its
conformations in such a way to find complementary interaction
points within binding site of hERG.

Interestingly, the highest negative peak inN1-N1 correlogram
in Figure 6 represents the variables that depict two hydrogen
bond donor contours at a distance of 5.6–6.0 A◦ surrounding
the least potent hERG blockers (IC50 values 252–2,200µM).
Similarly, the most negative correlogram for O-N1 in Figure 6

illustrates a hydrogen bond acceptor and a hydrogen bond donor
hotspot region, respectively at a mutual distance of 8.4–8.8 A◦

surrounding the data with hERG inhibition potential (IC50) value
between 16 and 240µM. Both the N1-N1 and O-N1 pair of
probes have been identified surrounding 60% of compounds
present in cluster III of PCA plot (Figure 2). These compounds
exhibit 1–3 hydrogen bond acceptors and 1–4 hydrogen bond
donor groups within diverse chemical scaffolds that complement
respective N1-N1 and O-N1 hotspot regions as shown in
Figure 8. However, none of the compounds in cluster I or
cluster II of PCA plot (Figure 2) show a N1-N1 or O-N1 feature
mainly due to the absence of second hydrogen bond donor
and a hydrogen bond acceptor group within respective chemical
scaffolds. Thus, it reflects that presence of two hydrogen bond
acceptor groups in NCEs that complements N1-N1 hotspots
of hydrogen bond donor probes at a distance of 5.6–6.0 A◦

may reduce the hERG inhibition potential. Also, one hydrogen
bond donor group and one hydrogen bond acceptor group
that complement to O-N1 contours at a distance of 8.4–8.8 A◦

might assist in reducing hERG liability. However, our results also
emphasize that presence of one hydrogen bond acceptor group at
a certain distance from a hydrophobic group within a chemical
scaffold may increases the hERG liability (IC50). This is evident
from hydrophobic (DRY: yellow) and hydrogen bond donor (N1:
blue) contours (Figure 8) at a distance of 10.8–11.8 A◦ in virtual
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FIGURE 6 | PLS co-efficient correlogram plot representing the GRIND variables exhibiting direct (positive values) and inverse(negative values) correlation with hERG

inhibitory potency(pIC50) values.

FIGURE 7 | Shows the most relevant regions identified by GRIND model for ligand-hERG interaction. The contours define the virtual receptor site (VRS). DRY-DRY

(yellow contours) representing the mutual distance of 14.0–14.4 A◦ between two hydrophobic molecular interaction fields (DRY1 and DRY2), TIP-TIP (green contours)

feature showing a distance of 20.0–20.4 A◦ between two steric hotspots (TIP1 and TIP2), DRY-TIP representing a distance of 18.4–18.8 A◦ between hydrophobic

molecular interaction field (DRY1: yellow) and steric hotspot (TIP2: green). DRY-N1 representing hydrophobic molecular interaction field (DRY1: yellow) at a distance of

10.8–11.8 A◦ from amide nitrogen representing hydrogen bond donor feature (N1: blue contours) that contribute positively to hERG blockage potential (pIC50).

Interestingly, the molecular features mapped by DRY-DRY correlogram complement the molecular features translated by the highest peak of DRY-TIP

cross-correlogram peaks shown in Figure 6. Both DRY-DRY and DRY-TIP auto and cross-correlograms corresponds to the hydrophobic moieties attached at both

sides of the linker region.

receptor space of all compounds in the present dataset of hERG
inhibitors.

Template Selection for Pharmacophore
Models
LipE profiles revealed that MK499, E4031, Dofetilide, and
Trimethoprim showed LipE values of ≥5, logP between 0.4
and 3.0 and hERG inhibition potency (IC50) of 0.001–1µM
(Figure S4). This is in line with the already established thresholds
of LipE and logP for the effectively transported drugs against

therapeutic targets by Freeman-Cook et al. (Freeman-Cook et al.,
2013). Therefore, MK499, E4031, Dofetilide, and Trimethoprim
have been selected as templates for building pharmacophore
based binding hypothesis of hERG.

While LipE normalizes for the lipophilic bias in potency
description, ligand efficiency (LE) simply corrects for the
size of a molecule by dividing the binding free energy
of a compound by its heavy atom count. This approach
is normally used in fragment-based drug design to select
those fragments, which show optimal fit within the binding
cavity of a protein/channel. Reynolds et al. (Reynolds et al.,
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FIGURE 8 | Shows 3D structural features of least active hERG inhibitors

depicted by N1-N1 (blue contours) O-N1 (red and blue contours) PLS

coefficient correlograms.

2007) have shown that LE is generally biased toward smaller
molecules. Therefore, the normalized size independent fit quality
(FQ) score of the data set was assessed (as explained in
Supporting Information Equation 5) MK499, E4031, Dofetilide,
and Trimethoprim showed maximum FQ score (>1) which
indicate optimal fit of these compounds within the bonding
cavity of hERG channel (Figure S4). In order to remove
any bias in the pharmacophore template selection criteria,
here we also included those compounds exhibiting LipE
> 4.0 and the LE > −0. 39 Kcal/mol/HA and FQ >

1 for pharmacophore query generation. These include 9-
Hydroxy-risperidone, Benperidol, Droperidol, Norastemizole,
Vesnarinone, BMCL-1835-4, Risperidone, Haloperidol, and
Glycerol-nonivamide as shown in Figure 1. In order to probe
most probable binding conformations of selected templates
for building a pharmacophore, all 13 selected templates were
docked into the recent cryo-EM structure of the hERG in
its open state Wang and MacKinnon (Wang and MacKinnon,
2017). Additionally, the templates were also docked into closed
conformational state of hERG homology model of Stansfled
et al. (Stansfeld et al., 2007). The complete docking and pose
evaluation protocol is discussed in Supporting Information

Methods section.
Briefly, Table 2 provides an overview of the crucial amino

acid residues interacting with selected templates in open
and closed state of hERG and the GRIND contours that
complement these interactions. However, a detail of the
interaction pattern of selected templates has been provided
in Supporting Information (Molecular Docking section,
Figures S11–S15). Overall, final docking solutions of selected
templates for the open state of hERG mainly occupy the basal
cavity and show hydrophobic, π-cation and π-π interactions
with amino acid residues Tyr_652, Phe_656, Ser_649 and
Thr_623 in one or more subunits of hERG. Interestingly, these
interactions complement the DRY-DRY, DRY-TIP and DRY-N1
probes representing the hydrophobic virtual receptor space
(Figure 7) depicted by PLS coefficient correlogram in Figure 6.
Whereas, in the closed state of the channel, the binding positions

of the templates are shifted near the bottom of the selectivity filter
and carbonyl oxygen of (MK499, Dofetilide, Trimethoprim etc.)
form hydrogen bonding with Ser_624, as shown in Figures S11–
S15. Additionally, π-π interactions between Phe_656/Tyr_652
and aromatic/hydrophobic moieties of templates have been
identified (Figures S11–S15). Overall, these interactions
correspond to GRIND mapped distance between a hydrophobic
group and a hydrogen bond acceptor group within the highly
potent hERG inhibitors as depicted by DRY-N1 correlogram
in Figure 6. The interaction of hydrophobic substitutions with
one of the four concentric rings of Tyr_652 and Phe_656 in the
basal cavity and with Ser_649 and Thr_623 at the bottom of the
pore helix has already been reported for drug trapping within
hERG (Lees-Miller et al., 2000; Mitcheson et al., 2000; Fernandez
et al., 2004). Specifically, the identified binding profiles of E4031,
MK499, dofetilide and 9-Hydroxy Risperidone (Figures S11–
S13) are also supported by previously reported interactions of
these drugs in open and closed conformational state of hERG
(Mitcheson et al., 2000; Dempsey et al., 2014) Thus, these further
qualify the probable binding solutions of templates in open and
closed conformational state of the hERG for pharmacophore
modeling and virtual screening.

Pharmacophore-Based Virtual Screening
(VS)
Finally selected binding solutions of 13 different templates
(Figure 1) in open as well as closed conformations of hERG
were used to build respective interaction profiles guided
hERG inhibition pharmacophores. Prior to validation these
13 compounds were excluded from the whole dataset. Two
statistically significant (maximum true positive and true
negative) models per template in open and closed states of hERG
have been selected for further feature analysis. 24 out of 26
pharmacophore models exhibit two aromatic, one hydrophobic
and one hydrogen bond acceptor features at variable mutual
distances. However, one hydrophobic feature was absent in two
of the models built using Haloperidol template as shown in
Table 3. Overall, only a slight difference in mutual distances
of pharmacophore features in all 26 models has been observed
which mainly reflect the dynamic nature of the complex
physiological system. Additionally, all 26 pharmacophore models
showed similar model statistics Table 3. However, a final
pharmacophore with optimal true positive (TP: 71%), true
negative (TN: 75%), sensitivity (0.72) and specificity rate (0.75)
and Mathews correlation coefficient (MCC: 0.72) as shown in
Table 3 and Figure 9 was selected for further comparison with
GRIND features and virtual screening of validation set.

Experimental Validation
To experimentally test our identified pharmacophore features,
a data set of 458,921 compounds from ChemBridge data base
(Groom et al., 2016) and 405 compounds from OSM database
(Williamson et al., 2016) have been screened against the final
hERG inhibition model. Overall, 4,905 compounds from
ChemBridge database (Groom et al., 2016) and 300 compounds
from OSM (Williamson et al., 2016) screening set have been
identified as hits. Various hit selection filters as described in
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TABLE 2 | Showing importing interacting residues of selected templates in open and closed conformation and their complementary GRIND features.

Sr No Template Interacting residues in recent

Cryo_EM structure in open

conformation state of hERG

Complementary

GRIND contours

Interacting residues in

close conformation state

of hERG

Complementary

GRIND contours

1 MK-499 Met_645, Gly_648, Leu_622 DRY-N1,

DRY-N1

Tyr_652, Phe_656 DRY-DRY

TIP-TIP

2 E4031 Ser_624, Ser_649, Lue_622, DRY-O

Dry-N1

Ser_624, Phe_656 DRY-N1

DRY-DRY

3 Dofetilide Met_645, Tyr_652, Thr_623,

Ser_649

DRY-DRY

DRY-N1

Ser624, Ser649 DRY-N1

4 Trimethoprim Ser_624, Thr_623 DRY-N1 Tyr_623, Ser_624 DRY-N1

5 9OH-Risperidone Tyr_652, Ser_624 DRY-DRY

DRY-N1

Ser_649, Tyr_652 DRY-DRY

DRY-N1

6 Benperidol Ser_621, Tyr_652 DRY-N1

DRY-DRY

Ser_649, Tyr_652 Phe_656 DRY-N1

DRY-DRY

DRY-TIP

7 Droperidol Tyr_652, Ser_624 DRY-DRY

DRY-N1

Ser_624, Ser_649 DRY-N1

8 Norastemizole Ser_624, Tyr_652 DRY-O

DRY-DRY

Ser_624, Lue_622 Gly_648 DRY-N1

DRY-O

9 Vesnarinone Leu_622, Tyr_652 DRY-O

DRY-DRY

Phe_656, Ser_649 DRY-DRY

DRY-N1

10 BMLC_1835_4 Ser_621, Tyr_652 DRY-N1

DRY-TIP

Leu_622, Thr_623 DRY-N1

11 Risperidone Ser_624, Tyr_652 DRY-N1

DRY-DRY

Ser_649 DRY-N1

12 Haloperidol Phe_624, Tyr_652 DRY-DRY

DRY-N1

Ser_624, Phe_656 DRY-N1

DRY-DRY

13 Glycerol-nonivamide Tyr_652, Ser_624 DRY-N1,

DRY-DRY

Ser_649 DRY-N1

Methods section were applied to further prioritize the hits
that result in 340 and 170 hits from ChemBridge (Groom
et al., 2016) and OSM database (Williamson et al., 2016),
respectively. In order to further reduce the number of hits,
hERG inhibition potential of final hit structures from both
ChemBridge and OSM databases has been predicted using
our final GRIND model (data not shown). The applicability
domain of 100 top predicted hits from each of the data sets
was further evaluated by principle components (PC) scores.
The PC scores of 1st two principal components ranges from
−5.0 to 5.0 fitted within the applicability domain of the training
data (−5.8 to 6.2). Finally, one compound from each database
with highest predicted hERG inhibition potential (IC50) was
applied to hERG-CHO cells and pIC50 determined using the
whole cell patch clamp technique. These include ChemBridge
database compound ID: 5931690 and OSM database
compound ID: OSM-S-31 with predicted hERG inhibition
potency of 1.86 nM and 4.7µM, respectively (Figures 10, 11,
respectively).

To access the IC50 for hERG inhibition we used a step
ramp protocol (Crumb et al., 2016) as described in the
Methods. Cisapride, 20 nM, was used as a positive control
and all experiments were performed at ambient temperature.
Drug solutions were prepared according to their predicted
IC50 values from virtual screening protocol. For example, the
predicted IC50 value of ChemBridge database (Db ID: 5931690)
compound was 1.86 nM (Figure 10) therefore 1, 3, 100, 300,
and 1,000 nM concentrations were used. The data in Figure 10C

shows the selected sweeps at equilibrium after the application
of different drug concentrations of compound ID: 5931690 and
the corresponding dose-response curve is shown in Figure 10D.
Similarly, for the OSM database compound (Williamson et al.,
2016; Db ID: OSM-S-31), predicted IC50 value was 4.79µM.
Therefore, 1, 5, 10, and 30µMdifferent drug concentrations were
used. Figure 11C shows the selected sweeps at equilibrium in
response to each dose concentration of OSM-S-31.

The IC50 values of both compounds were calculated by
fitting the Hill Equation (see Methods) to the dose-response
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TABLE 3 | Statistical parameters and mutual pharmacophoric features distances (A◦) of pharmacophore models developed using most probable binding conformations

of selected templates in open and closed state of hERG.

Compound hERG open state conformation model hERG close state conformation model

Model template Model distances A◦ Model

statistics

Model template Model distances A◦ Model

statistics

1 MK-499 Aro 1 Hyd Aro 2 HBA TP: 102/177

TN:75/177

FP:7/32

FN:25/32

MCC = 0.70

Aro1 Hyd Aro.2 HBA TP: 108/177

TN:69/177

FP:6/32

FN:24/32

MCC = 0.71

Aro1 0 5.8 6.6 6.1 Aro1 0 5.3 6.1 5.8

Hyd 5.8 0 7.7 6.3 Hyd 5.3 0 4.7 6.3

Aro2 6.6 7.7 0 8.2 Aro2 6.1 4.7 0 7.2

HBA 6.1 6.3 8.2 0 HBA 5.8 6.3 7.2 0

2 E4031 Aro 1 Hyd Aro.2 HBA TP: 105/177

TN:72/177

FP:9/32

FN:23/32

MCC = 0.69

Aro1 Hyd Aro.2 HBA TP: 105/177

TN:72/177

FP:9/32

FN:23/32

MCC = 0.69

Aro1 0 7.2 5.1 8.1 Aro1 0 6.3 5.4 6.8

Hyd 7.2 0 6.2 5.6 Hyd 6.3 0 5.7 4.3

Aro2 5.1 6.2 0 6.1 Aro2 5.4 5.7 0 5.5

HBA 8.1 5.6 6.1 0 HBA 6.8 4.3 5.5 0

3 Dofetilide Aro 1 Hyd.1 Aro.2 HBA TP:108/177

TN:71/177

FP:8/32

FN:24/32

MCC = 0.69

Aro 1 Hyd Aro.2 HBA TP:110/177

TN:73/177

FP:6/32

FN:26/32

MCC = 0.70

Aro1 0 6.3 6.6 7.3 Aro1 0 8.2 5.1 6.6

Hyd 6.3 0 6.4 5.2 Hyd 8.2 0 4.6 6.8

Aro2 6.6 6.4 0 8.2 Aro2 5.1 4.6 0 6.1

HBA 7.3 5.2 8.2 0 HBA 6.6 6.8 6.1 0

4 Trimethoprim Aro 1 Hyd Aro.2 HBA TP: 99/177

TN:78/177

FP:9/32

FN:23/32

MCC = 0.69

Aro 1 Hyd Aro.2 HBA TP:105/177

TN:72/177

FP:7/32

FN: 25/32

MCC = 0.69

Aro1 0 4.3 5.6 5.3 Aro1 0 4.6 5.1 4.3

Hyd 4.3 0 4.4 5.8 Hyd 4.6 0 3.8 5.2

Aro2 5.6 4.4 0 4.4 Aro2 5.1 3.8 0 5.1

HBA 5.3 5.8 4.4 0 HBA 4.3 5.2 5.1 0

5 9-Hydroxy

-Risperidone

Aro 1 Hyd Aro.2 HBA TP:112/177

TN:66/177

FN:20/32

FP:12/32

MCC = 0.69

Aro 1 Hyd Aro.2 HBA TP:123/177

TN:54/177

FN:25/32

FP:7/32

MCC = 0.69

Aro1 0 4.3 6.1 4.4 Aro1 0 3.6 5.1 4.3

Hyd 4.3 0 4.1 5.2 Hyd 3.6 0 4.2 5.2

Aro2 6.1 4.1 0 4.4 Aro2 5.1 4.2 0 7.1

HBA 4.4 5.2 4.4 0 HBA 4.3 5.2 7.1 0

6 Benperidol Aro 1 Hyd Aro.2 HBA TP:120/177

TN:57/177

FP:12/32

FN:20/32

MCC = 0.66

Aro 1 Hyd Aro.2 HBA TP:122/177

TN:55/177

FP:10/32

FN:22/32

MCC = 0.66

Aro1 0 4.6 5.1 7.4 Aro1 0 6.2 5.4 6.8

Hyd 4.6 0 5.5 4.8 Hyd 6.2 0 4.7 6.2

Aro2 5.1 5.5 0 4.1 Aro2 5.4 4.7 0 4.8

HBA 7.4 4.8 4.1 0 HBA 6.8 6.2 4.8 0

7 Droperidol Aro 1 Hyd Aro.2 HBA TP:119/177

TN:68/177

FP:6/32

FN:26/32

MCC = 0.70

Aro 1 Hyd Aro.2 HBA TP:119/177

TN:68/177

FN:24/32

FP:6/32

MCC = 0.72

Aro1 0 5.3 4.2 4.1 Aro1 0 4.4 5.6 5.8

Hyd 5.3 0 5.7 5.8 Hyd 4.4 0 6.3 4.7

Aro2 4.2 5.7 0 6.1 Aro2 5.6 6.3 0 6.0

HBA 4.1 5.8 6.1 0 HBA 5.8 4.7 6.0 0

8 Nor-astemizole Aro 1 Hyd Aro.2 HBA TP:119/117

FN:26/32

FP:6/32

TN:68/117

MCC = 0.70

Aro 1 Hyd Aro.2 HBA TP:121/177

TN:56/177

FN:25/32

FP:7/32

MCC = 0.67

Aro1 0 5.5 5.2 6.4 Aro1 0 3.8 5.8 9.0

Hyd 5.5 0 5.1 3.9 Hyd 3.8 0 3.5 7.0

Aro2 5.2 5.1 0 5.8 Aro2 5.8 3.5 0 7.4

HBA 6.4 3.9 5.8 0 HBA 9.0 7.0 7.4 0

(Continued)

Frontiers in Pharmacology | www.frontiersin.org 12 September 2018 | Volume 9 | Article 1035

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


Munawar et al. hERG Inhibition Potential

TABLE 3 | Continued

Compound hERG open state conformation model hERG close state conformation model

Model template Model distances A◦ Model

statistics

Model template Model distances A◦ Model

statistics

9 Vesnarinone Aro 1 Hyd Aro.2 HBA TP:109/177

TN:68/177

FP:10/32

FN:22/32

MCC = 0.68

Aro 1 Hyd Aro.2 HBA TP:129/177

TN:48/177

FN:8/32

TN:24/32

MCC = 0.65

Aro1 0 3.8 4.5 4.4 Aro1 0 9.4 6.0 NA

Hyd 3.8 0 5.3 5.5 Hyd 9.4 0 4.6 NA

Aro2 4.5 5.3 0 7.2 Aro2 6.0 4.6 0 NA

HBA 4.4 5.5 7.2 0 HBA NA NA NA 0

10 BMLC_1835_4 Aro 1 Hyd Aro.2 HBA TP:120/177

TN:57/177

FP:24/32

FN:8/32

MCC = 0.67

Aro 1 Hyd Aro.2 HBA TP:123/177

TN:54/177

FP:25/32

FN:7/32

MCC = 0.66

Aro1 0 4.1 6.5 5.7 Aro1 0 3.4 5.8 3.4

Hyd 4.1 0 5.3 5.5 Hyd 3.4 0 7.5 5.7

Aro2 6.5 5.3 0 11.5 Aro2 5.8 7.5 0 11.9

HBA 5.7 5.5 11.5 0 HBA 3.4 5.7 11.9 0

11 Resperidone Aro 1 Hyd. Aro.2 HBA TP:117/177

TN:60/177

FP:8/32

FN:24/32

MCC = 0.68

Aro 1 Hyd Aro.2 HBA TP:120/177

FP:24/32

TN:57/177

FN:8/32

MCC = 0.67

Aro1 0 5.1 6.7 8.7 Aro1 0 4.4 6.8 9.0

Hyd 5.1 0 5.3 4.5 Hyd 4.4 0 4.3 4.8

Aro2 6.7 5.3 0 5.6 Aro2 6.88 4.3 0 4.5

HBA 8.7 4.5 5.6 0 HBA 9.0 4.8 4.5 0

12 Haloperidol Aro 1 Hyd Aro.2 HBA TP:130/177

TN:47/177

FP:24/32

FN:8/32

MCC = 0.64

Aro 1 Hyd Aro.2 HBA TP:132/177

TN:45/177

FP:24/32

FN:8/32

MCC = 0.66

Aro1 0 NA 4.8 6.7 Aro1 0 NA 10.1 6.1

Hyd NA 0 NA NA Hyd NA 0 NA NA

Aro2 4.8 NA 0 8.3 Aro2 6.1 NA 0 5.6

HBA 6.7 NA 8.3 0 HBA 10.1 NA 5.6 0

13 Glycerol

-Nonivamide

Aro 1 Hyd Aro.2 HBA TP:120/177

TN:57/177

FP:23/32

FN:9/32

MCC = 0.67

Aro 1 Hyd Aro.2 HBA TP:122/177

TN:55/177

FP:22/32

FN:10/32

MCC = 0.66

Aro1 0 3.4 4.7 3.1 Aro1 0 3.7 5.2 3.1

Hyd 3.4 0 4.4 4.5 Hyd 3.7 0 5.3 4.1

Aro2 4.7 4.4 0 8.1 Aro2 5.2 5.3 0 7.6

HBA 3.1 4.5 8.1 0 HBA 3.1 4.1 7.6 0

The bold values represents finally selected model.

curves for each drug. Db ID: 5931690 and Db ID: OSM-S-31

compounds showed experimental IC50 values of 71.4 nM and
3.89µM as compared to predicted IC50 values of 1.86 nM and
4.79µM, respectively. This reflects a difference of 1.6 log units for
predicted hERG inhibitory values for Db ID: 5931690, and <0.1
log units difference for the predicted and measured IC50 values
forDb ID: OSM-S-31.

DISCUSSION

In present investigation, combined ligands and structure
based pharmacoinformatics protocol supported by patch-clamp
electrophysiological experiments on selected hits, has been
proposed to advocate hERG liability of new chemical entities
(NCEs) during early stages of drug design and development.
Recently, Siramsthetty et al. elucidated the impact of data
quality, structural diversity and activity threshold of the training
set and on the performance of various machine learning

algorithms for the prediction of hERG liability (Siramshetty
et al., 2018). This and many other previous reports reflect
that inconsistent biological data under different experimental
condition might result in noisy or unreliable predictive models
(Zvinavashe et al., 2008; Su et al., 2010). Here, combined ligand-
(GRIND) and structure based- (ligand protein interaction guided
pharmacophore) pharmacoinformatics models developed using
training and tests evaluated with uniform experimental protocol
such as, experimental methods and cell lines may assist in overall
robustness of the present hERG liability prediction approach.

Finally selected GRIND model illustrates a virtual receptor
site of two hydrophobic, one hydrogen bond donor and two
steric hotspot regions for the binding of present data sets
of hERG blockers. One of the hydrophobic regions (DRY1:
yellow hotspots, enclosed by a circle in Figure 7) identified
by the GRIND model may represent the most crucial virtual
receptor site as the distance of other contours including second
hydrophobic region (DRY2), the steric molecular hotspot (TIP1)
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FIGURE 9 | Showing statistically significant hERG inhibition pharmacophore

model obtained using Droperidol docked in the closed conformational state of

hERG as template. The pharmacophore consists of two aromatic, one

hydrophobic and one hydrogen bond acceptor feature.

and a hydrogen bond donor (N1) contour has been calculated
from this region. Thus, it is tempting to speculate that this
hydrophobic region (DRY1) may provide an anchoring point for
the snug fit of the ligand followed by conformational change of
the other part of the ligand to find complementary interaction
points within binding site of hERG. Additionally, our model
also elucidates the importance of molecular shape of the hERG
blockers by spotting two steric hotspot regions (TIP1 and TIP2)
at the virtual receptor site of structurally diverse data set of hERG
inhibitors. The hydrophobic contours of virtual receptor site in
our GRIND model also complement the four concentric rings of
Tyr_652 and Phe_656 amino acid residues in the central cavity
of hERG. This is also supported by various reports about the role
of Tyr_652 and Phe_656 residues in drug trapping (Fernandez
et al., 2004; Kalyaanamoorthy and Barakat, 2017; Vandenberg
et al., 2017).

Various studies also linked the tendency of a compound to
get trapped inside the hERG channel with simple increment in
the molecular weight or logP (Gleeson, 2008). However, in
lead optimization programmes, there is a trend of increase in
molecular weight and lipophilicity with an increase in biological
activity against a therapeutic target which may offer greater
hERG liability in vitro. Additionally, compounds that are trapped
inside the hERG are transported through membrane bilayer via
cytoplasm inside the hERG (Jabeen et al., 2012). A compound
that may efficiently cross the biomembrane barrier may show
more hERG inhibition as compared to those with suboptimal
transport properties. Therefore, lipophilic efficiency (LipE)
calculation in the present study may provide a straightforward
way to normalize this effect and aids in identifying the hERG
inhibitors (templates) with increased activity as a result of
direct interaction with hERG rather than higher biomembrane
distribution. Thus, in present study, ligand protein interaction

FIGURE 10 | (A) 2D structure of selected compound from ChemBridge

database. (B) Step ramp protocol. (C) Plot of current (pA) traces vs. time(s):

Green sweep is showing maximum current passing through the channel when

no drug is applied to the channel. The gradual decrease in current peak is

showing channel inhibition in response to various dose concentrations.

(D) Dose-response curve showing percentage blockade of hERG current

against various drug concentration.

guided hERG inhibition hypothesis by using templates with
best IC50/lipophilicity andmolecular IC50/molecular weight ratio
may offer efficient models for the virtual screening of the new
chemical entities.

Overall, our hERG inhibition pharmacophore hypothesis
includes two aromatic, one hydrophobic and one hydrogen bond
acceptor features which select highly potent hERG inhibitors
(IC50 < 100µM). Interestingly, a pairwise comparison of the
3D structural features of the final pharmacophore model with
the GRIND contours depicting virtual receptor site revealed a
great degree of complementarity as summarized in Table 4. For
instance, DRY-DRY contours at a mutual distance of ∼14 A◦

in virtual receptor space may complement two aromatic (Aro1
and Aro2) pharmacophore features at a distance of 6.1 A◦ within
the template structure. This is further strengthen by a recent
three point 3D-SDAR model (Stoyanova-Slavova et al., 2017)
where two aromatic rings at a distance of a 4.5–11.5 A◦ have
been identified important hERG toxicophore features. Similarly,
DRY-N1 pair of hotspots depict a hydrophobic and a hydrogen
bond donor region at a mutual distance of ∼10 A◦ at the virtual
receptor site may complement the hydrophobic and hydrogen
bond acceptor group (HBA) within the template structure which
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FIGURE 11 | (A) 2D structure of selected compound from OSM database.

(B) Step ramp protocol. (C) Plot of current (pA) traces vs. time (s): Green

sweep is showing maximum current passing through the channel when no

drug is applied to the channel. The gradual decrease in current peak is

showing channel inhibition in response to various dose concentrations.

(D) Dose-response curve showing percentage blockade of hERG current

against various drug concentration.

further strengthens our proposed binding hypothesis of hERG
inhibitors.

Previously, many attempts have also been made to develop
hERG inhibition hypothesis models based on 3D structural
features of the variable training data (Cavalli et al., 2002; Ekins
et al., 2002; Pearlstein et al., 2003; Aronov and Goldman, 2004;
Testai et al., 2004; Aronov, 2006; Crumb et al., 2006; Johnson
et al., 2007; Coi et al., 2008; Garg et al., 2008; Kramer et al.,
2008; Shamovsky et al., 2008; Durdagi et al., 2011; Tan et al.,
2012; Kratz et al., 2014; Wang et al., 2016; Chemi et al., 2017;
Stoyanova-Slavova et al., 2017; Siramshetty et al., 2018; Wacker
and Noskov, 2018). Already reported pharmacophore models
delineated the presence of two or three hydrophobic or aromatic
moieties (Cavalli et al., 2002; Ekins et al., 2002; Pearlstein et al.,
2003; Aronov and Goldman, 2004; Aronov, 2006; Crumb et al.,
2006; Coi et al., 2008; Garg et al., 2008; Kramer et al., 2008;
Durdagi et al., 2011; Kratz et al., 2014). Additionally, various
models identified basic nitrogen as a crucial pharmacophoric
feature (Cavalli et al., 2002; Ekins et al., 2002; Pearlstein et al.,
2003; Johnson et al., 2007; Coi et al., 2008; Kramer et al., 2008;
Kratz et al., 2014) for hERG inhibition. Some authors also

TABLE 4 | Comparison between distances of pharmacophoric features of GRIND

at VRS and pharmacophore model within the template.

GRIND features and

distances at VRS ∼A◦

Pharmacophore features

and distances within

template A◦

DRY-DRY 14 Aromatic1-Aromatic 2

Hydrophobic-Aromatic1

6.1

5.1

DRY-N1 10 Hydrogen bond

acceptor-Hydrophobic

5.6

demonstrated the positive contribution of the hydrogen bond
acceptor feature toward hERG inhibition potential in the closed
state of the channel (Aronov and Goldman, 2004; Du-Cuny et al.,
2011; Durdagi et al., 2011; Kratz et al., 2014). Furthermore, the
impact of hydrogen bonding of various chemical scaffolds with
amino acid residues Thr_623, Ser_624 and Val_625 within the
central cavity has also been associated with hERG inhibition
potential (Mitcheson and Perry, 2003; Aronov, 2005). Some other
studies added that central cavity of the hERG may favors the
binding of cationic drugs by amplifying the negative electrostatic
potential within the central cavity that in turn may increase drug
affinity (Aronov, 2005; Wang and MacKinnon, 2017).

Most of these models were able to predict hERG inhibition
properties of a drug by assigning nominal class label
(Inhibitor/Non-inhibitor: Yes/No). Some 2D QSAR models
(Seierstad and Agrafiotis, 2006; Yoshida and Niwa, 2006)
also predict numerical hERG inhibition values. However, the
available 3D QSAR represent class specific features developed
using small dataset of compounds due to alignment constraints
of 3D QSAR methodologies (Ekins et al., 2002; Keserü, 2003;
Pearlstein et al., 2003).

Although more recently, various machine learning models
for the classification of large data sets based on 2D descriptors
and fingerprints may offer good predictive ability and an
automated potential to integrate with other conventional
and modern modeling approaches (Siramshetty et al., 2018;
Wacker and Noskov, 2018). Yet, a ligand and structure based
integrated approach based on 3D descriptors information
may also represent a promising route for toxicological
profiling of new chemical entities. Therefore, we integrated
novel alignment independent GRIND descriptors and
conventional pharmacophore feature descriptors and propose
a pharmacoinformatics strategy for the stepwise nominal
(yes/no) as well as numeric (absolute) prediction of hERG
inhibition potential (pIC50) of NCEs. Moreover, in the present
investigation, an exhaustive data curation protocol has been
adopted to select experimentally homogeneous training as well
as test data. Moreover, compounds of the training set belong
to 11 diverse therapeutic classes (see Supporting Information

smiles.csv) hence cover a large and diverse chemical and
structural space. However, GRiD Independent Descriptors
represent a novel class of descriptors which are insensitive
to structural alignment of the data and thus, have ability to
predict chemically diverse data set of compounds as compared
to conventional 3D QSAR descriptors (Pastor et al., 2000).
Therefore, the applicability domain of the training data identified
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by principal component scores of GRIND variables cover a wide
range from −5.8 to 6.2. Projection of test set I and test set II
also occupy the same applicability domain (Figure 2). Also the
principal component scores of GRIND variables of the 100 top
predicted hits ranges from −5.0 to 5.0 as shown in Figure S7.
Thus, it reflects the predictive ability of structurally diverse
data set of hERG blockers. Methodologically, in the present
study highly significant GRIND variables have been selected
with the help of AMANDA algorithm (Durán et al., 2008) as
described by Pastor et al. (Pastor et al., 2000) in comparison
with ALMOND algorithm utilized by most of the previous
investigations that select a fixed number of variable irrespective
of strength of the MIFs. Furthermore, in present investigation
more robust pharmacophore models have been developed
by normalizing suboptimal transport factor of the data and
selecting templates with best pIC50/clogP and pIC50/molecular
weight ratio. Overall, our final models may offer hERG inhibitory
potency predictions from higher nanomolar to lower micromolar
range that is validated with the help of whole-cell patch clamp
experiment.

Overall, partial least square analysis of final GRIND variables
reflects a cross validated q2 of 0.63 and r2 of 0.68. Additionally,
our final pharmacophore model showed 0.72 sensitivity and
0.75 specificity with 0.72 MCC. These reflect statistically
significant model. Subsequently, experimental validation of these
models using whole cell patch clamp technique delineates
difference of 1.6 and <0.1 log units between experimentally
determined and predicted hERG inhibitory (pIC50) values
of selected hits Db ID: 5931690, and Db ID: OSM-S-31

demonstrate excellent agreement in the prediction of µM
range but underestimate the hERG inhibition potential in
nM range. Thus, it seems that the numerical values of the
hERG inhibition potential of the nanomolar active hit is not
predicted accurately, but the model may still allow correct
identification of activity trends (from nanomolar to micromolar).
It is still of great value to know which molecules are the
“best” (low activity against a hERG) and which are likely to
have high hERG inhibition potential. This allows molecules
to be prioritized for synthesis against respective therapeutic
targets.

Although, the recent cryo-EM structure of the hERG in
its open state of the channel may assist in probing structure
guided hERG inhibition profiles of new and safer chemical
entities (Wang and MacKinnon, 2017). However, the volume
of the hydrophobic pockets in the recent hERG structure and
their impact on the binding of drugs that are trapped in the
closed state of hERG remain obscure. Though majority of
highly potent hERG blockers including dofetilide, astemizole,
terfenadine, and cisapride, show from 2 to 70-fold higher affinity
for the inactivated state than to the open conformational state
of the channel (Perrin et al., 2008). Thus, it stresses the need
to determine electron microscopic/crystal structures of hERG in
closed as well as in the open state of the channel bound with one
of the prototype ligands such as, Dofetilide, MK499, or E4031
to understand the molecular basis of drug binding within hERG.
However, it is challenging mainly because membrane spanning
hERG channel exhibit 4-fold symmetry that might result in

negligible electron density due to asymmetric binding of a drug
with its one out of four subunits. Therefore, in the absences
of explicit experimental structural data, present investigation
offers experimentally validated template-based pharmacophore
models supported by statistically significant GRIND model
to predict the hERG inhibition potential of diverse chemical
scaffolds.

CONCLUSION

Herein, we present a novel pharmacoinformatics strategy
for the nominal as well as numerical prediction of hERG
inhibition potential (pIC50) of NCEs during initial stages of
drug development. GRid-Independent molecular Descriptor
(GRIND) models have been developed to probe virtual receptor
site representing most favorable interacting hotspots within
the binding cavity of hERG. Furthermore, pharmacophore
templates with best hERG pIC50/clogP and pIC50/molecular
weight have been selected to normalize pIC50 values against
hERG due to membrane distribution effect rather than direct
interaction with hERG. Ligand-protein interaction profiles
guided pharmacophore features of 13 selected templates in open
and closed conformational state of hERG have been evaluated to
probe 3D structural features of diverse data set hERG inhibitors.
Overall, our final pharmacophore model revealed the presence
of two aromatic one hydrophobic and one hydrogen bond
acceptor group at particular mutual distance in most potent
hERG inhibitors which complement the respective hydrophobic
and hydrogen bond donor contours at the virtual receptor site
produced by the final GRIND model. The maximum difference
of ±1.6 log unit between actual and predicted hERG inhibition
potential values of the selected hits Db ID: 5931690 and Db ID:

OSM-S-31 further reflect the robustness of our virtual screening
protocol and thus, could aid to prioritize NCEs according
to hERG inhibition potential from nanomolar to micromolar
range.
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