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Abstract 

Simulation is commonly utilised as a best practice approach to assess building performance in 

the building industry, and can help facility managers and engineers identify energy saving potentials, 

forecast future scenarios and evaluate the energy and cost performance of energy saving measures. 

However, the built environment is complex and influenced by a large number of independent and 

interdependent variables, making it difficult to achieve an accurate representation of real-world building 

energy in-use. This gives rise to significant discrepancies between simulation results and actual measured 

energy consumption of real buildings, termed ‘the performance gap’. This is partly fuelled by a lack of 

understanding of the procedural differences between national calculation methodologies and energy 

certificates commonly employed in presenting energy use. As such, a classification was adhered to, which 

distinguishes between three different performance gaps; the regulatory gap (predictions from compliance 

modelling), static gap (predictions based on performance modelling), and dynamic gap (calibrated 

predictions taking a longitudinal perspective). This research added to knowledge by making three separate 

contributions. The first contribution was the exploration of industry practices and stakeholders, which 

identified common barriers to delivering high building performance, and made suggestions on how to 

overcome such barriers. Through semi-structured interviews and round-table discussions with industry 

experts, five key factors were suggested for delivering better building performance. The second and third 

contributions emerged from case research, for which an overarching methodology was developed, aiming 

to quantify and mitigate differences between predicted and measured energy use. Fundamental tasks 

within the methodology were based upon previous research efforts, while new techniques were introduced 

to include the uncertainty of typically static input parameters to improve the calibration process. In 

particular, the second contribution was the quantification of the underlying causes of the performance gap 

and mitigation of differences between predicted and measured energy use in four case study buildings, 

through the application of sensitivity, and uncertainty analysis and manual calibration. Subsequently, the 

third contribution investigated the effect of data granularity on model calibration accuracy through meta-

model based optimisation. 
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Impact statement 

Previous research on the energy performance gap has been reviewed, and was published in 

an academic journal paper. It presented a classification of different performance gaps, analysed the 

magnitude according to the regulatory gap, highlighted the underlying causes for a performance gap, and 

proposed measures to overcome these issues in order to mitigate the performance gap. Furthermore, it 

identified several research gaps that have led to three contributions to knowledge in this thesis. 

Contributions to knowledge fall under the category of “empirical work which has not been done before, 

developing and explaining a new synthesis of empirical observations and/or theoretical arguments” 

(Francis, 1976; Phillips & Pugh, 1994). These contributions are: 

1. Identification of common barriers to delivering reliable building performance, with key 

recommendations on how such barriers can be overcome. 

This research has contributed to a report that explored industry perspectives on how reliable 

building performance can be delivered by adhering to several identified key principles. It discussed 

different perceptions of building performance amongst building industry stakeholders and how these relate 

to each other, identified common barriers in the supply chain that prevent performance from being 

delivered, and established several key principles that need to be followed to overcome these barriers. This 

work developed a practical guideline that outlines several important principles that need to be taken into 

account during building design, construction and operation. The report was published by the UK Green 

Building Council in May 2016, named “Delivering Building Performance”, and was followed by several 

promotional debates and talks on the topic to communicate this to the wider construction industry. 

2. Mitigation of differences between predicted and measured energy use and quantification of the 

impact of underlying causes on the regulatory performance gap. 

Case research highlighted common issues in data collection and performance predictions in 

four existing buildings. Building performance modelling was utilised to create representable models of the 

existing building operations, using uncertainty and sensitivity analysis to mitigate differences between 

predictions and measurements. Calibrated models were used to explore the impact of typical assumptions 

on the regulatory performance gap. This contribution was supported by developing a calibration 

methodology that compared predicted and measured energy use in existing buildings, for the application of 

both manual and automated calibration to mitigate their discrepancies. It introduced several parametric 

techniques that improved the calibration process over previous research. 

3. Quantification of the effects of data granularity on model calibration accuracy using meta-model 

based optimisation. 

Building on previous research in the area of model calibration, the research sought out to 

understand how the granularity of data affects model accuracy. Such knowledge is useful as it determines 

the relationship between model accuracy and need for quantitative data and information, establishing a 

trade-off between time consumption, cost and accuracy. Subsequent to the second contribution, which used 

manual calibration processes, meta-models were constructed based on the relationships between inputs 

and outputs created through parametric simulation. Higher levels of accuracy were achieved using these 

meta-models for optimisation (i.e. automated calibration), but were found to introduce additional 

complexity. 
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1 INTRODUCTION 

This chapter sets the context for the research, introducing the energy performance gap 

between predicted and measured energy use buildings, then presenting the aims and objectives of this 

thesis and the research approach taken to achieve them. The energy performance of the vast majority of 

buildings in the United Kingdom (UK) do not align with the challenge of meeting carbon targets (UKGBC, 

2016). Binding targets set out in the Climate Change Act 2008, require the UK to ensure that the net carbon 

account for the year 2050 is at least 80% lower than the 1990 baseline (HM Goverment, 2008). To achieve 

such targets, the operational energy consumption of new buildings and existing buildings should be 

minimised. Building Regulations, Energy Performance Certificates and other sustainability certification 

schemes offer a form of quality assurance, but generally only focus on design elements. It is then not 

surprising, that measured energy use in buildings during occupation frequently shows major differences 

with respect to predicted energy performance. This phenomenon has previously been termed ‘the 

performance gap’ (Cohen, et al., 2001; Menezes, et al., 2012; Carbon Trust, 2012; Burman, et al., 2014; de 

Wilde, 2014). The discrepancy in predicated and actual performance undermines the credibility of building 

designers, planners and consultants. Large corporations, universities, building owners and occupiers also 

suffer from higher than anticipated utility bills and rising energy costs. To understand the performance gap 

in more detail, building energy modelling was utilised to compare predictions of existing buildings with 

measured building performance. The use of calibration techniques can quantify and minimise differences 

and help to better understand underlying causes of a discrepancy. However, due to the inherent complexity 

of building energy models and the myriad parameters that predictions are based on, many of these 

parameters cannot be accurately defined. As such, many potential solutions exist and more accurate 

solutions can be masked by inaccuracies in the model and level of detail of data available. To alleviate this 

issue, performance modelling predictions were compared and calibrated with measurements at a higher 

level of temporal, spatial, and hierarchical data granularity, to understand how this affects model calibration 

accuracy. 
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1.1 Background 

Designed performance is generally determined through compliance modelling 1. In the UK this 

is currently implemented by the use of simplified (steady-state) or dynamic thermal modelling, to calculate 

the energy performance of a building under standardised operating conditions (e.g. occupant density, 

setpoints, operating schedules, etc.), set out in the National Calculation Methodology (NCM, 2013), for the 

Energy Performance of Buildings Directive (EPBD). Compliance modelling is useful to assess the energy 

efficiency of buildings under standardised conditions to determine if minimum performance requirements 

are met, by comparing with a typical notional building. However, because designed performance is typically 

determined for regulatory purposes, based on standard operating conditions, it does not offer a like-for-like 

comparison with the performance of the completed building. This results in a deviation between regulatory 

predictions and measured energy use, which creates a significant risk to designing and operating low energy 

buildings. Conflating compliance modelling with measured energy use is one of the reasons for the 

popularisation of the ‘perceived’ energy performance gap (i.e. regulatory performance gap). For example, 

in England and Wales, the Energy Performance Certificate (EPC) rating is used to indicate the energy 

efficiency potential of a building (not intended to represent operational energy use), whilst the Display 

Energy Certificate (DEC) provides a performance rating based on measured energy use of the building. Hogg 

& Botten (2012) analysed 128 office buildings and highlighted  EPC ratings as a poor indicator of actual 

energy use, due to unaccounted complexities and variations that affect energy use. EPCs are asset ratings, 

aimed to compare buildings to one another in order to assess their efficiency. They are calculated based on 

standard weather conditions and building use. 

Theoretically, a gap is significantly reduced if predictions are based on actual operating 

conditions, also known as performance modelling. Performance modelling includes all energy 

quantification methods which aim to accurately predict the performance of a building. Thus, there is a need 

for design stage calculation methodologies to address all aspects of building energy consumption for whole 

building simulation (Norford, et al., 1994; Torcellini, et al., 2006; Diamond, et al., 2006; Turner & Frankel, 

2008). However, the built environment is complex and influenced by a large number of independent and 

interdependent variables (Coakley, et al., 2011), making it difficult to achieve an accurate representation of 

real-world building energy in-use. Although a margin of error between any type of prediction and measured 

energy use is inevitable due to uncertainties in design, quality of construction and limitations of 

measurement systems, investigation of predicted and measured energy use is necessary in order to 

understand the significance of the underlying causes of the energy performance gap. 

Presently diagnosis techniques can identify performance issues in operation; trend analysis, 

energy audits and traditional commissioning of systems can highlight poor performing processes in a 

building. An integrated approach is the calibration of virtual models to measured energy use. Calibration 

can pinpoint differences between how a building was designed to perform and how it is actually functioning 

(Norford, et al., 1994). A concern with calibration models is that they can mask modelling inaccuracies when 

focusing on the building or system level (Clarke, 2001). Raftery et al. (2011) showed that even the most 

stringent monthly acceptance criteria do not adequately capture the accuracy of the model with measured 

                                                           

 

 

1 Compliance modelling refers here to as-built performance (e.g. EPC) including any changes after design 

(i.e. value engineering), different to as-designed compliance. 
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data on an hourly level. Furthermore, the reliability and accuracy of calibrated models depends on the 

quality of the measured data used to create the model, as well as the accuracy and limitations of the tools 

used to simulate the building and its systems (Coakley, et al., 2012). Therefore, it is essential to calibrate 

energy use at a high level of data granularity to increase model accuracy. By employing calibration using 

hourly data and component level information, dynamic relationships between building processes are 

maintained, this essentially reduces the solution space for the calibrated model to comply with. An 

accurately calibrated model is more reliable in assessing the impact of Energy Conservation Measures 

(ECMs) and their feasibility by forecasting its potential savings on energy use from implementation.  

1.2 Aim and objectives 

This research aimed to quantify and mitigate the energy performance gap and its underlying 

causes in four buildings. It demonstrates how a discrepancy can be mitigated by: utilising operational data 

at a high level of data granularity to inform building performance simulation, improve models through 

calibration, and quantify underlying causal factors of the performance gap. The objectives were: 

 To explore industry perspectives on how to deliver better building performance in buildings, 

 To utilise operational data to inform building performance simulation assumptions, 

 To mitigate discrepancies between predicted and measured energy, 

 To quantify the impact of the underlying causes of the performance gap, 

 To determine the effects of data granularity on building model calibration accuracy. 

The aim of this research is similar to some of the other research on the topic of the energy 

performance gap, but it distinguishes itself in its specific objectives and research approach. In particular, it 

makes use of calibrated models and meta-model based optimisation to investigate this problem. Previous 

research which has focused on different aspects of the energy performance gap include: Maile (2010), who 

developed a comparison methodology to identify performance problems from a comparison of measured 

and simulated energy performance data; Menezes (2013), who investigated in particular the impact of 

equipment loads and their effects on the performance gap; Burman (2016), who developed a M&V 

framework for verifying actual performance in relation to regulatory calculations. These are only a few 

examples, whereas de Wilde (2014) gives a detailed overview of ongoing efforts to bridge the gap. 

1.3 Research approach 

This thesis presents both qualitative and quantitative studies into building performance and 

the performance gap. Within the qualitative study, the author partnered with the UK Green Building Council 

(UKGBC) and brought together a group of industry experts to discuss and highlight process improvements 

that design, construction and property developers, as well as occupiers, might adopt to deliver buildings 

which perform as expected in operation. Interviews and round-table discussions were also conducted to 

explore perspectives on delivering better building performance in non-domestic buildings. This study 

viewed building performance simply as how a building functions against its needs, which helped to 

understand other elements in the building procurement process that also affect the energy performance of 

a building, and indirectly the energy performance gap.  

Together with the literature review, this formed a key input in the design of the methodology 

for the quantitative study, which investigated the discrepancy between predicted and measured energy use, 

using model calibration in four existing case study buildings. This approach enabled the development of 

conceptual models to study the behaviour of interrelated variables in existing buildings. The investigation 
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of multiple case studies showed differences in influential variables. However, it was not possible to 

generalise any building specific findings over a population (large amount of similar buildings), which was 

outside of the research scope. Rather, it aimed to establish a methodology for investigating the discrepancy 

between predicted and measured energy use; introducing new approaches to parametric simulation and 

calibration techniques at a high level of data granularity, in addition to quantifying the impact of 

assumptions in building energy modelling. Furthermore, the case study buildings provide a platform for 

determining the significance of operational data granularity on model calibration accuracy and 

investigation of potential benefits of automated calibration. 

A major task has been the collection of data and acquisition of appropriate case studies and 

their respective data sources to support the research at a high level of data granularity. Predicted energy 

performance was established through detailed modelling of the existing buildings and comparison against 

measured energy performance. The four case study buildings were selected from a sample of more than ten 

buildings, based on the availability of data and accessibility to these buildings. However, it is recognised 

that the unsuitable buildings, those not selected, are typical in the existing building stock (i.e. those without 

comprehensive data). The cost of sensors and meters and rise in popularity of the internet of things (IoT), 

is starting to provide opportunities to measure and improve datasets on the performance of buildings, 

systems and the indoor environment. Calibrated models were employed to identify underlying causes for 

the discrepancy. This was supported by sensitivity and uncertainty analysis to determine the impact of 

assumptions on the energy performance of the buildings. A workflow of the research approach and contents 

of this thesis is visualised Figure 1.1. 
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Figure 1.1: Workflow of the research approach and contents of the thesis. 

The research used both deductive (theory to confirmation) and inductive (observation to 

theory) processes. A deductive approach was applied in validating the existing hypothesis that there is an 

energy performance gap in buildings. Literature findings were compared to observed reality to verify the 

established theory and the hypothesis was confirmed in the case studies. Limited evidence and 

understanding of the underlying causes for the energy performance gap did not allow for a well-founded 

hypothesis, instead an inductive approach was used to develop a hypothesis based on observations. 
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1.5 Thesis overview 

Chapter 2 - Literature review 

Literature review of the performance gap, its magnitude, underlying causes and approaches for mitigation. 

Furthermore, it gives an overview of existing methods for comparing predicted and measured performance. 

Part of this literature review has been published as a journal paper in Frontiers in Mechanical Engineering 

(van Dronkelaar, et al., 2016). 

Chapter 3 - Industry perspective on delivering building performance 

Interviews and round-table discussions have identified barriers and correlated key factors and processes 

for delivering building performance. This work is published as an industry focussed report (UKGBC, 2016). 

Chapter 4 - Case research methodology 

Describes the developed methodology employed for the case study research. It describes the process of data 

collection, synthesis, modelling and subsequent calibration and analysis techniques. 

Chapter 5 - Utilising operational data to inform building modelling assumptions 

Operational data collected on the case study buildings are analysed and subsequently utilised to inform 

assumptions for building performance modelling. 

Chapter 6 - Quantifying the impact of underlying causes of a discrepancy 

Results from the measured data collection and modelling are compared according to the established 

hierarchy. The building models were calibrated towards measured performance, used to quantify the 

impact of typical assumptions.  

Chapter 7 - Quantifying the effects of data granularity on model accuracy 

Meta-models were created based on the relationship between inputs and outputs, then utilised to 

investigate how a higher level of data granularity affects model calibration accuracy.  

Chapter 8 - Case research discussion 

The results from the case research are discussed, with an emphasis on data collection in supporting model 

assumptions, quantification and mitigation of the discrepancy between predictions and measurements and 

the effect of data granularity on model accuracy supported by uncertainty and sensitivity analysis. 

Chapter 9 - Conclusion 

Concluding remarks on the main findings of the literature review, exploratory study on industry 

perspectives and the case research. Contributions to knowledge are summarised and additional areas for 

further work are proposed. 
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2 LITERATURE REVIEW 

This chapter reviews the energy performance gap and its implications on the building 

construction industry in a UK context with global outlook. It reviews three different types of gaps, the 

regulatory- (i.e. the perceived gap), static- and dynamic gap. Highlighting the importance of reducing the 

discrepancy between predictions and measurement. Existing studies were then reviewed to quantify the 

magnitude between regulatory predictions and measured energy use, it proceeds in describing the 

underlying causes for the performance gap, existent in all stages of the building life cycle, and identifies that 

dominant factors are related to specification uncertainty in modelling, occupant behaviour and poor 

operational practices. Other contributing factors are related to the early design decisions, heuristic 

uncertainty in modelling and setting an initial energy performance target. Measures and feedback processes 

are categorised in order to understand how the performance gap can be reduced, indicating the need for 

energy in-use legislation, insight into design stage models, accessible energy data and expansion of research 

efforts towards building performance in-use in relation to predicted performance according to regulations 

and performance modelling purposes. The classifications highlight that different processes can be utilised 

for predicting and measuring performance. Therefore, energy performance quantification and performance 

assessment methods were reviewed. Calibration of building energy models and performance modelling are 

seen as two methods that could support in understanding and mitigating differences between predictions 

and measurements by better representing the performance of buildings. Several research gaps were 

identified concerning the calibration of energy models. Furthermore, the literature review emphasised the 

segmentation of disciplines involved throughout the building life cycle stages and that there are split 

incentives between stakeholders in regards to the energy efficiency of buildings and the energy 

performance gap. 
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2.1 Introduction 

According to the International Energy Agency (IEA) the buildings sector is the most significant 

worldwide energy consumer at around one third of total final energy consumption throughout the period 

to 2035 and is growing at an average of 1% per year (IEA, 2010). In the UK, buildings accounts for up to 

40% of total energy consumption (DECC, 2013). Since the oil embargo in 1973, achieving better energy 

efficiency has become one of the world’s major challenges (Hong, et al., 2000). One of the largest sources of 

energy and carbon emission savings can be achieved through more energy efficient buildings, a 

fundamental part to address climate change (Commission, 2011). Regulation of building energy use will 

have a critical role in meeting energy and emission targets in developed countries (Heo, et al., 2012). In the 

UK for example there is the CRC (Carbon Reduction Commitment) developed by the DECC (Department of 

Energy and Climate Change), recently reorganised under the Department for Business, Energy and 

Industrial Strategy (BEIS), which is set to be closed in 2018-19 and be replaced with an increase in the 

Climate Change Levy (CCL). Cutting emissions in the public and private sector is necessary to meet 

requirements of the 2008 Climate Change Act. In London in particular, the London Plan requires a 35% 

reduction in carbon dioxide emissions for non-domestic buildings compared with UK Building Regulations 

2013. However, even though most of these regulations focus on energy and carbon, there has been a trend 

towards thinking in terms of building performance, which extends to include economic, social and 

environmental aspects, such as occupant well-being, thermal comfort, operational costs, public image, etc., 

historically regulation has been mostly about safety. In order to understand how energy performance is 

influenced and can be reduced, it is important to distinguish building energy performance and building 

performance, the latter affects the former. 

2.2 Building performance 

Fragmentation of the UK construction industry is a key influential factor of building 

performance (Construction Task Force, 1998; Cox & Townsend, 1997; House of Commons, 2008). 

Interrelations between stakeholders are complex and typically not well integrated in the supply chain, more 

apparent in some procurement methods (Korkmaz, et al., 2010). Fundamental to this integration are the 

underlying incentives for procuring a building in the first place, incentives which themselves can be defined 

as buildings performance. This could mean that delivering building performance for a capital provider is 

their return on investment and yield, for a designer it is the provision of a safe, resilient and sustainable 

building as predicted and for facilities management this is the assurance of an operable building in which 

occupants can be comfortable. Building performance thus describes how well a building functions against 

stakeholder’s needs.  

2.2.1 Stakeholders influence on performance 

Understanding the interrelationship between stakeholders gives insight into delivering 

reliable building performance. Although there is a close relationship between some stakeholders, decisions 

made at the start of a project do not necessarily involve those further down the line, resulting in 

performance requirements that are not robust enough and potentially missing out on opportunities (House 

of Commons, 2008). Whereas decisions made during design are disconnected from building performance 

in operation (Fellows & Liu, 2012). Figure 2.1 shows the typical communication lines between different 

stakeholders involved in different stages (this is not exhaustive and other relationships might exist in 
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certain projects, e.g. a property management company may be involved in-use, nor are planners depicted in 

this diagram).  

 
Figure 2.1: Stakeholders involved in different stages and with different connections. 

The developer and owner are here depicted as those communicating with most of the parties. 

There are different models possible, where sometimes the owner and developer are the same party or 

where for example managing agents are employed by the owner for the operation and maintenance of 

buildings, sometimes with in-house facilities management. 

Decision makers 

Project financing is attracted by the developer through a variety of funding structures based 

on the business case made. Capital providers provide this financing, but typically lack understanding of the 

economic benefits of sustainable building, for this stakeholder it is a challenge to obtain financial support if 

there is no visible market value attached to it. They are primarily motivated by maximizing yield or return 

on investment and the building’s market value and any associated risks (Atink, et al., 2014). The increased 

market value of sustainable buildings needs to be recognized if investors are to provide financing for them. 

Demonstrating and communicating to capital providers that there is a business case for building 

performance is necessary in order to induce a market transition towards better buildings. The owner is the 

most diverse stakeholder, fulfilling different roles the owner can have a large influence on building 

performance outcomes. Most favourably, the owner is also the operator and/or occupier of a building and 

sometimes also the capital provider, as they would be incentivised to have a high performing building 

(Ellison & Sayce, 2007). Public authorities, universities and hospitals often take up such a role. They have a 

longitudinal focus and have a significant control of the building procurement process through setting 

specific performance criteria which are often more stringent than the required prescriptive regulatory 

framework. An owner who takes up a role only as developer with the with the intention of selling the 
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property upon completion is typically less concerned about performance aspects in relation to wellbeing 

and sustainability of a building, this type of owner is usually interested in enhancing their profit (Lim & 

Mohamed, 1999). Furthermore, they often procure buildings without information about prospected 

tenants. Similarly, the owner-landlord, not necessarily being the occupier rents out the property and is 

interested in with performance aspects that affect renting rates, seeking profitability (Fellows & Liu, 2012). 

Design and build team 

Building design has a large influence on building performance, from building shape to system 

controls to renewable technologies, especially decisions during concept development can have a large effect 

on performance. Integrated design at this stage is therefore encouraged to include important performance 

aspects in combination with functionality and aesthetics. Designers need to understand how buildings are 

actually being used, what this means for performance and need mechanisms to translate this to new 

building designs. Finally, architects and engineers have only limited influence on the building projects in 

terms of performance outcomes or criteria set by the client i.e. the developer / owner, the design is mostly 

guided by client’s requirements. Tendering of construction works to the developer is mostly awarded based 

on capital cost, upon receiving work a contractor is primarily concerned with risk and schedule of delivery. 

They are typically unaware of performance requirements unless these are written as deliverables in 

contracts. Any additional features or new features related to performance will increase their fee as limited 

knowledge and experience will mean increased risk for the contractor. 

Commissioning and operation 

When a building is constructed, it is handed over, at this point contractors come in to deliver 

the installation and commissioning of building services, done poorly this results in reduced system 

efficiency and compromising the air tightness and ventilation strategies. Commissioning is an activity that 

needs to be carried out throughout the use phase of the building, ensuring that systems continue operating 

as expected. Furthermore, effective personnel and investment in operational management is crucial in 

achieving a reliable performance in operation (Finch & Zhang, 2013), currently this segment is struggling 

to keep up with the development of the industry and wide adoption of innovative technologies. Tenants 

benefit from performance by being provided with a healthy, safe and comfortable environment where they 

can be productive and feel good. This group is rarely involved during the design of a building, while having 

a large influence on its performance. Only when the owner is also the tenant will they be involved and have 

good incentives to make sure building performance is being delivered. 

2.2.2 Business case for better performance 

The better the performance of a building, the stronger the benefits and business case to deliver 

performance. The benefits of better building performance were comprehensively reported by the World 

Green Building Council (WGBC, 2013) and consist of environmental, financial and social aspects. 

Financial reasons 

High performing buildings positively affect capital and operating expenses, return on 

investment is higher in both new construction and existing building projects compared to conventional 

construction (Chegut, et al., 2013). This is due to reduced construction costs, operating costs, and increased 

in value. Payback improves as energy prices rise, energy efficiency improvements become a better 

investment and save owners and tenants money, reducing expenses improves profitability (Pless, et al., 

2012). It also increases the competitive edge and return on investment for capital providers (O'Mara & 

Bates, 2012). Recently, more interventions have come into place that link energy or other sustainability 
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related criteria to the right to develop, sell or let a property, directly affecting asset value and valuations 

(GCB, 2014). 

According to the World Green Building Trends 2016 survey, the percentage of companies 

expecting to have more than 60% of their building projects certified green is anticipated to more than 

double by 2018 (Jones, et al., 2016). A certified building (BREEAM, LEED etc.) is becoming the norm for 

most global corporate occupiers. Furthermore, the expectation is that a growing number of occupiers will 

expect building developers and owners to be able to demonstrate the impact of the building on occupant 

health and productivity. 

In 2015, a report commissioned by the Carbon War Room and GRESB presented findings on 

the relationship between sustainability investment and financial returns of real estate investment trusts 

(REITs) (Fuerst, 2015). The study found that a higher sustainability ranking in the annual Global Real Estate 

Sustainability Benchmark (GRESB) REIT survey correlated to a superior financial performance; in respect 

of both returns on assets and returns on equity. It also found a significant link between portfolio 

sustainability indicators and REIT stock market performance and was able to establish that investing in 

sustainability enhances business performance and lowers risk exposure and volatility. 

Mitigate climate change and energy security 

The largest part of our energy sources remain CO2 related, creating grave consequences with 

rising global temperatures. Decision makers who invest in delivering building performance will reduce the 

impact on climate change, preserve the quality of human life, improve business performance, and meet 

governmental regulations. Increasingly stringent government energy efficiency regulations open up a major 

transformation in processes, technology and human innovation. 

Global energy demand is growing faster than current production capacity, resulting in 

diminished supplies, increased risk of fallouts and increased energy prices (OECD, 2012). Furthermore, lack 

of access and reliability of energy can disrupt daily life, negatively impact the economy. Buildings need to 

play an important role in both generating and storing electricity, alleviating grid pressures and supporting 

the needs of the community by ensuring access and reliability. High performance buildings are a risk 

mitigation strategy as they reduce energy consumption, as such they can modify the patterns to avoid 

expensive peak rates and avoid risks associated with volatile energy prices (HEEPI, SUST and Thirdwave, 

2008). Through local generation, they can furthermore feedback electricity to the grid. 

Social aspects 

High-performance buildings increase well-being and productivity through better daylighting, 

outdoor views, indoor air quality and thermal comfort, which in turn help both attracting and retaining 

employees (WGBC, 2014). The increased well-being of building occupants result in reduced illness, lower 

rates absenteeism and lower employee turnover (WGBC, 2016). Not only is a sustainable place to work 

more likely to attract and retain talent, it is also more likely to get the most from that talent in terms of 

productivity. In addition, a well performing building that provides a good living space while being resource 

efficient can strengthen the public image of those involved in the supply chain (HEEPI, SUST and Thirdwave, 

2008).  

2.3 The energy performance gap 

To design and operate more efficient buildings many classification schemes have been 

established, providing a means to communicate a building’s relative energy efficiency and carbon emissions 

(Wang, et al., 2012). These assessment schemes are related to the energy consumption of a building, and 
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can be quantified using different methods, both during design (e.g. Asset Ratings, Energy Performance 

Certificates (EPC) and Part L calculations in England and Wales) and operation (e.g. Operational Ratings, 

Display Energy Certificates (DEC) in England and Wales) of a building. Accredited performance assessment 

tools, ranging from steady-state calculations to dynamic simulation methods are utilised to predict the 

energy consumption of a building, to comply with regulated targets using standardised procedures. Both 

classification schemes (such as the EPC and DEC) and standard calculation procedures have shown 

significant discrepancies to measured energy use during occupation, which risk not achieving regulated 

targets. Although a margin of error between any type of prediction and measured energy use is inevitable 

due to uncertainties in design and operation, as well as limitations of measurements systems, explaining its 

magnitude and underlying causes are necessary to more confidently forecast and understand energy use in 

buildings. 

2.3.1 Classification of the gap 

Building energy modelling is an integral part of today’s design process, however research has 

shown that buildings can use twice the amount of their regulatory energy performance (Norford, et al., 

1994; Pegg, et al., 2007). This makes it unlikely that the building industry achieves model-based targets 

(UKGBC, 2007). The theoretical performance is generally determined through compliance modelling (i.e. 

normative models), which is presently the implementation of thermal modelling to calculate the energy 

performance of a building under standardised operating conditions (occupant density, setpoints, operating 

schedules, etc.), set out in national calculation methodologies. Compliance modelling is useful to assess the 

energy efficiency of buildings under standardised conditions to determine if minimum performance 

requirements are met. They are used as standards for evaluation, and are non-descriptive in many of their 

aspects as to be comparable to other similar buildings. As such, its predictions should not be compared to 

actual operating conditions (Burman, et al., 2014), which apparently occurs in reality. This results in a 

deviation between regulatory predictions and measured energy use, which creates a significant risk for 

energy-related issues to go unnoticed, as they are understood as expected differences in operating 

conditions. Comparing compliance modelling with measured energy use is one of the reason for the 

popularisation of the perceived energy performance gap. Theoretically, a gap could significantly be reduced 

if a building is simulated with actual operating conditions, in other words, when care is taken to predict the 

actual performance of a building, referred to as performance modelling. Performance modelling includes all 

energy quantification methods which aim to accurately predict the performance of a building. The 

difference between compliance modelling and performance modelling is further illustrated in Figure 2.2. In 

this figure, although the DEC is supposed to represent actual energy performance of the building, the 

procedure for creating DECs can be either based on bills or measured energy use. However, due to the rating 

methodology, many DECs of the same building in different years tend to give different results; differences 

in floor areas, but also significant differences in energy end-uses such as heating, electricity or renewables, 

even though these have not necessarily changed throughout the years (Hong & Steadman, 2013; Henderson, 

2011). This was also evident in the case research presented in this thesis, where the DECs showed 

significant differences throughout the years. 
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Figure 2.2: Representation of how compliance and performance modelling include different end-uses and 

level of detail in an energy calculation of a building. 

On-going efforts to understand the energy performance gap have utilised calibration 

techniques to fine-tune a building energy model to actual operating conditions and energy use, ideally over 

a longer period of time. This method gives insights into the operational inefficiencies of a building and can 

pinpoint underlying reasons for differences between design estimations and actual use. Subsequently, a 

calibrated model could reintroduce design assumptions to quantify impacts of any underlying causes and 

their effect on energy performance. As such, a distinction can be made between three types of modelling 

efforts, these can be classified in three different ways to interpret the energy performance gap. These are; 

the gap between compliance modelling and measured energy use, performance modelling and measured 

energy use and calibration and energy use with a longitudinal perspective (Burman, 2016): 

 Regulatory performance gap, comparing predictions from compliance modelling to measured 

energy use. 

 Static performance gap, comparing predictions from performance modelling to measured 

energy use. 

 Dynamic performance gap, utilising calibrated predictions from performance modelling with 

measured energy use taking a longitudinal perspective to diagnose underlying issues and their 

impact on the performance gap. 

A similar classification is used by de Wilde (2014), but includes machine learning approaches 

as a separate classification of the energy performance gap. Here, machine learning is seen as an approach 

that is generally used for performance modelling, but might be used for compliance purposes in the future 

through analysing energy use data and associate design parameters for a large number of buildings, such as 

proposed by (Hawkins, et al., 2012). These techniques are under development, but have high potential in 

analysing the impact of building specifications on energy use, including factors such as operating conditions. 

Their accuracy is largely dependent on high quality measured data. 

2.3.2 Importance of reducing the gap 

There is a need for design stage calculation methodologies to address all aspects of building 

energy consumption for whole building simulation, including regulated and unregulated uses and 

predictions of actual operation (Norford, et al., 1994; Torcellini, et al., 2006; Diamond, et al., 2006; Turner 

& Frankel, 2008). Building energy simulation models need to closely represents the actual behaviour of the 

building under study for them to be used with any degree of confidence (Coakley, et al., 2011). These models 

contain the design goals, and should therefore be the basis for an assessment to determine whether the 

completed product complies with the design goals (Maile, et al., 2012). Underperformance in design may 

soon be met by legal, financial implications (Daly, et al., 2014) and demands for compensation and 

rectification work (ZCH & NHBC Foundation, 2010), as future regulatory targets may be based around in-

use performance. The Minimum Energy Efficiency Standard (MEES) is a good example of this in the UK, 

which will regulate landlords of any properties rented out in the private sector not to renew existing 
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tenancies or grant new tenancies if a building has less than the minimum Energy Performance Certificate 

rating (EPC) of E from 2018 (HM Goverment, 2017). 

Investigation of predicted and measured energy use is necessary in order to understand the 

underlying causes of the performance gap. Furthermore, feedback helps improving the quality of future 

design stage models by identifying common mistaken assumption and by developing best-practice 

modelling approaches (Raftery, et al., 2011). This also guides the development of simulation tools and 

identifies areas requiring research (Raftery, et al., 2011), such as uncertainty and sensitivity analysis, 

parametric modelling, geometry creation and system modelling. Furthermore, it can help policy-makers 

define performance targets more accurately (HM Government, 2010; ZCH, 2010), which then assist in 

mitigating climate change. In operation, methodologies that analyse a discrepancy and its related issues can 

help in understanding how a specific building is operating, highlighting poor-performing and well-

performing buildings and identifies areas where action is required. Investigating a discrepancy between 

design and operation can also support in identifying retrofit options to reduce energy use. In order to more 

accurately predict energy conservation from a set of proposed retrofit technologies, the simulation model 

must represent a building as operated (Heo, et al., 2012). 

2.4 Magnitude and underlying causes 

Different procedures can be used for calculating the energy performance in both the design 

and operational stage of a building, affecting the magnitude in discrepancy. Wang et al. (2012) provide an 

extensive overview of energy performance quantification and assessment methods. These methods use 

mathematical equations to relate physical properties of the building, system and equipment specifications 

to its external environment. They can help prospective occupiers, building owners, designers and engineers 

in giving an indication of building energy use, carbon dioxide emissions and operational costs. Furthermore, 

it allows a better understanding of where and how energy is used in a building and which measures have 

the greatest impact on energy use (CIBSE, 2013). In operation it can identify energy savings potential and 

evaluate the energy performance and cost-effectiveness of energy conservation measures to be 

implemented (Pan, et al., 2007). However, the built environment is complex and influenced by a large 

number of interdependent variables, making it difficult to represent real-world building energy in-use 

(Coakley, et al., 2011). Thus, models represent a simplification of reality, therefore, it is necessary to 

quantify to what degree they are inaccurate before employing them in design, prediction and decision 

making processes (Manfren, et al., 2013). Comparing measured values to modelled or estimated values for 

regulatory purposes does therefore not offer a valid comparison and should be avoided whenever possible 

(Fowler, et al., 2010). This perception is by ASHRAE (2004) as it states in its Energy Standard 90.1 Appendix 

G ―”neither the proposed building performance nor the baseline building performance are predictions of 

actual energy consumption, due to variations such as occupancy, building operation and maintenance, 

weather, and the precision of the calculation tool”. Indeed, the modelled or baseline performance here refers 

to compliance modelling which is not a representation of reality. Nevertheless, it is useful to signify the 

perceived performance gap and to understand how compliance modelling is different to measured energy 

use. Especially since performance modelling is rarely used to predict the actual energy use of a building. 

2.4.1 Magnitude 

Table 2.1 gives an overview of reported discrepancies between regulatory energy use 

predictions and measurements found in literature. An indication of the discrepancy is given by a percentage 

deviation from the predicted baseline value for a range of different non-domestic buildings. The magnitude 
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of the performance gap is typically reported using percentages, given as an increase or decrease from 

predicted. Case study buildings are located in different climates and have been predicted through different 

assessment methods using various simulation software. In this analysis averages from the CarbonBuzz 

database were used as reported by Ruyssevelt et al. (2014), who analysed 408 buildings. A more in depth 

analysis is given in (Robertson & Mumovic, 2013). CarbonBuzz (2015), is a platform established in order to 

benchmark and track energy use in project from design to operation. The type of prediction method used 

are given in Table 2.2. 

Table 2.1: Magnitude in discrepancy reported in literature (perceived gap incl. equipment energy use). 

 
% from predicted  
(no. buildings)** 

Gap average Source 
Method 
*** 

Modelling 
software 

Office 47%  Austin (2013) B VisualDOE 3.0 
 11%  Bertagnolio (2012) C ISO 13790 
 -27% to 13% [4] -14% Calderone, (2011) B IES VE 
 -2%  Daly et al. (2014) B ECOTECT 
 -82% to 74% [9] -10% Diamond et al. (2006) B   
 -30%  Kimpian et al. (2014) F DSM / TM22 
 40%  Korjenic & Bednar (2012) H BuildOpt_VIE 
 72% and 113% [2] 93% Menezes et al. (2012) E TM22 
 -17%  Murphy & Castleton (2014) B SBEM 
 160%  Norford et al. (1994) B DOE-2.1C 
 -32% to 148% [15] 30% Piette et al. (1994) A DOE 2.1 
  63% [30] Ruyssevelt et al. (2014) n/a   
 31% and 73% [2] 52% Torcellini et al. (2006) B DOE 2.2 
 25 offices 16% {σ 53}*    
Laboratory  1% to 95% [2] 32% Diamond et al. (2006) B   
Restaurant -13% to 71% [4] 31% {σ 31} Piette et al. (1994) B DOE 2.1 
Schools 29% to 124% [4] 71% Kimpian et al. (2014) F  DSM / TM22 
  111% to 127% [3] 117% Pegg et al. (2007) D   
  -3% and -6% [2] -5% Piette et al. (1994) A DOE 2.1 
   37% [58] Ruyssevelt et al. (2014) n/a   
 11 schools 67% {σ 48}*    
Multipurpose 13% to 48% [4] 5% Ahmed & Culp (2006) I DOE-2.1E 
  13% to 142% [5] 99% Piette et al. (1994) A DOE 2.1 
  69%  Salehi et al. (2013) B IES VE 
  95% to 132% [3] 113% Torcellini et al. (2006) B DOE 2.2 
 8 multipurpose 45% {σ 53}*    
University 22%  Diamond et al. (2006) B   
  8%  Knight (2008) B SBEM 
   156% [13] Ruyssevelt et al. (2014) n/a   
 3 universities 62% {σ 66}    
Retail  12% [5] Ruyssevelt et al. (2014) n/a   
  62%  Torcellini et al. (2006) B DOE 2.1E 
 2 retail 37% {σ 25}    
Supermarket -25% and 5% [2] -10% Piette et al. (1994) B DOE 2.1 
Library -32% and 48% [2] 8% Diamond et al. (2006) B   
*The averages per sector exclude the case studies where the prediction method used is A 
**Actual = predicted ± % over/under-predicted. i.e. +160% means that actual energy use is 160% higher 
than predicted. ***see Table 2.2 

Table 2.2: Type of prediction used in the reviewed literature case studies, denoted by a letter. 
 Type of prediction 
A Design stage calculation, excluding unregulated loads 
B Design stage calculation, including equipment energy use, standard operation 
C Quasi steady-state hourly simulation relying on simple normative models (EN-ISO 13790) 
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 Type of prediction 

D 
CIBSE building energy code 1 (1998) using monthly average temperatures and included 
unregulated loads, no thermal modelling, similar to CIBSE TM22 bottom-up approach 

E CIBSE TM22 Bottom-up approach 

F 
National Calculation Methodology (NCM) in thermal modelling + equipment, external lighting and 
lift using TM22 

G 
National Calculation Methodology (NCM) in thermal modelling + benchmarking for DHW and 
Auxiliary loads +equipment, external lighting and lift using TM22 

H Monthly balance method (EN-ISO 13790) + equipment energy use 
I Design stage calculation partially based on built information, including equipment energy use 

In the UK, regulatory compliance calculations include the equipment loads solely to estimate 

the heating and cooling loads, but are excluded from the final evaluation of energy use. From a compliance 

perspective, plug loads/equipment loads are excluded as they are strongly dependent on occupant 

behaviour and fit-out specification, which in many shell and core designs are not well known, making them 

difficult to predict. Excluding them however, makes it easier and arguably fairer to compare the efficiency 

between buildings, i.e. comparing EPCs. On the other hand, it makes sense to include them as they make up 

a large portion of total energy use, which otherwise leads to the ‘perceived’ gap where compliance results 

are compared to actual energy use, even though some energy end-uses are not taken into account and the 

methodology was never intended for this purpose. In the end, it comes back to the classification of the 

performance gap(s). 

From 62 reviewed case studies the average discrepancy between regulatory energy use 

predictions and measurements is +34%, with a standard deviation of 55%. These studies include a 

prediction of equipment energy use and thus exclude studies with prediction method A for a fair 

comparison. In the reviewed studies a baseline is often calculated according to national calculation 

methodologies to comply with Building Regulations. The analysis highlights schools and university 

buildings to have a large average gap of 67% and 62% respectively. On the contrary, offices show a much 

lower average difference of only 16%, whereas most averages show a standard deviation of about 50%, 

indicating a large variation in between individual buildings. 

Reviewed case studies are primarily from the United Kingdom (18) and the United States of 

America (34). When comparing by country, the UK shows an average discrepancy of +65% compared to 

+17% in the USA, both have a similar standard deviation of about 50%. A more detailed look at the specific 

studies identifies potential reasons for such a difference. First, Diamond et al. (2006) analyse LEED certified 

buildings in their study, and hypothesise themselves that such buildings tend to have better agreement 

between design and actual energy use. Second, Ahmed & Culp (2006) present 4 buildings where their design 

model is partially based on as-built information, resulting in a more careful consideration of energy use in 

the building compared to compliance models. Excluding case study buildings from these two authors would 

increase the average discrepancy to 46%. Finally, there are some fundamental differences between the UK 

and US compliance modelling methods, NCM and ASHRAE respectively, these influence design stage 

predictions through different standard assumptions. However, without a large sample size no well-

supported claims can be made. 

In absolute values for the case studies are visualised in Figure 2.2 and Figure 2.4 illustrates the 

percentage differences from measured to predicted energy use, segmented by building function. The 

+100% means that measured energy use is twice the amount predicted, while -100% means that measured 

energy use is 0 kWh/m2a. 
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Figure 2.3: Predicted and measured energy use 
intensities of reviewed case studies for different 

building functions 

Figure 2.4: Difference in percentages of measured to 
predicted energy use of reviewed case studies for 

different building functions 

In Figure 2.3 several of the buildings have high energy use intensities (>1,000 kWh/m2a) and 

are therefore not shown. Two dash lines indicate if measured energy use in specific case studies is double 

the predicted value (top left) or is less than half the predicted value (bottom right). This visualisation 

emphasises that measured energy use in most case studies is higher than predicted energy use. While 15% 

(9 of 62) of the case studies use double the amount of energy initially predicted in contrast to one significant 

outlier that uses less than half the energy initially predicted. In particular, Ruyssevelt et al. (2014) reported 

university buildings to use 156% more energy than initially predicted, an average based on 13 individual 

studies. Knight (2008) and Diamond et al. (2006), who report a difference of only 8% and 22% for 

university buildings respectively, do however not support this percentage. Similarly, Ruyssevelt et al. 

(2014) reported schools to use 37% more energy than initially predicted, based on an average of 58 

individual studies. Whereas Kimpian et al. (2014) and Pegg et al. (2007) report much higher average 

percentages of 117% (3 schools) and 71% (5 Schools) respectively. 

Figure 2.4 shows that the number of case studies for the different building functions is not well 

distributed, the dataset consists mainly of offices, schools and multipurpose buildings. Although the sample 

size is small, analysis indicates that schools generally consume more energy than predicted. Pegg et al. 

(2007) reasoned it to be, amongst others, due to 24h security and the need for lighting to be on for security 

cameras, facilities management that had little relative experience with building services and systems not 

optimised to respond to changing requirements. The discrepancies for offices are much more variable with 

an average of +22% and standard deviation of 50%. 

Most studies use compliance modelling with the inclusion of equipment energy use, and use 

model calibration to further understand the underlying causes of a difference. It therefore remains unclear 

how significant the energy performance gap would be when performance modelling is compared with 

measured energy use. 
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2.4.2 Underlying causes 

In Figure 2.5 an overview is given of some of the underlying causes of the performance gap 

existent in the different stages of the building life cycle according to the Royal Institute of British Architects’ 

(RIBA) plan of work (RIBA, 2013) drawn in relation to building performance influenced by such underlying 

causes as proposed by Bunn & Burman (2015). Although they propose a smooth ‘s-curve’, perhaps more 

realistically, building performance should be represented by a jagged line, where performance is affected 

continually instead of continuously. This model allows for visualising performance issues and clarifies the 

classification of the different types of performance gaps. Addressing every source available will help in 

assessing evidence on the impact of these issues, it is therefore also useful to also look at domestic 

experiences in this area. 

 
Figure 2.5: Underlying causes aligned to RIBA stages (adapted from RIBA (2013)) and S-curve 
visualisation of performance throughout the life cycle (adapted from Bunn & Burman (2015)) 

Limited understanding of impact of early design decisions 

During the early design stage there is a lack of focus and understanding on the energy 

implications of design decisions (ZCH, 2014), requiring a need to educate clients and end-users in how 

buildings perform against initial design specifications (Morant, 2012). Choices such as, form, orientation, 

materials, use of renewables, passive strategies, innovative solutions and others should be critically 

addressed during the concept design. Uncertainty and sensitivity analysis that determine the impact of 

design parameters can guide the design process through identifying and preventing costly design mistakes 

before they occur (Bucking, et al., 2014). 

Complexity of design 

Another reason for introducing a discrepancy between design and operational energy 

performance, is the buildings’ complexity. For example, mistakes in construction become more frequent 

and complex systems are less well understood (Bunn & Burman, 2015). Simplicity should be the aim of the 

design as many of the underlying issues relate to the complexity of the building (Williamson, 2012).  
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Uncertainty in building energy modelling 

A building energy model represents the speculative design of a building and is a simplification 

of reality. It is therefore important to quantify to what degree it is imperfect (Manfren, et al., 2013). In the 

detailed design stage, building energy modelling requires a high level of detail in order to accurately predict 

the energy use of a building. Myriad uncertain parameters can have a large effect on the final performance 

due to the aggregated effect of uncertainties. Among uncertainties in design, those related to natural 

variability, such as material properties are relatively well covered (de Wit & Augenbroe, 2002). Other 

uncertainties are less well understood and need a strong basis for research to be established in modelling 

procedures. Investigation towards well-defined assumptions can assist in more accurately and confidently 

predict performance of a building (Heidarinejad, et al., 2013). Different sources of uncertainty exist in the 

use of building simulation, de Wit (2001) classified specification, modelling, numerical and scenario 

uncertainty, where heuristic uncertainty has been added to describe human-introduced errors as reported 

by (Kim & Augenbroe, 2013): 

 Specification uncertainty: Arise from incomplete or inaccurate specification of the building or 

systems modelled. This refers to the lack of information on the exact properties and may 

include model parameters such as; geometry, material properties, HVAC specifications, plant 

and system schedules, casual gains, etc. Parameters related to specification uncertainty are 

often ‘highly unknown’ during the early design stage, and can have a large effect on the 

predicted energy use, assumptions for such parameters are often not representative of actual 

values in operation. Olivier (2001) reports that UK figures for construction U-values using in 

calculations are optimistic and theoretical savings are not achieved in practice, due to the 

exclusion of many types of thermal bridges and neglecting adverse effects of wind on heat loss 

and little correction for the effects of moisture on thermal conductivity.  Burman et al. (2012) 

identified that a constant value assumed for the specific fan power was actually changing 

radically in operation. Similarly, Salehi et al. (2013) identified that underlying assumptions 

for plug loads and lighting were significantly underestimated. 

 Modelling uncertainty: Arise from simplifications introduced in the development of the model. 

These include system simplification, zoning, stochastic process scheduling, but also 

calculation algorithms. Wetter (2011) asserted that mechanical systems and their control 

systems are often so simplified that they do not capture dynamic behaviour and part-load 

operation of the mechanical system or the response of feedback control systems. Salehi et al. 

(2013) were unable to model the unconventional heating system of a building in utilised 

modelling software, which may lead to wrong performance prediction, further support this. 

Also Burman et al. (2012) found that pump auxiliary power could not be modelled for 

compliance purposes and had to apply default values based on HVAC system type. Such tool 

limitations are extensively reported and contrasted and highlight that certain systems and its 

configurations are not supported by building simulation software (Crawley, et al., 2008). 

 Numerical uncertainty: Errors introduced in the discretisation and simulation of the model. 

Modelling implies a simplification of the real physical processes in real buildings, differences 

between measured and calculated results can arise due to the application of different 

numerical solution techniques (Judkoff, et al., 2008). 

 Scenario uncertainty: Uncertainty related to the external environment of a system and its 

effects on the system. The specification of weather, building operation and occupant behaviour 

in the design model. Accuracy of design weather data can have a large effect on the predicted 

energy performance of a building. According to Bhandari et al. (2012) the predicted annual 
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building energy consumption can vary up to 7% as a function of the provided location’s 

weather data. While (Wang, et al., 2012) showed that the impact of year-to-year weather 

fluctuation on the energy use of a building ranges from -4 to 6%. Knowing the uncertainty of 

related microclimate variables is necessary to understand its impact on energy prediction 

(Sun, et al., 2014). Similarly, occupants are an uncertainty external to the system and play a 

major role in the operation of a building. In design calculations occupancy is normally 

accounted for through a fraction profile, which determines their presence in the model and 

separately determine when they can operate building equipment. This profile is simplified by 

taking the average behaviour of the occupants, and therefore neglects temporal variations and 

atypical behaviour (Kim & Augenbroe, 2013). Furthermore, occupant effects are related to 

specification uncertainty through assumed base loads (e.g. lighting and equipment), which 

make it difficult to determine how occupant profiles or wrong base load assumptions impact 

the energy performance. 

 Heuristic uncertainty: Human-introduced error in the form of modeller’s bias or mistakes. User 

errors are inevitably quite common due to the complexity of building energy simulation and 

its tools, these errors range from modellers setting up a building system in different ways, 

forgetting to apply operation or occupancy profiles to the correct zones or can be related to 

geometry creation. Guyon (1997) investigated the influence of 12 energy modellers on 

prediction of energy consumption of a residential house, and found a 40% variability in their 

final predictions. A similar observation was made by the Building Research Establishment 

(BRE) where 25 users predicted the energy consumption of a large complex building and 

found that their results varied from -46% to +106% (Bloomfied, 1988). 

Inter-model variability 

Energy use prediction is performed using different tools, developed in different countries, for 

different reasons and as such introduce variability in the results when modelling the same building, i.e. 

inter-model variability. This is directly related to uncertainties in building energy simulation, especially 

model simplification, user error and numerical uncertainties will drive the variability between different 

tools. These tools are utilised for the purpose of prediction and thus have to give credible and relatively 

accurate results. Neymark et al. (2002) compared seven different tools and indicated a 4-40% disagreement 

in energy consumption. Raslan & Davies (2010) compared 13 different accredited software tools. They 

highlighted a large of variability in the results produced by each of the tools in their consistency in granting 

approval with Building Regulations. In a more recent study, Schwartz & Raslan (2013) performed an inter-

model comparative analysis of three different dynamic simulation tools using a single case study and found 

a 35% variability in the total energy consumption. 

On-site workmanship 

As Building Regulations become more stringent, the quality of construction has to be improved 

and new technologies are introduced. On site workmanship needs to adapt and be trained to these 

increasing levels of complexity in building construction. New skills such as air tightness detailing for limiting 

air infiltration give rise to performance issues as airtightness is compromised during construction by 

discontinuous insulation or punctured airtight barriers (Williamson, 2012). Installation of services, such as 

drainage, air ducts and electrical pipe work can often leave gaps which also reduce airtightness and induce 

thermal loss (Morant, 2012). Other common issues related to on-site workmanship are eaves to wall 

junction insulation, incorrect positioning of windows and doors which reduce the actual performance of the 
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thermal envelope (ZCH, 2014). These issues are more prone to affect the energy performance in domestic 

buildings, where usually the performance of the thermal envelope is more significant. 

Changes after design 

After the building is designed, often products or changes are value engineered and directly 

influence energy performance gap as such changes are often not fed back to the design team for evaluation 

against the required performance standard (ZCH, 2014). These changes can occur during design due to site 

constraints, not well thought of integration of design modules problems with detailing and budget issues. 

Murphy & Castleton (2014) reported in their case study that the roll-out of unspecified low-energy 

equipment affected final unregulated loads, and indirectly cooling energy use due to lower internal gains. 

Similarly, Morant (2012) reported inconsistencies between design specified and installed lighting loads in 

an office, which had a considerable impact on the discrepancy between predicted and measured electricity 

use. Good communication and coordination by the contractor is essential to prevent changes in design 

changes to influence the energy performance. 

Poor commissioning 

Piette et al. (1994) reported poor commissioning of control measures, which were not set-up 

for proper control, and operation. Kimpian et al. (2014) identified that inverters for supply and extract fans 

were provided to AHUs, but were not enabled during commissioning, resulting in the fans to operate at 

maximum speed at all times. In operation, such issues persist and require continuous commissioning. 

Poor practice and malfunctioning equipment 

The actual operation of a building is idealised during design by making assumptions for 

temperature setpoints, control schedules and general performance of HVAC systems. In practice however, 

it is often the case that many of these assumptions deviate and directly influence a building’s energy use. 

Kleber & Wagner (2007) monitored an office building and found that failures in operating the building’s 

facilities caused higher energy consumption, they underline the importance of continuous monitoring of a 

building. Wang et al. (2012) showed that poor practice in building operations across multiple parameters 

results in an increase in energy use of 49-79%, while good practice reduces energy consumption by 15-

29%. Piette et al. (1994) suggest that building operators do not necessarily possess the appropriate data, 

information, training and tools needed to provide optimal results. As such, operational assumptions made 

in the design stage may not be met by building operators (Moezzi, et al., 2013). 

Occupant behaviour 

Another dynamic factor for a building in use are occupants. They have a substantial influence 

on the energy performance of a building by handling controls, such as those for lighting, sun-shading, 

windows, setpoints, and office equipment, but also through their presence, which may deviate from 

assumed schedules. People are very different in their behaviour through culture, upbringing and education, 

making their influence on energy consumption highly variable. One of the major factors that has been 

reported to have a large influence on the discrepancy is night-time energy use from leaving office equipment 

on (Masoso & Grobler, 2010; Zhang, et al., 2011; Mulville, et al., 2014; Kawamoto, et al., 2004). Both related 

to occupant behaviour (not turning off equipment) and assumptions for operational schedules, extended 

working hours not taken into account in the design model. In an uncontrolled environment (not extensively 

monitored) it is difficult to determine how one or the other is influencing the discrepancy. Azar & Menassa 

(2012) investigated 30 typical office buildings and found that certain occupancy behavioural actions 

influenced energy use by 23.6%. Parys et al. (2010) reported a standard deviation of up to 10% on energy 

use to be related to occupant behaviour. Martani et al. (2012) studied two buildings and found a 63% and 
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69% variation in electricity consumption due to occupant behaviour. Using modelling, Hong and Lin (2013) 

investigated different work styles in an office space and found that an austere work style consumes up to 

50% less energy while a wasteful work style consumes 90% more energy. Similarly, Clevenger and 

Haymaker (2006) studied an elementary school with varying types of occupant behaviour, whereas high-

end values affected energy use by up to 150%. 

Measurement system limitations 

Similar to predicting energy use using building energy models, measured energy use obtained 

from measurement systems needs to be validated to ensure accuracy of the data. Limitations of 

measurement systems make adequate assessment of energy use inaccurate (Maile, et al., 2010). Typical 

sensor accuracies to lie within 1-5% for normal operating conditions, whereas incorrectly placed sensors  

will have increased levels of error (Maile, et al., 2010). Most common sources are calibration errors, or the 

absence of calibration (Palmer, et al., 2016). Fedoruk et al. (2015) identified that measurements were not 

accurately representing the performance of buildings systems due to mislabelling, incorrectly installed and 

calibrated. They report that simply having access to large amounts may actually result in more confusion 

and operational problems. 

Longitudinal variability in operation 

Finally, commonly the energy performance gap is assessed for a year of available data. 

However, longitudinal performance is affected factors such as building occupancy, deterioration of physical 

elements, climatic conditions, and building maintenance processes and policies (de Wilde, et al., 2011). 

Brown et al. (2010) present a longitudinal analysis of 25 buildings in the UK and found an increase of 9% 

in energy use on average per year over 7 years, with a standard deviation of 18%. Similarly, Piette et al. 

(1994) analysed 28 buildings in the US and found an average increase of 6% between the third and fourth 

year, with no average increase during the fifth year. Thus, a longitudinal variability in operational energy 

use has to be taken into account when investigating the energy performance gap. 

2.4.3 Assessing the underlying causes 

All of these causes combined can have a large influence on the final energy performance of a 

building. Table 2.3 shows a risk matrix that defines the potential associated risks of the discussed underlying 

causes based on general consensus in literature. An overview of several of the reviewed case studies and 

their reported underlying reasons for a discrepancy are given in Appendix A. 

Table 2.3: Potential risk on energy use from underlying causes assessed based on general consensus in 
literature. 

  Underlying cause 
Evidence 
from 
literature* 

Rated 
impact on 
energy use  

Estimated 
quantitative 
effect 

Compliance 
modelling 
related 

Context Energy performance target Low High  Yes 

 Impact of early design decisions Medium High   

 Complexity of design Low Medium   

Model Specification (geometry, material, 
equipment) 

High High 20-60% Yes 

 Modelling (simplification) Medium Medium <10% Yes 

 Numerical (discretisation) Low Low <5%  

 Scenario (weather, schedule, 
operation) 

High Medium 10-30% Yes 

 Heuristic (user) Low High <70%  
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  Underlying cause 
Evidence 
from 
literature* 

Rated 
impact on 
energy use  

Estimated 
quantitative 
effect 

Compliance 
modelling 
related 

 Inter-model variability Medium Medium 5-40%  

Construction On-site workmanship Medium Low   

 Changes after design Low Low   

Commissioning Poor commissioning Medium Medium <20%  

Operation Poor practice in operation High High 15-80%  

 Occupant behaviour High High 10-80%  

 
Degradation of system and 
materials 

Low Low <10%  

 Measurement system limitation Low Low <10%  

 Energy use variability in operation Low Medium 5-15%  

*Based on the  number of mentions in literature and their consensus of the impact on performance. 

Important underlying causes identified in literature are those that have a high impact and high 

evidence rating, these are specifically related to specification uncertainty in building modelling (20-60%), 

occupant behaviour (10-80%) and poor practice in operation (15-80%), with percentage effect on energy 

use. Other important factors that are likely to have a high rated impact are the energy performance target, 

impact of early design decisions and heuristic uncertainty in modelling. 

An assessment of the underlying causes of the energy performance gap has shown that there 

is a need for both action and further research to be undertaken. Detailed building prediction methods and 

post-occupancy evaluation have proven to be essential in the understanding of building assumptions, 

occupant behaviour, systems and the discrepancy between predicted and measured energy use. 

2.5 Reducing the energy performance gap 

A major concern in the built environment is the fragmentation of disciplines involved in the 

building life cycle stages. Traditionally designers, engineers and contractors are involved in the building 

development process, but leave once the building is physically complete, leaving the end-users with a 

building they are unlikely to fully understand. The design community rarely goes back to see how buildings 

perform after they have been constructed (Torcellini, et al., 2006). Feedback mechanisms on energy 

performance are not well developed and it is generally assumed that buildings perform as designed, 

consequently there is little understanding of what works and what does not, which makes it difficult to 

continuously improve performance (ZCH & NHBC Foundation, 2010). Gathering more evidence on both the 

performance gap and its underlying issues can support feedback mechanisms and prioritise principle 

issues. For this, the primary requirement is the collection of operational performance data, which can be 

fed back to design teams to ensure lessons are learnt and issues are avoided in future designs. It can help 

policy makers understand the trend of energy use and support the development of regulations. Finally, 

operational data is valuable to facilities management in order to efficiently operate the building. This 

feedback process is illustrated in Figure 2.6. 
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Figure 2.6: Feedback process in relation to the RIBA plan of work stages, adapted from RIBA (2013). 

2.5.1 Legislative frameworks 

In 2014, the UK department of Energy & Climate Change introduced the Energy Savings 

Opportunity Scheme (ESOS) in order to promote operational management in buildings, an enacted policy 

under the Energy Performance of Buildings Directive (EPBD). A mandatory energy assessment to identify 

energy savings in corporate undertakings that either employ more than 250 or have an annual turnover in 

excess of ~38 million pounds (50 million euros). An assessor should calculate how much energy could be 

saved from improved efficiency. How these energy savings are predicted is however left open and could 

entail simple hand calculations instead of the more detailed dynamic thermal simulations, furthermore 

implementing proposed energy savings are voluntary. Following a similar process are Energy Performance 

Contracts, these contracts legally bind a third party for predicted savings to be realised, otherwise 

equivalent compensation needs to be provided. It then becomes important to make accurate predictions of 

energy conservation measures as their reliability directly influences the profit of the businesses providing 

these contracts. 

For new buildings, regulatory limits become ever more stringent in order to mitigate climate 

change and achieving them requires new energy efficient technologies and higher quality construction 

materials to be proposed. Although such limits are theoretically engineered, evidently such targets are not 

achieved in practice, without any repercussions for modellers who produce inaccurate predictions, this can 

foster a lack of confidence in simulation in the building industry and may soon be met by legal and financial 

implications (Daly, et al., 2014). Burman et al. (2014) proposed a framework that measures any excess in 

energy use over the regulatory limit set out for the building. This excess in energy use could cause 

disproportionate environmental damage and it could be argued that it should be charged at a different rate 

or be subject to an environmental tax. Kimpian et al. (2014) suggest mandating the disclosure of design 

stage calculations and assumptions as well as operational energy use outcomes in Building Regulations, 

such data would significantly support the understanding of the energy performance gap. Governments 
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continue to face the difficult task of balancing the principal of not interfering in the affairs of businesses 

with the recognition of serious consequences of energy waste and climate change (Jonlin, 2014). 

2.5.2 Data collection 

Accessible meter data is invaluable to confirm that building really do achieve their designed 

and approved goals (UKGBC, 2007). A continued lack of such data is likely to lead to a progressive widening 

of the gap between predicted and measured energy use (Oreszczyn & Lowe, 2009). Energy performance 

data can be used by design teams to enable them to deliver better designs, clients to enable benchmarking 

and develop a lower carbon building brief, building users to drive change and management in operation, 

policy makers to target plans and incentives and monitor the trend of energy use (HM Government, 2010). 

Without data collection there would be no feedback loop to inform future policy and regulation (ZCH, 2010). 

2.5.3 Design improvements 

Negating the performance gap starts at the beginning of a project. At this point it is important 

to set a high energy performance target, which can assist in a more rigorous review of system specifications 

and operational risks (Kimpian, et al., 2014). With high performance expectations it becomes necessary to 

carry out performance modelling, validate assumptions made in the building model, make sure that building 

fabric is constructed to a high standard, properly commissioned systems and to operate the building as 

efficiently and effectively as possible. Making an accurate prediction of building energy performance 

becomes an integral part of the design process. A building design however can be based on thousands of 

input parameters, often obtained from guidelines or Building Regulations, some of which have extensive 

background research while others are only best-guess values. Pegg et al. (2007) argue for the use of 

feedback to inform design and need for realistic and relevant benchmarks. However, such feedback is often 

very case specific. Research on occupant behaviour is extensive because many factors, such as control of 

lighting, equipment, windows, etc. are dependent on how occupants interact with them. Martani et al. 

(2012) propose a method to measure occupancy using Wi-Fi connections to determine its relation to HVAC 

levels and electricity supply. Whereas, Mahdavi & Pröglhöf (2009) suggest the collection of occupancy 

behaviour information to derive generalised (aggregate models) and utilise such models in building energy 

simulation. Capturing user-based control actions and generalising these as simulation inputs can provide 

more accuracy in prediction. Using operational data Rysanek & Choudhary (2014) used an open-source 

software to generate hourly profiles of occupancy services demand for use in common building energy 

models. Simulation can be further supported by introducing well-defined uncertainties in design, improving 

the robustness of the building design, reliability of energy simulation and enable design decision support, 

in particular when supported by sensitivity analysis (Hopfe & Hensen, 2011). 

2.5.4 Training and education 

During construction, robust checking and testing is necessary to ensure that the quality of 

construction is maintained (Morant, 2012). Furthermore, changes during design and construction have to 

be communicated, the supply chain has to be informed in time to make sure everything is integrated 

appropriately. The real performance of building elements is underestimated as they are taken from lab-

tests and omit, for example, the occurrence of thermal bridge mistakes during construction. Clear guidance 

on thermal bridging should be therefore be provided to the construction industry (ZCH, 2014). Training 

and education need to increase the skills in the construction industry to ensure better communication and 

quality of construction. Similarly, training and education should be enhanced for facility managers, to more 

strictly perform maintenance and operation of buildings, and in the design stage it is important to create 
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awareness to energy modellers of the energy performance discrepancy, while promoting skills, innovation 

and technological development in order to deal more appropriately with creating a robust design.  

2.5.5 Operational management 

Post occupancy evaluation studies have shown that buildings are often poorly commissioned 

and that there is a lack of continuous commissioning during operation (Kimpian, et al., 2014). Frequent re-

commissioning exercises can help maximise the efficiency of building services, avoiding unnecessary energy 

use (Morant, 2012). For guidance in this process, the Soft Landings framework was developed in order to 

provide extended aftercare, through monitoring, performance reviews and feedback. However, its purpose 

has been extended to provide a relevant guide to building procurement throughout the building life cycle. 

While Soft Landings provides useful guidance, Kimpian et al. (2014) found it ineffective in practice and only 

when data started to be collected and analysed, procurement related problems began to surface. Aftercare, 

but also professional assistance is required as technologies and solutions made during the design often 

prove too complicated to be manageable (Way, et al., 2014). Continual monitoring of the performance 

during operation is thus important in order to ensure that design goals are met under normal operating 

conditions (Torcellini, et al., 2006). It is essential that facilities managers take ownership of energy 

consumption in buildings as they have detailed information of operational issues (CIBSE, 2015). 

2.6 Predicting and measuring energy use 

Three types of performance gaps (regulatory, static, dynamic) have been identified. To 

understand why there are differences and how they can be mitigated, an overview is given on how predicted 

and measured energy use can be compared through different performance quantification and assessment 

methods. The magnitude and causal factors that influence the discrepancy between predicted and measured 

energy performance can only be identified if detailed information from both the design and operational 

stages is analysed. The magnitude of a discrepancy can be obtained through comparison, but its coherency 

depends on the type of quantification method applied, as they determine the energy performance of a 

building. Thus it is important to understand the fundamental differences of different performance 

assessment methods. Furthermore, the introduction of classification schemes and benchmarking have 

further allowed the comparison of building energy efficiency, likewise these assessment methods have 

inherent differences between which need to be understood in order to make like for like comparisons. 

2.6.1 Energy performance quantification 

Energy use for a building can be obtained through three different approaches: calculation-

based, measurement-based and a hybrid approach. These differ in cost, time, effort, level of detail, accuracy 

and availability. Where utility bills can provide quick and accurate results, they are only relevant in existing 

buildings where enough data has been collected over a longer period of time, but do not provide the level 

of detail as a monitoring-based method could. Dynamic simulation on the other hand can include an even 

higher level of detail about the predicted energy performance of a building, but its relative accuracy to a 

utility bill will be lower. A hybrid approach is a combination of calculation and measurements, an example 

of this is calibrated simulation. Figure 2.7 illustrates three different approaches and their underlying 

methods and applications. 
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Figure 2.7: Energy performance quantification methods, adapted from (Wang, et al., 2012).  

Calculation-based method 

Building energy performance calculations consist of defining inputs to determine the outcome 

of energy performance. Inputs are required in the simulation engine that describe detailed mathematical 

models and represent the interaction between actual building physics and services. Outputs from the 

calculations typically include the annual energy use and carbon emissions with a more detailed energy 

breakdown in end-uses and graphical building services results. Calculation-based methods can be divided 

into: 

 Steady-state methods, ignore or simplify dynamic effects by correlation factors. 

 Dynamic simulation, is more suited to functional and volumetric complexities as they allow 

for more detailed input options (Raslan & Davies, 2010) and are capable of capturing building 

dynamics of the envelope and systems (Wang, et al., 2012). 

Both these calculation methods can be established using a forward (deterministic) or inverse 

(regression) modelling approach. A forward modelling approach describes the building services and 

defines the building according to its physical configuration. The inverse modelling approach relates the 

energy performance indicators (outputs) to the influential factors (inputs), a physical configuration of a 

building or system is assumed and a model coefficient is identified by statistical analysis. 

Under the EPBD both of these methods are used for energy performance calculation 

procedures for regulatory compliance (e.g. Part L compliance and EPCs in the UK) described in more detail 

in ISO 13790 (ISO, 2008) and ISO 52016-1 (ISO, 2017). The dynamic approach differs from the steady-state 

method by taking into account the non-linear and interactive heat transfer within a building, thus capturing 

periodic changes such as temperature within the building. The application of the methods used may lead to 

different compliance results, another factor that will influence the static gap between predictions and 

measurements. 

Hybrid-based method 

Hybrid methods combine the use of computational analysis while being supplemented by 

measurements to identify model parameters or calculation discrepancies. Two typical hybrid methods to 

quantify energy performance are calibrated simulation and dynamic inverse modelling. 

 Dynamic inverse modelling, broadly known as machine learning is a method that uses 

correlation between input parameters and output parameters to predict energy use without 

explicitly modelling the systems and physical processes of a building (de Wilde, 2014). These 

types of models are complex and need detailed measurements to fine-tune the model (Haberl 
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& Culp, 2005). Typical examples of dynamic inverse models include autoregressive moving 

average (ARMA) models, artificial neural networks (ANN), and Fourier series. 

 Calibrated simulation, calibration is the process of adjusting numerical or physical modelling 

parameters in the computational model for the purpose of improving agreement with real-

world data (Oberkampf & Roy, 2010). Calibrated simulation can be used to quantify the impact 

of energy conservation measures using simulation models. Due to its detailed analysis 

procedure, it can provide feedback to improve the quality of future design stage models by 

identifying common mistakes in assumptions (Raftery, et al., 2011). Iterative efforts can be 

reduced by treating calibration as an optimisation problem by using sensitivity analysis to 

identify which values can be mathematically tuned to their reference values (Sun & Reddy, 

2006; Manfren, et al., 2013). 

Measurement-based method 

Whenever energy quantification is established using calculation, a certain discrepancy will 

exist between the predicted and actual energy performance, therefore the credibility of calculated results 

should always be questioned. For new buildings, energy quantification using calculation is the only method. 

For existing buildings however, the use of measured energy performance is more accurate. Measurement 

methods can be divided into energy-bill based methods and monitoring-based methods and its accuracy 

depends on the temporal resolution of the system and measurement limitations.  

 Energy bills can provide some easily attainable measurement data in most existing buildings, 

but are often based on estimates. Furthermore, monthly bills provide insufficient information 

for detailed energy performance assessment. To acquire more information for end-uses, 

energy bills can be disaggregated to provide a better understanding of the energy use in a 

building. 

 Monitoring based-methods provide more accurate and detailed energy use consumption. 

There are several technologies available. Automatic meter reading (AMR) obtains energy use 

of individual loads by placing separate metering hardware on relevant circuit branches. Non-

intrusive load monitoring (NILM) uses pattern recognition that is capable of gathering 

detailed energy-use without sub-metering. Building management systems (BMS) collect data 

to get a clear picture of the energy use of typical HVAC systems and the whole building and 

have control over these systems. 

2.6.2 Performance assessment methods 

The most commonly used indicator for building energy use is the annual energy use per unit 

area, determined by the relation between a building and its occupants, systems and external environment. 

To help buildings reduce their energy consumption, energy performance assessment assists in 

communicating a building’s energy efficiency. Energy performance assessment can be classified into 

performance-based and feature-specific approaches. Performance-based approaches compare quantifiable 

performance indicators against established benchmarks and feature-specific approaches are awarded 

credits when criteria of specific features are met. Figure 2.8 gives an overview four different performance 

assessment methods with a breakdown of different techniques and applications. 
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Figure 2.8: Energy performance assessment applications for existing and new buildings. 

Whole-building benchmarking 

Benchmarks can be established by applying statistical analysis of building stocks that have a 

coherent building function with the to be compared building, simple normalised and regression-based 

models employed for this purpose. Alternatively, benchmarks can be calculated by using building energy 

simulation to a variety of building functions and parameters, or by using a self-reference (i.e. notional 

building) building as the comparison criterion. 

Energy certification 

The performance of a building is certified by an authorised institute or person, and generally 

includes and “energy rating” process to quantify energy use, and an “energy labelling” scale to classify the 

corresponding performance (Wang, et al., 2012). There are many different building energy certificates 

available, resulting in different calculation methodologies. These calculation methodologies can be divided 

into three different methods; calculation-, measurement- and hybrid-based methods. For new buildings, the 

calculation-based method uses simulation to determine the energy performance in the design stage and 

provides the building with an “asset rating”. Existing buildings can be provided with a similar certificate 

based measured data to provide an “operational rating”. A combination (hybrid method) using calculation 

and measurements is also applied in some cases to provide an energy certificate. 

Building environmental assessment schemes  

Environmental assessment schemes encourage the development of sustainable “green” 

buildings. Rating systems generally assess environmental, social and economic impacts of various aspects 

of building development. Environmental aspects concern itself with the efficiency of energy use, water, 

waste, material, set use, etc. They were used to address the asset of new buildings, but are also available for 

existing building and even communities. Many assessment schemes exist around the world with most 

countries having developed their own system (e.g. BREEAM and LEED). 

Hierarchical assessment and diagnosis tools and guidelines 

Diagnosis tools assess the performance of systems or facilities; they provide specific 

information through detailed energy audits to identify root causes of energy problems. Furthermore, they 

were used to detect whether and where energy inefficiencies occur to subsequently fix problems and 

enhance energy efficiency. Such assessment are specifically carried out in existing building, for example the 

International Performance Measurement and Verification Protocol (IPMVP) (EVO, 2009) defines standard 

terms and suggests best practice of among others energy efficiency. 
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2.7 Modelling and analysis 

The regulatory performance gap seems to arise mainly from the misconception that a 

compliance model is supposed to predict the actual energy use of the building. Whereas the static 

performance gap is not well understood, because performance modelling has not been common practice 

among practitioners, and where it is undertaken, predictions are often not validated. Finally, the dynamic 

performance gap is a more common approach to investigating the performance of existing buildings, 

because it can identify operational issues, improvements, and determine typical behaviour in buildings, 

which in turn can support design assumptions. As such, model calibration is seen as one of the key 

methodologies to develop more accurate energy models, it involves bringing predictions closer to 

measurements. Therefore, model calibration can only be employed on existing buildings to investigate the 

dynamic performance gap. Model calibration is the process of changing input parameters of the model 

within the margins of uncertainty in order to obtain a model that lies within agreed boundary criteria and 

is therefore likely to predict future options more closely to the actual situation. It is becoming more 

important as it is increasingly used in activities such as commissioning and energy retrofitting scenarios of 

existing buildings (Fabrizio & Monetti, 2015).  

2.7.1 Existing calibration methodologies 

Reddy et al. (2007) provide an extensive framework for building model calibration and give 

initial insights into automated calibration in building energy models. Raftery et al. (2011) proposed an 

‘evidence-based’ methodology, which clarifies the importance of different data sources and the need for 

evidence when iterative changes are made to reliably calibrate a model. Maile et al. (2012) developed a 

methodology, which employs calibration processes on a detailed level and uses a building object hierarchy 

that represents both a spatial and systems perspective for relating components in the buildings and 

supports identifying performance issues. Although their methodology proposes to estimate the impact of 

identified issues and includes a feedback process to both the design and operation, they present this as an 

area for future research. Both evidence based decision-making and uncertainty analysis techniques can 

improve the reliability of calibrated models. It does this by making changes according to evidence in a 

clearly defined hierarchy of priorities and identifying the most influential input variables to guide the model 

improvement process, while using uncertainty to capture a range of possible results. 

Eisenhower et al. (2012) suggest the use of meta-models for optimisation (i.e. automated 

calibration), which proved to be essential with large models of existing buildings. More recently, several 

studies aimed to achieve a higher accuracy in model calibration. Yang & Becerik-Gerber (2015) compared 

HVAC related energy consumption and considered several energy conservation measures. Whereas Yin et 

al. (2016) describe the calibration of a building model using system performance metrics and energy use. 

Sun et al. (2016) present an automated calibration approach to tune energy models at a monthly basis 

through pattern recognition implemented in a web-based building energy retrofit analysis toolkit. Finally, 

there is also an interest in calibrating model towards predicting environmental parameters. Roberti et al. 

(2015) calibrated a building energy model with measured indoor air and surface temperatures. Such an 

approach, in combination with energy, increases complexity, but can also increase the accuracy of calibrated 

models. 

2.7.2 Manual and automated calibration 

Existing methodologies for model calibration in building simulation are presented by Coakley 

et al. (2014), where they broadly classify two approaches; manual and automated calibration. Manual 
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calibration involves changing the input parameters manually, most often decisions are made based on 

juxtaposing model predictions and real data through graphical means, sometimes supported by assessing 

the statistical relation between the input parameters and outputs. Variables with a larger significance are 

adjusted to advance the predictions towards the real solution, i.e. measured data. For large complex models 

with many parameters, this process is time-consuming, as many iterations need to be run and analysed to 

get to a potential solution (Sun, et al., 2016). A caveat to model calibration is that it is impossible for the 

model to exactly represent the existing building, many input parameters are unknown and even for lab-

controlled environment getting the exact values for input parameters is impractical (Garrett & New, 2016).  

Automated calibration takes away some of the iterative decisions from the modeller and instead they are 

made by algorithms, which are however created and controlled by the modeller, so user error is not 

necessarily eliminated. Therefore, a good degree of understanding is necessary to guide how the model is 

adjusted both in manual and automated calibration, to accurately represent the real situation. Automated 

calibration is a form of optimisation, many simulations are run based on a pre-determined input parameter 

space and solutions are then analysed and optimised towards the measured data. Due to the complexity of 

building energy models, simulation time can be considerable, limiting the possibility of running 

optimisation algorithms using building energy modelling software directly, as the optimisation procedure 

requires thousands of model runs. Instead, a meta-model of the detailed simulation model can be 

constructed based on the calculated solution space. The meta-model is a simplified mathematical 

representation of the detailed building energy model, which reduces computation time from tens of minutes 

to several milliseconds. 

2.7.3 Calibration criteria 

Previously, calibration of building energy models has focussed mainly on total monthly energy 

use, potentially masking the different types of energy end-uses. As such, a calibrated model of total energy 

use is unlikely to produce accurate results for each end-use (Yin, et al., 2016). Therefore, a higher level of 

data granularity hypothetically increases the accuracy of calibrated models, as suggested by Garrett & New 

(2016) and Yin et al. (2016), but has so far been difficult to determine, due to the sparsity of detailed 

measured data. The use of automated calibration could potentially increase the time efficiency of calibrating 

energy models. However, the benefits of automated calibration have not been quantitatively investigated. 

Various guidelines propose acceptable calibration tolerances that consider a model to be calibrated when 

they fall within pre-scribed values according to the above statistical measures, see Table 2.4. However, as 

pointed out by Chaudhary et al. (2016), these are likely to be outdated as new research efforts in particular 

using automated calibration can achieve discrepancies of less than 1% at these levels. 

Table 2.4: Statistical limits for when a model is considered calibrated. 
Statistical measure Monthly  Hourly  
 ASHRAE IPMVP ASHRAE IPMVP 
NMBE (%) ±5 ±20 ±10 ±5 
CV(RMSE) (%) <15 <5 <30 <20 
ASHRAE Guideline 14 (ASHRAE, 2002) 
IPMVP Vol I (EVO, 2009) 

2.7.4 Uncertainty and sensitivity analysis 

Uncertainty and sensitivity are particularly useful analysis that typically accompany modelling 

and in particular used for the purpose of calibration. Uncertainty analysis quantifies uncertainty in the 

output of the model due to the uncertainty in the input parameters. Whereas sensitivity analysis apportions 

the uncertainty of the model output to the input. Uncertainty is ascribed to a parameter in the form of a 

distribution of likelihood of the parameter, typically a normal or triangular distribution is used as a certain 
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value is more likely to occur. Whereas design parameters are typically uniformly distributed, because they 

are considered design options. 

Sensitivity analysis techniques can be categorised in local and global methods. Local methods 

calculate the effect of uncertainty in parameters independently, whereas a global method analyses 

sensitivity concerning the entire parameter distribution. 

Local methods 

Local methods use numerical approximations of local derivatives between output and input 

to estimate parameter sensitivity. Generally good for studying a small number of uncertain parameters. 

Differential sensitivity analysis is one example of an often-used method. It does however assume that 

parameters are independent of each other, which is generally often not the case in building physics, as 

illustrated by Macdonald (2002). To take into account interaction of parameters, factorial analysis can be 

used, which works by simulating all possible combination of parameter values. Typically, only efficient for 

a small number of uncertain parameters as the number of simulation (N) grows factorially with the number 

of parameters (k). Another method is one-factor-at-a-time (OFAT), which is generally less efficient than the 

factorial method, as it requires more runs and cannot estimate interactions between parameters. 

Global methods 

Global methods are often implemented using the Monte Carlo method, they use a set of 

generally randomly determined samples to explore the design space, corresponding model outputs are then 

statistically analysed to determine its variance. Differences between global methods are related to sampling 

and analysis of the results. The sensitivity to a parameter is measured as the proportion of the model 

variance that can be explained by changes in that parameter (ten Broeke, et al., 2016), this allows comparing 

the sensitivities of different parameters. 

Correlation and regression analysis methods 

Correlation methods determine a correlation coefficient between the input parameters and 

the outputs as a sensitivity measure. Several techniques exist which can be applied, mainly depending on 

the type of data under investigation. Pearson correlation coefficient (PCC) is used when a linear relationship 

exists between inputs and outputs. Spearman rank correlation (SRCC) is effective for nonlinear but 

monotonic relationships. 

Regression methods derive the sensitivity as a by-product of regression analysis, for example 

Standard regression coefficient (SRC) can be used when input factor have different units of measurement 

(Pianosi, et al., 2016). Equations for the computed coefficients are as follows: 
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Variance-based global sensitivity analysis 

Variance-based methods allow exploring the full input space, whilst account for interactions, 

and nonlinear responses. Decomposition of the uncertainty of a model quantifies how the uncertainty of the 

input affects the uncertainty of the output. It can explain how certain subsystems contribute to uncertainty 

at the building level, this information is both useful for model calibration, quantifying the impact of the 

underlying causes of the performance gap, understanding the effects of design assumptions, and 

highlighting influential parameters in existing buildings for operational management. 

Variance-based methods decompose the output variance into parts that can be attributed to 

input parameters and combination of parameters. A square-integrable function, which represents the 

building model with uncertain parameters can be decomposed into a sum of functions (Sobol, 2001): 

 𝑓(𝑥) = 𝑓0 + ∑ 𝑓𝑖(𝑥𝑖)

𝑘

𝑖=1

+ ∑ 𝑓𝑖𝑗(𝑥𝑖 , 𝑥𝑗)

𝑘

𝑗>𝑖

+ ⋯ + 𝑓12⋯𝑘(𝑥1, ⋯ , 𝑥𝑘) (4) 

Sensitivity is then measured as the variance in the output caused by specific inputs. First-order 

sensitivity indices (sometimes referred to as Sobol’ indices) were then used to quantify how sensitive a 

particular output is to variation of a parameter by measuring the effect of varying a single parameter on its 

own, but averaged over variations in other input parameters. They are defined by calculating the partial 

variance relative to the total variance. Whereas higher-order sensitivity indices were defined by calculating 

the partial variance over two or more parameters. The sensitivity index for parameters is always between 

0 and 1, a high value signifying an important variable. Adding first and higher-order indices together will 

result to 1. The difference between a parameter’s first and total order indices represents the effects of its 

interactions with other parameters (Herman, et al., 2013). Finally, there is the total sensitivity index, which 

is the sum of all indices for particular parameters, calculated as follows: 
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In non-additive models the total sensitivity index will be larger than 1, due to the fact that 

interaction between different parameters is counted in both total effects. It is typically used to eliminate 

insignificant parameters. 

2.8 Summary 

Predicted and measured energy use has been shown to deviate significantly, also termed ’the 

performance gap’. This gap can be classified as; (1) a difference between compliance and measured energy 

use (the regulatory gap); (2) as a gap between performance modelling and measured energy use (the static 

performance gap); (3) a gap between calibrated predictions and measured energy use with longitudinal 

perspective (the dynamic performance gap). Literary sources have been reviewed in order to understand 

the significance of the regulatory energy performance gap and its underlying causes have been assessed on 

their impact on energy use: 

 From 62 case studies buildings the average discrepancy between predicted and measured 

energy use is +34%, with a standard deviation of 55%. These studies include a prediction of 

equipment energy use. 

 The most important underlying causes identified in literature are specification uncertainty in 

building modelling, occupant behaviour and poor practice in operation, with an estimated 
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effect of 20-60%, 10-80% and 15-80% on energy use respectively. Other important factors are 

the energy performance target, impact of early design decisions, and heuristic uncertainty in 

modelling. 

Understanding and mitigating differences between predicted and measured energy use 

requires an expansion of research efforts and focus on its underlying causes. Detailed energy audits and 

model calibration are invaluable techniques in order to quantify these causes. Furthermore, tools are 

necessary to support intuitive visualisation and data disaggregation to display energy uses at detailed levels 

and for different time granularity, comparing predicted and measured energy use taking a longitudinal 

approach. It identified several research gaps on which this research will focus: 

4. There is a lack of studies investigating the different aspects and meanings of building 

performance, how stakeholders in the procurement and delivery process view building 

performance, and what common barriers are to achieving better building performance.  

5. There is a need to better understand why differences between predicted and measured energy 

use exist, how design and operational improvements can be made and how existing buildings 

can be improved using building energy models. 

6. There is a lack of understanding on how the level of operational data granularity affects the 

accuracy of model calibration and the benefits of automated model calibration. 

The first research gap was addressed by exploring industry perspectives on delivering 

building performance, through interviews and group discussion on what building performance means to 

different stakeholders, understanding their incentives and the barriers they come across. The second and 

third research gaps were addressed through case research, investigating the discrepancy between 

predicted and measured energy use in four case study buildings. Which focussed on understanding how 

data granularity affects the accuracy of calibrated models and explored the potential benefits and 

drawbacks of automated calibration, with a direct comparison to manual calibration of building energy 

models. 

The literature review identified that there is a discrepancy between predicted and measured 

energy performance and concludes that widespread views of its magnitude are generally exaggerated and 

unjustified, it proposes the use of a classification of three different ways of comparing predicted and 

measured energy use. It acknowledged that a static or regulatory performance gap exists, which is of great 

concern to the industry. Therefore, it reviewed and analysed different underlying causes for these 

performance gaps. It identified several necessary steps that need to be taken to reduce the energy 

performance gap, but simultaneously recognised that there is a link between building energy performance 

and other environmental, economic and social aspects of performance, which are of importance to a variety 

of stakeholders in the building life cycle. This led to a partnership between the author and the UK Green 

Building Council to investigate how better building performance can be delivered from an industry 

perspective. This exploratory study incentivised a detailed study of differences between predicted and 

measured energy use. 
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3 INDUSTRY PERSPECTIVE ON DELIVERING BUILDING PERFORMANCE 

This chapter presents an exploration of industry practices and stakeholders that identified 

common barriers to delivering high building performance throughout the building life cycle, how such 

barriers can be overcome and how stakeholders need to be engaged. This work expands upon the main 

research aim, which focusses on building energy performance. It does this to highlight the fact that the 

energy performance gap is a far broader issue than just energy and is influenced itself by many other less 

technical factors as were established during the literature review. In particular, it looks into economic, 

social and environmental performance aspects in delivering building performance taking a wider view of 

building performance and what it means to different stakeholders in the building life cycle. Delivering 

building performance leads to increased asset value, productivity, well-being and energy efficiency. The 

author in partnership with the UK Green Building Council and a group of its members explored how the 

construction industry currently designs, constructs and operates non-domestic buildings. It did this 

through semi-structured interviews with industry experts and round-table discussions to examine industry 

approaches, tools and behaviours. It focussed on how to maximise building performance, not just in energy 

terms, but also other aspects of performance that impact both the building user and the wider environment. 

It found that there are several key factors that determine the success or failure of project to deliver reliable 

building performance; (1) the aspiration for delivering performance in a project, (2) control of the delivery 

process, (3) need to design for performance, (4) feedback loops and (5) an increase in knowledge on all 

levels.  
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3.1 Methodology 

The main research focussed on building energy performance, but the term building 

performance itself is far broader, including economic, social and environmental performance aspects. As 

such, building performance simply describes how well a building functions against its needs, often not 

effectively being met. So, “how can the construction industry deliver better building performance and more 

reliable outcomes?”. The author partnered up with the UK Green Building Council (UKGBC) and brought 

together a group of industry experts to seek out and highlight process improvements that design and 

construction professionals, property developers, as well as occupiers might adopt to deliver buildings 

which perform as expected in operation. The UKGBC membership represents all stages of the project life 

cycle, so it can provide an important role in connecting different stakeholders, ensuring they understand 

the challenges, and encourage them to adopt good practice solutions. Through semi-structured interviews 

and round-table discussions with industry experts supported by desk-based research, behaviour and 

processes were examined across the built environment that affect building performance. The work aimed 

to identify key barriers to performance and how to overcome these barriers. Focussing mainly on the 

commercial sector, as opposed to public sector, but much of the analysis is relevant to both. 

This chapter tackles the first objective of this thesis by providing an exploration of industry 

practices in relation to building performance. This was necessitated by the underlying findings in the 

literature review. Although, the identified causes of the energy performance gap are predominantly of a 

technical nature, it can be inferred that many causes related to the interaction between stakeholders in the 

building life cycle and the meaning of, and aspiration for building performance. These are qualitative aspects 

related to building performance and indirectly the performance gap. This chapter discusses building 

performance in a much broader sense, but does highlight several key factors that need to be adhered to, to 

deliver building performance. Of which two (design for performance and feedback) in particular support 

the need for the other objectives of this thesis. 

3.1.1 Literature review 

An initial literature review was carried out to start answering the research question in 

advance of the interviews. The literature review focussed on understanding typical barriers and success 

factors, and tools and processes that support delivering building performance. In addition, it aimed to 

provide an overview of all the stakeholders involved in the building life cycle and how they are related and 

all have an important role to play in delivering building performance. The literature review resulting in 

several handouts focussing on these aspects which were used during the interview process to map 

additional insights from the interviewees. Part of the literature review carried out within the UKGBC project 

has been incorporated in the wider thesis literature review in Chapter 2. 

3.1.2 Interviewee selection 

Criteria for selection 

In accordance with the purpose of this study, the UKGBC were looking for a range of 

interviewees to cover participating stakeholders in the whole building life cycle. In addition, the 

interviewees were to be in a position of seniority which helped to ensure they had a good understanding of 

the concept of performance within buildings and were familiar with interdisciplinary processes and 

practices. 
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Methods of contact 

Due to the UKGBC being a non-profit member organisation, its first point of contact were its 

members, whom are familiar and interested in concepts such as ‘Green’ building and sustainability within 

buildings. This resulted in some form of inevitable bias that was slightly alleviated by further reaching out 

to non-members, but which were less likely to participate. As a result, more than 70% of interviewees were 

UKGBC members. In total, over 50 people were approached by email, 15 of those responded positively, they 

were interviewed either at the UKGBC office or the interviewers travelled to the interviewee’s choice of 

location. 

Interviewee sample 

Interviewees were invited from a range of backgrounds, in total 15 industry experts were 

interviewed of which three were architects/designers, three were investors/developers, three project 

managers/contractors, three owners/occupiers, one facilities manager, an independent consultant and a 

proprietary software provider. The sample size was deemed to be sufficient for the purpose of this research, 

this was supported by ensuring that the interviewees were the holders of knowledge in the area of 

investigation. In particular our qualitative sample size was based on the idea of “saturation”, the point at 

which no new information or themes are observed in the data (Guest, et al., 2006). During the interviews it 

was realised that common patterns were surfacing, as the established research questions gave rise to 

similar answers. The recurring themes allowed the author to establish several key factors to answer the 

main research question based on the recurring barriers and solutions mentioned. Furthermore, due to 

limited resources within the research team and the amount of time available to carry out interviews, the 

total sample size had to remain feasible, whilst ensuring that a broad range of backgrounds was covered.  

3.1.3 Interview process 

Semi-structured interviews of 15 industry experts from different stakeholder groups in the 

building life cycle were carried out. Asking some pointed questions about specific subjects, whilst 

maintaining a common theme throughout, encouraging two-way communication. Industry perspectives 

were explored by asking about different aspects in the building life cycle, more specifically topics and 

questions explored were; 

1. Skills, people, culture, tools, processes and practices 

a. Who are the key stakeholders during the formulation of a project brief? 

b. What does best practice look like when buildings perform as desired? 

2. Business case and barriers 

a. What would be the business case to pursue a high performance? 

b. What do you think are major barriers to delivering performance? 

3. Definition and aspiration for building performance 

a. How do you describe building performance? 

b. What needs to happen in order for people to start considering performance 

based design over performance driven by regulation. 

4. Building life cycle processes with regards to performance 

a. Where do you see the key risk areas in a building life cycle? 

b. Do you think the procurement route influences the pursuit for delivering 

performance? 

In addition, some questions were asked that focussed on understanding what tools, processes, 

performance indicators, case studies are out there and were being used that can effectively benefit 

delivering better building performance. 
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During the semi-structured interviews, the interviewers used handouts, which showed 

different barriers and success factors, tools and processes aligned to the different life cycle stages based on 

previous research (literature review). This proved useful in talking about different topics, and helped 

mapping their experiences and knowledge to the pre-made diagrams on the handouts. Rudimentary 

diagrams were used of both the s-curve visualisation shown in the previous chapter in Figure 2.5, and an 

overview of the RIBA stages as shown in Figure 3.3, which highlighted some of the barriers to delivering 

performance based on initial findings. Talking around these diagram helped in further developing an 

overview of barriers and success factors, which resulted in identifying several common themes throughout, 

in particular the 5 “key factors”. In addition, other questions focussed more on the broader understanding 

of what building performance means to different stakeholders and how that related to these key factors. 

Quotes have been used to highlight certain points throughout, to provide context, references to the quoted 

interviewees are shown in Appendix B, describing their role and backgrounds. 

3.1.4 Round-table discussions 

The round-table discussions involved a group of 10 senior industry members from different 

stakeholder groups to debate on previous research and findings from the interviewees throughout the 

project. The industry members were from a range of backgrounds; two architects/designers, a developer, 

two sustainability consultants, a product manufacturer, a contractor, an asset manager, a software provider 

and a UKGBC consultant. The project researcher prepared and presented findings and proposed different 

concepts on how to frame the findings in several diagrams and suggested the initial structure of the report, 

the former were implemented and the latter was adjusted in accordance to UKGBC style of reporting. 

3.1.5 Involvement 

The author was involved as a project researcher and was supported by an external consultant 

to the UKGBC. The project researcher and consultant have led this research by inviting UKGBC members for 

interviews and setting up regular meetings with a ‘task group’, which consisted of 10 senior industry 

members. The project researcher, with the consultant, conducted 15 interviews with external industry 

experts. The project researcher conducted a literature review prior to the interviews and round-table 

discussions on performance based procurement and benefits of delivering better building performance. 

Based on the literature review, interviews and round-table discussions, the project researcher wrote the 

initial draft of the report. Both the external consultant and UKGBC’s employees thereafter revised the draft 

and produced the final publication. The author’s background and work on the energy performance gap may 

have resulted in some inherent bias in carrying out this research with the UKGBC. 

3.2 Key factors to deliver building performance 

By exploring what companies are already doing to address the topic of building performance 

and seeking out best practice, different gaps and barriers were identified that need to be overcome across 

the whole industry. This chapter is structured around five key factors that determine the success or failure 

of projects to deliver performance that is more reliable. Analysis of the research and interviews has 

established the following five inner-related key factors: 

1 Aspiration 

Expect a building that performs as required in use. Setting a simple target – at the very least 

for energy use (kWh/m2) – should help create a common language and shared aspirations 
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across the delivery process. This is relevant to all sectors, but it is particularly incumbent upon 

investors and developers to drive this. 

2 Control 

Contractual control throughout the delivery process is crucial. Collaborative contracting, with 

performance guaranteed and control maintained throughout the delivery process helps to 

ensure predictable outcomes. Again, investors and developers can set expectations, but those 

in the supply chain should take greater ownership during procurement. There is a role for 

lawyers to support these aspirations, rather than revert to a default position of least-risk. 

3 Design for performance 

Do not design simply for compliance. Performance improves when aspirations are not limited 

to compliance or, in other words, “going for the ceiling, not the floor”. There is a responsibility 

on architects and engineers, not just their clients, to educate and advocate, making the 

business case for higher performance – including the benefits of sustainable design on staff 

productivity. 

4 Feedback 

Reciprocal links and a commitment to monitor and feedback, particularly during the handover 

process, is vital. So too is giving time for well-documented building commissioning. Links have 

to be made between operational facilities management and the design team, and between FM 

and building occupiers. By definition, there are shared responsibilities across the value chain, 

particularly during the handover process. 

5 Knowledge 

Improved knowledge is needed across all professions in order for each part of the supply chain 

to play its part in delivering building performance. Every organisation has a responsibility to 

assess the knowledge levels of staff, involve HR teams and identify training needs. 

Organisations also need to participate more openly in lesson-sharing activities. 

The applicability of these factors across the RIBA life cycle stages is mapped in Figure 3.1. 
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Figure 3.1: Factors ensuring delivery of reliable building performance, aligned with RIBA life cycle stages. 

3.2.1 Aspiration 

Perception of risk and value 

Several of the interviewees noted that there is misconception in some design teams that a good 

building performance specification is more expensive than a standard specification. Buildings that perform 

well do not need to be complex. This has repeatedly been found in post occupancy evaluation studies, from 

the early PROBE programme (Cohen, et al., 2001) to the recent Innovate UK Building Performance 

Evaluation programme (Palmer, et al., 2016). Burman (2016) suggests that building performance can 

decrease with building complexity, and that more expense does not necessarily lead to better performance. 

There is also a need to deal with perceived risk in the supply chain. Sustainable buildings are 

generally perceived to have increased risks due to lack of experience in using new technologies and 

processes, which risk projects going over budget, taking longer to complete and creating room for mistakes 

(HEEPI, SUST and Thirdwave, 2008). Without certainty for enhanced returns or profit, stakeholders 

throughout the supply chain are conservative and stick with what they know. The business case for 

delivering building performance is therefore critical to raising aspirations. Enhanced returns are, after all, 

one of the most important motivators for many business decisions. 

The Green Construction Board (2014) has suggested there is little belief in differential market 

pricing, especially in buoyant markets where ‘anything will let’. Interviewees for this report believed that 

many decision makers are not actually aware of the benefits or are not convinced of them. In addition, one 
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interviewee (INT1) in particularly pointed out that “Decision makers are hanging back to see what their 

competitors are going to do, nobody is really embracing change as it is not the nature of our industry.”  

Whilst the industry seems reluctant in moving towards an environment with better building 

performance, new regulations keep taking shape. The Minimum Energy Efficiency Standards (MEES) 

regulations will start having an impact on the performance of the building stock. Properties with the lowest 

EPC energy ratings of F and G cannot be let anymore, subject to certain exemptions (HM Goverment, 2017). 

Although this relates to design rather than operational performance, it is raising the overall profile of energy 

performance in the minds of owners and investors. In addition, agents and tenants understand that a good 

building shell is more likely to lead to better operational performance, so price chipping is beginning to 

occur on poorer performing assets which are in need of substantial investment to bring them up to 

minimum standards. 

Defining performance 

Building performance simply describes how a building functions against needs. Those needs 

vary – for each of the parts of the building life cycle, building performance means different things. Figure 

3.2 shows the aspects of performance that the task group representatives felt to be relevant at different 

stages of the life cycle. Stakeholders have different perceptions of building performance, but they can 

complement each other, for example, better environmental and social aspects in a building will support 

economic values, creating the business case for decision makers. 

   
Figure 3.2: Building performance for different stakeholders, developed during round-table discussions 

according to task group representatives and based on consensus from interviews and literature. 

Demonstrating performance 

Demonstrating the value of good building performance will be an important factor in order for 

tenants/occupiers to ask the right questions and request the right standards for the building spaces they 

procure (Hsu, 2014). One interviewee noted that occupiers ask about visible performance elements – e.g. 

cycle space, showers. There is a need to explain the occupier benefits of the invisible building performance 

elements as well, e.g. air quality, energy efficiency, and to point to tangible benefits. Whereas for some 

sustainability is a clear path and incorporating it benefits them directly as an interviewee (INT2) at a large 

development corporation put it, “Sustainability is being used to secure business, to separate us from other 
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developers. Sustainability is fundamental in an increasing challenging environment with increasing 

resource scarcity and highly complex social and demographic issues.” 

A business case exists for delivering better building performance that can benefit all 

stakeholder in the building life cycle. The main obstacle is communicating the benefits sufficiently 

compellingly and to the right audiences within mainstream owner, financier and occupier sectors. Case 

studies targeted at these sectors and cooperation from within these sectors are highly desirable. 

Setting a target 

The expectation and requirement for building performance needs to be driven through the 

building delivery supply chain by an organisation that can influence the whole supply chain in terms of both 

objectives and purpose, and contractually (Pless, et al., 2012). There was agreement within the round-table 

discussions that the drive for building performance needs to be led by the client – usually the owner, 

developer or occupier, this is supported by Swarup et al. (2011). The consensus was supported by the 

interviewees, they regularly cited that architects and engineers have limited influence on the building 

projects in terms of performance outcomes or criteria set by the client. The design is mostly guided by 

client’s requirements. One of the interviewees stressed the importance of support at the C-suite level as it 

gives others the confidence to press for the required performance levels and leads to productive 

engagement with the entire supply chain. 

The Boards/Executives/C-Suite of most organisations procuring space (as owners, funders or 

occupiers) are not sufficiently engaged in the building performance debate, and in many cases nor are their 

agents and other advisors whose technical knowledge is varied. Yet investors and occupiers are key to 

driving building performance. They sanction procurement processes, empower their advisors to act in 

particular ways, and have the ultimate sign-off on decisions. In essence, the building owner and funder have 

a key role to “push” the requirement for building performance down through the supply chain, and the 

building occupier provides the “pull” as the end-user. 

3.2.2 Control 

Delivering good building performance requires control of the procurement and delivery 

process, collaborative procurement and client commitment to validating operational performance. During 

the interviews and literature review, the project researcher took note of potential barriers to delivering 

better building performance in the delivery process. Some of the questions focussed specifically on what 

these barriers are and where they might occur. During the round-table discussions, the identified barriers 

were discussed and typical barriers in concurrence with finding from literature are mapped in Figure 3.3 

along the RIBA building life cycle stages. Fragmentation of the supply chain can amplify these barriers 

and creates many difficulties for the responsibilities stakeholders face. 
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Figure 3.3: Barriers to delivering performance throughout the life cycle stages, mentioned during 
interviews and identified in literature. These were categorised in relation to the key factors to overcome 

such barriers. 

Fragmented industry 

Several interviewees observed that energy consultants are increasingly only required for Part 

L compliance and energy assessments, and are not asked to provide technical advice, the responsibility for 

which is passed to contractors. Several interviewees believed that some tend to see technologies as risky, 

so price them out or pass the specification onto manufacturers who see their specification only in isolation. 

This is supported by findings from HEEPI, SUST and Thirdwave (2008), who see last minute substitutions 

of materials or equipment on site as one of the main reasons that significantly affect environmental 

performance. Involving suppliers as early as possible in the design phase enables them to understand where 

their contribution fits in to the wider project and to provide the optimal response. It also helps the project 

to gain the most value from the whole supply chain. 

Another interviewee pointed out that during lease negotiations, where legal teams and 

prospective occupiers do not understand the requirements or benefits of (sustainable) fit-outs, or where 

green leases are specified, that they may be struck out if considered a risk to the occupier. Additionally, a 

misfit-out can undermine all of the design done for the shell and core systems. 

After a building is constructed, commissioning often falls short and as a result the design of a 

building is not provided as intended (Palmer, et al., 2016). Systems that are not working correctly 

deteriorate faster, use more energy and negatively impact occupant comfort when heating and cooling loads 

cannot be met. Arguably commissioning is one of the most cost-effective strategies to reduce energy use 



3. Industry perspective on delivering building performance 

C. van Dronkelaar (2018)  53 

and costs in buildings today (Mills, 2011). Commissioning needs to be done rigorously when the building is 

handed over, instead it is often done quickly and poorly due to time constraints. In addition, sub-metering 

and the BMS should be set-up correctly, calibrated and tested in order to monitor and measure performance 

and be able to identify excess consumption and operational issues. An interviewee (INT3) from a real estate 

developer observed: “The biggest hole that we see is from the time that (a property) is handed over from 

the contractor to the recipient, what you find is that the system is not tested and set up properly. That gets 

exacerbated when people move in and do the fitting out. This situation effectively erodes any thinking you 

did during the design.” (real estate developer). 

In both design and operation, clients and their design teams should take into account the 

occupiers’ capabilities to manage a building and its engineering systems (Bordass, et al., 2001). Whereas 

occupiers should not take a building for granted, but need to be aware that management is an important 

aspect of a good performing building as they ensure that the building its systems are operating and 

maintained. Most interviewees emphasised the importance of Post-Occupancy Evaluation (POE), and co-

operation between the occupier and building owner as being extremely important to get the most out of the 

design work. 

Speculative developments 

According to several interviewees, the UK has a higher proportion of speculative 

developments than Europe, Australia and the US. Speculative development often has a short-term focus, 

and developers are mostly concerned with minimising cap-ex costs to increase yield and profit from an 

early sale. The occupier is unknown and building performance above legal compliance is generally not 

demanded since actors in this type of procurement are not involved in the operation of the building. 

Location is considered key, yet the building is likely to have a considerable lifespan. This reinforces the 

function of building regulation to act as a back stop. Systematic gathering of feedback and data from 

buildings in-use will reveal the financial benefits of good building performance and increase demand from 

the buyers of speculative buildings and their occupiers. 

Value engineering 

There was particular concern about problems with value engineering from several of the 

interviewees and in the literature. A number of interviewees pointed out that it is no different to ‘penny 

pinching’. The purpose of value engineering in construction is to re-design or change construction build-up 

to remove challenges or save cost whilst retaining the same performance and functionality, therefore 

following these principles, value engineering should take place before on site construction. 

The Green Construction Board found that many schemes initially aspire high performance, but 

that design characteristics are compromised during the development process to reduce cost (GCB, 2014). 

In the case of buildings with complex systems, such as low carbon technologies, value engineering does not 

tend to take out the main technology, but it often takes out the controls or associated design details (e.g. 

thermal stores) to make it work well. This is partly because the associated equipment was not detailed in 

the design and tender documents. Additionally, an interviewee (INT1) indicated that at the point where the 

contractor comes on board, they often get very scant information. “They look at the information they have 

got and make an assessment as to how the building is put together, they price it on that basis. They take a 

risk because they do not have enough information to ensure themselves that compliance can be achieved. 

Especially in Design and Build (D&B) contracts, where they are required to take on the responsibility from 

scratch again.” 
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Procurement models 

Academic reasoning indicates the effects a procurement method can have on performance, 

especially design-build and design-build-operate (e.g. private finance initiative) should provide the right 

relations and processes for a performance incentivised delivery (Korkmaz, et al., 2010). Regardless of the 

procurement method taken, a collaborative approach, i.e. Collaborative Contracting or at least its features 

should be employed, as it promotes sharing of information, risks and responsibilities between parties. In 

addition, there is common agreement that owner engagement in a project is pivotal to drive and deliver 

performance, from setting targets and involving stakeholders early on to guiding them throughout the 

supply chain (Swarup, et al., 2011). As an interviewee observed, no individual party wants to take the risk 

on their own, it needs to be shared across the project. Another interviewee (INT4) took this further; 

suggesting, “It needs to be about empowering different people in the supply chain to take ownership, rather 

than just saying it needs to be M&E design or architectural design – it needs to be more than that. It is more 

about embedding the approach within the design process. It needs everyone.” 

3.2.3 Design for performance 

Limitations of regulations and rating schemes 

Legislation on energy performance may not be a sufficient driver for occupiers. Under 

schemes such as the Carbon Reduction Commitment (CRC) and the Climate Change Levy (CCL) it is often 

seen as easier to just pay the tax as energy, as energy costs are such a small proportion of total running costs 

in non-industrial building sectors. The interviews and literature review suggest that there is a much more 

powerful case to be made through wellbeing and productivity benefits of buildings that perform well, in 

particular this should be communicated to owners, occupiers and letting agents. Given their lack of detailed 

knowledge there is an understandable situation in which they assume that good building performance 

automatically follows from compliance with building regulation or with accreditation schemes such as 

BREEAM whose sliding scale of accreditation is straightforward to understand. An interviewee noted that 

there is a tendency to treat regulations as a ceiling, rather than a floor. Even if projects delivered results 

with a percentage improvement above Part L, most people outside the technical community would not 

understand what this meant or the relevance to them. However, even when Part L conformance or 

improvement is delivered, it does not directly relate to operational building performance. Another 

interviewee (INT4) at a large real estate business, thinks that rating schemes such as “BREEAM and EPCs 

might result in unintended consequences. Some of the recommendations that come out, might up diverting 

the right intentions.” (real estate developer). 

3.2.4 Feedback 

The final process is the reciprocal link that needs to be established between the end and start 

of a project, a recurring theme that can directly and indirectly support the other processes. This reciprocal 

link is the feedback of performance, it is essential that a building performance is measured, verified and 

demonstrated (Preiser & Vischer, 2005). This raises awareness, understanding and is fundamental for 

improving building performance in future projects. Feedback mechanisms on performance are not well 

developed. The design team is therefore limited in its ability to predict the actual use of the building. 

Presently, there are few methods that allow verification of performance in operation, these are a necessity 

for the designer to understand how buildings actually operate and how occupants behave in a building. 
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Measurement and verification 

Most interviewees stressed the importance of POE. It can assist in verifying other metrics not 

related to energy consumption, such as indoor environmental quality metrics and the well-being of 

occupants (Clements-Croome, 2014, p. 92). Measuring of performance is essential to verify the design goals, 

comparing initial predictions with actual operation can identify areas that are underachieving, and such 

information should be fed back to the design and be reconfigured where possible by operational 

management. Public and portfolio data collection will support benchmark development, fundamental for 

setting out performance requirements. Although design has a major influence on building performance, as 

design features become more efficient, occupant behaviour and operational management becomes more 

significant (Li & Lim, 2013). Tenants are rarely involved in the design of a building. Clients and their design 

teams must take into account the occupiers’ capabilities to manage a building and its engineering system 

(Bordass, et al., 2001). Conversely, occupiers should not take a building for granted, but need to be aware 

that commissioning and management is a crucial aspect of a well performing building. One of the 

interviewees (INT5) noted that FM managers need to understand and be willing to use available technology. 

She said “For one of our new developments I am trying to work out if the building is performing to the initial 

design. The AMR system, consisting of 300 meters including optimum front-end for monitoring and 

targeting was turned off by FM employed by the managing agents because ‘They don’t normally do things 

like this’, instead they manually red the meters and key that into their system.” (investor / developer). 

Demonstrating performance 

Demonstrating performance is another factor that could prove very valuable in the pursuit for 

delivering better building performance. One of the primary benefits of public disclosure of performance is 

education of decision-makers, owners and tenants (George & Garrod, 2017). It provides valuable feedback 

in terms of benchmarks that they can use to inform new projects, support valuation of a property as it 

becomes more integral to the real estate market and highlight benefits of living and working in a particular 

premise. This results in property developer to be more aware of its effect on market value and include 

performance aspects in new designs (Frankel, et al., 2015). Practices should consider the public disclosure 

of performance on a voluntary basis and need to understand that an underperforming building does not 

necessarily mean it is failing, rather the monitoring of performance raises awareness for improvements. In 

addition, data can be used to evaluate the performance of the building stock and enable benchmarking to 

become more credible and reliable.  

The lack of benchmarks in the UK makes it difficult to set credible performance targets, a 

similar approach of collective data collection and benchmarking used in the U.S. is needed. Here the 

Commercial Building Energy Consumption Survey (CBECS) provides a comprehensive dataset 

characterizing the performance of the U.S. building stock. In addition, there is the Building Performance 

Database (BPD), which is the largest publically available source of building performance data in the U.S. 

However, one interviewee (INT6) noted that “More often than not, in particular in new 

buildings, people are not willing to hand over data to a collective source.” Most interviewees also stressed 

the importance of case studies, yet compiling transparent case studies, with genuinely useful lessons 

learned and data is notoriously difficult. 

3.2.5 Knowledge 

Knowledge and skills are intrinsic to the key factors discussed above. All stages of the building 

process have a role to play. The provision of training is crucial for all parts of the supply chain in order that 

they have the knowledge and capability required to drive higher performance standards. Those already 

seeking a leadership position will provide some ‘pull’ to the industry, but to ‘push’ the majority it needs to 
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ensured that key players have a solid understanding around sustainability in the built environment, and the 

relevance to their role and organisation in delivering solutions. 

Financer/owner/occupier 

The financer/owner/occupier can have a large effect on the performance outcome of a 

building. The business case for good building performance needs to be better communicated, and a better 

understanding of how building performance can be defined in the brief and what can be achieved is 

necessary. This research and the interviews align with Carbon Trust recommendations that the 

financer/owner/occupier should consider appointing a specialist with responsibility for driving 

performance throughout the project (Carbon Trust, 2012). To support the uptake of well performing 

buildings, developers/owners need to be engaged to adopt new methods for capturing a property’s value. 

Letting agents 

Letting and other transactional agents such as surveyors play a critical role in building 

performance as it is they who value and market buildings, an interviewee (INT7) observed that they “shape 

the appeal of buildings to potential investors/owners and occupiers.” Other interviewees noted that there 

is a need to build knowledge about the business case within the letting agent community and to get them 

on board. One interviewee specifically observed that letting agents advise owners how to refurbish space 

and build new space, and then advise tenants about what to ask for. They therefore drive the market from 

both sides, and could really change thinking if they started to give advice which improved building 

performance. 

Operations staff 

Operations staff need to be motivated, skilled and incentivised to realise the desired levels of 

building performance. They are an important stakeholder in the supply chain, but tend to be under 

represented. It is essential to communicate the business case for good building performance to those in the 

organisation responsible for budgeting building operation. However, as Frankel et al. (2015) suggest, 

operational teams in organisations are given limited resources to carry out the needed activities to attain a 

running well-performing building, and budgets available in organisations do not reflect the actual 

investments required for effective operations.  

An interviewee remarked on challenges associated with the consistency of training across 

Facilities Managers, particularly with personnel changes following initial building handover. Another 

interviewee identified a similar issue and now record and video commissioning and training so a permanent 

record is available and accessible to staff. 

Tenants 

Considering tenants are the layman in terms of building performance, it is important that they 

are educated in using the building and its systems to satisfy their own needs of health, comfort and safety, 

effectively, efficiently and safely.  There is a lack of understanding by occupants/operators of how systems 

are designed to be used, especially so when designers and contractors are not involved after the building is 

completed. In many cases, the performance of a system is largely dependent on the engagement by building 

operators and tenants. However, one interviewee noted that tenants are increasingly setting their own 

energy performance targets, although reporting on metrics of indoor environmental quality and occupant 

satisfaction remain relatively rare. 

Another interviewee noted that it would be ideal if every business had an environmental 

manager or dedicated resource for environmental issues. Many small businesses do not and this makes 

them harder to engage on building performance. Occupants have a substantial influence on the performance 
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of a building by handling controls, such as those for lighting, sun shading, windows, setpoints, and office 

equipment. People are different and their behaviour in relation to energy consumption varies. Managing 

this requires tenant organisations to undertake awareness raising of their own – and to make their own 

business case for staff to accept that building commissioning will create a better medium term result than 

a quick “DIY fix” of altering settings or bringing in under desk heaters. 

Construction 

On site workmanship needs to adapt and be trained to increasing levels of complexity in 

building construction. An interviewee, who was one of several who noted that BMSs were rarely set up 

properly. This is repeatedly found in post-occupancy evaluation studies, including the PROBE (Cohen, et al., 

2001) and Innovate UK’s BPE programme (Palmer, et al., 2016). An interviewee (INT8) jokingly mentioned 

that “buildings that do not report problems with the BMS are typically those that do not have one." (software 

provider).  

The whole supply chain requires collaborative design skills in order to determine the 

performance targets for the building and to work together to deliver them.  They also need to establish 

feedback mechanisms to better understand how buildings performance and how technologies and 

processes affect this performance.  ‘Soft’ influencing skills will be key to encouraging clients to undertake 

data sharing. Related to this a number of the interviewees noted the “translation” issue – being able to talk 

a language that clients and occupiers understand and making the building performance debate 

comprehensible and relevant across the industry. 

Overcoming complexity 

Information needs to be in the right language for owners, financiers and occupiers.  

Interestingly several of the people that were interviewed made the point that those engaged in the building 

performance debate tended to speak to each other rather than the whole industry, and to use a complex 

approach and language that was hard for those not engaged – but in the same industry - to understand. Soft 

landings was described as too complicated, some research critiqued it as making a theoretical point rather 

than relating to understandable situations, and as one interviewee (INT1) told us: “Industry struggles with 

non-quantitative issues that keep changing.  There are layers of guidance, documentation and policy. We 

need something that is going to make all of that easier, not add to it.” (contractor). 

3.3 Summary 

An exploratory study of industry perspectives of delivering building performance identified 

common barriers through 15 semi-structured interviews and separate round-table discussion with 

industry experts. As such, this study contributed to knowledge by collating relevant first-hand experience 

from industry experts on common barriers to delivering building performance. In addition, it developed 

five key factors that need to be adhered to deliver reliable building performance. Published as an industry-

focussed report, it should help prospective stakeholders in the building procurement process understand 

the common barriers to performance, help set goals for delivery, and improve relevant stakeholder 

processes in line with these goals. 

This exploratory study viewed building performance simply as how a building function against 

its needs, which helped to understand the broader aspects in the building procurement process, which also 

affect the energy performance of a building and indirectly the energy performance gap. This study has 

supported some of the initial findings from literature, especially concerning the collection of data, need for 

case studies, demonstration of performance, measurement and verification processes and operational 
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management. However, it also identified many other facets of the building procurement process that will 

influence energy performance and the difference between regulatory or performance modelling predictions 

and measurements. 

The case research, the main research in this thesis aligns with several of identified key-factors, 

in particular around design for performance and feedback. First, it does this by providing comprehensive 

examples of measured energy performance of existing buildings compared to detailed performance 

modelling, in addition to utilising calibration (i.e. demonstrating performance and measurement and 

verification). Second, it investigates the effect of simplifications of modelling assumptions on energy 

performance predictions and explains the limitations of regulations in the context of the energy 

performance gap. Third, it explores the use of detailed measurements to identify patterns in energy use and 

to inform design assumptions (i.e. feedback). It demonstrates how energy performance can be better 

predicted during the design stage by proposing techniques for incorporating uncertainty in assumptions 

and more representative assumptions of actual use. Four case study buildings are presented which reiterate 

the value of complete and rigorous commissioning and importance of operational management in the 

operational stage of a building and highlights some key aspects of the disconnect between design and 

operation of buildings. The case research investigates a few of the key factors identified, further work will 

be necessary in particular around some of the more qualitative aspects, such as knowledge, aspiration and 

control to ensure more reliable building performance can be delivered. 
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4 CASE RESEARCH METHODOLOGY 

This chapter describes the development of a calibration methodology that can be employed to 

investigate and mitigate the discrepancy between predicted and measured energy use. It advances the state 

of the art in building model calibration by incorporating meta-model multi-objective optimisation at a high 

level of data granularity. The methodology explains the processes used for data collection, synthesis and 

establishment of different levels of data granularity for comparing energy use. It goes on to describe the 

creation of building energy models for calibration to measured energy use. Furthermore, it outlines how 

input parameters are sampled for randomised parametric simulation, fundamental to global sensitivity 

analysis approaches, meta-model development and automated calibration. It then explains how different 

sensitivity and uncertainty analysis techniques were utilised in order to quantify the uncertainty in the 

model, investigate the impact of the underlying causes of the energy performance gap and determine the 

influence of typical design assumptions. Finally, it presents different data visualisation techniques to 

improve the calibration process and understanding of differences between predicted and measured energy 

use. 
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4.1 Case research 

Several types of methods exist for testing the performance of building energy modelling. 

Analytical verification compares modelling results with an exact known solution, and an inter-model 

comparison method compares predicted energy use using different software, while empirical validation 

compares predicted with measured experimental (idealised) or field monitored data (realistic). The 

analytical verification approach is only able to provide a comparison to an exact known solution for a 

specific problem, whereas an inter-model comparison can only identify differences between simulation 

software, which can indirectly justify differences with measured energy use. An idealised validation method 

would be to model a test cell in order to study both the performance of a building and used modelling tools, 

idealised validation however does not take into account occupant behaviour in a realistic manner. The only 

approach that is able to study and capture all facets of a real building is the empirical or realistic validation 

method. This method was employed to investigate differences between predicted and measured energy use.  

The disadvantage of using empirical validation however, is that it does not allow for rapid 

investigation of a multitude of buildings. This is due to the large amount of detailed information that needs 

to be gathered, compared and analysed. This process can be made more time efficient by employing 

software to support in automating the comparison and analysis of data. Energy auditing is one of the key 

methods in order to establish data collection. It is used to identify how buildings are used, and how 

parameters, such as occupancy presence, differ from typical design assumptions. It aims to provide detailed 

information of energy flows for the whole building, including major sub loads such as lighting, heating, 

ventilation, air-conditioning and equipment. A discrepancy can be identified by representing the operation 

of a building as accurately as possible by using advanced and well-documented simulation tools. 

Previous research efforts have primarily focussed on monthly calibration for electricity and 

gas consumption for the whole building (Pan, et al., 2007), although others have proposed the use of hourly 

values instead (Raftery, et al., 2011). When measurement data is available on a floor or zone level, 

calibration can be performed at that level. Furthermore, instead of using aggregated monthly values, it is 

hypothesised that hourly or even half-hourly calibration improves the accuracy of a calibrated model. The 

availability of additional information from the Building Management System (BMS) provides the 

opportunity to calibrate a model on specific parameters such as setpoints, operational schedules and room 

temperatures instead of solely on energy use, further increasing the accuracy of the virtual model. This 

increases the accuracy of predicting energy conservation measures, which are generally based on calibrated 

models. A methodology has been established for comparing predicted and measured building energy use, it 

involves the following tasks: 

1. Data collection, both design information and actual operational procedures need to be 

identified in addition to performance data from sub-metering, building management systems, 

environmental monitoring and potentially other monitoring systems;  

2. Data synthesis, large amounts of data can help establish a good understanding of how the 

building works and is operated, but requires data synthesis and quality assurance. A hierarchy 

is established to compare data at different levels;  

3. Modelling, after collected data is synthesised, the initial model is created, predicted 

performance from the model is compared to measured performance to identify discrepancies. 

In addition, parametric simulation and sampling of inputs is performed; 

4. Sensitivity and uncertainty analysis is performed to understand how input parameters affect 

the outputs and to quantify the uncertainty in the model output given the uncertainty in the 

input, respectively; 
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5. Manual calibration of the initial model, to assure that the model is defined accurately according 

to building design specifications identified through data collection and synthesis. 

6. Quantify the impact of underlying causes of the regulatory performance gap through 

introducing NCM assumptions to the manually calibrated building energy models. 

7. Automated calibration utilising meta-model based optimisation to quantify the impact of data 

granularity on model calibration accuracy. 

The whole methodology or part of the methodology was applied to four case study buildings, 

where virtual models of the buildings were created based on collected information and energy audits, 

predicted energy use was compared with measured data. 

4.2 Case study buildings 

Four case study buildings were used within the case research; two university buildings 

(referred to as CH and MPEB) and two office buildings (referred to as Office 17 and 71). The buildings are 

located in London, the United Kingdom. Access was provided by University College London (UCL) estates 

and BuroHappold Engineering, both parties were directly involved with the research. The buildings consist 

primarily of open-plan office space, where both university buildings include some teaching spaces and 

MPEB includes workshops and laboratories, in addition to two large server rooms. Office 17 is a naturally 

ventilated building with a provision for air conditioning in the basement and reception. CH and Office 71 

are also naturally ventilated, but have air conditioning throughout the building. MPEB has a variety of 

mechanical systems in place to provide ventilation and air conditioning, in addition to openable windows 

for natural ventilation in perimeter spaces. The buildings have very dissimilar building physical properties, 

as they are a variety of ages. For each building, a short description is given of its building materials, layout, 

function and HVAC system, with further detail provided in the Appendices.  

Building selection 

Buildings were selected based on their accessibility and availability of both design and 

measured data at a high level of granularity, which is in line with the aims and objectives of this research. 

In particular, this proved essential to quantify the impact of different levels of data granularity on model 

calibration accuracy, in addition to understanding the underlying causes of the regulatory performance gap. 

The sample used in this study is not meant to be representative for a part of the UK building stock. Instead, 

the selection aligns to the main objectives of the study, which are concerned with the feasibility of the 

calibration methodology to understand the effect of high-granularity data collection and analysis, in 

addition to understanding how such data can be used to juxtapose predicted and measured energy use. The 

selected buildings are located in London, the United Kingdom, listed in Table 4.1. 

Table 4.1: Summary of selected case study buildings 
Building Built Space types 
CH ~1900 Open-plan offices, library, lecture rooms 
MPEB 2005 Teaching, workshops, CS, offices 
Office 17 <1930 Open-plan offices 
Office 71 1950-60s Open-plan offices 

The selected case study buildings have varying functions. The two office buildings consist 

primarily of office space. CH is similar to an office building except that it also provides student working 

areas and a library. MPEB houses workshops, teaching spaces, computer clusters, laboratories and office 

spaces.  
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4.3 Data collection 

The collection of data consists of two main categories; (1) modelling information, necessary 

for the creation of the as-built model, and (2) operational data, the measurements used to calibrate the as-

built model and any other measurements that used to identify patterns of use and performance of systems. 

Modelling information 

Ideally a design model would be available as a starting point, this will allow comparing initial 

assumptions with the calibrated model, however these are often not available as these are generally not 

disclosed by the design engineer. In the buildings under study these have not been looked into and models 

were built from the ground up based on collected information. Missing information from as-built documents 

were supported by measurements, surveys or otherwise using building standards and codes or typical 

benchmarks. Much of the modelling information was obtained from Operation & Maintenance (O&M) 

manuals, which contain architectural and building services drawings, sub-metering schematics, equipment 

inventory lists, and commissioning data. 

Operational data 

Information on the buildings was reviewed prior to the auditing period. Reviewing the 

collection of such information is necessary to be acquainted with the building and its systems, making the 

auditing process more efficient. The auditing process helped in further understanding the general state of 

the building and its systems in order to verify if it works as intended and described in the operation and 

maintenance (O&M) manuals. It also ensures the collection of missing information. In the case of insufficient 

metering data, a bottom-up approach such as the CIBSE TM22 (CIBSE, 2006) method can be used to 

determine end-use consumption. This approach was taken to establish some of the assumptions, for 

example for lighting and power, the number of fittings, lamps and appliances were counted to determine 

the installed load. This approach is time consuming, but proved to be necessary for estimating the small 

power load and verifying the installed lighting. Several tasks that were essential during the energy audit of 

the building: 

- Check if previously obtained information deviates from the actual building, such as 

building drawings, HVAC system and components, 

- Interview the building operator/facilities management, whom can provide detailed 

information on building operation aspects and system performance, 

- Taking photographs and notes. 

Most modelling information can be determined from the O&M manuals and energy audits, 

however to capture more sophisticated stochastic processes (such as occupancy presence and system 

operation) operational data is necessary to accurately represent these in the models. For the two university 

buildings, Wi-Fi and swipe card access data was obtained and used to establish when people are present in 

the buildings. Building management system data was analysed to understand when systems are in use and 

how they perform. Additional short-term monitoring of electricity was necessary where the existing 

metering systems did not account for certain energy end-uses. Environmental monitoring of temperature 

and humidity in some of the buildings was analysed to understand how spaces are conditioned and when 

systems are operated. The high level of data granularity established in this study was essential in 

understanding how it affects model calibration accuracy. 
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4.4 Data granularity 

To make sense of the large amount of data that is available a spreadsheet was created for each 

building separately to be used an index for information. Data for every space in a building can then be easily 

filtered and adjusted. Building input parameters inferred from the as-built documentation were then 

ordered for each building similarly to create an efficient workflow for analysis. This proved helpful to 

automate certain processes, such as input parameter adjustment and parametric simulation. Ordered data 

was assessed according to different levels of data granularity; hierarchical, temporal and spatial. 

Determining the necessary level of data granularity depends on the purpose of model 

calibration. Typically, calibrated models are seen as obtaining the highest level of accuracy for determining 

energy savings, option D as proposed by the IPMVP (EVO, 2009). However, this depends on what type of 

savings can be made and potential measures implemented to make these savings. If these are fairly 

straightforward or easy to estimate, model calibration might not be the best solution, because it is a time-

consuming and therefore costly process, so any improvements in its use are helpful in reducing costs. 

Finally, calibrated simulation is typically applied by multifaceted energy management programs affecting 

many systems and where energy use data for calibration is available (EVO, 2009, p. 22).  

Data was organised systematically to compare measurements with predictions and 

assumptions from energy modelling. Representing all this data requires a hierarchy. Predicted and 

measured energy use can be compared at the top-level by aggregating all consumption in a building. A 

building however consists of floors, zones and spaces and has distribution boards that provide electricity 

to these parts, disaggregating energy use by different end-uses. For example, it is common to see electricity 

being measured separately for lifts, HVAC systems and perhaps even a kitchen, preferably electricity for 

lighting and equipment is distinguished at a per floor basis. When automatic metering readings were 

available at this level of detail, comparisons will provide more insights in how the virtual model is 

performing and helps identifying any occurring performance issues. However, energy use at the zone-level 

is generally not available. It is however more common to see indoor environmental parameters being 

measured in zones or spaces through a BMS. 

All this information is processed at a spatial level, environmental parameters such as 

temperature and light levels are important to a zone, but are less useful at building level. Whereas, 

equipment and lighting energy use can be both compared by zone, floor or building level. Finally, building 

systems and their components aim to provide the right environmental conditions in the building and its 

zones, for which they use energy. Systems are located in a separate plant area of a building, whereas system 

components can be located in a specific zone. Measured energy use of system components can then be 

compared like-for-like in the virtual model at the zone-level and be aggregated at the system level. The 

building hierarchy (at the top) and two examples of comparing predicted and measured data are illustrated 

in Figure 4.1. 
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Figure 4.1: Data granularity where two examples illustrate how predicted and measured data is compared 

and where different data sources were used to inform model inputs. 

The figure shows how automatic meter readings for lighting were compared to predicted data 

on a floor basis and if available at a zone basis. The predicted lighting energy use is dependent on the lighting 

load and occupancy schedule design assumptions. Also shown is a comparison of electricity use of a fan coil 

unit in a particular zone. In addition to comparing electricity use, the BMS provides information on the 

environmental of the zone and performance of the system component. Based on a comparison, any 

performance issues were identified at a detailed level, whereas any constraints for the design parameters 

can be set in order to guide the calibration process. It is thus important to understand how data granularity 

affects the accuracy of the calibration model at different levels, a distinction is made between temporal, 

hierarchical and spatial data granularity, as shown in Table 4.2. 

Table 4.2: Types and levels of data granularity in building modelling and measurements 
Granularity type Low to high level of granularity 
Temporal year > month > day > hour 
Hierarchical total > end-use > component > sensor 
Spatial building > floor > zone   
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4.5 Modelling and calibration 

4.5.1 Procedure 

A methodology is developed based on previous work as described in the literature review and 

is further extended to fit the research objectives. There was a need to include a way to identify and estimate 

the impact of the underlying causes of a discrepancy, whilst considering the building hierarchy to allow 

juxtaposing specific predicted and measured data points. The manual calibration of the model uses an 

evidence-based decision making process whilst employing sensitivity analysis to estimate the impact of 

design assumptions and to quantify their effect on a discrepancy. Furthermore, automated calibration was 

used in conjunction with meta-models to replace the first-principle software. A flowchart of the modelling, 

calibration and analysis process is shown in Figure 4.2. 

    
Figure 4.2: Modelling, calibration and analysis process. 

4.5.2 Modelling  

After collecting and synthesising building information, input parameters were established to 

create a virtual representation of a building. 3-dimensional geometrical models were created in SketchUp 

(2016), all building spaces were included in the model and zoning of the spaces is identified during audits. 

SketchUp2 incorporates a plugin for OpenStudio3 (1.14), which is a graphical interface for the EnergyPlus4 

                                                           

 

 

2 https://www.sketchup.com/  

3 https://www.openstudio.net/  

4 https://www.energyplus.net/  

https://www.sketchup.com/
https://www.openstudio.net/
https://www.energyplus.net/
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(8.6) simulation engine. Both EnergyPlus and OpenStudio are open-source software with an increasingly 

supportive community, they allow good integration with other software tools, have additional integrated 

features, such as scripting to pre-process and post-process simulations, where OpenStudio is packaged with 

tools for parametric simulation. The graphical models were created in SketchUp, and then further defined 

in OpenStudio by changing the input parameters for construction properties, internal loads, system 

profiling, etc. 

4.5.3 Parameter classification 

An initial model will have myriad input parameters that are determinant of the final results of 

the simulation, at this point in the process it is however unclear what influence each of these parameters 

would have on the result. This influence can be determined with sensitivity analysis by quantifying the 

uncertainty in the input and running multiple simulations. However, varying all possible input parameters 

will result in many different scenarios that need to be run, which for large models is too time consuming 

due to its computational intensiveness. In addition, varying all input parameters is not necessarily required 

as most parameters can be observed, are well known or a change does not significantly affect the output. 

Therefore, the models need to abide to a classification scheme, which segregates important parameters 

from less important parameters. Yang & Becerik-Gerber (2015) described such a classification by 

distinguishing observable and non-observable parameters, this classification is adapted as shown in Figure 

4.3.  

 
Figure 4.3: Classification scheme of input parameters, adjusted from Yang & Becerik-Gerber (2015). 

Observable parameters are those whose values can be determined through available 

information, e.g. window sizes and lighting fixtures from drawings. Non-observable parameters cannot be 

determined by available information from data collection. To determine if these are influential, sensitivity 

analysis was employed. Due to the model size and simulation run time, the amount of parameters was 

reduced before running simulations to avoid the curse of dimensionality. It is therefore necessary to neglect 

insignificant parameters identified in previous studies as non-influential. As an example, certain material 

properties cannot be observed, but many are non-influential in, in particular in non-domestic buildings. 

Potentially influential parameters were split into deterministic and stochastic parameters. Deterministic 

parameters inhibit no randomness, where stochastic parameters are those that vary in their respective 

domains and cannot be measured exactly. Potentially influential parameters were varied during parametric 

simulation and those actually significant were determined through sensitivity analysis to be used for 

mathematical optimisation of a model. 

4.5.4 Analysis of discrepancy 

Differences between predicted and measured energy use need to be compared on a detailed 

level to identify performance issues. Maile et al. (2012) use data graphs to explain performance issues by 
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comparing predicted and measured data. They and others (Chaudhary, et al., 2016; Kim & Park, 2016; Sun, 

et al., 2016; Yang & Becerik-Gerber, 2015; Kim, et al., 2017) use statistical variables proposed by Bou-Saada 

and Haberl (1995), such as the coefficient of variation of the root mean square error (CV(RMSE)) and 

normalised mean bias error (NMBE). The NMBE and CV(RMSE) in equations (6) and (7) were used to 

compute the residuals for the different data sets. 

 

𝑁𝑀𝐵𝐸 (%) =

∑ (𝑚𝑖 − 𝑠𝑖)𝑛
𝑖−1

𝑛
�̅�

∙ 100 
(6) 
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𝑛
]

1
2
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∙ 100 

(7) 

where 𝑚𝑖  and 𝑠𝑖  are the measured and simulated data points, , �̅� is the average of the 

measured time series data and 𝑛 is the number of data points in the time series (i.e. Nmonthly = 12, Nhourly = 

8760). 

Differences relate to either simulation-, operational- or measurement issues. Operational 

issues, for example, were encountered by looking at HVAC components and seeing if they are active when 

they are not supposed to, while simulation assumptions were distinguished by higher temperature 

setpoints than expected throughout the year or longer occupancy hours. Measurement issues were related 

to erroneous data points or missing data. This process is important as it identifies if performance issues 

relate to the simulation or operation of the building. Identifying where discrepancies exist highlights areas 

of importance and screens potential parameters that have a significant effect on model outputs. 

4.5.5 Manual calibration 

The calibration of building energy models is an underdetermined problem and its accuracy 

relates to the granularity of operational data used for model creation and comparison. A model is 

‘calibrated’ when predictions differ by a certain range from the measured data, according to ASHRAE (2013) 

this is a 5% monthly mean bias error on total yearly energy use and 10% for hourly mean bias error on 

yearly energy use. In addition, CV(RMSE) is used, ASHRAE sets their criteria at <15% for the months, and 

<30% for the hours. It is however questionable if a calibrated model predicting within this range is an 

accurate model for representing reality, as the ranges mask higher levels of data granularity by only 

representing total energy use. Therefore, not taking into account energy end-uses, individual end-uses may 

not necessarily abide to the same statistical criteria, for example, lighting energy use may be significantly 

over predicted, while chiller energy use is under predicted, in total however they fall within the range and 

can be considered calibrated. Inherently, the input parameters determine the amount of energy used, as 

such, their assumptions need to be supported where possible by, building design- or commissioning data, 

as a last resort, benchmarks figures should be used. A larger uncertainty arises when such information is 

not available, this can be represented by the uncertainty of input parameters, which increase the variability 

in the output and potential solutions. There will be many models, among those calibrated, that are less 

accurate at a higher level of data granularity. 

4.5.6 Sampling  

The accuracy of sensitivity analysis and the meta-models depends on the amount of 

simulations and number of inputs. The necessary amount of simulations can be determined by calculating 

the sensitivity indices for increasing sample sizes, when results start converging the number of simulations 

can be determined to be sufficient, depending on the convergence criteria. Similarly, a larger sample will 
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increase the accuracy of a meta-model as they can be trained on more data, however at a certain point, the 

increase in accuracy will be marginal. 

A sample size (N) is in effect the number of different combinations of input parameters that 

are run through the deterministic model, whereas the number of parameters (k) included in a sample 

determine the volume of the parameter input space (Ω). It is therefore important to reduce the sample size 

as much as possible to avoid having to run many simulations and avoid the curse of dimensionality. 

Burhenne et al. (2011) analyse the performance of four different sampling techniques, pseudo-random, 

stratified sampling, Latin hypercube sampling (LHS) and sampling using Sobol sequences in the building 

simulation context. They found that Latin hypercube sampling and Sobol sequences had the fastest 

convergence on the mean estimates. Furthermore, Sobol sequences showed the least variations in the 

cumulative distribution functions, indicating that it produced the most robust results. Sobol sequences is a 

quasi-random sampling method, which obtains a faster convergence rate, meaning that fewer simulations 

are needed in order to reach the same accuracy that other methods offer. The numerical error of quasi-

random sampling method is theoretically evaluated by (log 𝑁)𝑘/𝑁 in contrast to Monte Carlo methods 

which scale as 1/√𝑁. Eisenhower et al. (2011) and Peles et al. (2012) have used this quasi-random sampling 

to sample parameters in the input parameter space in the context of building modelling. In this research, 

Latin hypercube sampling is used for creating randomised designs, because of simplicity of its 

implementation and the availability of a computer cluster running simulations, which significantly reduced 

simulation time, compared with a personal laptop. 

Parameter ranges were set at a 20% variation for all considered variables used in the samples, 

to allow for enough variation and understand parameter influences as done by (Eisenhower, et al., 2011). 

A range of variation for all parameters is determined by setting the standard deviation (σ) of a normal  

distribution at 20% of the typical value, with upper and lower bounds of the mean defined by adding and 

subtracting three times the standard deviation, mathematically in equation (8): 

 
[𝑙𝑜𝑤𝑒𝑟, 𝑢𝑝𝑝𝑒𝑟] = [µ − (3 ∙ (µ ∙ 0.2)), µ + (3 ∙ ( µ ∙ 0.2))] (8) 

Discrete distributions were used for input parameters such as the heating- and cooling 

setpoints, and an offset in schedules. Ideally, in detailed calibration, uncertainty ranges should be validated, 

for example for lighting loads in the building, the average load and standard deviation can be established 

based on design data, and for materials, these ranges are well-defined from previous research. The range of 

a particular variable influences the significance it has on the output, therefore the possible input parameter 

values have to be realistic. For example, if a deliberately narrow range of say 15.5 to 16 W/m2 for equipment 

power density in a zone is chosen, this will still allow the model to be calibrated and conclude that this 

particular variable is not significant compared to other variables, which have a proportionately larger 

variance. However, in this research, the uncertainty of most variables could not be determined, as such, the 

20% distribution as described above is used. 

4.5.7 Parametric simulation 

Input parameters were sampled to generate random values within a pre-defined range of 

variability. Each sample of inputs was exported to a separate simulation file, which was then simulated 

using EnergyPlus on Legion, UCL’s computer cluster. For each building, numerous simulations were run in 

order to analyse the variance in predictions. Sampling, the parametric simulation process and file 

generation is set-up in Python. For sampling, pyDOE (pyDOE, 2017), an experimental design package for 

Python, was utilised for creating Latin hypercube designs. An initial base case simulation file is overwritten 

with new input parameter values from the samples. Although software is available for parametric 
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simulation using EnergyPlus, the use of Python made the process more flexible and allowed unsupported 

features to be included, such as introducing schedule variations automatically, control of output parameters 

and direct integration with analysis and data visualisation. 

4.5.8 Uncertainty and sensitivity analysis 

Uncertainty analysis quantifies uncertainty in the output of the model due to the uncertainty 

in the input parameters to the building models. The Monte Carlo method is applied to repeatedly random 

sample distributions of inputs to obtain the distribution of the energy consumption. Input parameters are 

similar for the case study buildings, with minor exceptions. For scheduling, Office 71 does not include any 

variability, instead lighting and equipment schedules are the same for each simulation, based on the typical 

weekday and weekend day of respective end-uses. This enables the comparison of different methodologies 

for representing occupancy presence. In both MPEB and CH the occupancy, lighting and equipment 

schedules are variable.  

For sensitivity analysis, typical correlation and regressions coefficients were calculated using 

the SciPy library, scientific tools for Python. In addition, a variance-based method was investigated by 

calculating Sobol’ indices using SALib, an open source Python library for sensitivity analysis (Herman & 

Usher, 2017). Variance-based sensitivity analysis is computationally demanding, as it requires numerous 

simulation runs for the sensitivity results to converge. The meta-model is therefore used to compute a large 

amount of samples and perform variance-based sensitivity analysis. 

4.5.9 Meta-model development 

The base case building energy models were simulated for a range of uncertain input 

parameters, resulting in a range of outputs, these are referred to as the search space (possible input 

parameters, created from the design of experiments) and solution space (possible outputs). When enough 

samples (sets of input parameters) are simulated, the relationship between inputs and outputs can be 

represented mathematically, and new samples can then be predicted without using the building energy 

simulation software. This mathematic representation is classified as supervised learning, where the inputs 

and outputs are training data, used to fit an estimator to predict future data for new samples. An estimator 

is a rule for calculating an estimate based on the training data (inputs and outputs), i.e. it is the method or 

machine learning algorithm used to calculate new predictions, also known as a meta-model or surrogate 

model. 

A meta-model is a simplified model of the energy model based on a mathematical relation 

between the inputs and outputs from Monte Carlo simulation, approximating component functions of the 

building model. This allows analysing the variance of the output and identifying the model response for 

different parameters that differ from the sampling points. A meta-model can be created using different 

techniques, Eisenhower et al. (2011) and O’Neill & Eisenhower (2013) use Support Vector Machines (SVM) 

with Gaussian kernels, whereas Peles et al. (2012) and Mara & Tarantola (2008) use orthonormal 

polynomials for static parameters and stochastic processes (Ahuja & Peles, 2013). For the case research, 

use is made of generalised linear regression techniques (or general linear models, i.e. multivariate multiple 

linear regression). In addition, Artificial Neural Networks (ANN) were compared with the performance of 

the generalised linear regression techniques. Other algorithms, such as support vector regression, Gaussian 

process regression, and principal component regression for supervised learning are becoming increasingly 

popular as they can represent complex relations between inputs and outputs. During development of the 

meta-models for the case study buildings it was found that with simpler models and a limited number of 

input parameters, the linear regression techniques were sufficient to accurately predict new values. 
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However, with increasing complexity there was a need to implement a more sophisticated machine learning 

algorithm. 

 Meta-models were created using the Python programming language with open source 

libraries available for implementing different estimators. The scikit-learn library (Pedregosa, et al., 2011) 

is used to test different multi-variate regression techniques, such as ordinary least squares regression, 

partial least squares regression, ridge regression, Bayesian regression, Lasso regression, etc. A general 

linear model can be written as: 

 𝑌𝑛𝑥𝑝 = 𝑋𝑛𝑥(𝑘+1)𝛽(𝑘+1)𝑥𝑝 + 𝜀 (9) 

where Y is the measured data (multiple dependent variables), X are the samples or variable 

input parameters (multiple independent variables) and β are the parameters to be estimated from the 

relation between the data, with ε being the independent distributed normal error. The regression 

techniques then aim to minimise the differences between the general linear model and measured data by 

adjusting the β-coefficients and ε-error (also known as intercept). Izenman (2008) gives an introduction on 

linear regression and machine learning, where Rencher (2002) provides an extensive overview of methods 

for multivariate analysis. 

In pseudocode, the following steps were taken for developing the meta-models: 

Data preparation # manipulate samples and simulation results 

Retrieve inputs and outputs from parametric simulations # search and solution-

space 

Model order reduction if too many variables 

Randomly split solution space in training and test data #[75% train/25% test] 

Loop through set of estimators: # different types of machine learning algorithms 

Scale input and output data if necessary 

Train or fit inputs and output relationship 

Predict using the test data 

Calculate regression performance scores and loss functions 

Save scores 

Evaluate estimator scores and decide on best meta-model 

Save meta-model for future predictions 

Since the relationship is only an approximation of the first-principle energy modelling 

software, it is important to determine its accuracy, which is dependent on the number of simulations and 

input parameters that make up the training data. Training data were split into a training set for learning the 

relation, and a testing set in order to validate the accuracy of the meta-model. Statistical error measures test 

the regression performance and help in determining a suitable estimator for constructing the meta-model, 

using the following statistical measures: 

 Mean Absolute Error (MAE), refers to the amount by which predicted values differ from those 

being estimated (i.e. the test data excluded from the training sample). 

 Mean squared error (MSE), similar to the MAE, the MSE emphasizes outliers, i.e. larger errors 

have greater influence than smaller ones due to the error being squared. 

 Coefficient of (multiple) determination (r2), generally measures how well future samples are 

predicted. It is the proportion of variability in the data explained by the statistical model. 

4.5.10 Mathematical optimisation 

After constructing and validating the meta-models, they were used for optimisation (i.e. 

automated calibration), minimising the difference between predicted and measured energy use at different 
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levels of data granularity. Optimisation using a meta-model is significantly faster than using building energy 

modelling software. Computation times of the larger first-principle models were over 20 minutes to run for 

a yearly simulation on a personal laptop, while the meta-model computes a new sample in a fraction of a 

second. The added benefit of fast computation times is that different optimisation techniques and their 

variables were quickly investigated. 

Meta-model based optimisation aims to find calibrated models by adjusting the variable input 

parameters within their range of uncertainty. When the outputs or predictions of the meta-model more 

closely resemble (fit certain criteria) the measured data, the combinations of input parameters are stored 

and improved iteratively to get even an even closer match between predictions and measurements (i.e. 

objective minimisation). This iterative process uses the Non-dominated Sorting Genetic Algorithm-II 

(NSGA-II), an evolutionary optimisation algorithm, used to solve multi-objective optimisation problems by 

finding sets of solutions. A multitude of optimisation algorithms exist, such as genetic algorithms, 

evolutionary algorithms, particle swarm, simulated annealing, stochastic tunnelling and so forth. The choice 

was made to focus on only one optimisation algorithm here, due to the ease of implementation within 

Python through available open source code and because it is a popular and proven method for building 

performance optimisation. Evins (2013) reviewed the use of optimisation algorithms in the context of 

building simulation and found that more than half of the reviewed works used a genetic algorithm. Similarly, 

Nguyen et al. (2014) found that stochastic population-based algorithms, primarily genetic algorithms were 

most frequently used in building performance optimisation. They noted that there are a number of reasons 

for the popularity of genetic algorithms in building performance simulation, in particular its capability at 

handling continuous and discrete variables, concurrent evaluation of n individuals (Deb, 1999), and 

robustness in handling discontinuity, multi-modal and highly constrained problems without being trapped 

at a local minimum (Colorni, et al., 1999). The distributed evolutionary algorithms in python (DEAP) library 

developed by Fortin et al. (2012) was used for implementing the NSGA-II multi-objective optimisation.  

Pseudocode for the genetic optimisation algorithm: 

Set optimisation parameters #pop size, n generations, probabilities of crossing and mutation 

Set fitness/weights #the more energy use the more important to minimise 

Create initial population of individuals #samples 

Load meta-model 

Run through generations 

Generate offspring 

Crossover individuals within population 

Mutate offspring #change parameters within individuals 

Evaluate objective function #predictions vs. measurements, minimise RMSE 

Save individuals that fit optimisation criteria #CV(RMSE) / NMBE 

Select next generation population # incl. good offspring 

The objective function implemented is to minimise the RMSE between predictions and 

measurements, shown in equation (10). Weights were introduced based on the amount of energy use by 

normalising measured energy use, meaning that the more energy use for an objective (energy end-use) the 

higher the weight and importance to minimise. 

 
min (𝑓𝑜𝑏𝑗 =

1

𝑛
∑ 𝑤𝑖(𝑝𝑖−𝑚𝑖)

2)   (𝑅𝑀𝑆𝐸)

𝑛

𝑖=0

 (10) 

where pi are predictions, mi measurements and wi weights. 
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4.6 Data visualisation techniques 

Throughout the research and in this thesis, operational data was analysed and measured 

energy use was compared with predictions. Several data visualisations were used which have certain 

underlying assumptions to how the visualised data was calculated, and is therefore explained here, to be 

used as a reference. 

4.6.1 ‘Typical’ weekday and weekend day profiles 

Typical weekday and weekend day profiles of energy use were used to compare predicted and 

measured energy use and understand the hourly variation in energy use, profiles were created for either a 

per month or per year basis. The weekday and weekend day denotations can be used interchangeably with 

a working day and non-working day respectively, however in this research, the ‘typical’ weekend day 

excludes holidays, whereas a non-working day would not. A typical weekday and weekend day are 

determined by first separating the holidays, working days and weekend days in a specific time series (these 

are year dependent). The separated day types are then grouped together and the average, mean, standard 

deviation or specific quantile during a specific period is determined. The mean represents a typical day and 

is in some instances accompanied by the standard deviation throughout the same period. In certain cases, 

the profile is normalised to unity (i.e. scaled to bring the values into the range [0, 1]), which is helpful for 

comparing solely the trends in data. Energy use data was available at both 15 and 30-minute intervals, 

reporting the kWh used from one data point to the next. To allow like-for-like comparison at a sub-hourly 

basis, the time series data were first converted to kW. An example of a typical weekday and weekend day of 

electricity use for lighting and power from different meters is given in Figure 4.4. 

 
Figure 4.4: Example of a typical week and weekend day showing the mean of electricity use for lighting 

and power on different building floors, based on a year’s worth of data. 

4.6.2 Representative load patterns for benchmarking 

Similar to the typical weekday and weekend day profiles are the representative load patterns. 

These were used for benchmarking purposes of (in this case) electricity use. A representative load pattern 

is calculated by normalising the load for each time step by the average daily near-peak load, where the near-

peak load is the average of the daily load at 95% quantile for all working days. Then, the normalised vector 

for each working day is averaged over a month (or potentially a season). Mathematically, expressed in 

equation (11), as explained by (Luo, et al., 2017), an example of a representative load profile is shown in 

Figure 4.5. 

𝑅𝐿𝑃 =
1

𝑛
(𝑊𝐷𝑑𝑎𝑦) (

𝐿𝑖

1
𝑛

(𝑊1𝑝𝑐𝑡95, 𝑊2𝑝𝑐𝑡95, … , 𝑊𝑛𝑝𝑐𝑡95 )
𝑓𝑜𝑟 𝑖 𝑖𝑛 {0,1, … , 𝑛}) 𝑓𝑜𝑟 𝑑𝑎𝑦 𝑖𝑛  {0,1, … , 𝑛} (11) 
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where,  
WDday = working day (24 hours as hourly/sub-hourly values electricity use in kW) 
Li = measured sub-hourly electricity use (kW),  

pct95 = near-peak load (load at quantile 95%) for all working days (W). 

 
Figure 4.5: Example of a representative load profile based on electricity use. 

4.6.3 Heat map 

The heat map visualises energy use for a short period (few weeks to a few months), but with 

the underlying sub-hourly fluctuation. The heat map shown in Figure 4.6 presents 2 months’ worth of total 

energy use data, in the top plot, each square represent a data point measured at a one hour interval. The y-

axis represents the hours and each line of blocks on the x-axis represents a full day. The heat maps are 

accompanied by a bottom plot, which represents the total daily energy use, visualising the variation 

between the week and weekend. 

 
Figure 4.6: Example of a heat map of sub-hourly energy use (kW) at the top accompanied by a 

visualisation of daily energy use (kWh) on the bottom. 

4.6.4 Discrepancy metrics analysis 

As explained in Section 4.5.3, a discrepancy between predicted and measured energy use is 

analysed by using the normalised mean bias error (NMBE) and coefficient of variation of root mean square 

error (CV(RMSE)), these metrics indicate the error or difference between two datasets. Used to indicate the 

error on a monthly (differences between energy use on a monthly interval) and hourly level (differences 

between energy use at an hourly interval). Counterintuitively, the bar graph in Figure 4.7 indicates the 

differences on an hourly interval per month, whereas both metrics can also be calculated on a yearly basis. 

The difference between two datasets at an hourly interval over the whole year, which is given by NMBEhourly 

and CV(RMSE)hourly. Differences between the months on a yearly basis are given by NMBEmonthly and 

CV(RMSE)monthly. Finally, the orange lines are the criteria set by ASHRAE that deem a model calibrated, 

however these criteria should actually be compared at a yearly basis (the metrics shown at the top of the 
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graph). Nevertheless, they were used in the bar graph here to understand how the model is performing on 

a monthly basis, which would be more difficult to achieve (a smaller difference between the two datasets 

on an hourly level). 

 
Figure 4.7: Example of a discrepancy metrics analysis. 

4.6.5 Kernel distribution 

Kernel density estimation has been used to estimate the probability density function of certain 

variables. Although the probability density function was estimated to resemble a normal distribution in 

most cases, in some the kernel distribution provided additional insight in the actual distribution of 

variables. Bandwidth selection is done automatically as the kernel density estimation was applied through 

the SciPy library in Python, which applies Scott’s rule (1992), bandwidth influences the estimate obtained. 

An example of kernel distribution using kernel density estimation is shown in Figure 4.8. 

 
Figure 4.8: Example of kernel distributions for air handling unit supply temperatures. 

In this graph in particular a distinction is made between occupied (7am-7pm) and unoccupied 

hours, created for temperatures in MPEB, the kernel estimation is then determined based on these specific 

hours. 

4.7 Summary 

A methodology was developed to compare predicted and measured energy use at a high level 

of data granularity. It describes how data was collected and synthesised, how virtual models were created 

to represent existing buildings, how sensitivity and uncertainty analysis was performed and describes how 

manual and automated calibration techniques tune the models towards measured energy use. The 

methodology builds on previous research, referred to throughout the methodology. The vast amount of 

previous modelling and calibration research proves the importance of the subject, but also highlights that 

primarily minor improvements are made in this area of research. Improving the efficiency and effectiveness 

of the calibration process is helpful as it is used to make design decisions based on predicted savings for 

retrofitting existing buildings. In addition, it can provide a link between simulation and measurement 
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systems in existing buildings to enable real-time forecasting of building performance in the future, in this 

case model calibration accuracy and application of state-of-the-art techniques such as machine learning 

become essential. Finally, calibrated models can be used as a tool to diagnose building performance and 

understand differences between predictions from modelling and measurements. 

In essence, the methodology improves upon existing knowledge by introducing several new 

processes and techniques. First, the parametric modelling process uses variable scheduling in occupancy 

presence, equipment and lighting loads, to allow for automated adjustment of schedules to improve the 

accuracy of the calibration model. Second, the methodology introduced seasonal variability in profiling and 

uncertainty in heating and cooling setpoints in addition to uncertainty in typical static parameters. This 

allows the model to replicate seasonal trends of an existing building, important for certain building types 

(e.g. university buildings). Finally, the methodology was developed in order to determine if a higher level 

of data granularity increase model accuracy through model calibration. 
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5 UTILISING OPERATIONAL DATA TO INFORM BUILDING MODELLING 

ASSUMPTIONS 

This chapter discusses the operational data collection and analysis for the case study 

buildings, which was used to inform input assumptions and support the development and calibration of 

building energy models. Additionally, an overview is given of how the case study buildings perform against 

each other and typical UK benchmarks. Several techniques were used to establish input parameters for the 

building energy models. Electricity use for lighting and power per floor was analysed to create typical 

schedules of use and determine out-of-hours baseloads. Wi-Fi and swipe card data were used to create 

typical occupancy schedules, but were also used to inform lighting and power use schedules. In addition, 

both datasets were used to understand seasonal variation, which proved to be significant in the university 

buildings. Strong correlations were identified between occupancy presence and lighting and power energy 

use, and a less strong correlation between occupants and systems energy. Space temperatures were used 

to make evidenced assumptions about heating and cooling setpoint temperatures in spaces, which were 

compared to design specifications from O&M manuals. Finally, systems operation, in particular air handlers 

and fan coil unit operation were investigated to match their operation in the building energy model. 
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5.1 Introduction 

Operational data, i.e. data collected during the operation of the buildings, was used to inform 

building modelling assumptions, an integral part of calibrating energy models. Consecutively, this data was 

used to compare predictions from building energy models with measurements to support the calibration 

process. The collected operational data consisted of energy use data on a sub-hourly basis and gas data on 

a monthly and in some cases sub-hourly basis. Building management systems in two of the buildings log 

data regarding the operation of building systems. Additionally, anonymised occupancy data through Wi-Fi 

connections and swipe card access points was obtained for the university buildings. Table 5.1 provides an 

overview of the data collected for the four case study buildings.  

Table 5.1: Data availability for the case study buildings 
Building  BMS  AMR  STM Gas / heat Wi-Fi Environmental data 
CH Y (local) Y Y Monthly  Y Temperature 
MPEB  Y (online) Y Y n/a Y Temperature 
Office 17  N Y N Sub-hourly N n/a 
Office 71 N Y N Sub-hourly N n/a 
BMS: Building management system, AMR: Automatic meter reading, STM: Short term monitoring 

This chapter describes findings from analysing energy use data of the case study buildings and 

then describes how operational data was used to inform building modelling assumptions. In particular, this 

data was used to; (1) develop occupancy, equipment and lighting schedules based on occupancy and energy 

use data; (2) establish building services operation and set-point temperatures analysing the environmental 

performance and system performance given by the BMS.

5.2 Building modelling 

In this research, four existing buildings have been investigated, their geometrical 

representation is shown in Figure 5.1. For each case study building a virtual model is created to predict 

performance aspects (e.g. energy use, internal conditions, etc.) of a real building. The initial model is based 

on best-guess parameter assumptions, and is referred to as the base case. The base case is then either 

manually and/or automatically adjusted to ensure a better representation of reality, which are referred to 

as calibrated models. 

 

 

  
 

Office 17 Office 71 CH MPEB 

Figure 5.1: Geometrical representation of the four case study buildings. 

Common practice among building modellers is to classify thermal zones as different space 

types. This allows for creating templates for specific space type, which in turn assigns the same parameters 

to included zones. However, it is important, especially for model calibration, to represent each space as 

accurately as possible. Two zones that are very different from each other should not be assigned to the same 
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space type. For example, if two kitchens or office spaces differ considerably in their installed plug loads, 

then it might be more accurate to separate these into two space types with differing parameters or 

separately assign these plug loads to accurately represent the plug loads. Where possible, assumptions were 

based on observed conditions through energy audits, measured data, and available design and 

commissioning data from O&M manuals. When parameter values could not be established through collected 

information, they were based on typical assumptions from guidance documents.  

Lighting and equipment loads are based on the number of lights and appliances in each space 

summed over an agglomeration of spaces under one space type. People presence was determined using Wi-

Fi data, occupancy profiles and number of people were derived from this data. HVAC systems parameters, 

such as heating and cooling capacities and design airflow rates were hard-sized where data was available 

to decrease uncertainty in the model. Natural ventilation, available through the opening of windows is 

available in all buildings and was controlled dependent on the indoor and outdoor temperature and time of 

day. Weather files were obtained covering the measurement periods to represent external weather 

conditions to coincide with the data collection period. Building modelling inputs are further described in 

Appendix D and materials in Appendix E. 

5.3 Energy use and occupancy presence 

The collection and collation of data proved to be time-consuming, which is one of the limiting 

factors in applied detailed building model calibration. In particular, energy use data often contained missing 

and erroneous values. In addition, electricity meters were often not labelled correctly, excluded important 

and significant energy end-uses and run on outdated software. In contrast, the building management 

system, which was readily accessible for MPEB proved to provide easy data analysis through an online 

platform. In CH however, this system was only accessible offsite and obtaining useful data was difficult, as 

most points were not being logged for longer than a month. This research focussed on energy use and 

establishing a high level of data granularity, which was achieved by gathering disaggregated sub-hourly 

energy end-use data for four case study buildings. For some buildings, energy for lighting and power was 

also disaggregated on a floor by floor basis. However, due to faulty meters, certain energy end-uses were 

neglected, a detailed breakdown was not always established. In particular, the heat meter in MPEB was 

malfunctioning and the heat pump and air handling unit in Office 71 were not sub-metered. An overview of 

energy use for each building is given in Appendix F. 

5.3.1 Energy use benchmarking 

Yearly energy use intensity 

Energy use for each building is compared on a yearly basis per floor area in Figure 5.2. For 

both CH and MPEB, the available 8 months of data was extrapolated to a year by taking the average per 

month for an extra 4 months. For Office 17 and Office 71 the year of 2013 is used as comparison. A 

considerable difference exists between the case studies, MPEB is the most energy intensive building, closely 

followed by CH and Office 17, which are both less than half the energy use intensity (EUI). Note here that 

district heating in MPEB is not included, as it was not measured, similarly so for the VRF system energy use 

in Office 17 and 71. However, district heating in MPEB was determined to account for 3.4% of yearly energy 

use from predictions, whereas predicted system energy use in Office 17 and Office 71 accounted for 6.5% 

and 13% respectively. 
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Figure 5.2: Energy use for during September 2016 to September 2017. 

MPEB is an energy intensive building due to the high internal loads from the server and large 

amount of power appliances on the first three floors in the building. In addition, MPEB is a fully air 

conditioned building, nearly every space in the building is provided with heating, cooling and mechanically 

supplied fresh air besides providing operable windows in most working spaces around the perimeter of the 

building. CH is mainly naturally ventilated, but does provide heating and cooling through the VRF system in 

all offices and meeting rooms, system energy use is similar to that of MPEB. Office 71 is also mechanically 

ventilated and has a VRF system to provide heating and cooling, the VRF heat pumps and AHU in the building 

are however not captured by the sub-metering system and therefore system energy use seems negligible in 

this building. Finally, Office 17 is naturally ventilated except for the basement and reception area, which are 

provided with some air conditioning, but the main contributor to the high intensity in energy use in Office 

17, is the unnecessary gas use throughout the year and outside of occupied hours. Furthermore, lighting 

and power is more intense than that of CH and Office 71 as the occupancy density and therefore equipment 

gains are much higher. 

Energy use intensity for each building is compared to benchmarks from the Energy 

Consumption Guide 19 (ECG019), shown in Table 5.2. This guide provides benchmarks from common four 

common office types, derived from surveys of a large number of buildings and divides them into typical (T) 

and good practice (G) benchmarks. MPEB is identified as type 4 as ‘prestige’ air conditioned building, while 

CH and Office 71 are type 3, ‘standard’ air conditioned buildings, CH is a type 2, open plan naturally 

ventilated. 



5. Utilising operational data to inform building modelling assumptions 

C. van Dronkelaar (2018)  80 

Table 5.2: Energy use intensity (kWh/m2a) compared to benchmarks  
from ECG019 (Department of the Environment, 2003) 

 MPEB CH 71 17 G T G T G T 
Type 4 3 3 2 2 2 3 3 4 4 
Cooling 41    1 2 14 31 21 41 
Fans, pumps and 
controls 

    4 8 30 60 36 67 

Humidification     0 0 8 18 12 23 
Systems 55 76 4 5 5 10 52 109 69 131 
           
Lighting   36 30 22 38 27 54 29 60 
Power   52 110 20 27 23 31 23 32 
L&P 213 67 88 140 42 65 50 85 52 92 
           
Computer room 79 4 0 32 0 0 14 18 87 105 
Catering [electricity] 0 0 9 10 3 5 5 6 13 15 
Catering [gas] 0 0 0 0 0 0 0 0 7 9 
           
Other electricity     4 5 7 8 13 15 
Total gas/oil N/A 12 53 185 79 151 97 178 114 210 
Total electricity 388 147 101 187 54 85 128 226 234 358 
Note: Type 2: open plan naturally ventilated; Type 3: ‘standard’ air conditioned; Type 4: ‘prestige’ air conditioned 
G: Good practice, T: Typical 

Looking at total electricity use, MPEB has a very similar EUI compared to the typical type 4 

benchmark. Heat data was not available from the district heating system for comparison. Disaggregated into 

different energy end-uses, MPEB has smaller computer room (servers) and systems energy use, but a much 

higher lighting and power EUI. CH and Office 71 consume nearly as much energy on total, however their 

distribution to gas and electricity is slightly different. Compared to type 3 typical benchmarks, both 

electricity and gas use is significantly lower, even good practice benchmarks are more energy intensive. 

Systems energy use in CH falls within the typical and good benchmarks of type 3, however the data for Office 

71 doesn’t include all systems and is lacking a significant portion of energy use. Lighting and power are 

similar to the typical type 3 benchmarks levels. Finally, Office 17, which is naturally ventilated, and heated 

through radiators connected to two gas boilers is significantly more electricity intensive than the typical 

type 2 benchmark. The main difference is due to the higher power loads, in addition to the server which is 

not present in the benchmark.  Gas use was however identified to be used inefficiently in this building as 

shown in Office 17.  

The benchmark comparison does not provide a very meaningful comparison, first, the 

benchmarks are outdated as they are derived from an older building stock, an updated version is being 

created, but unlike in the U.S. where EUIs in certain states have to be made publicly available, the UK does 

not have such a system in place for private buildings. Second defining the buildings according to a building 

type is not always straightforward. Where perhaps Office 17 is a typical naturally ventilated open plan 

office, Office 71, is likely in between that and a ‘standard’ air conditioned office. The university buildings 

however are even more difficult to assign a certain building type or function as they provide many different 

utilities. CH has mainly office spaces in the building, in addition to some lecture spaces, but the pattern of 

use was found to be very different from a typical office building, having a significant influence on energy 

use. MPEB serves many purposes, but from the 2nd floor up, is again mainly office space. Finally, each 

individual building can be significantly different, not just in the internal functions they provide, but also in 

the way systems condition the building, additional servers or small power equipment, patterns of use and 

efficiency in operation. The latter ideally identified through looking at benchmarks, however, to understand 

if a building is actually energy efficient it will be more fruitful to analyse energy use on a higher temporal 
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granularity, perhaps looking at typical weekday and weekend day patterns, broken down into energy end-

uses.  

For the case study buildings several Display Energy Certificates (DEC) were available, shown 

in Table 5.3. DECs should be available for all public buildings in the UK, they are based on analysing 

measured energy use of a building, renewed yearly. As is evident from the logged DECs, annual assessments 

can be considerably different. For example, for CH the floor area is determined to be different between 2014 

and 2015, significantly affecting the final rating. For MPEB, there is a significant difference between 

reported annual energy consumption for both heat and electricity. These values can however not be verified 

as there was no sub-metered data available for these years (DECs can be based on energy bills). 

Table 5.3: Display Energy Certificates of the four case study buildings. 
Building Floor area (m2) Issue date DEC Heating Electricity Renewables 
CH  3973 2014 F (138) 83 (135) 211 (126) 0 
CH 5664 2015 D (76) 8 (237) 137 (93) 0 
CH 5665 26-10-2016 D (85) 8 (227) 145 (93) 0 
MPEB 9020 2014 F (128) 111 (237) 170 (80) 18.4% (e) 
MPEB 9580 29-03-15 E (113) 122 (242) 210 (131) 40.2% (e) 
MPEB 9580 25-05-16 G (181) 93 (258) 376 (131) 30.2% (e) 
MPEB 9590 27-01-17 G (152) 93 (247) 257 (131) 28.1% (e)  
Office 71 2621 2015 D (90) 33 (126) 113 (94) 0 
Office 17 1924 2015 F (137) 81 (103) 151 (95) 0 

Electricity use load shape benchmarking 

Although the certificates are helpful in understanding the cumulative energy use compared to 

other buildings, it is evidently not an entirely fair comparison if the EUIs, which are based on floor areas, 

are not representative for the whole building. Furthermore, EUIs mask the underlying fluctuations of energy 

use over time, however, with the uptake of smart metering and availability of sub-hourly energy 

consumption data, energy use patterns can be identified and compared as benchmarks among buildings. 

These energy use patterns (or load shapes) contain information on how electricity changes over the day, as 

a composite of end-uses such as lights, appliances and heating, ventilation and air conditioning (HVAC) 

(Luo, et al., 2017). Potentially, in the future, when data collection systems improve and accurately capture 

disaggregated energy use, energy end-uses can also be compared among buildings. 

There are different metrics that can be employed to represent the behaviour of energy use 

patterns, the metrics proposed by Luo et al. (2017) were compared among the four case study buildings. 

More specifically, the peak-base load ratio, weekday-weekend day load ratio and on-hour duration have 

been calculated for electricity use, where gas use was not always available on sub-hourly basis. In addition, 

a representative load pattern (RLP) is determined for each month of the year, used to identify irregular 

shapes and were compared among the case study buildings, the representative load profiles are shown in 

Figure 5.3. 
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Figure 5.3: Representative electricity load profiles for the four case study buildings (typical weekday). 

The representative electricity load profiles enable comparing typical patterns of use between 

the buildings on a monthly basis. The main observation that can be made when comparing the profiles is 

the large difference between day and night time electricity use. Furthermore, as the profiles were 

normalised based on the average annual near-peak load, a difference in magnitude for energy use 

throughout the months can also be identified. For CH, there is a significant difference between summer and 

early autumn (June to October), which have a much lower load than for the other months of the year. MPEB 

in contrast has a higher load during the summer months (May to August). Office 17 and 71 show a somewhat 

smaller load during the month of December in comparison to other years, indicating that these two offices 

are closed or partially closed, most likely during Christmas and New Year. Another observation is the 

difference between the operating hours, which seem to be slightly longer for Office 17 and 71 in comparison 

to the two university buildings. Finally, MPEB shows a significant increase and decrease (rise and fall time) 

of electricity use during the occupied hours, which is more fluent for CH. This was identified to be due to 

the strict time-operated systems in MPEB, whereas CH has individual control on rooms. Office 17 and 71 on 

the other hand also show a significant rise and fall between occupied and unoccupied hours, however, this 

is not the same throughout the year. 

The representative load patterns are supported and further explain electricity use by the load 

shape metrics. The peak to base load ratio is calculated by taking the average working or non-working day 

during a certain period, then dividing the near-peak load (95% quantile) by the base load (15% quantile). 

The on-hour duration is calculated by taking the average working or non-working day and determining the 

number of hours above a threshold (5% quantile + ¼ x 95% quantile). The weekday-weekend day load 

ratio is calculated by taking the average weekday and weekend day and dividing their 15% quantile loads. 
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Results for the peak to load base ratio, on-hour duration and weekday to weekend day ratio are shown in 

Figure 5.4, Figure 5.5 and Figure 5.6 respectively. 

 
Figure 5.4: Peak to base ratio. 

The peak base load ratios for the university buildings are very similar, whereas Office 17 is 

slightly higher during the months and Office 71 is significantly higher, with values ranging from 4 to 9. A 

higher ratio indicates a large difference between day and night electricity use, where a low peak to base 

ratio results from potentially appliances and lighting being left on. In MPEB and Office 17, the server that is 

continuously operating is one of the causes for their low ratio. The ratios can also be inferred from the 

representative load profiles, where a distinct difference was seen during the day and night. 

 
Figure 5.5: On-hour duration. 

CH, Office 17 and 71 are operated between 16-18 hours according to the on-hour duration 

metric, whereas MPEB is on for about 13 hours. For MPEB this does however not necessarily mean that the 

building is occupied for only 13 hours. The large difference in electricity use during the day and night 

determine the threshold, which determines the on-hour duration, the large difference is however mainly 

due to system energy use, where lighting and power is nearly constant throughout the day. Therefore, 

occupation hours might be longer than the on-hour duration. 

 
Figure 5.6: Weekday to weekend day ratio. 

The weekday and weekend day ratio indicate that the university buildings are occupied and 

utilised 7 days a week, in contrast to the two office buildings. 
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5.3.2 Occupancy presence 

Occupants can have a large influence on the energy consumption of a building, they use 

equipment, use hot water and are able to adjust their internal environmental conditions by changing 

lighting conditions, opening windows and changing thermostat settings. It is therefore necessary especially 

in the calibration of building energy models to capture their presence and understand their behaviour. 

Several techniques can be employed to determine occupancy presence, Davis III & Nutter (2010) use 

building security cameras, doorway electronic counting sensors, semester classroom scheduling and 

personal observation as ways to collect such data, Yun et al. (2012) use occupancy sensors in spaces and 

Martani et al. (2012) use Wi-Fi connection data. For the university buildings, CH and MPEB, both Wi-Fi 

connection data and swipe card access data is collected. The Wi-Fi data shows when a connection to a 

particular router is made, this can then be used to understand when people are present in a building and on 

which floor. In addition, and in similar fashion, students and staff have an ID card to gain access to a building, 

building floor or particular zone. When and where they gain access is the retrieved anonymised swipe card 

data, this was analysed to determine occupancy presence. There are several limitations to both methods of 

data collection, for the Wi-Fi data, the number of connections made does not directly represent the number 

of people as each occupant can have more connections to the Wi-Fi network. Nevertheless, connections and 

occupancy presence are correlated, which gives an understanding of when and relatively how many people 

are present. Swipe card data is likely to be a better representation for the number of people that enter the 

building, as everyone is supposed to swipe in for access. On the different floors where the access points are 

mainly at door entrances instead of a main gate, it is more likely that doors are held open for other people 

and actual people flow is more difficult to determine. Furthermore, there is no need to swipe out when 

leaving the building, which makes it difficult to determine if people are still present. 

A year’s worth of data is collected and analysed to understand daily, weekly and seasonal 

occupancy presence and is used to create typical occupancy profiles for the building energy models. Swipe 

card data is available on a minute basis, each swipe is logged individually, whereas Wi-Fi data is available 

at a 5-min interval on a cumulative basis, showing the total number of connections at a particular time step. 

In Figure 5.7 and Figure 5.8, show swipe-in and Wi-Fi data for a weekday in CH. The left graph shows the 

number of connections made or lost (negative) and the number of swipe-ins on 15-min interval, showing 

strong fluctuations during the day. The right graph shows the cumulative Wi-Fi connections, which are not 

available for the swipe-ins as its unclear (not logged) when people leave the building. 
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Figure 5.7: Number of new Wi-Fi connections and 

swipe-ins for a single day (03/01/2015) (negative 
value indicates people leaving the network 

compared to previous value). 

 
Figure 5.8: Number of Wi-Fi connections and 

swipe-ins for a single day (03/01/2015), where 
Wi-Fi connections are cumulative. 

Occupancy influence on energy 

Occupants have a large influence on energy consumption, after all, it is for them that spaces 

are conditioned and they are the ones that use most of the small power equipment and lighting in a building. 

Their significance was determined by correlating the total energy use obtained from the sub-metering and 

short term monitoring of energy use against the number of Wi-Fi connections, for a 3 month period, as 

shown in Figure 5.9 for MPEB and CH. 

 
Figure 5.9: Occupancy correlated to total electricity use over a period of 2 months for CH (left) and MPEB 

(right), each point represent an hour of data. 

The data indicates a significant correlation between occupancy and electricity use, in fact 

when the variation is calculated, it can be shown that 75% and 59% of the variation in electricity use is 

accounted for by the occupancy for CH and MPEB respectively. Similar results were shown by Martani et al. 

(2012), where they analysed two buildings and report variations of 69% and 63%. 

5.4 Developing typical schedules of use 

Lighting and equipment use and occupancy presence in building simulation are based on 

schedule of use, represented using values between 0 and 1. These schedules are then applied to certain 
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spaces or space types, which are then multiplied by a power and lighting load (W/m2) or occupant density 

(m2/p) assigned to these spaces, to calculate the final load (W) or no. of people in a space at certain time of 

the day. For compliance modelling in the UK standard schedules are used, which may not necessarily be 

good indicators of reality. Schedules of use directly affect energy use and can have a large impact on the 

discrepancy between predicted and measured energy use. As such, for performance modelling during 

design, it is essential to determine future use of spaces, potentially based on previous experience or data 

from existing buildings. In existing buildings, operational data can be utilised to develop these schedules of 

use, either on; (1) measured occupancy presence data or directly based on (2) measured electricity use.  

Logically, the use of lighting- and equipment electricity consumption will create more accurate 

lighting- and equipment use schedules, whereas occupancy data will create more accurate occupancy 

presence schedules. The use of occupancy data to represent lighting- and equipment schedules assumes 

that occupancy presence has a large influence on these types of energy use. Although this holds true in most 

buildings, it can differ significantly per building and is not always as strongly correlated, introducing a 

certain margin of error. Lighting- and equipment schedules are more important than the occupancy 

schedules as they will have a more significant influence on energy use, using this reasoning, the use of 

electricity data to develop use schedules would be the preferred option. Nevertheless, in both cases, it needs 

to be ensured that the developed schedules do not apply for all space types (depending on the granularity 

of data collected; whole building/floor/space). Using whole building collected occupancy data would be a 

better proxy for the schedules of use in office spaces, than in storage-, toilet- and kitchen spaces. In the case 

study buildings, the first approach was used for MPEB and CH, where Wi-Fi data was available, but an 

accurate breakdown of lighting- and equipment electricity was not. Whereas for Office 71, solely lighting 

and equipment electricity data was available and the second approach was used to develop schedules of 

use. 

5.4.1 Developing typical schedules of use based on occupancy data 

In building energy modelling, occupancy presence is represented by schedules with values 

between zero and unity, which are subsequently multiplied by the occupancy density assigned to different 

space types. To develop these, typical weekday and weekend day schedule were calculated using the swipe 

card and Wi-Fi datasets, shown in Figure 5.10. There is a large difference between the typical weekday and 

weekend day, occupancy presence during the weekend in MPEB and CH is 1/3rd and 1/6th of the weekday 

respectively. Wi-Fi data exhibits a much more continuous profile as it is cumulative (people stay connected 

to the Wi-Fi routers), and is therefore a better representation of occupancy presence. An interesting 

observation are the nearly identical profiles for occupancy presence in the two different buildings. Both are 

university buildings at the same university, but they have distinctly different space types. 
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Figure 5.10: No. of swipes (left) and no. of Wi-Fi connections (right) for an average weekday and 
weekend day at a 15-min interval for MPEB and CH (over a whole year). 

The typical Wi-Fi profiles were scaled to between 0 and 1, to be used as occupancy schedules 

in the building energy models for CH and MPEB. However, whilst analysing occupancy data, it became clear 

that a large variation exists in occupancy throughout the seasons as MPEB and CH are university buildings 

where occupancy is affected by university terms or semesters, evident from Figure 5.11. 

 
Figure 5.11: Daily number of swipe-ins at main entrance in CH and MPEB. 

There is a low occupancy during the summer and early autumn, in particular during 

September, with increasing occupancy from October to December and January to the end of March (Easter). 

Furthermore, almost no Wi-Fi connections or swipe-ins occurred during the holidays (Christmas and 

Easter). This seasonal variation in occupancy needs to be accounted for in building energy modelling as 

occupancy has a significant effect on energy use. A monthly seasonal factor was calculated by taking the 

average daily maximum number of swipes per month, as shown in Figure 5.12, these values were then 

scaled to between 0 and 1. The seasonal factors were then multiplied by the typical weekday and weekend 

day schedules, creating a total of 12 different weekday and weekend day occupancy schedules, one for each 

month. 
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Figure 5.12: Average daily maximum number of swipe-ins per month for both MPEB and CH. 

It would be possible to incorporate the collected occupancy data directly into the energy 

modelling software, i.e. instead of creating 12 monthly schedules, each half-hour can be represented by the 

collected data. This would however make the occupancy schedule considerably longer, would over fit the 

model and therefore only apply to a specific year. Instead, the schedules can take into account uncertainty 

within the data to understand the effect of variability in the schedules on performance. 

At this point, the created schedules represent only the occupancy presence within a building. 

These schedules were used to create lighting and equipment schedules by introducing an out-of-hours 

baseload, which is the lighting or equipment electricity use during unoccupied hours relative to the average 

peak during the day. This requires making an assumption about the typical baseload for lighting and 

equipment use. By analysing typical lighting and equipment electricity profiles for the case study buildings, 

it was found that lighting and equipment energy use baseloads for Office 17, Office 71, CH and MPEB were; 

20/25%, 15/20%, 20/65% and 65/85% respectively. These figures were used to create the lighting and 

equipment schedules, by taking the occupancy schedules and applying the baseload where the occupancy 

schedule factor is lower than the baseload. The resulting occupancy-, equipment- and lighting schedule for 

a typical weekday and weekend day in CH are shown in Figure 5.13. It was assumed here that the lighting 

and equipment schedules are slightly wider than the occupancy schedule. This is the base schedule to which 

the monthly seasonal factor was applied. 

 
Figure 5.13: Occupancy, equipment and lighting schedules for a single simulation run for CH. 
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The schedules of use for CH and MPEB were created as previously described, whereas for 

Office 71, these were based solely on electricity data, and for Office 17 these were based on adjusted typical 

schedules taken from the National Calculation Methodology (NCM). 

Variability in scheduling 

The developed schedules of use based on the described method above were varied during the 

Monte Carlo simulations (each simulation had a slightly different schedule). Each schedule consisting of 48 

(half hours) x 2 (weekday and weekend day) values were adjusted for each simulation, based on three 

parameters; horizontal offset, baseload, and the seasonal factor. In reality, occupancy presence, equipment 

and lighting energy use it not exactly the same each day and exhibit some form of variability, it is either 

higher or lower, or varies at different times of the day. As such, this margin of variability or uncertainty 

within the created schedules can be quantified by introducing variability in the three parameters for each 

simulation run. A horizontal variability is included by introducing an offset for both occupancy, lighting or 

equipment schedules. This offset is created by taken the previous or next value in the schedule and offset 

by 0, 1, 2 time steps, where a time step is 30 minutes. In addition, the equipment and lighting profiles are 

assumed to largely follow the occupancy profiles, but are furthermore based on a baseload factor, which is 

assumed to vary within 20% of the base value. Finally, the seasonal variation factor is also varied within 

20% of the base value. The schedules of use directly affect the occupant density and equipment and lighting 

power density, therefore a vertical variability in schedules was neglected, as this is represented by the 

variation in these variables. 

5.4.2 Developing typical schedules of use based on electricity data 

An alternative to using occupancy data, is to use electricity data. This would require at least a 

breakdown into lighting and power for the building. For Office 17 and 71, equipment and lighting electricity 

use was disaggregated and available per floor. For Office 71, Figure 5.14 and Figure 5.15 show lighting- and 

equipment (power) electricity use disaggregated per floor. The 1st to 3rd floors consists mainly office spaces, 

where the ground floor includes a reception, meeting rooms and toilets, the basement consist of a large 

canteen, plant room and shower facilities. The 3rd floor is distinctly different from the nearly identical 1st 

and 2nd floors in terms of lighting and power use. The baseloads for lighting are around 30% of the daily 

peak load for the ground floor and 10% for the other floors, while the base loads for power are 30% of the 

daily peak load for the 3rd floor and 20% for the other floors. 

  
Figure 5.14: Lighting energy use on several meters for a typical weekday and weekend day (2013). 
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Figure 5.15: Power energy use on several meters for a typical weekday and weekend day (2013). 

Besides different baseloads for lighting and equipment, the shape of the electricity profile is 

different. Lighting electricity use follows a much more on/off pattern, which can be due to the fact that 

lighting in large open office spaces are either on/off, whereas personal equipment may be turned off when 

people leave work. 

The absolute electricity use schedules are scaled to between zero and unity as to be used in 

the building simulation software. Either separate schedules can be used for each floor, as shown in Figure 

5.16 or an average for the building can be created.  

 
Figure 5.16: Lighting electricity use per floor scaled to between zero and unity, as a use profile. 

In contrast to CH and MPEB, Office 17 and 71 did not show seasonal variation in energy use. 

As such, no seasonal variation for these buildings was taken into account. Similar to the seasonal factors 

calculated for the occupancy data, this can be done based on electricity data by calculating the average daily 

peak load per month. 

Electricity as a proxy for occupancy presence 

In many existing buildings, the availability of occupancy data is minimal and assumptions 

about their presence have to be made. To support these assumptions, it might be useful to base occupancy 

profiles on other available data, such as electricity use. Ideally, electricity for lighting or power in contrast 

to total electricity is available, as L&P correlates more significantly to occupancy presence. In this research, 

the difference between lighting and power could not always be accurately determined, due to the limited 

amount of data available for lighting and power separately and due to the quality of data. Therefore, 

combined lighting and power were compared with occupancy data from Wi-Fi to understand how schedules 

can be established as input for building simulation. Figure 5.17 shows the correlation between measured 

Wi-Fi connections and lighting and power electricity use for different floors in CH. 
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Figure 5.17: Lighting and power energy use for different floors in CH in relation to number of Wi-Fi 

connections on these floors for the month September 2016 (at an interval of 15-mins). 

There is a significant correlation between occupants and lighting and power on all floors, with 

some variability, which arises mainly due to the type of loads on the lighting and power meters (some loads 

are less determinant on occupancy). High correlations indicate that occupancy presence and lighting and 

power energy use follow a similar trend, this is shown in Figure 5.18, where both are compared by plotting 

them as a typical weekday and weekend day and scaling their values to 0 and 1. 

 
Figure 5.18: Scaled lighting and power electricity use and Wi-Fi connections for a typical weekday and 

weekend day in CH. 

The graph shows that the datasets follow a similar pattern, but that occupants, as expected, 

are not present during the night in a university building, in contrast, L&P electricity use is still significant, 

with a baseload of around 40%. The baseload in MPEB is even more significant for L&P, around 80%, as 

shown in Figure 5.19. 
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Figure 5.19: Scaled lighting and power electricity use and Wi-Fi connections for a typical weekday and 

weekend day in MPEB. 

To recreate the Wi-Fi patterns solely based on the lighting and power electricity use patterns, 

the L&P profiles were first scaled to between 0 and 1 (see previous graphs, but then for the whole time 

series), the baseload is then subtracted from the values in the time series and negative values are set to 0. 

Then, the time series is again scaled to between 0 and 1, and a typical weekday and weekend day were 

calculated, as shown in Figure 5.20. 

 
Figure 5.20: Scaled recreated occupancy profile based on L&P, L&P electricity use and Wi-Fi connections 

for a typical weekday and weekend day in CH. 

As can be seen, the newly created occupancy profile solely based on lighting and power 

electricity represent the actual Wi-Fi data surprisingly well. However, the accuracy of this method is very 

dependent on the baseload, how large it is in proportion and what its assumption in the calculation. For CH, 

the baseload is half that in terms of proportion to that of MPEB. Therefore, some of the underlying aspects 

of the profile are retained through this transformation. This becomes evident when applying different 

baseloads for the same scaling calculation in MPEB, as shown in Figure 5.21. 
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Figure 5.21: Scaled recreated occupancy profiles using different baseloads (from top to bottom 70%, 75%, 
80%) based on L&P, L&P electricity use and Wi-Fi connections for a typical weekday and weekend day for 

MPEB. 

Using 75% as the baseload in MPEB gives the best representation of the Wi-Fi connection 

profile, but the baseload is strongly determinant of the variability between the profiles. In addition, the 

calculation assumes negative values to be 0, which is likely to be more accurate than the calculated baseload 

based on the Wi-Fi connections, which is around 8% in MPEB, due to computers/servers that are 

continuously connected to the Wi-Fi. Furthermore, in MPEB there is a spike in the lighting and power 

electricity use that should be removed and interpolated, this spike is likely due to the power surge in turning 

on parts of the system or electric water heaters that turn on during the early morning. In conclusion, 

occupancy presence can be represented by lighting and power electricity use profiles considerably well, but 

care should be taken where high baseloads exist. 
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5.5 System and environmental performance 

Only for MPEB, a building management system is in place logging data for thousands of sensors 

placed throughout the building. The building management system is connected to the DemandLogic5 

platform, which is a software service that provides data analytics and an online collaboration platform for 

insights into building performance and is used for improving staff comfort, condition-based maintenance 

and reducing energy consumption. The platform provided easy access to the data, which proved to be a 

valuable resource in understanding system behaviour, but has many more capabilities in place that could 

prove useful for more in-depth studies focussed on system calibration and real-time building energy 

forecasting. 

5.5.1 Space temperature set-points 

The building management system in MPEB logs data regarding the temperatures measured by 

the fan coil units (setpoint temperatures and space temperatures). Such data provides valuable information 

about achieved comfort levels and setpoint temperatures for different space types. It was found that 

typically, setpoint temperatures in the spaces are not being met, to illustrate, Figure 5.22 shows the space 

and setpoint temperatures and heating and cooling demand of a fan coil unit in a computer lab for two 

weeks in June 2017. 

 
Figure 5.22: FCU measured variables for space, setpoint temperature and required heating and cooling 

demand in a lift lobby.  

The space temperatures exceed the setpoint temperature by more than 2 degrees at its 

minimum and are on average around 25 ⁰C, 4⁰C higher than the setpoint temperature. During occupied 

hours, the fan coil system is operated in cooling mode, trying to bring down the temperature to the setpoint, 

but is ever failing to do so. Interestingly shortly after the fan coil unit turns off (which is operated on a time 

schedule), the temperature quickly rises within the space, before dropping down during the night to an 

                                                           

 

 
5 http://www.demandlogic.co.uk/ 

http://www.demandlogic.co.uk/


5. Utilising operational data to inform building modelling assumptions 

C. van Dronkelaar (2018)  95 

even lower temperature than during the day. The quick drop in temperature is likely due to the lower supply 

temperature from AHU 4, which is also supplying conditioning to the space. This behaviour is similar for 

the other lift lobbies, which are located at the front of the building on each floor. During the building audits, 

it was found that the lift lobbies originally did not have any provision for FCUs, they were added later due 

to the unexpected high internal gains from people working in these space (which they were initially not 

designed for).  

In contrast to the lift lobbies, the temperature in meeting rooms is controlled much more 

tightly, as shown in Figure 5.23. The setpoint temperature is set at 19 ⁰C and increased to 20.5 ⁰C in the 

second week of June 2017, coincidentally the space temperatures increased. This space has primarily a 

heating demand, even during the summer months due to low internal gains. 

 
Figure 5.23: Space-, and setpoint temperature, heating- and cooling demand in a meeting room. 

Similarly to the previous graph, Figure 5.24 shows an office space where three fan coil units 

provide heating and cooling to the space. The three FCUs, their respective temperatures, and heating and 

cooling demand are plotted separately to illustrate that small variations exist between both the space and 

setpoint temperatures measured at the different fan coil units. At FCU 4.07a there is a large difference 

between the setpoint and space temperature achieved, it is continuously in cooling mode, whereas FCU 

4.07c is much closer to the setpoint temperature and its cooling demand is a lot smaller the plotted days. 

The setpoint temperatures between the three FCUs differ as well, however they are never working against 

each other, heating and cooling does not occur at the same time. 
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Figure 5.24: FCU 4.07a-c measured variables for space, setpoint temperature and heating and cooling 

demand in space 420 Systems staff office (from top to bottom; FCU 4.07a, b and c) 

An example of where systems seem to operate against each other is shown in Figure 5.25, 

where the space temperature in G01B Machine room is compared to the supply air temperature of AHU 3. 

G01B is a server room, where computer clusters are located that dissipate large amounts of heat. AHU 3 

supposedly provides tempered fresh air at around 22 ⁰C (higher temperatures indicate that the AHU is off), 

during occupied hours to several spaces on the ground floor, including G01B, the space temperature in the 

server room is however controlled at 18 ⁰C. An additional three fan coil units 209A, C and D are located in 

this space, distributing the cooling load among them, cooling down the incoming air supplied by the AHU. 
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Figure 5.25: FCU measured variables for space, setpoint temperature, heating and cooling demand in G01B 

Machine room and AHU 3 supply air temperature. 

To represent the actual situation with the building energy model, it is important to resemble 

the achieved space temperatures. Although supply air design temperatures for the air handling units are 

available, and design setpoint temperatures are given for different space types, the actual situation seems 

to differ slightly from those. Setpoint temperatures are not met in many of the spaces, to replicate the 

behaviour, space temperature distributions are analysed during occupied and unoccupied hours over a 

longer period to understand what the actual achieved temperatures are in the spaces, shown for computer 

labs and offices as shown in Figure 5.26 and Figure 5.27 respectively. Both computer labs and office spaces 

show relatively stable space temperatures throughout the year, fluctuating within 20-26⁰C and with several 

degrees of difference between individual spaces. 

 
Figure 5.26: Kernel density estimation of the space temperatures in 9 computer labs for a year. 
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Figure 5.27: Kernel density estimation of the space temperatures in 11 office spaces for a year. 

Although the distribution plots are helpful in understanding how different spaces compare to 

each other, it is difficult to discern the monthly variation of temperature in these spaces. The multiple peaks 

in the profiles are an indication that this variation exists, due to changed setpoint temperatures, which 

follows from analysing monthly boxplots of space temperatures against average setpoint temperatures 

during those months, as shown in Figure 5.28. 

 
Figure 5.28: Space temperatures as boxplots distributions per month for two computer lab spaces (406 

and 417) for a whole year, with the setpoint temperature taken as average per month. 

The measured space temperatures show a large variation between individual spaces and 

space types. Typical setpoint temperatures for the different space types can therefore not be defined with 

certainty, therefore it was opted to use the design setpoint temperatures where applicable and introduce 

uncertainty within the setpoint temperatures for parametric simulation, in order to understand the effect 

of such variations through sensitivity analysis. 
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Similarly, for Office 17, 71 some air conditioning exists in the offices, meeting rooms and 

canteen, the setpoint temperatures in the simulations are fixed. The space heating and cooling setpoint 

temperatures are shown in Table 5.4. 

Table 5.4: Space heating and cooling temperature setpoints (⁰C) in Office 17, 71 and MPEB. 

Space type Office 17 Office 71 MPEB 
Office, Meeting, Reception 22 – 24 22 - 24 22 - 26 
Computer cluster, Lift lobby, Lecture theatre   22 - 26 
Server 22 - 22  22 - 22 
Canteen 22 - 24 22 - 24  
Lavatory, Shower, Circulation   18 
Laboratory, Workshop   24 - 26 

In CH, occupants have manual control over the operation of fan coil units (heating/cooling) in 

the spaces.  Temperatures varies widely in spaces with fan coil units. To replicate this behaviour and the 

uncertainty of setpoint control the temperature setpoints for heating and cooling is varied during the 

parametric simulation. The setpoint is randomly selected by temperature control where the interval 

between the heating and cooling setpoints is at most 2 degrees, varied between 21 and 25 degrees, heating 

and cooling setpoints respectively, feasible options are shown in Table 5.5. 

Table 5.5: Setpoint (SP) temperatures options for heating and cooling for CH. 
SP (⁰C) 0 0.5 1 1.5 2 2.5 3 

H, C 23.5, 23.5 23.5, 24 23.5, 24.5 23.5, 25 23.5, 25.5 23.5, 26 23.5, 26.5 
H, C 24, 24 24, 24.5 24, 25 24, 25.5 24, 26 24, 26.5 24, 27 
H, C 24.5, 24.5 24.5, 25 24.5, 25.5 24.5, 26 24.5, 26.5 24.5, 27  

The schedule for the heating and cooling setpoints are typically controlled from 7am to 7pm. 

5.5.2 Supply and return air temperatures 

Finally, data is available on the performance of the five air handling units in MPEB. Providing 

information on the demand profiles of the heating, cooling and frost coils, supply and return temperatures 

and fan speeds, Figure 5.29 shows this data for AHU 1 for the first week of June 2017. The air handler 

operates under time control, from 7am to 7pm, both during the week and weekend, as are most of the 

systems in MPEB. Noticeable here are the supply and return temperatures, which fluctuate significantly 

during the day and night. AHU 1 is controlled to maintain a supply temperature of 18 ⁰C according to the 

design data found in the O&M manuals, the graph however clearly shows that it is instead supplying a 

temperature of 19 ⁰C. 
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Figure 5.29: Performance data for AHU 1, including both data on demands and fan speeds for the first 

week of June 2017. 

According to the design data, AHU 1 supplies fresh air to the lecture rooms, study rooms and computer labs 

on the first floor. AHU 2 supplies a modulated supply air temperature to maintain a return air temperature 

of 22 ⁰C, supplying spaces in the basement, such as workshops and restrooms. However temperatures can 

be limited through a setpoint manager, set to 20-24 ⁰C as observed during the audit. AHU 3 supply air 

temperature is modulated to maintain a return air temperature of 22 ⁰C, supplying laboratories on the 

ground floor and AHU4 supply air is modulated to maintain a return air temperature of 20 ⁰C, supplying 

lavatory spaces. Finally, AHU 5, the largest air handler, is controlled to constantly supply 20 ⁰C to spaces on 

the 2nd to 8th floors. The actual supply and return air temperatures for the AHUs are shown in Figure 5.30 

and Figure 5.31 respectively. The green shade in the graphs illustrate the weekend and the blue shade 

illustrates the occupied hours during the weekdays, set at 7am to 7pm. MPEB operates under the same 

conditions during the weekend, although with significantly less occupancy. 

 
Figure 5.30: AHU supply air temperatures in MPEB for the first week of June 2017. 
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The supply air temperatures for the AHUs fluctuate significantly between occupied and 

unoccupied hours. More so for those that are controlled based on the return air temperature (AHUs 2 to 4). 

AHU 1 and 5 seem to be maintaining a steady supply temperature close to 19 ⁰C during the day, whereas 

AHU 3 supplies a steady temperature at around 22 ⁰C. Supply temperatures for AHU 2 and 3 however vary 

significantly more during the day. AHU 3 does have a higher return air temperature than that defined in the 

O&M manual, 23 ⁰C instead of 22 ⁰C. While, AHU 2 maintains its design return air temperature of 22 ⁰C, with 

slight fluctuations. 

 
Figure 5.31: AHU return air temperatures in MPEB for the first week of June 2017. 

A longer period is analysed to make sure the plotted temperatures are not a weekly anomaly. 

Figure 5.32 and Figure 5.33 show kernel density estimations of the AHU supply and return air temperatures 

respectively. The graph explains where temperatures most often occur, data is separated as occupied (7am 

to 7pm) and unoccupied to see how the system controls the supply air temperature. Supply and return air 

temperatures were analysed for several months in different seasons to see if there is any change. Similar to 

the previous graphs, the temperatures are stable during occupied hours for AHU 1 and 5, which are 

explicitly controlled on their supply air temperature, and AHU 3, which is modulated to maintain a return 

air temperature of around 23 ⁰C. 

 
Figure 5.32: Kernel density estimation of AHU supply air temperatures in MPEB for June and July 2017. 



5. Utilising operational data to inform building modelling assumptions 

C. van Dronkelaar (2018)  102 

 
Figure 5.33: Kernel density estimation of AHU return air temperatures in MPEB for June and July 2017. 

Analysis of system performance data illustrated the potential benefit of including such data 

for model calibration purposes, a model calibrated not solely on energy use, but also on system 

performance. This is done by hard-sizing the system components using available design data or 

commissioning data from O&M manuals and comparing supply and return temperatures, and the cooling 

and heating demand of systems with those predicted by the model. The model will then more accurately 

represent the actual situation in terms of systems performance, and indirectly so for the energy 

consumption of systems. 

5.6 Summary 

Collected data proved valuable in supporting assumptions in the building modelling process. 

In particular, the development of occupancy, equipment and lighting schedules is essential for model 

calibration. In addition, environmental and system performance data was analysed to establish system 

settings and set-point temperatures. These variables can be included as targets during model calibration, 

aligning for example the indoor space temperatures predicted by the model with those measured will 

further increase the accuracy of a model. However, this does add another layer of complexity, which may 

not be worthwhile depending on the objective of the model calibration process. 

Energy use 

There are large differences in energy use between the four case study buildings, specifically 

Office 71 and the two university buildings indicate that building type can have a significant effect on use 

patterns. CH and MPEB are operated every day of the week with a large variation during the seasons, 

whereas Office 17 and 71 are not conditioned during the weekend, even though it is typically occupied by a 

small amount of people. Equipment energy use in both Office 17 and 71 were found to have smaller 

equipment power baseloads than the university buildings, around 20-30%, compared to 50% and 60-80% 

for CH and MPEB respectively. For lighting energy use, the baseloads are very similar for Office 17, Office 

71 and CH, around 10-15%, whereas MPEB showed baseloads of around 50%, this was found to be due to 

equipment being connected to the lighting meters (different from the distribution schedules) as it was 

observed that lighting was not being left on during the night. 

The case study buildings were compared to typical, albeit outdated, benchmarks, which did 

not provide a very meaningful comparison and highlighted the need for more comprehensive benchmarking 

techniques. First, the university buildings, although very similar to office buildings, provide additional space 

function, and cannot be classified as office buildings. Second, each building was significantly different. 
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Understanding if the buildings fall within the typical or good benchmarks as presented is not 

straightforward as they have additional services such as the large server rooms in MPEB. The office 

buildings were more similar to the benchmarks (as the benchmarks are also intended for offices), but 

determining their efficiency in operation or performance against the stock was difficult. As such, their 

electricity patterns were also compared at a higher level of data granularity by computing their 

representative load pattern and other load shape metrics. These proved to more effectively identify 

operational differences within the buildings. Total energy use baseloads were significantly different, from 

high to low, MPEB, CH and Office 17 and 71, with baseloads of about 60%, 45%, 30% and 10% respectively. 

In addition, on-hour duration for MPEB was determined to be around 13 hours, while the other buildings 

fluctuate around 16-18 hours. This was mainly due to the steep difference in energy use between the day 

and night in MPEB, whereas the profiles for the other buildings are much smoother and therefore calculate 

longer on-hour durations. 

Occupancy presence 

Occupancy presence was analysed from collected swipe card access and Wi-Fi data for MPEB 

and CH. The datasets were utilised to build occupancy profiles. A strong seasonal variation was identified 

and accounted for in the models by including a seasonal variability parameter, which adjusts the schedules 

on a monthly basis. Furthermore, a strong correlation exists between lighting and power with occupancy 

presence from Wi-Fi data. Based on this observation, lighting and equipment profiles were based on the 

occupancy profiles. It was also determined that occupancy profiles could be derived from lighting and 

power electricity use alone, by replicating them and validating them against the Wi-Fi data. However, 

determining the right baseload of electricity was essential in the computation of these profiles. 

System performance and environmental data  

System performance was available for mainly MPEB, which contains a multitude of systems. 

An online platform was utilised to analyse system performance such as the air handlers, chillers and fan coil 

unit operation. Environmental data was available for both MPEB, in particular space temperatures and 

heating setpoints on FCUs were analysed to understand distributions and operation. These variables proved 

useful in understanding if the systems operated according to design specifications. Space temperatures 

from FCUs were analysed, although it was difficult to discern in which spaces the FCUs were located, it 

showed that spaces were conditioned very differently, with some being controlled at a narrower range than 

others. Some of the data was invaluable in determining typical set points (e.g. the setpoint temperature in 

the server rooms significantly affect chiller energy use). 

General applicability 

The data collected and the assumptions they have informed is case study specific. 

Nevertheless, the approach used here is applicable to other buildings. Furthermore, there is potential for 

such approaches to be carried out on a larger scale for the purpose of collecting typical use profiles in 

different building types, which can then be directly used to inform or compare to during both the design of 

new buildings or operation of existing ones. For example, the calculation and collection of typical energy 

use profiles (e.g. using the representative load pattern approach) can inform which building types have a 

high baseload, this can then be taken into account during performance modelling approaches during the 

design of new buildings. 
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6 QUANTIFYING THE IMPACT OF UNDERLYING CAUSES OF A DISCREPANCY 

Initial base case models were built for the case study buildings, subsequently examined to see 

if initial assumptions were close to measured data. Several iterations were necessary to adjust the models 

to achieve a closer representation of the existing buildings. Manual calibration focussed on removing 

modelling errors and mitigating discrepancies between predictions and measurements, due to differences 

between design specifications and observations during energy audits and analysis of measured data. More 

specifically, this involved including specific holidays in the prediction models, establishing base loads of 

lighting and equipment electricity use, disaggregating energy end-uses for juxtaposition, determining 

efficiency of system components and introducing seasonal use factors. Aligning predicted and measured 

energy use, such as replicating system behaviour and resolving modelling errors are tasks that are difficult 

to implement automatically, although, automating the analysis can improve time efficiency when carrying 

out these tasks. Subsequently, parametric simulation was employed using the base case models, and 

variability in the input parameters was taken into account and thereafter quantified using uncertainty 

analysis. The numerous simulation runs form a solution space based on computed sets of input parameters 

sampled using Latin hypercube sampling. Measurements fall within the computed uncertainty ranges of the 

solution space at a low level of data granularity, but in certain cases fall outside of these ranges for specific 

monthly energy end-uses. Sensitivity analysis was utilised to determine the impact of inputs on outputs. 

Lighting and equipment power densities were typically the most significant, where a large uncertainty 

exists for the equipment power density in a space. In addition, heating set-point temperatures (in Office 71 

and CH) and cooling set-point temperatures in CH were significant in influencing energy use. In MPEB, the 

large server rooms contributed to most of the energy use in the building. Finally, the calibrated models were 

used to assess the impact of using typical assumptions as specified by the National Calculation Methodology 

(NCM) on model predictions. These assumptions give an understanding of the influence on energy use 

during the design stage of a building when modelling to comply with Building Regulations Part L2 (HM 

Government, 2013). Simplifications to the calibrated models quantified the effect of design stage 

assumptions on predicting energy use and indirectly the regulatory performance gap. 
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6.1 Introduction 

Hypothetically, utilising extensive knowledge of the building, its systems and patterns of use 

will improve model accuracy considerably, in contrast to when such information is scarcely available. To 

prove this, data was collected for four case study buildings to inform model development and calibration. 

In this chapter predicted and measured energy performance are compared and the manual calibration of 

the initial models towards the base case model is discussed, in the next chapter these base case models were 

used in the automated calibration process. This chapter also discusses results from sensitivity and 

uncertainty analysis. The parametric simulations were utilised for performing correlation and regression 

analysis, whereas the meta-models (of which their development is described in the next chapter) were used 

for variance-based global sensitivity analysis, as it required the computation of a large amount of samples, 

many more than which were simulated. In the calibration methodology, these activities are represented by 

the white and green shaded boxes shown in Figure 6.1. 

  
Figure 6.1: Calibration methodology, activities in grey are not discussed in this chapter. 

Manual calibration rationale 

In Office 17, the objective was to achieve a calibrated model solely through manual adjustment 

of the input parameters. For this case study, changes made to the model can sometimes seem arbitrary, 

especially when not enough data is available to justify making a change to the model. For example, if a large 

under prediction of power energy use is identified, there are then several options for changing the model 

to align to actual situation, as power energy use is dependent on a range of input parameters. There is then 

no premise for changing one parameter over the other when detailed measurements are not available, even 

though they will affect the model in different ways. Changing equipment power density in one space with 

space conditioning opposed to one without will have different effects on heating and cooling loads, whilst 

achieving the purpose of aligning power energy use. Under this rationale, it becomes clear that a higher 

level of data granularity can support in developing a more accurate model, but that a lack of information 

can cause these parameter changes mask the real situation. Choices made in changing input parameters are 
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not extensively described, but will be explained when significant changes were necessary or when certain 

limitations were identified that could drastically affect the accuracy of the model. 

6.2 Office 17 

6.2.1 Predicted vs. measured performance 

An initial comparison of the predicted and measured monthly energy use of the case study 

building is shown in Figure 6.2. A direct distinction is visible between energy use types in both datasets. 

Predicted energy use was calculated by EnergyPlus and is broken down in different types of energy use. In 

this case study there are 8 different types of measured energy use. Predictions and measurements have the 

same dominant energy use types (gas, equipment and lights). In Office 17, the server and lifts were not 

taken into account in the model and the print room and canteen electricity energy uses were seen as an 

extension to the equipment and lighting loads. 

 
 Figure 6.2: Base case predicted and measured monthly energy use (kWh) for the case study building. 

In Figure 6.3 the predicted and measured energy use were aggregated to total energy use for 

a year. It shows that the base case model underestimates measured energy use by 186.000 kWh (32). For 

the dominant energy uses, actual gas use is 57% higher, equipment electricity use 11% higher and lighting 

electricity use is 45% lower than predicted. Other energy use types account for 7% and 16% respectively 

of the total predicted and actual energy use. Measured server energy use accounts for 65% of the remaining 

16% in energy use. Server energy use is not accounted for in predicting regulatory energy performance of 

buildings and can be a major cause for a discrepancy between regulatory predictions and measurements. 

The total energy consumption for electricity and gas differ by 2.9% and 2.3% CV(RMSE) respectively. 

 
Figure 6.3: Base case predicted and actual energy use. 
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The former two figures show that there are large differences between predicted and measured 

energy use. However, they only highlight this on an aggregated scale. As the results are based on half-hourly 

data, a more detailed picture can be given by showing a typical weekday for the predicted energy use of the 

base case model against measured energy use, shown in Figure 6.4. 

 
Figure 6.4: Predicted (base case) and measured energy use  

for a typical weekday. 

The building simulation model predicts energy use according to a daily pattern with a small 

amount of variation, where it is assumed that the building is occupied between 7am and 7pm. The arrival 

and departure of occupants in the building is different, it people come in between 8am and 10am, leaving 

between 6pm and 9pm. Lights and equipment show a much smoother profile due to the changing occupancy 

density in the actual building. However, this does not explain night-time equipment and gas energy use, 

especially a constant gas use during the whole day is a major factor that is not accounted for in model 

predictions. In the model gas energy use differs during the week and weekend, whereas measured gas 

energy use does not demonstrate this pattern. This indicated that heating was left on during the weekends. 

Whereas, gas use during the summer months was minimal, because the boiler was turned off. Several major 

differences between predicted and measured energy use were identified that influence and contribute to 

the total discrepancy. 

6.2.2 Sensitivity analysis 

In total, 1100 parametric simulations with randomised inputs were carried out using 

EnergyPlus, which was determined to be enough (as explained in the methodology) to accurately calculate 

sensitivity indices. Sensitivity analysis was used to determine correlation coefficients and rank the influence 

of 30 input parameters on the output. Regression analysis is applied using Pearson and Spearman 

correlation coefficients to show the relationship between input variables on the output. Spearman’s rank 

correlation coefficient is found to be similar to Pearson’s correlation coefficient. Similarity indicates 

linearity in the data, therefore only Spearman Rank correlation coefficients in relation to electricity and gas 

use is analysed, shown in Figure 6.5. 
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Figure 6.5: Spearman’s rank correlation for varied building parameters. 

Several parameters are shown to have significant correlations. For electricity in particular, 

equipment power density (EPD) has a very strong positive correlation (ρ 0.90), whereas lighting power 

density (LPD) has strong positive correlation (ρ 0.36). Gas use is primarily driven by the heating setpoint, 

with a very strong positive correlation (ρ 0.62), and opening of windows (discharge coefficient) with a 

strong positive correlation (ρ 0.46). The discharge coefficient specifies the airflow effectiveness through 

windows and doors and is related to the operation of windows by occupants. Correlation coefficients have 

also been calculated on a monthly basis for all energy use types, see further in Appendix B. Sensitivity 

analysis also indicates negative correlations between equipment power density (ρ -0.41), lighting power 

density (ρ -0.23) and boiler efficiency (ρ -0.14) on gas use. A negative correlation means a decrease of gas 

use with an increase of the input variable. The boiler efficiency and discharge coefficient correlate less with 

gas during the summer months, due to smaller heating loads. However, the significant correlations for 

electricity are stable during the seasons. 

Regression analysis identified significant statistical correlations among inputs and outputs, 

these are necessary to assist in an effective calibration of the building energy model to actual building 

energy use. Sensitivity analysis shows that calibrating the model should mainly focus on adjustment of the 

equipment and lighting power density, heating temperature setpoint and discharge coefficient for windows. 

These parameters have a large influence on the dominant energy end-uses in the building and should only 

require relatively small changes. 

6.2.3 Manual calibration 

Sensitivity analysis indicates that the dominant energy use types (gas, equipment- and lighting 

electricity) primarily influenced by the heating setpoint, opening of windows, equipment- and lighting 

power density. The monthly and hourly mean bias error and CV(RMSE) signify the discrepancy between 

predicted and measured gas and electricity energy use, as shown Figure 6.6 and Figure 6.7 respectively. 
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Figure 6.6: Differences between predicted and measured gas energy use represented by the NMBE and 

CV(RMSE) for both monthly hourly values and total month and hour over the year. 

 
Figure 6.7: Differences between predicted and measured electricity use represented by the NMBE and 

CV(RMSE) for both monthly hourly values and total month and hour over the year. 

The statistical measures indicate a significant difference between predicted and measured 

energy use. As can be seen from previous figures, absolute differences between the months are 

considerable, but at an hourly interval they are even more significant. The orange lines indicate the ASHRAE 

guidelines for deeming a model calibrated, the base case model does not come close to satisfying these 

requirements and calibration is therefore necessary. 

Due to a large difference in gas use, the heating temperature setpoint has been increased to 

23°C, and discharge coefficient for windows is increased simultaneously. The calibration procedure 

involved changing input parameters over several iterations. Adjusted inputs are shown in Table 6.1. 

Table 6.1: Adjusted input parameters for the calibrated model 
Input variable Base case Calibrated 
Equipment power density (W/m2) 30 25.5 
Lighting power density (W/m2) 15 7 
Discharge coefficient (opening of windows) 0.68 0.77 
Heating temperature (°C) 22 23 (Winter) and 18 (Summer) 
Heating temperature unoccupied (°C) 15 23 (Winter) and 18 (Summer) 

The typical weekday and weekend day energy use show a large discrepancy during 

unoccupied hours. This was reflected by changing schedules for equipment, lighting, occupancy and heating. 

Schedules for system operation and occupancy have a large influence on the energy consumption of a 

building. Schedules for equipment, lighting and occupancy were widened as to represent the actual building 

use profiles. Furthermore, to account for heating during unoccupied hours, some heating was allowed for 

in the model. Finally, it was chosen to calibrate the building simulation model to the measurements 

excluding the server energy use as it was already identified as a major source of discrepancy. 
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The calibrated model is adjusted to the aforementioned changes, predicted and measured 

energy use is then compared a second time. In Figure 6.8, predicted annual energy use for the calibrated 

model is compared to measurements. Server and canteen energy use have not been taken into account in 

the simulation model, resulting in the remaining gap between predicted and actual energy use. The total 

energy consumption for electricity and gas between the calibrated model and measurement now differ by 

2% and 0.02%, down from 11.2% and 4% CV(RMSE) respectively. 

 
Figure 6.8: Calibrated building model predicted energy use and measured energy use. 

If the average day profile in Figure 6.9 is juxtaposed with the base case profile shown in the 

initial comparison in Figure 6.4, it becomes clear that a large amount of energy use was not accounted for 

in the initial model due to night-time energy use. This is clear when focusing on the dominant energy uses 

as shown in Figure 6.9. Such an assumption has a large influence on predicted energy use and in this case 

leads to an underestimation of actual energy use. 

 
Figure 6.9: Typical weekday energy use predicted by the calibrated model compared with measured 

energy use. 

 Several parameters were changed to calibrate the model and account for the variation in 

predicted and measured energy use. However, the initial building simulation model is a bespoke model 

already set up to represent the actual building in terms of its occupancy schedule and initial best guess input 

parameters to closely predict its actual energy use. Thus, expecting a minimal discrepancy in results. From 

analysis of both the initial comparison and calibration of the model, many underlying causes for the 

discrepancy have been identified. 

6.2.4 Impact of assumptions 

Several adjustments were introduced to the calibrated model, they are related to equipment 

power density, the heating setpoint temperature, equipment, lighting, heating and occupancy schedules. 

Assumptions were simulated per simplification and in combination as shown in Table 6.2, simplifications 

are numbered, which relate to later explanation of the results.  
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Table 6.2: Effect of simplifications on the calibrated model  
as a percentage difference per yearly energy end-use. 
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S1 Equipment power density from 25.5 to 11.75 W/m2 29 54 0 50 50 69 37 
S2 Changed equipment schedule 2 18 0 6 6 22 9 
S3 Changed occupant schedule 4 4 0 7 7 8 4 
S4 Changed lighting schedule 6 4 31 11 11 18 8 
S5 Heating setpoint from 23 to 22 °C 19 4 0 8 8 23 10 
S6 Heating setpoint unoccupied from 22 to 12 °C 67 4 0 14 14 70 32 
S7 Simplification 6 and summer heating SP from 18 to 22 °C 60 4 0 14 14 62 29 
S8 Combination of all 60 62 26 68 67 65 57 

Results in Table 6.2 are visualised in Figure 6.10, the simplifications are shown on the x-axis 

with on the left-hand side the calibrated model. 

 
Figure 6.10: Energy use for the calibrated model with simplifications as numbered in Table 6.2. 

Simplification 1 reduces equipment power density from 25.5 W/m2 to 11.75 W/m2, resulting 

in a significant reduction of equipment, gas and cooling energy use. In total, this reduces predicted energy 

use by 37% from the calibrated model. Simplifications 2, 3 and 4 introduce changes to the equipment, 

occupancy and lighting schedules respectively, these changes are shown in Figure 6.11. Schedule related 

assumptions have a smaller influence on the energy use, changes result in a reduction on total predicted 

energy use of -9%, -4% and -8.3% for equipment, occupancy and lighting schedules respectively.  
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Figure 6.11: Calibrated schedules for occupancy, lighting and equipment  

compared to NCM schedules used for the simplifications. 

Simplification 5 and 6 involve a change in the heating temperature setpoint. For simplification 

5, the heating setpoint is changed from 23°C to 22°C, this then leads to a 18% reduction in gas use. For 

Simplification 6 the heating temperature setpoint during unoccupied hours is changed from 22°C to 12°C 

to prevent night-time heating, this leads to a 67% reduction in gas energy use and 32% total energy use. 

The temperature setpoint is set to 22°C, which in combination with simplification 6, results in a 60% 

reduction in gas energy use. Finally, simplification 8 is a combination of aforementioned individual 

assumptions and leads to a 57% reduction of predicted energy use by the calibrated model, reducing gas 

use by 60%, equipment by 62% and lighting by 26%. 

The model simplifications introduced to the calibrated model are typical assumptions that 

have a significant influence on the predicted energy use of a building. The predicted model based on initial 

assumptions underestimates the measured energy use by 23%, the building simulation model based on a 

combination of design stage assumptions underestimates calibrated energy use by 57%. Notably, this 

underestimation still includes equipment energy use, which for compliance modelling would be excluded. 

6.3 Office 71 

6.3.1 Predicted vs. measured 

Office 71 has a high level of disaggregation in the sub-metering system, which made it possible 

to compare predicted and measured energy use at a per floor basis. The level of disaggregation at which 

predicted and measured energy use was compared is shown in Table 6.3. Both lighting and power electricity 

use were separated per floor, where power electricity use includes small power equipment, FCU fans and 

electric water heaters. 
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Table 6.3: Energy end-uses as defined for comparison. 
End-uses Model disaggregation 
Systems Pumps, Toilet exhaust, Lifts 
Lighting Lighting per floor 
Power Power per floor, DHW (WaterSystems) per floor, FCU fans, canteen 
Gas Gas 
Excluded Electrical heating, Cooling, AHU fans 

The main systems (AHU and VRF) were not measured by the sub-metering system. The AHU 

was determined to be off as identified during the building audit. Systems energy use excludes the electrical 

heating and cooling provided by the VRF system and fans in the air-handling unit. These components are 

however included in the model based on system design specifications, which decrease their uncertainty. 

However, this is not validated and is therefore a limitation as the accuracy in predicting system energy use 

cannot be determined. System energy use was predicted to present 13% of the total energy use. 

An initial model was set up based on available data from building design specifications and the 

building audits. Several adjustments were made to the initial model to resemble measured energy use more 

closely: 

Model adjustments 

- The boiler turns off during the summer months of (May to September), as such, the boiler 

is turned off in the model to replicate this behaviour. 

- Created typical profiles for lighting and power on each floor based on measured electricity 

use. 

- Determined baseload electricity use for lighting and power at 15% and 20% respectively. 

- Set holidays in the model based on measured daily energy use. 

Limitations identified 

- Excluded system energy from comparison to measured energy use as the metering system 

is not measuring electricity use from the VRF systems and air-handling unit, however the 

system is included in the model based on design specifications. 

- Electrical heating is available through zip taps and in showers and cannot be distinguished 

from measured power energy use, but is likely to be a large contributor. 

- Material properties were determined during the walkthrough and based on previous 

assessment, but no design specifications were available. 

Total monthly predicted and measured electricity use for Office 71 is shown in Figure 6.12 for 

2014, the reference year used for comparison and calibration. Compared to the two previous case study 

buildings, Office 71 is a relatively small building which reduced simulation time significantly and allowed 

quick iterations of the model. Slight differences exist between the predictions made by the base case and 

measured monthly energy use. In contrast to the other buildings, electricity use is constant throughout the 

months with peak energy use occurring during the month of November 2014, interestingly predicted 

monthly electricity use is significantly lower during this month and a large discrepancy occurs. The large 

differences were found to be due to November having 10 weekend days, where some of the weekends saw 

much higher occupancy than during other weekends of the year. 
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Figure 6.12: Monthly predicted (base case) and measured energy use for Office 71 in 2014. 

System energy use was predicted, but not measured. Monthly energy use for heating and 

cooling supplied by these systems and their auxiliary energy use is shown in Figure 6.13. Cooling and fan 

energy use from the air handlers represent about 30-50% of total system energy use during the summer, 

whereas it is a significantly smaller proportion during the winter months (~10%). Detailed information of 

these systems was available from O&M manuals and site inspection, used as input in the building simulation 

model.  

  
Figure 6.13: Predicted monthly energy use from the heating and cooling systems for Office 71. 

The monthly comparison of energy use shows that the base case model predicts monthly 

energy use accurately. The exact error on a monthly and hourly basis is further explicated by the statistical 

measures; NMBE and CV(RMSE), shown in Figure 6.14. The hourly NMBE for April and November show 

significant differences due to the over and under prediction in gas energy use for these months respectively. 

The total hourly NMBE is however considerably low at -1.71%, in contrast the CV(RMSE) hourly values are 

somewhat higher than the NMBE hourly values, in many cases the 30% threshold represented by the orange 

line is exceeded. The actual criteria set by ASHRAE however, is 30% for the whole year, which in this case 

is not met. This clarifies that large differences on an hourly level need to be mitigated and are masked by 

the monthly deviations of energy use, because the monthly values are a good indication of a calibrated 

model. 
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 Figure 6.14: Statistical measures denoting difference between predicted and measured energy use, given 

by the average monthly NMBE and CV(RMSE). 

To understand model predictions, some additional comparisons between predictions and 

measurements are necessary. As such, a typical week and weekend day can be helpful, this is shown for 

total electricity use in Figure 6.15. High values for CV(RMSE) can be explained by the large hourly variation 

in measured electricity use, as indicated by the shaded region, which signifies one standard deviation from 

the mean. In contrast, the predicted standard deviation is negligible, i.e. predictions are similar every day 

as there are no factors influencing hourly use.  

 
Figure 6.15: Predicted and measured electricity use for a typical week and weekend day, shaded region 

represents the standard deviation around the average. 

Breaking down the typical profile in actual hourly values clarifies that there is a large deviation 

during the weekends and peaks during the weekdays. This is explicit when half-hourly predicted and 

measured electricity use are compared, as shown for the first three months of 2014 in Figure 6.16. The 

building is not always occupied during the weekend and when it is, it is higher than predicted as the 

predicted occupancy, lighting and equipment profiles are based on the mean electricity profile throughout 

the year.  
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Figure 6.16: Predicted and measured electricity use for the first three months of 2014. 

Occupancy during the weekends is very intermittent and will be difficult to replicate, it does 

however highlight the limitations of using typical weekday and weekend profiles to represent use 

throughout the year. Although schedules could potentially be created for the whole year and as such exactly 

replicate the measured behaviour, the model predictions would start overfitting the measured data. It 

would be more realistic to use average profiles where uncertainty is introduced to reflect the actual 

situation. 

Lighting and power were disaggregated in the model to compare with measured data for each 

floor. A higher level of granularity can potentially increase the accuracy of a calibrated model as behaviour 

on different floors are captured separately. This was the case for the 1st, 2nd and 3rd floors, which are used 

as office space, their profiles of use differed significantly and disaggregation allowed for replicating the 

actual behaviour separately. Ground floor power and third floor lighting energy use for a typical weekday 

and weekend day are shown in Figure 6.17 and Figure 6.18 respectively. 

 
Figure 6.17: Predicted and measured ground floor power energy use for a typical week and weekend day, 

shaded region represents the standard deviation around the average. 



6. Quantifying the impact of underlying causes of a discrepancy 

C. van Dronkelaar (2018)  117 

 
Figure 6.18: Predicted and measured third floor lighting energy use for a typical week and weekend day, 

shaded region represents the standard deviation around the average. 

Total monthly predicted and measured gas energy use is shown in Figure 6.19. Differences 

exist between the months, during the winter months, actual energy use is higher, whereas during the 

summer months, predicted energy use is higher. This balances out over the year, making the total yearly 

consumption nearly identical. The summer months show no measured gas use, and it was identified that 

radiator heating is turned off during these months, this was therefore replicated by the model to represent 

the actual situation. 

 
Figure 6.19: Total monthly predicted and measured gas use for the base case model. 

6.3.2 Uncertainty analysis 

The base case model is run 1500 times while varying input parameters, generating a solution 

space that predicts total energy use within 140 to 170 kWh/m2a, as shown in Figure 6.20, red dots represent 

individual simulations and the orange dot indicates measured energy use. Total measured energy use and 

disaggregated energy end-uses (lighting, power and gas) fall within the solution space. A higher level of 

spatial granularity was achieved by disaggregating lighting and power per floor, as shown in Figure 6.21. 

 
Figure 6.20: Total predicted (boxplots) and measured (orange dots) energy use for 1500 simulations. 
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The base case model replicates typical use by incorporating schedules based on the energy use 

profiles per floor, this resulted in the predicted lighting and power to be very similar on an hourly level and 

measurements fall within the predicted solution space. 

 
Figure 6.21:  Total predicted (boxplots) and measured (orange dots) energy use for 1500 simulations. 

Finally, a monthly temporal granularity is compared for the end-uses, as shown in Figure 6.22. 

There are significant variations within the months for both lighting and power, predicted energy use follows 

a similar trend for some of the months, but measured energy use falls outside of the prediction range for 

many of the months. Initially, gas energy use seems to show a surprisingly small range in monthly and total 

predictions, indicating that the changing variables have a small impact on gas energy use. However, as the 

monthly variation in gas energy use is larger than lights and power, the variation is actually similar, but 

looks more condensed. Nevertheless, other input parameters could be included to increase this variation 

on a monthly basis to allow automated calibration to converge towards possible solutions. 
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Figure 6.22: Monthly predicted (boxplots) and measured (dots) energy use for 15000 simulations. 

Analysing the distribution of predicted energy use from numerous simulations is used to 

assess if the measured values fall within the solution space, it does however not give a good understanding 

of the relation between inputs and outputs. Instead, relationships between input parameters and outputs is 

presented using sensitivity analysis. 

The previous figures are configured for specifically the energy end-uses that were comparable 

to those measured. Although a higher level of granularity could not be obtained, an energy model is able to 

disaggregate all components of energy use and as such, more analysis on the different energy end-uses can 

be performed using the model. End-uses were disaggregated as shown in Figure 6.23, which presents the 

uncertainty in annual energy use for Office 71, represented by the standard deviation in total energy use 

(orange) and percentage of the mean (blue) or coefficient of variation x 100%. 
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Figure 6.23: Uncertainty in annual energy use represented by the standard deviation  

of the total (blue - kWh) and coefficient of variation (orange - % of mean) for Office 71. 

In Office 71, equipment energy use is one of the main contributors to total energy use, typical 

for an office building. Whereas, cooling is closely followed by lighting and gas energy use. The coefficient of 

variation allows comparing the uncertainty of the different end-uses, indicating that in particular electrical 

heating and pump energy use are relatively uncertain. In contrast, gas, fan and L&P energy use from 

electrical water heating show a small coefficient of variation, the simulation are predicting similar values. 

6.3.3 Sensitivity analysis 

Sensitivity of parameters on energy use was determined by calculating the Spearman rank 

correlation coefficients for each input parameter and energy end-use predicted. Figure 6.24 shows the 

Spearman rank correlation coefficients of input parameters on the eight energy end-uses on the left, input 

parameters with a coefficient is greater than ρ = 0.25. There is a distinct difference between input variables 

and their effect on different types of energy use. The most significant positive correlation (ρ = 0.97) is 

between the DesignOutdoorAir flowrate, and fan energy use, which is the amount of mechanically ventilated 

air provided to the office spaces, distributed within (µ = 8, σ = 1.2) litres per second. Implying that a 

variation in fan energy use is mainly driven by the amount of ventilation provided to the office spaces, while 

an increase in equipment power density (in the offices) and the heat build-up in spaces has a slight influence 

on fan energy use. In contrast the strongest negative correlation is between hot water temperature of the 

boiler (µ = 82, σ = 4) and pump energy use. Although both highlight strong effects on their respective 

energy end-uses, their proportionate effect on total energy use is considerably smaller. However, when 

taking into account the percentage of energy end-use on total energy, it becomes clear that some of the 

significant coefficients become less important. Most important variables are those related to end-uses with 

a high amount of energy use, such as lights, equipment and gas, and their dependent parameters; power 

density of lighting and power in the offices, boiler efficiencies and seasonal variation factors. In Office 71, 

variations in occupancy, lighting and equipment profiles were not considered, which would have a large 

impact on the variance in energy use. 

Coefficients near zero imply that there is no linear correlation between the inputs and outputs. 

Although filtered out in the figures, parameters such as the conductivity of materials, number of people in 

zones, infiltration rate and heat pump COPs are not significant and therefore have little influence on the 

energy use in Office 71. 
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Figure 6.24: Spearman correlation coefficients per energy end-use for Office 71. 

The coefficients here are calculated for the annual energy end uses; potentially they could be 

calculated for each month or even each day. Per month, the correlation coefficients for input parameters 

that have seasonal dependency will change. For example, during the winter, variation in boiler efficiencies 

(and other variables that affect gas energy use) will have more significant correlations than in summer, the 

calculated correlation for the year therefore lies within those that would be calculated for the winter and 

summer months. Similarly, this would be true for cooling, the larger the seasonal variation in energy use, 

the larger the difference of the coefficients during the seasons when input parameter values are the same 

during the year. 

The Spearman correlation coefficient describes the relationship between two variables, but is 

unable to explain if any underlying output variance is caused by the interaction between multiple inputs. 

Sobol’ first-order, second-order and total-order indices were therefore calculated, where total-order indices 

measure the contribution of both first and higher-order interactions. They are compared for several 

variables to both Spearman rank and Pearson correlation coefficients as shown in Figure 6.25. 
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Figure 6.25: Comparison of Spearman correlation coefficients  

and Sobol’ first and total indices, for Office 71. 

Spearman rank and Pearson correlation coefficients have similar values, showing that the 

linear correlation is larger than the rank correlation, indicating that the influential observations in the ends 

of the distribution have a larger influence relative to their ranked values. Sobol’ first-order and total-order 

indices are very similar, indicating strong linearity between inputs and outputs. Sobol’ indices can therefore 

be disregarded as no further interactions need to be explained between the inputs (Iooss & Lemaitre, 2015). 

6.3.4 Impact of assumptions 

The impact of typical (NCM) assumptions on the base case model have been assessed, the 

applied simplifications and their impact in percentage difference per energy end-use are given in Table 6.4. 

In contrast to Office 17, the manually calibrated model is referred to as the base case for Office 71, CH and 

MPEB, as the automated calibration procedure was applied for these building, resulting in a final calibrated 

model. Input parameters that were previously identified as significant through sensitivity analysis are 

implemented as NCM assumptions, where other less significant factors have not been further investigated. 

Table 6.4: Effect of simplifications on the calibrated model  
as a percentage difference per yearly energy end-use. 
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S0 
Equipment power for space types based 
on NCM 

-20 -7 -1 1 30 0 2 -1 -6 

S1 
NCM schedule for equipment, lighting and 
occupancy 

-26 -17 -2 14 24 -34 11 -11 -20 

S2 NCM schedule for heating and cooling -1 0 0 -4 1 0 -4 0 0 
S3 Infiltration (12 to 8 m3/m2h @ 50Pa) 0 0 0 -1 -1 0 0 0 0 
S4 Combination of S0 and S1 -41 -19 -3 16 54 -34 14 -12 -23 
S5 Combination of S0 to S3 -41 -19 -3 11 54 -34 9 -12 -23 

The model simplifications and their effect on total energy use per floor area are shown in 

Figure 6.26. Simplification 0 implements the NCM assumptions for equipment power density, found to be 

very similar in Office 71 to NCM assumptions, although slightly underestimated for the Offices. Determined 
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to be in the range of 14-18 W/m2 for the different floors, compared to the NCM assumption of 11.77 W/m2, 

reducing total energy use by 6%. 

 
Figure 6.26: Energy use for the calibrated model with simplifications as numbered in Table 6.4. 

Simplification 1 applies the NCM schedules for equipment, lighting and occupancy to the base 

case model, the base case model schedules for Office 71 were determined through the use of sub-metered 

electricity use per floor, a comparison between the schedules for the first floor and NCM simplifications are 

shown in Figure 6.27. Changes in the schedules reduced total energy use by 20%, directly affecting 

equipment and lighting energy use and indirectly system energy use due to lower internal gains.  

 
Figure 6.27: Calibrated schedules for occupancy, lighting (1st floor) and equipment (1st floor) 

compared to NCM schedules used for the simplifications. 

Initial heating and cooling temperatures in the base case model were assumed to be very 

similar to the NCM assumptions, and as such have not significant impact on energy use. Infiltration, as part 

of simplification 3 was reduced from 12 to 8 m3/m2h @ 50Pa, this had a negligible effect on energy use, 

expected, as sensitivity analysis indicated it to be an insignificant parameter. Energy use in Office 71 is 

mainly dependent on the schedules of use and power density assumptions for equipment and lighting, 

typical for office buildings. 
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6.4 CH 

6.4.1 Predicted vs. measured 

Energy use measured in CH includes the VRF systems, where two separate meters measure 

electricity use for all roof condensers, gas use for radiator heating in circulation spaces and lighting and 

power. Energy use for the lifts and a server is measured separately in the building, both were included in 

lighting and power for comparison. Although lighting and power was available for all floors, they could not 

be accurately separated and are therefore considered as a total. Table 6.5 shows the energy end-uses used 

for comparison. Heating, cooling and pumps & fans, as typically predicted by the simulation software, were 

not separated in the measurements and are therefore grouped under ‘Systems’, L&P includes lighting, 

power and electric water heating (WaterSystems). Even though the end-uses were grouped, they can still 

be analysed separately to understand how the model behaves and what changes may be necessary for a 

more representative base case model. 

Table 6.5: Predicted energy end-uses as defined for comparison. 
End-uses Model disaggregation 

Systems Heating, Cooling, Pumps, Fans 

L&P Lighting, Power, DHW (WaterSystems), Server 

Gas Gas 

An initial model was set up based on available data from design specifications and the building 

audits. Consecutively, some additional changes were necessary to align the actual situation as the design 

specifications were not always in line with observations. Several adjustments were made to the initial model 

to resemble measured energy use more closely: 

Model adjustments 

- Air hander unit on ground floor was observed to be out of order and was disabled within 

the model, this air handling unit should have been providing fresh tempered air to three 

spaces in the basement. 

- Out-of-hours baseloads were calculated based on analysing available lighting and power 

consumption on several floors and were determined to be 30% and 65% respectively. 

- The systems in CH are using a constant amount of energy use throughout the week, with a 

similar pattern during the week and weekend. The heating and cooling schedules assume 

low occupancy during the weekend, but it was clear that systems were still operating, a 

seven-day operational cycle was therefore implemented. 

- The systems were being operated almost continuously throughout the day and night at 

nearly the same baseload. To replicate this, the heating and cooling setpoint allowed night-

time conditioning, increasing night-time setpoint temperatures. 

- Introduced monthly adjustment factor to account for large deviations in measured 

electricity use between the months, due to large variations in measured occupancy levels. 

These model adjustments brought the model predictions closer to the actual energy 

consumption in the building. A further refinement of the model was however infeasible due to the following 

limitations:  

Limitations identified 

- Heating and cooling could not be separated as the VRF systems provides both electrical 

heating and cooling, which made it difficult to understand underlying behaviour of system 
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energy use. In addition, heating and cooling set-points are set individually for each room, 

making it difficult to represent this behaviour in the model. 

- Electrical heating is available through zip taps and in the showers and could not be 

distinguished from measured power energy use, but is likely to be a large contributor to 

total power energy use. 

- Material properties were determined during the walkthroughs and based on previous 

assessment of the physical structure, but no detailed design specifications were available. 

However, a recent refurbishment introduced internal insulation and secondary glazing to 

the building, for which some detailing is available. 

- Labelling of electrical meters for lighting and power were unclear and could therefore not 

be disaggregated on each floor, some indications of their trends were however identified 

and used as a basis for the establishing separate lighting and power baseloads. 

Predictions from the baseload model after model adjustments are compared to measured 

energy use, total energy use for the measured months is shown in Figure 6.28. A final breakdown between 

systems, L&P and gas energy use is shown, energy use is mainly from the systems (46%) and lighting and 

power (49%), with a smaller amount of gas energy (5%) use during the measured year. Differences 

between some of the months are larger than others, in particular January, March and April show differences 

of several kWh/m2a. 

 
Figure 6.28: Total predicted and measured energy use for the measured months. 

Differences use are somewhat clearer when looking at the percentage errors, shown by the 

NMBE and CV(RMSE) in Figure 6.29. A negative mean bias error indicates that the model under predicts 

measured energy use, the graph indicates the hourly variation per month, whereas the total numbers for 

the whole year are given by the values on top of the graph. In this case, the hourly NMBE for March, April 

and May differ by more than 20% where the total hourly NMBE criteria according to ASHRAE is 10%. All 

months taken together, the percentage difference comes down to -17.37%, which falls outside of the criteria. 

The CV(RMSE) based on hourly data per month is given on the right, with the total yearly CV(RMSE) per 

month on top, which is 26.86% which is lower than the 30% set by ASHRAE. On a monthly basis the hourly 

error is given, where most are higher than 30%. Indicating that some further calibration would be necessary 

to achieve a ‘calibrated’ model. 
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Figure 6.29: NMBE and CV(RMSE) based on hourly electricity use (excl. gas)  

calculated per month, and totals above. 

It was determined that there is significant energy demand during the night, specifically from 

the VRF air conditioning system (meters R1 and R2) and L&P. To represent this, behaviour profiles and 

setpoint temperatures were adjusted to allow for some night-time conditioning, as can be seen in Figure 

6.30. The flexibility of the system (user-control of the space temperatures) makes it difficult to define a 

specific control strategy in the energy model. For calibration purposes, a number of control strategies is 

therefore simulated through parametric simulation.  

 
Figure 6.30: Predicted and measured typical weekday energy use for CH. 

This initial insight gives an understanding of how temporal granularity of data can affect the 

accuracy of a model. If the model is calibrated on a yearly basis it would mask some of the underlying 

monthly data, and even more so for the hourly data. Hierarchical granularity presents another level of detail, 

the disaggregation of total electricity use in lighting and power (L&P) and system energy end-uses is 

however not detailed enough to understand the underlying behaviour of the building. It does not give a 

good understanding of when certain spaces are being heated or cooled, or when and how much domestic 

hot water energy contributes to the total power energy use. All of which are large contributions to energy 

use, the accuracy of the model in predicting these end-uses can have a large effect on the type of savings 

that might be calculated based on a calibrated model.  

Predicted and measured systems and L&P electricity use are compared in Figure 6.31 for a 

typical weekday and weekend day by overlaying their profiles for the whole measurement period. The base 

case model is able to represent the measured energy use profiles, peak loads are occurring at the same time 

during the day, while some differences exist during other periods, especially so for systems electricity. The 

shaded regions represent the standard deviation around the average. The differences represented by the 

error bar are mainly due to the seasonal factor that changes occupancy presence, lighting and power 

throughout the months, which directly influence systems energy use. However, for systems electricity use 

it can be seen that midday, especially for the weekday, there is a large standard deviation in predictions in 

contrast to the measurements. Going back to Figure 6.30, this seems to be due to the interaction of heating 
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and cooling loads, where a significant amount of cooling is needed during the day, likely to deviate with 

reality. Due to the aggregation of measurements for systems, mitigating this difference is difficult, as the 

actual operation cannot be analysed. 

 
Figure 6.31: Predicted and measured system and lighting and power (L&P) energy use for a typical week 

and weekend day, shaded region represents the standard deviation around the average. 

Although the typical weekday and weekend day graphs proved very useful in understanding 

trends in energy use, they mask some of the underlying behaviour, which can be further analysed by plotting 

actual data points, instead of averages. Figure 6.32 shows predicted and measured system electricity use for 

two months, which reveals some discrepancies, masked by the typical day graphs. Predictions during 

September and October are very dissimilar, in contrast to measurements. 

 
Figure 6.32: Hourly predicted and measured systems electricity use for September and October 2016 in 

CH. 

Looking at only predicted heating and cooling for these months, it becomes clear that a large 

amount of cooling is required in September, with almost no heating load, whereas October more heating is 

needed and much less cooling. In contrast, measured system energy use is mostly unaffected by the change 

in weather (5⁰C drop, see Figure 6.40). An explanation for this could be that the temperature control as 

previously mentioned is highly fluctuating in the spaces and electricity use for heating and cooling is 

balanced. Whereas, predictions are based on determinant input parameters, e.g. space set-point 
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temperature are the same in an agglomeration of spaces (based on space-type), having a much stronger 

effect on either heating or cooling loads. 

 
Figure 6.33: Hourly predicted heating and cooling energy use for September and October 2016 in CH. 

As previously mentioned during the analysis of operational data, there is a large difference 

between lighting and power loads due to large variation in occupancy, occurring solely for the two 

university buildings. For this purpose, an additional seasonal factor was introduced that takes into account 

the seasonal variation, which will be used by the automated calibration process to minimise the monthly 

differences both at the monthly and hourly level.  

6.4.2 Uncertainty analysis 

Predicted energy use from parametric simulations is shown for the total and for each energy 

end-use separately in Figure 6.34. A large distribution exists for the predicted energy use as a total, 

predominantly inherited from the large variation for lighting and power energy use, whereas systems and 

gas energy use deviate from the median. From this, and the fact that the input variables are all changed at 

an equal percentage it follows that the variable parameters have less effect on systems and gas energy use. 

This was expected, as more input parameters related to lighting and power were variable, such as lighting 

and equipment power densities, which directly influence their energy use. 

 
Figure 6.34: Total predicted (boxplots) and measured (orange dots) energy use for 3000 simulations. 

Total predicted energy use for all runs is broken down per month to understand how well 

seasonal variation is presented in the predictions, see Figure 6.35. For most months, predictions follow a 

similar pattern to the measured energy use, while for some, measured energy use lies at the far end of the 

distribution of predictions. Even though these trends were already established in previous graphs when 

comparing the base case with measured energy use, they give and understanding of when the variation in 

inputs are more significant. For example, in the month of January, systems energy use shows a significantly 
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larger variation than in other months, similarly so for the month of March for lighting and power energy 

use. 

 
Figure 6.35: Monthly predicted (boxplots) and measured (orange dots) energy use for 3000 simulations. 

   

6.4.3 Sensitivity analysis 

Spearman’s rank correlation coefficients were calculated for the inputs and outputs based on 

the 3000 simulations. In total 85 variables were varied during parametric simulation, the most significant 

parameters, those with a coefficient of ρ > 0.25 and ρ < -0.25 are shown in Figure 6.36. Insignificant 

parameters were: 

- The CCOP and HCOP of the VRF heat pumps (max ρ < ±0.1), which were varied at a 5% 

standard deviation as a normal distribution,  

- Natural ventilation rate (ρ < ±0.05), 

- Lighting and equipment power density for space types of which there are only a few spaces, 

such as the library (ρ < ±0.1), reception (ρ < ±0.05), computer labs (ρ < ±0.08) 

- Exhaust fan efficiency (ρ < ±0.05), they have a relatively low energy consumption. 

- Boiler no. 2 (ρ < ±0.01), indication that it is not used in the model. 

- Seasonal weekend factor for all months (ρ < ±0.03), whereas the seasonal week factor (ρ 

< ±0.2) is much more significant as energy use during the week is much higher. These 

were varied for automated calibration purposes and adjust the monthly lighting, power 

and occupancy schedules. 

Sensitivity indices are relative, dependent on the other varied input parameters included and 

their ranges of variation. They will be different when a different amount of parameters is included in the 

parametric simulation. Furthermore, they will vary for different buildings. However due to the linearity 

between typical uncertain parameters and predicted energy use, sensitivity indices can to some extend be 
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predicted prior to simulation, based on a general understanding of the interrelations between inputs and 

outputs. For example, when two spaces are modelled, one is twice as large as the other, with the same 

equipment power density inputs and range of uncertainty. Its sensitivity can then be inferred to be twice as 

strong, i.e. their equipment power use in the larger zone is twice as large and will have a stronger influence 

on total equipment energy use. Nevertheless, this is more complex when many parameters are included and 

even more so when input parameters are included that affect for example the shape of a schedule, or one 

that determines the temperature difference between set-points. 

  
Figure 6.36: Spearman rank correlation coefficients per energy end-use for CH. 

The significant parameters in certain cases have a large influence on multiple parameters, such 

as the office equipment and lighting power density, infiltration rate and set-point temperatures. Whereas 

others, such as the boiler efficiency and flow rates of hot water fixtures influence only gas energy use (p = 

-0.64) or water systems energy use (DHW) (0.39 < ρ < 0.57) respectively. The heating setpoint in the offices 

and ‘DeadBand’, which determines the cooling temperature set point, have a large influence on their 

respective heating and cooling energy use, but also significantly influence auxiliary system equipment such 

as fans and pumps. Interestingly, the heating set point has a larger influence on cooling energy use (ρ = -

0.23) than heating energy use (ρ = 0.15). Sensitivity analysis is helpful in understanding how different 

components in a building affect energy use, however if it is to be used as an indication for where to make 

savings, it is important that relevant input parameters are taken into account as uncertain variables. 

However, when taking into account the proportion of the different energy end-uses to total energy use, 

some of the parameters that were considered significant previously, such as the hot water fixtures, boiler 

efficiency, becomes less important. As cooling and equipment energy use are the largest contributors to 

total energy use, the variables that have a significant effect on those become more relevant. These are the 

heating and cooling set points, office and server equipment power densities and also the lighting and power 
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offset. The lighting and power offset determine the width of the lighting and power schedules. Their effect 

on cooling energy use is shown visualise in Figure 6.37, where it can be seen that a large temperature 

difference between the heating set point and cooling set point decreases cooling energy use, while an 

increase in the width (increase in power density of lighting and equipment) of the L&P profiles will increase 

cooling energy use. The strength of the relationship for the L&P profile offset is dependent not only on its 

own value, but also on the equipment and lighting power density variables, similarly so for the cooling 

temperature set-point. If this were not the case, their r-squared value would be likely be higher as there 

would be stronger relationship between the two variables. 

 

Figure 6.37: Relationship between input parameters ‘DeadBand’, which determines the cooling set point 
temperature and L&P schedule offset against cooling energy use.  

Several of the input parameters, mainly boiler efficiency, the heating- and cooling set points 

and infiltration rate will vary in their sensitivity throughout the seasons (or even the week and weekend). 

However, as previously remarked, most of this can be understood by having a general understanding of the 

fundamentals of building energy modelling and how energy changes throughout the year based on different 

assumptions. Table 6.6 shows the spearman correlation coefficients of four input parameters and their 

effect on monthly energy use. Giving an indication of how significant they are throughout the seasons.  

Table 6.6: Spearman correlation coefficients of several input parameters on monthly energy use. 

Parameter Sep-16 Oct-16 Nov-16 Dec-16 Jan-17 Feb-17 Mar-17 Apr-17 

Boiler 1 (0-1) 0.01 -0.02 -0.06 -0.1 -0.13 -0.1 -0.05 -0.01 

DeadBand (⁰C) -0.19 -0.16 -0.21 -0.22 -0.37 -0.27 -0.18 -0.17 

Office heating SP (⁰C) -0.16 -0.07 0.01 0.04 0.21 0.05 -0.03 -0.06 

Infiltration rate -0.05 0.02 0.17 0.14 0.38 0.26 0.14 0.04 

As can be expected in the British climate, the infiltration rate has a more significant effect on 

energy use during the winter months, ranging from ρ -0.05 to 0.38, whereas the significance of the office 

heating setpoint and boiler efficiency (‘Boiler 1’) also strongly fluctuate during the seasons. The meta-

models developed in the next chapter rely heavily on the relations between inputs and outputs, 

understanding their significance is then important to decide if these should be taken into account or can be 

discarded. 

6.4.4 Impact of assumptions 

The impact of typical (NCM) assumptions on the base case model have been assessed, the 

applied simplifications and their impact in percentage difference per energy end-use are given in Table 6.7. 
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Table 6.7: Effect of simplifications on the calibrated model  
as a percentage difference per yearly energy end-use. 
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S0 No seasonality 72 37 14 -21 -40 76 -10 -1 34 
S1 Occupancy density -5 0 -1 -2 4 0 -2 0 -1 
S2 Equipment power density 35 50 11 1 2 0 1 0 27 

S3 
NCM schedule for equipment, lighting and 
occupancy 

-21 -22 6 19 59 -27 6 0 -4 

S4 NCM schedule for office heating and cooling 2 0 -15 -28 -71 0 -11 0 -14 
S5 Infiltration (16 to 10 m3/m2h @ 50Pa) 8 0 -2 -21 -19 0 -3 0 -1 
S6 Combination of S0 to S2 100 87 20 -22 -36 76 -10 0 58 
S7 Combination of S1 to S3 5 28 13 17 56 -27 5 0 19 
S8 Combination of S0 to S4 76 48 2 -40 -68 29 -14 0 28 
S9 Design weather -17 0 4 25 30 0 11 1 1 

In addition to the percentage differences, the total annual energy use per floor area for the 

base case model and each simplification applied to it is given in Figure 6.38. 

 
Figure 6.38: Implications of applying typical assumptions on energy use. 

In contrast to Office 17 and 71, a seasonal factor based on the identified occupancy patterns 

was implemented in both CH and MPEB. It was found that the number of occupants in a building between 

term periods can differ by a 100%, found to have a significant correlation to energy use in university 

buildings. Simplification 0 (S0) differs from the base case model by discarding the monthly seasonal 

variation factor, assuming a constant occupancy presence throughout the year, which directly affects the 

equipment and lighting profiles, resulting in a 34% increase in total energy use. An increase in both 

occupants, equipment and lighting leads to a higher cooling load and lower heating load conditioned from 

the VRF system and gas boiler. In non-domestic buildings, equipment power density is a dominant energy 

end-use, which has a significant influence on system energy use.  

Making accurate prediction of equipment power density is important for making accurate 

predictions of energy use, both during design and for calibrated models in operation. Simplification 2 

introduces NCM assumptions for equipment power density (W/m2) to the base case model, in particular 

notable differences were identified for the large library, computer clusters (IT workspace) and server in 

CH. For NCM, a library has a typical equipment power density is 2 W/m2, however the library is actively 

used by students who bring their laptops to this space, it was therefore assumed to be much higher, counting 

equipment in this space led to an assumption of 12 W/m2 in the base case model. Similarly, the computer 
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cluster, which is a high density IT space is 30 W/m2 according to NCM, but was found to be about 14 W/m2. 

The server room was found to be much less intense than the NCM assumption, with 250 W/m2 instead of 

the typical 500 W/m2. Nevertheless, for the offices, the typical 12 W/m2 was very similar to that determined 

through the energy audit, which makes up most of the floor area in CH. Lighting power density was found 

to be very similar to NCM assumptions. Lighting can be predicted with more certainty as it is typically less 

influenced by people presence and in most space types a certain lux level is to be achieved, which correlates 

to its power density. 

Equipment, occupancy and lighting are determined in building performance simulation 

through defining their density per space or typically space type. Actual equipment or lighting power and no. 

of people is then calculated through the multiplication with unity scaled profiles (i.e. profile between 0 and 

1). For NCM, these profiles were not representative of the actual building as shown in Figure 6.39. Although 

occupancy follows a very similar pattern as the NCM schedule, lighting, and in particular equipment NCM 

profiles are very conservative in their baseload. A load of around 5% is assumed as the equipment baseload 

for the NCM profile, where it was found that in reality this is about 60%, a significant difference. 

Furthermore, NCM assumes that the building is unoccupied during the weekend, which was not the case. 

Simplification 3 compares these profiles, showing a 4% reduction in energy use when applying the NCM 

schedules. 

 
Figure 6.39: NCM schedules for occupancy, equipment and lighting and assumed base case profiles. 

Simplification 4 compares heating and cooling set-point temperatures for the offices and 

similar spaces, which NCM assumed to be H: 22, C: 24 and 12°C during unoccupied hours. In reality, it was 

found that the VRF heat pumps were operating 24/7, with a small peak during the morning. Furthermore, 

temperatures in the spaces were found to be very stable instead of fluctuating between these temperatures, 

to replicate energy consumption of the VRF systems, the set-point temperatures were therefore assumed 

to be; H:24, C:24, and 20°C during unoccupied hours. This simplification led to a decrease of total energy 

use by 14%, predominantly due to a 71% reduction in heating energy use. Simplification 5, a change in the 

infiltration rate, has a negligible effect on energy use.  

Simplifications 6 to 8 combine the previous simplifications. Simplification 6 combines the 

assumption of no seasonality and an increase in equipment power density, increasing total energy use by 

58%. Simplification 8, which combines the first four simplifications increases total energy use by 28%, these 



6. Quantifying the impact of underlying causes of a discrepancy 

C. van Dronkelaar (2018)  134 

simplifications do however not represent all NCM assumptions in typical compliance modelling, but do 

cover the ones that have the largest impact on energy use. 

Finally, simplification 9 compares the local and design weather file. The design weather file for 

the location of London Gatwick is used. This is an IWEC6 weather file, originally developed by ASHRAE. 

Gatwick is the closest available weather station from which publicly available weather files are created. 

Figure 6.40 shows the differences between these two weather files, the dry-bulb temperature is shown as 

the monthly mean and standard deviation. There is a large difference throughout the year, the temperature 

in the centre of London is significantly higher than Gatwick which is located on the outskirts of London. 

Such a difference has an effect on the predicted energy use. 

 
Figure 6.40: Monthly mean and standard deviation of external dry-bulb temperature from the local 

weather station (actual) and Gatwick weather station (typical). 

The base case model is simulated using both the local weather file and typical weather file and 

evidently the is a large difference between predictions, mainly for systems and gas energy use, which are 

highly dependent on external weather conditions. Lighting and power energy use is ignored as these don’t 

change depending on outside weather (although more people might stay home when it’s too cold to go 

outside!). In Figure 6.41 monthly weather use for both simulations are compared, there are significant 

differences between the months for both gas and system energy use. For the months of March and April gas 

energy use is twice as much for the typical weather file compared to the local weather file. For systems 

energy use differences are most significant during the early months of the year, February to April 2017. 

 
Figure 6.41: Monthly energy use for actual and design (Gatwick) weather files 

 A counter argument to the reasoning that a local weather file is essential for model 

calibration is that weather conditions mostly affect systems electricity and gas energy use, both of which 

                                                           

 

 

6 https://energyplus.net/weather/sources 



6. Quantifying the impact of underlying causes of a discrepancy 

C. van Dronkelaar (2018)  135 

are typically hard sized in a building energy model (besides some other parameters, such as the opening of 

windows). Thus, parameters for these systems (e.g. a VRF system or boilers) are not actually supposed to 

change when calibrating the model to measured data, because these elements carry the least uncertainty. 

However, this would only hold true when measured energy use from lighting and power is available. 

Because, if measured system energy use is higher than predicted, the modeller might determine that L&P 

power density loads were incorrectly defined and need to be higher in order to increase system energy use 

(e.g. higher cooling loads for an increase in equipment power density). It is therefore difficult to determine 

the exact effect a different weather file might have on the accuracy of model calibration, comparing 

differences between predictions of two weather files is evidently not enough to understand the intrinsic 

effect on calibration. Nevertheless, it was determined that the total predicted energy use between the two 

weather files differed by 4% for a single year. 

6.5 MPEB 

6.5.1 Predicted vs. measured performance 

The sub-metering system in MPEB measures many different parts of the building, some of 

which include a mix of components (e.g. electric water heaters, FCU fans on power meters). As such, the 

system does not always allow for separating different end-uses. Different meters were combined to form 

typical end-uses, these were then replicated in as much detail as useful by the energy model, to enable a 

like-for-like comparison. For MPEB, this meant combining pumps, heating and certain fans as ‘Systems’ 

energy use, as these are not separated by the sub-metering system. Nevertheless, even the disaggregation 

of systems energy use needs to be analysed when calibrating the model as different parameters may 

influence different types of energy end-uses, thus also for sensitivity analysis a higher level of energy use 

disaggregation is analysed. Table 6.8 shows the energy end-uses used for comparison, lighting and power 

were measured only measured on several floors. 

Table 6.8: Energy end-uses as defined for comparison 
End-uses Model disaggregation 

Systems Plant Fans, Pumps, Heating 

L&P Lighting, Power, FCU Fans, DHW (WaterSystems) 

Servers 409 Machine room, G01b Machine room 
Cooling Chiller 1, Chiller 2 

An initial model was set up based on available data from building design specifications and the 

building audits. Consecutively, some additional changes were necessary to align the actual situation as the 

specifications were not always in line with was observations. Several adjustments were made to the initial 

model to resemble measured energy use more closely: 

Model adjustments 

- Two servers DB409 (large server on fourth floor) and GP03 (server on ground floor) were 

separated as server energy use. 

- Out-of-hours equipment and lighting schedule input parameter that sets the baseload was 

adjusted to 85% and 65% respectively, based on analysis of the available separate lighting 

and power meters. 

- Introduced monthly adjustment factor to account for the large deviations in measured 

electricity use between the months. 
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Limitations identified 

- Separately measured L&P on floors did not coincide with total consumption on bus bars, it 

was identified during talks with UCL estates that some of the server load is on the L&P bus 

bars instead of on a separate meter. This made it difficult to distinguish the exact server 

load. Total L&P is therefore based on separate metering of L&P on several floors. 

- Electric water heaters were added to L&P energy use as they are connected to sockets in 

the spaces, similarly so for the FCU fans. 

- District heating was not measured due to a faulty heat meter throughout the measurement 

period, nevertheless some information was available in regards to district heating supply 

temperatures and heating system were hard-sized where information was available. 

Again, major limitations in the metering system were identified that made it difficult to get an 

accurate representation of disaggregated energy use within the building. It proves that metering systems 

and commissioning of these systems need to performed rigorously to ensure that exhaustive data is 

available, which is becoming more important with the increasing demand for operational energy efficiency. 

Predictions from the baseload model after model adjustments are compared to measured 

energy use, total energy use for the measured months is shown in Figure 6.42. Energy use is mainly from 

lighting and power on the floors (37%), servers (27%), systems (13%), chillers (12%) and workshops 

(7%), district heating was determined to be another 3%. Predicted and measured monthly energy use align 

considerably well, with some months exhibiting a higher fluctuation than others. 

 
Figure 6.42: Predicted and measured monthly energy use for the energy end-uses in MPEB. 

Comparing energy use for a typical weekday and weekend day in Figure 6.43 shows that the 

distinct measured energy use profile with high baseload was replicated with the model. The server load is 

a large part of the high baseload in this building.  
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Figure 6.43: Predicted and measured total energy use for a typical week and weekend day, 

 shaded region represents the standard deviation around the average. 

Calibration of the model initially focussed on determining the right lighting and power loads 

in the building by adjusting the equipment and lighting power densities in addition to determining the 

typical profiles of use. Other energy end-uses, such as those related to conditioning of the building are 

strongly influenced by these loads. System components that consume heating, cooling, fan and pump energy 

use are ideally hard sized, however these types of energy uses are dependent on many variables and need 

detailed investigation to calibrate accurately, some of this information might not be available from building 

design specification and would need to be determined through observation. 

The server equipment load has been adjusted iteratively to achieve measured energy use 

levels, this in turn significantly increased cooling loads and systems energy use, both of which were then 

found to be over predicted. Server energy use, lighting, and power on the different floors is shown in Figure 

6.44 and Figure 6.45 respectively. Server energy use is significant and it was determined that some of the 

load was actually connected to L&P meters on the upper floors, some of these meters were not measured 

separately and it was therefore difficult to determine the exact magnitude of this load. Therefore, total 

energy use was taken from the bus-bar, by subtracting and extrapolating typical lighting and power loads 

for the measured floors then determined the additional server load. In addition, the large server room 

(DB409), shows a large increase of energy use during occupied hours, indicating that perhaps 

other types of equipment are connected on this meter. Whereas the smaller server room (GP03) 

exhibits a continuous pattern of use. 

  
Figure 6.44: Predicted and measured servers energy use for a typical week and weekend day, shaded 

region represents the standard deviation around the average. 
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Figure 6.45: Predicted and measured lighting and power energy use on all floors for a typical week and 

weekend day, shaded region represents the standard deviation around the average. 

The model predicts lighting and power energy use on the floor reasonably accurate, the 

profiles are smoother for the actual situation and lies somewhat higher. The difference per month is around 

1-2 kWh/m2, and in total a difference of 7.6 kWh/m2 for the measured months. 

Sizing the systems 

With lighting and power defined, the hard sized systems for conditioning should be predicting 

the demand for system energy use more accurately. Systems were incorporated into the model, based on 

design specifications and commissioning data, reducing their uncertainty within the model. A 

representation of AHU1 in the OpenStudio software is given in Figure 6.46. OpenStudio provides an 

interface for creating different system types, the whole building set-up in this software and then exported 

to an EnergyPlus simulation file (.idf file). Predicted system performance is analysed by looking at specific 

nodes for the supply and return air temperatures, other measurement data is not available for the air 

handling units. 

 
Figure 6.46: Virtual representation of AHU1 in building simulation software. 

The air handling unit supply and return air temperatures are compared to measurements as 

shown for AHU1 in Figure 6.47 and Figure 6.48 respectively. Inside the software, different types of strategies 

or schedules for conditioning can be set to either control the supply air temperature, 18⁰C for AHU1. Which, 
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as can be seen in Figure 6.47, is replicating measured behaviour. The higher measured temperatures here 

are when the air handler is out of operation during unoccupied hours. The return air temperature however 

reveals some additional patterns, simulated and measured temperatures do not match, simulated return air 

temperatures are around 25⁰C, while measured temperatures are around 22⁰C for the two analysed weeks. 

The return air temperature is based on 10 different zones (including lecture theatres and computer ‘labs’ 

and is uncontrolled. Indicating that differences exist between predicted and measured space temperatures. 

 
Figure 6.47: Simulated and measured air handling unit supply air temperatures  

for the 2nd week of January and 2nd week of July 2017. 

 
Figure 6.48: Simulated and measured air handling unit 1 return air temperatures  

for the 2nd week of January and 2nd week of July 2017. 

Figure 6.49 show the predicted and measured systems energy use for a typical week and 

weekend day respectively. Even though profiling between the model predictions and measured data follows 

a similar pattern, some difference exists. The hours of operation of the systems seem to be slightly off by 

about an hour and the baseload is measured to be slightly lower, while energy use during occupied hours is 

higher than predicted. However, monthly predictions and measurements align considerably well, as shown 

in Figure 6.50. 
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Figure 6.49: Predicted and measured systems energy use for a typical week and weekend day, shaded 

region represents the standard deviation around the average. 

 
Figure 6.50: Monthly predicted and measured lighting and power and systems energy use for MPEB. 

Finally, chiller energy use was not replicated accurately, measured chiller energy use showed 

large fluctuations throughout the year, whereas the model predicts a very constant use of energy 

throughout the day and night. This indicates that some of the underlying physics in the building were not 

accurately captured, even though predicted and measured energy use are ‘calibrated’ as shown in Figure 

6.51. 
 

 
   Figure 6.51: Statistical measures denoting differences between predicted and measured energy use,  

given by the average monthly NMBE and CV(RMSE). 

Chiller energy use energy use follows a similar pattern during the winter where some cooling 

is still necessary (mainly the servers), while during the summer the measured chiller energy use is highly 

fluctuating and more dependent on the weather and increase in cooling loads, the model however does not 

display this behaviour. It is clear that the model needs additional adjustment to represent the actual 

building operation. More importantly, MPEB and the previous case study buildings have shown similar 

results, monthly energy use can relatively easily be replicated by a model, but the underlying hourly levels 
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of energy use are not necessarily in line with measured data. The underlying physical processes at this level 

of temporal granularity are masked through wrong assumptions. 

 
Figure 6.52: Chiller energy use during September to November 2016 for MPEB. 

Monthly predictions and measurements of energy use for the different end-uses are compared 

by calculating the NMBE and CV(RMSE) statistical measures at a monthly and hourly interval as shown in 

Figure 6.53.  

 
Figure 6.53: Statistical measures denoting differences between predicted and measured energy end-uses, 

given by the average monthly NMBE and CV(RMSE). 
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For the different energy end-uses, the total monthly and hourly NMBE values are all within the 

±5% and ±10% criteria. However, the CV(RMSE) values tell a somewhat different story, total monthly and 

hourly criteria, <15% and <30% are only satisfied by L&P and servers. In conclusion, the model is 

‘calibrated’ at the total monthly energy use, but differences become clearer for the energy end-uses. While 

some can still be considered calibrated, others could still be improved, mainly at an hourly level. 

Space temperatures 

The discrepancy between simulated and measured return air temperatures from the air-

handling units indicated that a difference exists between the simulated and measured space temperatures. 

Previously the space temperatures have been analysed and showed that there is a large fluctuation both 

during the year and between spaces for both the same and dissimilar space types. The analysis showed that 

the set-point temperatures in some of the spaces are changed throughout the year, which is difficult to 

replicate for each space individually. As such, a comparison is made between simulated and measured space 

temperatures in an office space 221A and lift lobby 470 (people work in this space as well), as shown in 

Figure 6.54 and Figure 6.55. 

 
Figure 6.54: Simulated and measured space temperatures in 221A office,  

for the 2nd week of January and 2nd week of July 2017. 

 
Figure 6.55: Simulated and measured space temperatures in 470 lift lobby, 

 for the 2nd week of January and 2nd week of July 2017. 

Office space 221A and many of the other office spaces show a similar trend in space 

temperatures between what is simulated and what is measured. Temperatures fluctuate during the day and 

night, however in office 221A there is a large difference between occupied and unoccupied. During the 

winter similar temperatures are achieved, for the summer however the simulated temperatures are 

significantly higher than measured. During occupied hours, the office is conditioned at 26 ⁰C and increases 

to around 28 ⁰C during unoccupied hours, in contrast the actual building shows that the spaces are 

conditioned, but not as strictly, with fluctuating temperatures between 23-26⁰C, slowly increasing during 
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out-of-hours, but decreasing significantly during the night. The significant increase in simulated 

temperatures is likely due to the high internal gains in these spaces out-of-hours, which may have been 

assumed incorrectly. For lift lobby 470, differences are more drastic. During winter simulated space 

temperatures reach night-time heating set-point of 16 ⁰C and are heated up to 24-25 ⁰C during the day. In 

contrast, measured temperatures are heated slowly during the day to about the same temperature, then 

there is a significant surge in temperature after the systems shut down and a steady temperature for the 

rest of the night. The surge indicates a misalignment of the operational hours with actual occupancy, people 

are likely still present in the lift lobby after 7pm. During summer the measured temperature is stable around 

25-26 ⁰C, while the simulated temperature during occupied hours is 26 ⁰C, out-of-hours temperature is 

significantly higher, at over 30 ⁰C. Again indicating that internal gains or perhaps external gains in the 

simulated space are significantly different from the actual space, external, because the winter is exhibiting 

such low temperatures during the night. Although only two spaces are analysed, it gives a good reveals large 

differences between simulated and measured space temperatures, indicating that the underlying 

assumptions in the model are not in all facets representing the actual situation. 

6.5.2 Uncertainty analysis 

Total and predicted energy end-uses from 3000 simulations are compared to measured 

energy use in Figure 6.56. A large distribution exists for the predicted energy use as a total, inherited from 

the large variation of the servers, lighting and power energy use. 

 
Figure 6.56: Total predicted (boxplots) and measured (orange dots) energy use for 3000 simulations. 

Total predicted energy use for all runs is broken down per month to understand how seasonal 

variation is presented in the predictions, see Figure 6.57.  
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Figure 6.57: Monthly predicted (boxplots) and measured (orange dots) energy use for 3000 simulations. 

For most months, predictions follow a similar pattern to measured energy use for the different 

end-uses, except for chiller energy use where measurement lie on the far sides of the spectrum. It was 

previously identified that although chiller electricity use was stable throughout the day, certain months 

showed a very sporadic profile, indicating that either more cooling was suddenly necessary or that some 

control measures were implemented to prevent the chiller from running 24/7. The graph does show that 

during the summer, chiller energy use goes up, but this behaviour was difficult to account for in the model. 

6.5.3 Sensitivity analysis 

The spearman correlation coefficients for 120 variable input parameters were computed. 

Most significant parameters, those with a coefficient of ρ > 0.25 and ρ < -0.25 are shown in the correlation 

matrix in Figure 6.58. Insignificant variables were: 

- Equipment and lighting power densities in space types with relatively few spaces, lecture 

theatres, lift lobbies, meeting rooms, plant rooms, print rooms and reception, stairs and 

storage spaces. 

- Natural ventilation ρ < ±0.03, its sensitivity is however dependent on three other 

variables, the temperature difference between inside and outside, the minimum indoor 
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and maximum outdoor temperatures. Which all three are varied, in contrast to CH, where 

these were assumed to be static. 

- VRF heat pump CCOP and HCOP for the lift lobbies and server room G01. 

- Seasonal weekend factor for all months (ρ < ±0.05), whereas the seasonal week factor (ρ 

< ±0.25) is much more significant as energy use during the week is much higher. These 

were varied for automated calibration purposes and adjust the monthly lighting, power 

and occupancy schedules. 

- Activity level (i.e. metabolism of people) (ρ = -0.02 on chiller energy use), included to be 

variable. 

- Cold water supply fixture flow rates (ρ < ±0.1), in contrast to hot water supply fixture flow 

rates, which have a significant impact on electricity use for domestic water heating (0.62 

< ρ < 0.75). 

- The weekend offset (ρ < ±0.01) on lighting and power schedules, which as was previously 

shown, has a very high baseload during the weekend throughout the year. Any horizontal 

change in the schedule will thus not affect energy use significantly. The weekday offset 

however is a bit stronger (ρ < ±0.17), but not as strong as in CH. This is because the profiles 

in MPEB have a very high baseload, so their relative effect on energy use is small. 

 
Figure 6.58: Spearman correlation coefficients per energy end-use for MPEB. 

Significant parameters are mainly the equipment and lighting power densities in the offices, 

servers and laboratories. These in turn affect the coefficients of the VRF heat pump CCOP ‘Dence_DCRA50’ 

(ρ = 0.35 on systems energy use) conditioning the large server room and equipment (ρ = 0.28 on 



6. Quantifying the impact of underlying causes of a discrepancy 

C. van Dronkelaar (2018)  146 

equipment energy use) and light (ρ = 0.30 on lights energy use) out-of-hours baseloads 

(‘EquipmentOvertimeMultiplier’ and ‘LightOvertimeMultiplier’ respectively). Figure 6.59 shows the 

relation between the lights and equipment baseloads and lighting and equipment energy use respectively, 

varied at a standard deviation of 10% during parametric simulation. 

Other significant parameters are the mechanical air flow rate in the offices and laboratory and 

hot water supply fixtures. Both of these and many of the other significant parameters are less important 

when considering the proportional effect on total energy use. The total sensitivity indices give a clear 

indication that energy use in the building is mainly driven by the large server rooms inside the building and 

indirectly their demands on the chillers, electric condensers and auxiliary equipment. Large energy savings 

could be made by reducing the server demand or efficiency of the system that conditioning the server 

spaces. 

 
Figure 6.59: Correlation between lighting base load and lights energy use (left) and correlation between 

equipment base load and equipment energy use (right). 

 

6.5.4 Impact of assumptions 

The impact of typical (NCM) assumptions on the base case model have been assessed, the 

applied simplifications and their impact in percentage difference per energy end-use are given in Table 6.9. 
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Table 6.9: Effect of simplifications on the calibrated model  
as a percentage difference per yearly energy end-use. 
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S0 No seasonality -1 45 33 -3 -62 43 2 0 0 11 9 

S1 Occupancy density 0 -1 0 0 -7 0 0 0 0 0 0 

S2 Equipment power density -6 14 -29 -44 29 0 -22 -50 1 -54 -25 

S3 
NCM schedule for equipment, lighting 
and occupancy 

0 118 -33 -1 -2 -29 3 0 1 -37 -5 

S4 
NCM office H/C set points from 22/26°C 
to 22/24°C 

0 91 0 -3 -16 0 3 0 0 -6 -1 

S5 Infiltration (8 to 12 m3/m2h @ 50Pa) 0 6 0 0 5 0 0 0 0 0 0 

S6 Combination S1 to S3 -6 2 -3 -46 -17 43 -21 -50 1 -44 -19 

S7 Combination of S1 to S4 -7 141 -51 -45 13 -29 -18 -50 2 -69 -28 

S8 Combination of S1 to S5 -9 133 -51 -39 3 -29 -15 -50 2 -69 -28 

S9 
H/C set-point server from 21/18°C to 
23/20°C 

0 95 0 -20 -16 0 0 0 0 -6 -3 

S10 
Server equipment power density from 
1000 to 500 W/m2 

-6 0 0 -44 0 0 -21 -50 0 0 -19 

S11 Design weather -1 116 0 -3 14 0 1 0 0 0 3 

The impact of simplifications in annual energy use per floor area is given in Figure 6.60, where 

district heating (DH) is combined with electric heating under ‘Heating’. 

 
Figure 6.60: Energy use for the base case model with simplifications as numbered in Table 6.9 

Similar to CH, a monthly seasonal variation was applied to the occupancy, equipment and 

lighting profiles to account for term-time variations in use. Simplification 0 excludes this seasonal factor, 

which led to 9% increase in total energy, significantly smaller than the 21% in CH, this is because the 

computer clusters in MPEB are a dominant energy use, influencing also system energy consumption. This 

is evident from Simplification 10, where the base case model assumes an equipment power density of 1000 

W/m2, the NCM assumption of 500 W/m2 impact not only reduces server energy use by 50%, but 

concurrently reduces auxiliary energy use and chiller energy use. Simplification 2 reduces both the server 

load and takes into account NCM assumptions for equipment power density of the other space types, which 

are mostly smaller compared to base case assumptions based on an energy audit of these spaces. In 

particular, office spaces were 4 W/m2 higher, workshops were assumed to be 55 W/m2 instead of 6 W/m2 
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and the library and lecture theatre were 8 W/m2 and 10 W/m2 respectively instead of 2 W/m2. Although 

the high density IT spaces were determined to be somewhat lower than the 30 W/m2 NCM assumption. 

These changes reduced total energy use by 25% only a 6% higher reduction compared to S10. Simplification 

3 is another indication that the servers have the most significant influence on energy use. Significant 

changes in the occupancy, equipment and lighting schedules reduced total energy use by only 5%. The 

profiles were applied to offices and similar space types as shown in Figure 6.61, whereas the servers are 

operated 24/7. 

 
Figure 6.61: NCM schedules for occupancy, equipment and lighting and assumed base case profiles. 

Simplification 9 changed the set-point temperature of the server rooms, from H:  21°C, C: 18°C 

to NCM assumption set-point temperatures H: 23°C, C: 21°C, which decreased energy use by 3%. 

Simplification 11 compares the base case model using a weather file based on historical weather data and a 

design weather file, which increased total energy use by 3%. Simplifications 6, 7 and 8 look at combinations 

of the different simplifications, where S8, a combination of most NCM assumptions under predicts total 

energy use by 28%. 

6.6 Summary 

Manual calibration is an essential part of the research methodology. Most information on the 

physical aspects of a building can be found in the design specifications, typically collated in O&M manuals. 

Construction materials, systems and their operational strategy (although not always implemented), 

lighting- and other design specifications are described, but actual occupancy, the amount of small power 

equipment and when and how people interact with building systems and components retain much 

uncertainty in the modelling process. This was limited by utilising occupancy data from Wi-Fi and swipe 

card access, analysing operational performance and system characteristics and through building inspection, 

all of which are relatively time-consuming tasks. Furthermore, the use of manual calibration proved 

essential in understanding differences between predictions made by the model and measurements. Many 

solutions or configurations of input parameters or scheduling of operational processes can accurately fit 

the final measurements, but with an increasing level of data granularity, the wrong solutions become 

filtered out. The lack of measurement data for some of the end-uses in the case study buildings proved to 

limit the certainty of choices made in the calibration process. Table 6.10 gives an overview of the 
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observation and lessons learned, while Table 6.11 gives an overview of issues and limitations identified 

during development of the case study buildings and manual calibration that mitigated the discrepancy 

between predicted and measured energy use. Electrical hot water heating could not be distinguished from 

other power energy use, but is predicted to be a large contributor to energy use. 

Table 6.10: Observations and lessons learned during manual calibration of the four case study buildings. 
Office 17 Office 71 CH MPEB 

 Extensive amount of 
gas use compared to 
what was initially 
predicted due to night-
time use. The FM put 
the boiler on a timer in 
later years. 
 High 
underestimation of 
equipment energy 
compared to NCM 
assumptions (54% 
lower than design stage 
assumption) 
 NCM simplifications 
introduced to the 
building energy model 
significantly 
underestimated 
measured energy use 
by 57%.  

 Manual operation of 
system, such as turning 
off the boiler even 
though the model 
would still use some for 
radiator heating. 
 Replicating lighting 
and power schedules of 
use based on measured 
electricity gives a very 
close fit, closer than 
when using Wi-Fi data. 
 Weekend occupancy 
is very intermittent and 
difficult to take into 
account in the model, 
based on typical 
schedules for the whole 
year or per month. 
 Typical day trends 
and baseloads of power 
energy use, in contrast 
to lighting, was very 
different per floor. 
Indicating the 
importance of spatial 
granularity. 

 Air handling unit 
observed to be out of 
order, which could have 
a large impact on 
energy use. 
 Continuous system 
energy use throughout 
the week from VRF heat 
pumps for air 
conditioning, indicating 
inefficient system. 
Replicating this 
behaviour required 
high heating set point 
temperatures and low 
cooling set point 
temperatures. 
 Holidays (i.e. days of 
vacancy and low energy 
use) in university 
buildings are based on 
semesters.  
 Operated 7 days a 
week, with minor 
differences in energy 
use between weekday 
and weekends 

 High power and 
lighting base loads 
identified, server to 
count for largest 
proportion of energy 
use in the building.  
 Correctly 
establishing the H&C 
loads, uncertain due to 
lighting and power 
equipment 
assumptions is 
important as they affect 
other end-uses. 
Measured L&P 
electricity is essential, 
ideally on a per floor 
basis. 
 Holidays (i.e. days of 
vacancy and low energy 
use) in university 
buildings are based on 
semesters.  
 Operated 7 days a 
week, with minor 
differences in energy 
use between weekday 
and weekends. 

Table 6.11: Identified issues and limitations during manual calibration of the four cast study buildings. 
Office 17 Office 71 CH MPEB 

 No design 
specification available 
on material properties, 
thus based on previous 
assessment and audits. 

 Systems energy use 
was excluded from the 
metering system for the 
VRF heat pumps. 
 No design 
specification available 
on material properties, 
thus based on previous 
assessment and audits. 

 Heating and cooling 
energy use could not be 
separated as the VRF 
system provides both 
electrically, which is 
measured on a single 
meter. 
 Labels for L&P 
meters were unclear 
and often could not be 
distinguished. 

 Server energy was 
connected to lighting 
and power bus bars on 
upper floors, which 
made accurately 
disaggregating these 
loads impossible. 
 District heating 
meter was broken 
during measurement 
period. 

In all case study buildings, sub-metered data at a disaggregated level was essential to carry 

out the manual calibration process, but often the different meters were labelled incorrectly or insufficiently, 

did not cover certain important energy end-uses. 

Collected operational data and energy audits of the existing buildings informed input 

assumptions of the building energy models, which were then iteratively adjusted to represent measured 

energy use. Final discrepancies for the manually calibrated models are shown in Table 6.12. 
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Table 6.12: Discrepancies between predictions and measurements 
 Office 17 Office 71 CH MPEB 
NMBE (%) -1.4 1.7 -2.9 2 
CV(RMSE)monthly (%) 4.3 12.1 11 4.5 
CV(RMSE)hourly (%) 67.8 66.8 28.8 11.2 

The manually calibrated models were subsequently used to quantify the impact of underlying 

causes between predictions and measurement in particular concerning regulatory assumptions in building 

energy simulation. This was supported by assessing the sensitivity of input parameters on different energy 

end-uses and total energy use, a summary of the Spearman rank correlation coefficient on total energy use 

for the case study buildings is given in Table 6.13. In particular, equipment power density is a significant 

parameter to influence energy use, which is typical for non-domestic buildings, it is therefore of significant 

importance to make evidence based assumptions about these loads to make sure predictions are in line 

with measurements. For MPEB specifically, the large server rooms contribute to a significant proportion of 

total energy use and are therefore the main driver of energy use within the building as they indirectly affect 

system energy use. Other important factors are the heating and cooling set points, in particular in spaces 

with high internal gains, where temperatures can strongly fluctuate. Insignificant parameters to influence 

energy use are material properties, in contrast to domestic buildings, for non-domestic buildings there is a 

strong trade-off between the thermal performance of the envelope. An increase of the conductivity of the 

envelope can have a negative effect on energy use due to high internal gains in certain spaces, which inhibit 

heat loss to the outside and therefore have an increased cooling load. In high-density workspace in modern 

buildings, Passive house standard envelopes are unlikely to be a good design decision. Similarly, to the 

conductivity of materials, infiltration does not have a significant effect on energy use in any of the buildings, 

although there is a distinct difference between the seasons. 

Table 6.13: Spearman correlation coefficients of the input parameters for the four case study buildings 
 Office 17 Office 71 CH MPEB 
ρ > ±0.75 office equipment  

(W/m2) 
office mechanical vent 
flow rate, 

office lighting and 
equipment (W/m2), 
temperature 
difference in heating 
and cooling SP 

server, office and 
workshop 
equipment (W/m2), 
office lighting 

±0.75 > ρ 
ρ > ±0.50 

heating  SP fixture flow rates for 
hot water, boiler hot 
water temperature, 
L&P (W/m2) in offices 

flow rates of hot 
water fixtures, 
infiltration rate, 
server equipment,  
boiler efficiency 

flow rates of hot 
water fixtures, 

±0.50 > ρ 
ρ > ±0.25 

natural ventilation 
air flow, lighting 
power density  

boiler efficiencies, 
seasonal weekday 
factor 

lighting and power 
offset, heating SP, 

lab L&P, L&P base 
load modifiers, CCOP 
of server VRF 

p < ±0.25 material 
properties, 
infiltration, system 
efficiencies,  

L&P densities in space 
types with few spaces, 
VRF COPs, exhaust fan 
efficiency, natural 
ventilation rate 

VRF CCOP and 
HCOP, L&P power 
densities in non-
office space, natural 
ventilation air flow 

L&P power densities 
in space types with 
only a few spaces, 
natural ventilation 
air flow, metabolism 

For each case study buildings, several simplifications were applied to the manually calibrated 

models to quantify the effect of regulatory assumptions on predictions, as shown in Table 6.14. The typical 

NCM assumptions replaced calibrated input parameter values, in particular the significant parameters 

identified through sensitivity analysis. Certain parameters sets could not be directly included in the 

sensitivity analysis due to their non-stochastic representation during the Monte Carlo simulations. These 
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are the seasonal variation factors, schedules (H/C, internal gains), and internal gain baseloads, which were 

also included as simplifications. 

Table 6.14: Effect of simplifications on calibrated model in percentage difference on total energy use. 
 Simplification 17 71 CH MPEB 

S0 
No seasonality, the seasonal variation applied equipment, 
occupancy and lighting profiles for CH and MPEB are assumed 
to be unity for each month.  

x x 33.7 8.6 

S1 
Equipment power density for different space types is based on 
NCM values instead of based on observation. 

-37.0 x 26.7 -25.4 

S2 Combination of S0 and S1. x -5.8 58.0 -19.0 

S3 
Typical NCM occupancy, lighting and equipment profiles were 
used instead of those based on WiFi or sub-metering profiles. 

-21.3 -19.9 -4.2 -4.9 

S4 
NCM heating and cooling profiles were used for the space 
types instead of those based on O&M manuals or where 
changed for calibration. 

-10.0 -0.1 -13.7 -1.4 

S5 
Infitration was adjusted to more conservative values, 
increasing for CH and 71, and decreasing for MPEB as an 
airtighness test showed a value of 8 m3/m2h @ 50Pa. 

x 0.1 -1.5 0.2 

S6 Combination of S1 and S3 x -23.1 18.5 -27.8 
S7 Combination of S0, S3 and S4 -57.0 -23.1 27.5 -27.8 

S8 
Heating and cooling set-point temperatures in server room 
from (21, 18) to (23, 20). 

x x x -3.1 

S9 
Decreased power density in the servers from 1000 W/m2 to 
500 W/m2, typical assumptions for computer clusters. 

x x x -19.2 

S10 
Used design weather file instead of weather file based actual 
weather data. 

x x 1 3 

The simplifications concerned with a change of internal gains highlight the importance of 

accurately determining the assumptions for equipment and lighting power density in spaces, they have a 

large effect on total energy use, supported by the strong correlation coefficients for these parameters. In 

particular, server loads can be dominant in modern buildings, which was evident for MPEB, energy use in 

the building was primarily driven by the power use of the computer clusters, indirectly influencing systems 

energy use. Moreover, defining the right schedules for these loads is tantamount to establishing the right 

loads for spaces, as their effect on energy use was similar in the case study buildings, as shown by S1 and 

S3. As part of the manual calibration, it was found that high baseloads existed in the buildings, which had to 

be accounted for by adjusting the internal gains schedules. These were a large contributor to a discrepancy 

between regulatory predictions and measurements as there was a significant difference to the typically 

assumed NCM equipment power baseload. In the case study buildings, the baseloads for equipment in Office 

17, 71, CH and MPEB were ~25%, ~20%, ~65%, ~85% respectively, compared to the NCM assumption of 

5.3%. Besides internal gains, the heating and cooling temperatures in different space types can vary 

significantly from that initially assumed to that in operation, something that is difficult to replicate within a 

model when a variable strategy is in place. In CH, the operational set-point temperatures could be adjusted 

manually and this was difficult to replicate, especially since system energy use for conditioning was found 

to be constant in both CH from the VRF system and MPEB from the chillers. Replacing the calibrated set-

point temperatures with NCM assumptions led to a significant decrease in energy use for Office 17 and CH, 

while for Office 71 the temperatures were similar to NCM assumptions. Finally, as simplification 10, the 

weather file based on historical weather data in London was replaced by a design weather file from Gatwick, 

which had a minor, but notable effect in increasing total energy use. 
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7 QUANTIFYING THE EFFECTS OF DATA GRANULARITY ON MODEL ACCURACY 

Base case models for three of the four case study buildings were used to develop meta-models 

for automated calibration, trained on thousands of inputs and outputs generated using parametric 

simulations. These models were used to predict new sets of input parameters at different levels of data 

granularity, (M1) yearly energy end-uses, (M2) monthly energy use, (M3), monthly energy end-uses and 

(M4) monthly energy end-uses including a typical weekday and weekend day. Several machine-learning 

algorithms were tested and compared to achieve the highest level of accuracy, in particular partial least 

squares regression and artificial neural networks performed well and were used throughout the 

development. Meta-models that predicted monthly energy end-uses achieved r-squared values of 0.96, 0.97 

and 0.84 for Office 71, CH and MPEB respectively. Meta-models were used during mathematical multi-

objective optimisation to efficiently predict the objectives they were trained for (levels of data granularity) 

based on new sets of input parameters. A genetic algorithm (NSGA-II) was utilised to minimise differences 

between predictions and measurements. Predictions made by meta-models M1 and M2 and measurements 

were efficiently minimised for 5-12 different objectives, M3 and M4 however involved optimising 32 to 300 

objectives and limitations in the optimisation process were identified. Optimised individuals (calibrated 

sets of parameters) were simulated using EnergyPlus and compared to the meta-models, base case and 

measurements. Model error arises due to the slight inaccuracy of the meta-models when translating inputs 

back to the building energy software. Meta-model multi-objective optimisation significantly reduced 

differences between predictions and measurements, however the model error when using optimised input 

parameters in EnergyPlus nullified these improvements.  
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7.1 Introduction 

Automated calibration was utilised with the aim to improve the calibration accuracy of the 

base case models. However, as shown in the previous chapter, the base case models were already 

‘calibrated’ using manual calibration, the iterative adjustment of the models based on observation and 

comparing predicted and measured energy use. In the calibration methodology, these activities are 

represented by the white and green shaded boxes shown in Figure 7.1. 

  
Figure 7.1: Calibration methodology, activities in grey are not discussed in this chapter. 

The purpose of using automated calibration is to investigate its potential on improving the 

efficiency of the whole calibration process for full-scale building energy models, by alleviating some of the 

manual calibration tasks. In addition, it investigated and quantified the effectiveness in achieving increased 

model accuracy by decreasing the discrepancy between predicted and measured energy use, but found 

several limitations using automation at higher levels different levels of data granularity. Furthermore, 

several risks associated with using automated calibration at lower levels of granularity were identified and 

limitations concerning calibration of full scale models is discussed. Automated calibration has been applied 

at different levels of data granularity to the models of three case study buildings (Office 71, CH and MPEB). 

This approach was however not applied to Office 17, as it was initially a pilot study to inform the other 

studies and ultimately would unlikely have provided additional insights into the effects of data granularity 

on model calibration accuracy. The process includes the development of meta-models or surrogate models 

in order to enable optimisation, which would otherwise be limited due to computational intensity of full-

scale first-principle building models. 

Meta-models 

Meta-models were created by training machine learning algorithms on varied inputs from 

parametric simulation of the building energy model and simulated outputs. The type of machine learning 

algorithm and amount of data for both the number of simulations performed and number of inputs and 

outputs determine the accuracy of the meta-model. More simulations create more training data, typically, 
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this increases meta-model accuracy in predicting new values. However, an increase in the number of inputs 

and outputs increases complexity, making it more difficult for the learning algorithm to find relations within 

the data. There is thus a trade-off. Parametric simulation data (inputs & outputs) were split by 75% for 

training and 25% for testing, after training, the meta-model was used to predict new values and its accuracy 

is determined by comparing those predictions to the test data, which the model has not seen previously. 

The r-square, mean absolute error, average absolute percentage difference were used to quantify their 

accuracy. The main advantage of the meta-models is that they can quickly, less than a fraction of a second, 

make new predictions for what they were trained to predict. 

Mathematical optimisation 

The meta-models were subsequently deployed for automated calibration or mathematical 

optimisation, more specifically, using NSGA-II, a genetic algorithm for multi-objective optimisation. The 

objective here is to minimise the difference between predictions from the meta-models and measurement 

of energy use of existing buildings. The algorithm uses an evolutionary process that iteratively adjusts input 

parameters and finds those that improve the minimisation of objectives. It sorts a population (sets of input 

parameters) based on the performance of individuals (set of parameters in the population), an individual 

is calculated using a meta-model. Different meta-models are optimised, resulting in different calibrated 

models. The calibrated models are taken to be the best individuals (set of input parameters) per meta-

model. The terms input space and solution space refer to the exhaustive set of input parameter 

combinations and their predicted outputs. 

7.2 Office 71 

7.2.1 Meta-model development 

The meta-models were trained on the inputs and outputs from 1000 parametric simulations. 

In total, 115 input parameters were varied, including conductivity of building materials, system efficiencies, 

power densities for lighting and appliances and people density in different space types, parameters that 

determine when windows are opened, DHW hot water use, natural, mechanical and unwanted infiltration 

rates and a seasonal variation factor per month. Three meta-models were created by training them on the 

variable input parameters and energy use outputs. These three models predict energy use at different levels 

of data granularity as follows: 

 Meta-model M1: Yearly end-uses (3 objectives: lights, power and gas). 

 Meta-model M2: Monthly energy use (12 objectives: January 2014 to December 2014). 

 Meta-model M3: Monthly energy end-uses (36 objectives: 3 end-uses per 12 months). 

Several machine learning algorithms were tested and compared using the MAE and r-squared, 

a high r-squared value indicates a well fitted model. Different regression techniques; ridge (rr), Bayesian 

(BR), Lasso, linear (LR) and others perform similarly well. In Figure 7.2 the accuracy in predicting monthly 

energy end-uses by four techniques is compared, Partial Least Squares regression (PLS), Ridge regression 

(RR), Lasso regression (Lasso) and the Artificial Neural Network (NN) perform similarly well, achieving 

near perfect r-square and considerably low errors. Other algorithms are available, such as Radial Basis 

Functions and Support Vector Regression, these have however not been explored further as a sufficient 

accuracy was obtained with employed techniques. Practically, only meta-model M3 needs to be trained as 

it is able to predict the highest level of data granularity, lower levels can then be inferred from this meta-



7. Quantifying the effects of data granularity on model accuracy 

C. van Dronkelaar (2018)  155 

model, however to show how a difference in the level of data granularity affects meta-model accuracy, the 

other meta-models were trained as well. 

 
Figure 7.2: Machine learning algorithms and their respective scores; r-squared, mean absolute error 
(MAE) and mean square error (MSE) to evaluate their predictive accuracy in regards to training on 

monthly energy end-uses (M3). 

In addition to their final accuracy, the accuracy of the meta-model is evaluated by looking at 

how they change when more model runs are included. For both methods, if the indicators are not changing 

or change is significantly small, then they are determined to be accurate and used in further analysis. The 

learning progression of training a meta-model that predicts monthly energy end-uses for Office 71 is shown 

in Figure 7.3. 

  
Figure 7.3: Learning progression of meta-model M3 using PLS, trained on monthly energy end-uses from 

1000 simulations, showing statistical measures of the mean absolute error and r-squared. 

A rapid increase in prediction accuracy is attained after only a few hundred simulations. These 

statistical measures indicate the accuracy of the meta-model predictions compared to what they are 

supposed to predict, the actual simulated data from the first-principle model. This comparison is visualised 

in Figure 7.4, where mean and standard deviation predicted monthly energy use from the meta-model is 

compared with that from simulations for a model trained on 75 (left) and 1000 (right) simulations. This 

visualises how effective the meta-model is in replicating the predictions of the first-principle model, it learns 

quickly because the data set is small, there are only 36 values (12 months x 3 end-uses) predicted.  
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Figure 7.4: Simulation test data vs. meta-model predictions after 75 (left) and 1000 (right) simulations 

after training, showing the mean and standard deviation of the 25 and 500 predictions respectively from 
the test data. 

The three constructed meta-models were used to run global sensitivity analysis, which needs 

many inputs and outputs variations. Subsequently, the meta-models were used for mathematical 

optimisation. 

7.2.2 Mathematical optimisation 

Optimisation is performed (i.e. automated calibration) by minimising the RMSE between 

predictions from the meta-model and measurements. Figure 7.5 shows the minimisation of predicted yearly 

energy use for lights, power and gas. After only several generations, the genetic algorithm finds 

combinations of inputs that bring the predictions closer to measurements. After about 30 generations, the 

optimisation converged to a solution, i.e. it found an individual that predicts exactly the same amount of 

energy for the three different end-uses, in fact there will be many sets of input parameters (individuals) 

that will solve this particular problem. 

 
Figure 7.5: Minimisation of absolute difference between meta-model predicted and measured yearly 

energy end-uses per generation for Office 71. 

However, finding solutions becomes more challenging with an increase in objectives. For 

example, optimising for total monthly energy use, shown in Figure 7.6, takes more generations, but is still 

manageable as the measurements fall closely within the solution space predicted by the first-principle 

model. 
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Figure 7.6: Minimisation of absolute difference between meta-model predicted and measured total 

monthly energy per generation for Office 71. 

In contrast, when total monthly energy use is broken down, some of the measured data fall 

outside of this solution space, and the optimisation algorithm is unable to converge for each objective, as 

shown in Figure 7.7. The graph shows the absolute difference between predictions and measurements per 

energy end-use per floor per month, although converging towards zero, some of the objectives are unable 

to decrease after several generations or do not decrease at all. This is because the individuals or input 

parameter values are constrained to lower and upper limits. Without these constrains the algorithm would 

adjust certain variables to unrealistic values, for example, boiler efficiency (COP) could be set to 5, to more 

closely resemble systems energy use. 

 
Figure 7.7: Minimisation of the absolute difference between predicted and measured monthly energy use 

per end-use for Office 71. 

The meta-model alone predicts monthly energy use for a certain solution space, where many 

solutions fit the NMBE and CVRSME criteria of ±5% and <30% respectively. However, without 

optimisation, solutions that fit more stringent criteria are not found. The input parameters follow a normal 

distribution, as a result, so do the meta-model predictions, therefore it is unable to find combinations of 

parameters which lie at the ends of the normal distribution. This is why optimisation is used, it is able to 

find these solutions by iteratively selecting better fitting input parameters that converge towards possible 

solutions. The optimisation was able to find solutions that fit very strict criteria (NMBE ±1% and CV(RMSE) 

< 1%). Filtering input variables that fit these criteria shows in what range the calibrated inputs are 

distributed. In Figure 7.8, the input distribution for an arbitrary input parameter, basement circulation 
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lighting power density, is shown based on the actual search space (blue) and those put into the meta-model 

(orange) left, and the input parameter distribution after optimising the model on the right. The meta-model 

inputs follow a normal distribution, when filtering solution fit a criteria of CV(RMSE) <30%, it seems that 

for this particular variable any of the values within the normal distribution are possible solutions. If the 

criteria for filtering solutions is increased to CV(RMSE) <1%, then only the optimisation algorithm will be 

able to find solutions, for this particular input parameter it finds values at the high end of the distribution, 

at around 3 and 4.3 W/m2. Due to the interrelation between input parameters on the output, different values 

are obtained when the range of other variables is adjusted or limited. For example, the basement lighting 

power density directly influences lighting energy use, when other input parameters that affect lighting 

energy use are limited to a smaller distribution space, the values for power density in the basement are 

likely to shift in contrast with the previous solution. It is therefore important to limit input parameters to a 

realistic range.  

  

(meta-model in orange, search space in blue) 

Figure 7.8: Meta-model predictions and single input (Basement circulation lighting power density) 
distribution that fit CV(RMSE) <30% (left) and CV(RMSE) <1% (right) using the optimisation algorithm 

for Office 71. 

The optimisation algorithm looks through the search space to find sets of input parameters 

that minimise the objective function and finds many combinations that form calibrated models. Table 7.1 

shows the most significant (according to sensitivity analysis) parameters before and after automated 

calibrations for Office 71. Some of the input parameters have taken up much higher values than the default 

one determined for the base case. In particular, Office_Equipment power density is higher, even though the 

base case typical profile for the weekday and weekend day for power energy use was shown to be a good 

representation. The increase is however due to a decrease in the SeasonalWeekOccFactor, which directly 

influence the equipment schedules. 

The higher levels of data granularity calibration (M2 and M3) used the seasonal factors to 

minimise the difference between monthly energy use and monthly energy end-uses respectively. Whereas 

M1 which does not concern itself with the monthly variation, instead it can adjust these parameters to 

justify an optimisation towards yearly energy use. Which in turn is likely to reduce the actual representation 

of reality even though the energy use predictions on a yearly basis converge towards the measurements. 
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Table 7.1: Most significant parameter values before (base case B) and after automated calibrations 
optimisation using meta-models (M1 to M3) for Office 71. 

Parameter B M1 M2 M3 
Office_1_Lights (W/m2) 8 9.52 12.67 12.28 
Office_2_Lights (W/m2) 8 9.77 11.18 11.50 
Office_3_Lights (W/m2) 8 11.31 6.72 10.87 
Office_1_Equipment (W/m2) 18 29.49 21.96 19.15 
Office_2_Equipment (W/m2) 18 22.29 31.46 26.47 
Office_3_Equipment (W/m2) 14 14.87 24.17 26.23 
Fixture_Kitchen (m3/s) 5.56E-06 8.69E-06 4.22E-06 7.37E-06 
HW_Boiler_1 (eff 0-1) 0.86 0.98 0.75 0.73 
HW_Boiler_2 (eff 0-1) 0.86 0.75 0.751 0.81 
Office_DesignOutdoorAir (l/s) 8 7.47 11.4 9.88 
SeasonWeekOccFactor_Jan (0-1) 0.75 0.59 .517 0.85 
SeasonWeekOccFactor_Feb (0-1) 0.75 0.61 0.71 0.68 
SeasonWeekOccFactor_Nov (0-1) 0.75 0.97 0.97 0.99 
SeasonWeekOccFactor_Dec (0-1) 0.75 0.50 0.94 0.76 

Meta-models are limited to making predictions they were trained for, this means that the 

meta-models cannot predict hourly energy use variation, typical in building energy software. The calibrated 

models (M1 to M3), i.e. best performing sets of input parameters are saved and used in the first principle 

physics based software (EnergyPlus), using the base case model, but changing the optimised input 

parameters. These were then used to compare their predictions at an hourly level, these models are called 

with respect to their meta-models, C1, C2 and C3. Prediction results between the meta-models (M1 to M3) 

and building energy modelling predictions (C1 to C3) using the same input parameter are compared in 

Table 7.2. 

Table 7.2: Model error showing difference in kWh/m2a and % between 
 meta-model and first-principle predictions for identical input parameter values. 

 
Total 

M2-C2 
Lighting 
M3-C3 

Power 
M3-C3 

Gas 
M3-C3 

 Diff % Diff % Diff % Diff % 
Jan 1.56 -8.09 -0.04 1.29 -0.05 -0.64 -0.29 -2.52 
Feb 0.05 -0.30 0.11 4.05 0.21 3.63 0.24 2.57 
Mar -0.17 0.95 0.29 12.77 0.57 10.78 0.10 1.31 
Apr 0.86 -7.46 0.14 5.44 0.23 3.92 0.04 0.89 
May 0.58 -7.11 0.18 6.48 0.34 5.80 0.00 0.00 
Jun 0.42 -4.87 0.08 2.82 0.16 2.59 0.00 0.00 
Jul 0.49 -5.43 0.12 3.97 0.16 2.53 0.00 0.00 

Aug 0.53 -6.71 0.14 5.30 0.27 4.86 0.00 0.00 
Sep 0.53 -6.14 0.14 5.00 0.20 3.22 0.00 0.00 
Oct 0.72 -5.80 0.05 1.42 0.07 1.06 0.08 2.18 
Nov -0.51 2.92 -0.08 -2.37 -0.08 -1.19 0.08 1.25 
Dec -0.64 3.34 0.04 1.42 0.14 2.23 0.00 0.06 
Sum 4.43 -2.80 1.17 3.35 2.23 2.99 0.26 0.50 

M1 - C1   0.29 -0.83 0.42 -0.57 0.76 -1.48 

Predictions are slightly different due to the meta-model training error (not giving exact 

predictions). Although the differences are marginal in most cases, they do affect the results, the optimised 

solutions found by the meta-model are less ‘optimised’ in the first-principle model. Their actual effect on 

results is analysed by comparing measured energy use compared with the different predictions from first-

principle models (C1-C3) and the base case (B) predictions from the initial manual calibration. 
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7.2.3 Impact of data granularity 

With two sets of models, the meta-models (M1 to M3), limited to monthly energy end-uses 

and first-principle model (C1 to C3), their performance can be compared to the initial base case and the 

measurements to see if the automated calibration process has found better calibrated models. In Figure 7.9, 

the hourly power energy use during October to December is shown for the calibrated model (C3), the 

calibrated model is significantly closer to the measured power energy use than the base case model. 

However, the calibration process is limited to changes in seasonal variation and power densities, which 

make up the power energy use. Therefore, the calibration will not be able minimise weekly differences, 

significant in December. Furthermore, in the case of Office 71, no horizontal offset is taken into account in 

the equipment schedules, thus the schedule can only be moved up and down the y-axis. Including weekly or 

even daily variability in the schedules could further improve accuracy. The automated calibration was able 

to improve energy use not only on a monthly basis, but also at an hourly granularity. 

 
Figure 7.9: Hourly power energy use during Oct-Dec for the calibrated model (C3) and base case model 

(B) against measured power energy use in Office 71. 

The calibrated models for the different meta-models and their first-principle model variants 

are shown in Figure 7.10, where the absolute difference in total energy use is compared with measurements. 

The graph shows that calibrated meta-model M1 is nearly 100% accurate, i.e. there is only a marginal 

difference between its predictions and the actual measurements. Meta-model (M3), which predicts monthly 

energy end-uses is considerably accurate and predicts within an NMBE of 2.5% for the yearly end-uses. 

Using the same calibrated inputs, the first-principle models (C1 to C3) were simulated, showing accuracy is 

somewhat reduced. C1 is now under predicting the measurements with NMBE 2.5%, whereas C2 and C3 

show large margins of error. However, this does not necessarily mean that they are worse performing 

models, in fact, C2 and C3 are better at predicting monthly energy use and monthly energy end-uses 

respectively, which is evident from Figure 7.10 and Figure 7.11. 

Total monthly energy use predictions from the first-principle models (C1 to C3), meta-models 

(M2 and M3) and base case model are compared with measured data in Figure 7.10. The meta-model M2, 

specifically optimised to predict measured total monthly energy use shows the best fit, whereas C2 its first-

principle variant is slightly less accurate. However, C1 in this case performs worse than the other models, 

as was hypothesised earlier. M3 and C3 perform similarly, with the base case monthly energy use 

predictions being closer to reality than both M3 and C3. 
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Figure 7.10: NMBE between total yearly energy 
end-uses from two meta-models (M1 and M3), 

first-principle models (C1 to C3), base case model 
(B) against measurements. 

 
Figure 7.11: NMBE between monthly predictions 

from the two meta-models (M3 and M2), first-
principle models (C1 to C3), base case model (B) 

against measurements, each boxplot representing 
12 data points for the monthly CV(RMSE). 

Finally, the normalised mean bias errors for three energy end-uses on a monthly basis were 

calculated, shown in Figure 7.12. Only M3 can be compared because it is specifically trained for predicting 

monthly energy end-uses. 

 
Figure 7.12: NMBE between monthly predictions from the meta-model (M3), first-principle models (C1-

C3) and base case model (B) against measurements (zero-line), each boxplot representing 12 data points 
for the months. 

Meta-model M3 performs well, it has small NMBE errors, however, the base case model is 

showing the same levels of error. C3, due to the model error, performs somewhat worse than M3, 

differences between monthly predictions and measurements is increased. The results also show how an 

increase in data granularity improves the accuracy of the model, this can be seen when comparing C3 with 

C1 and C2, which both have a larger prediction error as these models were not specifically calibrated at the 

same level of data granularity. The total monthly and hourly CV(RMSE) in addition to the NMBE were 

calculated to compare all models, shown in Table 7.3.  
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Table 7.3: Statistical measures for the performance between measurements and predictions of the base-
case model, meta-model optimisations and first-principle models.  

 B M2 M3 C1 C2 C3 
NMBE (%) -1.7 -3.2 -3.3 -4.2 -5.8 -5.5 
CV(RMSE) month (%) 12.1 6.5 10.8 17.3 7.0 12.6 
CV(RMSE) hourly (%) 66.7   71.8 70.1 71.8 

The meta-models M2 and M3 have the lowest error indicated by the CV(RMSE) for the months, 

the most important indicator for analysing the discrepancy, whereas the total NMBE is subject to 

cancellation errors (positive and negative differences cancel each other out). However, due to meta-model 

error, their first-principle models, C2 and C3 perform slightly worse. Because of this, C3 performs at a 

similar level as the base case model.  

To see what how the optimisation has changed predictions on an hourly level, a comparison 

is shown in Figure 7.13 between the models and measurements for typical weekday and weekend day for 

the different energy end-uses. Although a significant change in monthly energy use was apparent due to the 

variability allowed by the input parameters, this difference is reflected by minor changes in the typical daily 

profiles. Models C1 to C3 variate slightly and are either somewhat lower or higher than the base case model. 

No horizontal change is possible since the input parameters do not allow for this change to happen, the 

input parameters affect only the increase or decrease of energy use. However, the initial profiles for lighting, 

power and occupancy for the base case model were determined from actual energy use profiles and were 

therefore already significantly close the reality. The meta-models and automated calibration process would 

be more effective when there is a larger difference in energy use predicted by the base case model and 

measurements. 

 
Figure 7.13: Electricity use for a typical weekday and weekend day for L&P and Systems, comparing 

measurements with predictions from the input parameters of the four calibrated meta-models at different 
levels of data granularity. 
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7.3 CH 

7.3.1 Meta-model development 

The meta-models were trained on the inputs and outputs from 3000 parametric simulations. 

In total, 85 input parameters were varied, including system efficiencies, power densities for lighting and 

appliances and people density in different space types, a horizontal offset to these profiles, parameters that 

determine when windows are opened, heating and cooling set-point temperatures, DHW hot water use, 

natural and unwanted infiltration rates, a seasonal variation factor per month. Four meta-models were 

created, by training them on the variable input parameters and energy use outputs. These meta-models 

predict energy use at different levels of data granularity as follows: 

 M1: Yearly end-uses (3 objectives: L&P, systems, gas). 

 M2: Monthly energy use (12 objectives: Sep ‘16 to Aug ‘17). 

 M3: Monthly energy end-uses (36 objectives: 3 end-uses per 12 months). 

 M4: Monthly energy end-uses plus typical weekday and weekend day per end-use (180 

objectives: 12 months * 3 end uses + 3 * 24 hours * 2). 

The meta-model developed for predicting energy end-uses on a monthly (and yearly) basis for 

Office 71 used partial least squares regression, to minimise differences between the training data 

(simulation results) and those predicted by the function. It did this effectively by achieving r2 > 0.98 for 

both yearly and monthly energy end-uses. However, CH introduced additional complexity within the inputs 

and outputs by including additional parameters that take into account variations in the profiling, in addition 

to including systems energy use. Systems energy use is much more variable and less linearly correlated to 

changes in input parameters in comparison to lighting and power energy use. Due to this, similar levels of 

meta-model accuracy as seen in Office 71, could not be established in CH. Nevertheless, significantly high 

prediction accuracies were obtained for the four trained meta-models as shown in Table 7.4. 

Table 7.4: Predictor scores for artificial neural network (NN) and partial least squares (PLS) used for 
multivariate regression at the different levels of granularity of data. 

 R2 MAE (kWh) No. of objectives 
 PLS NN PLS NN  
M1 0.975 0.976 4094 4243 3 
M2 0.959 0.958 1065 1137 12 
M3 0.939 0.977 422 359 36 
M4 0.956 0.978 117 113 180 

The neural network outperforms partial least squares regression and the other linear 

regression techniques for all meta-models, see also Figure 7.14 for M2 specifically. Although the differences 

are small, they are important to the final results as was shown in Office 71, where the translation of 

optimised meta-model input parameters into the building energy software introduced a small margin of 

error. The mean absolute error is significantly different between the different meta-models as they predict 

energy use at different levels of data granularity. More specifically, M1 has a high MAE because it indicates 

the model error in predicting yearly energy use, in comparison M3 predict monthly energy end-uses, MAE 

indicates the difference between predictions and measurements of 12 months per energy end-use. 
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Figure 7.14: Machine learning algorithms (pls = partial least squares regression, NN = artificial neural 

network, rr = ridge regression and Lasso regression) and their respective scores to evaluate the 
predictive accuracy of meta-model M3. 

A significant amount of data for training the regression algorithms is important when inputs 

and outputs are not so strongly linearly related, this is evident in Figure 7.15, where the increase in model 

accuracy is shown with an increase in the number of simulations. In Office 71, only 200 simulations achieved 

sufficient model accuracy, for CH, a similar accuracy is achieved after several thousand simulations. 

 
Figure 7.15: Learning progression of the meta-model trained on monthly energy use from 3750 

simulations using partial least squares (pls) and an artificial neural network (NN). MAE and r2 indicate 
their predictive accuracy with regards to monthly energy end-uses and typical weekday and weekend day 

consumption per month. 

7.3.2 Mathematical optimisation 

After training of the meta-models, they are employed for optimisation. Figure 7.16 shows the 

minimisation of three objectives or yearly energy end-uses, L&P, systems and gas. After about 300 

generations the objectives are minimised towards zero. 

 
Figure 7.16: Minimisation of energy use between meta-model predictions and measurements for yearly 

energy end-uses (3 objectives). 
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Meta-model M2 was used to minimise differences between monthly energy use predictions 

and measurements as shown in Figure 7.17. Again, optimisation achieves differences of less than <1% 

CV(RMSE) monthly, significantly below typical calibration criteria. 

 
Figure 7.17: Minimisation of energy use between meta-model predictions and measurements for monthly 

energy use (12 objectives). 

However, both M3 and M4 predict monthly energy uses, whereas M4 also predicts energy use 

for a typical weekday and weekend day for these end-uses, which are an additional 24 hours for two days 

for two end-uses. Minimisation of energy end-uses for both meta-models stabilise before reaching zero, 

results for M4 are shown in Figure 7.18, where M3 has similar optimisation results. Only L&P and some 

months for systems energy use were decreasing during the first few generations, but quickly stabilise after.  

 
Figure 7.18: Minimisation of energy use between meta-model M4 predictions and measurements for 

monthly energy end-uses (36 objectives). 

M4 also included the typical days as objectives for minimisation, but similarly these were not 

being minimised. Both systems and L&P energy use for a typical day fluctuate due to changing individuals 

(set of inputs parameters), but they do not minimise, as shown in Figure 7.19. Possibly, there are too many 

objectives to be minimised by the genetic algorithm and therefore it has difficulty in finding input parameter 

combinations that improve the fitness and / or the potential solutions available lie outside of the solutions 

space. However, when analysing the solution space created by the parametric simulations in the previous 

chapter (within uncertainty analysis), it becomes clear that most of the measurements fall within the 

uncertainty bands of the 3000 simulation run predictions. Nevertheless, a combination of input parameters 
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might not exist that satisfies an exact representation of measured energy use. In addition, several of the 

monthly measured energy uses, in particular gas use during December and September 2016 are outside of 

their respective solution space, which can also be observed in the minimisation, where both of these do not 

decrease below ~0.65 kWh/m2 in contrast to the other months of gas energy use. 

 
Figure 7.19: Minimisation of typical weekday energy use for meta-model M4, included as objectives. 

Table 7.5 shows the most significant (according to sensitivity analysis) parameters before and 

after automated calibration for CH. In total, 85 input parameters were varied and most of them were 

adjusted during optimisation. If the optimisation includes end-uses, it will keep changing variables that 

affect a particular end-use to bring them closer to its respective measured energy end-use. Although all final 

parameters values seem very arbitrary, there are some fundamental differences between the possible 

parameter values due differences in the models and their objectives. Meta-model M1 has more solutions 

that are considered optimised than M3 or even M2. However, this is not clearly reflected in the final 

parameters. 

Table 7.5: Most significant parameter values before (base case) and after automated calibrations 
optimisation using meta-models (M1 to M4) for CH. 

Parameters Limits B M1 M2 M3 M4 
Boiler 1 (0-1) (0.7, 0.93) 0.93 0.70 0.94 0.78 0.71 
Circulation lighting (W/m2) (3.2, 12.7) 8.0 4.1 5.4 5.0 6.4 
Heating dead band (⁰C) (0, 3) 3 2 1.5 2.5 2.5 
Fixture female toilets (l/s) (0.009, 0.036) 0.02 0.02 0.02 0.03 0.02 
Fixture kitchenettes (l/s) (0.008, 0.033 0.02 0.02 0.02 0.03 0.02 
Fixture male toilets (l/s) (0.009, 0.036) 0.02 0.03 0.02 0.02 0.02 
Fixture showers (l/s) (0.030, 0.121) 0.08 0.09 0.08 0.04 0.09 
Infiltration (flow ext. surface) (m/h) (1.238, 4.954) 3.09 4.86 2.66 3.24 3.09 
Office equipment (W/m2) (4.8, 19.2) 12 17 13 18 11 
Office heating setpoint (⁰C) (21, 24.5) 24 24 22.5 24 23.5 
Office lighting  (W/m2) (4.06, 16.25) 10 12 10 11 12 
Server equipment (W/m2) (20, 80) 50 45 59 58 66 
Weekday offset (30min) (0, 4) 2 0 3 1 3 
*based on the difference per yearly or monthly, monthly end-use prediction and measurement 

7.3.3 Impact of data granularity 

The different meta-models (M1 to M4) and their respective first-principle based model (C1 to 

C4) are compared for yearly energy use, monthly energy use and monthly energy end-uses in Figure 7.20, 

Figure 7.21 and Figure 7.22 respectively. Similar to Office 71, the meta-models optimised for their specific 

objectives perform best in predicting their objective energy use. 
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Figure 7.20: NMBE between total yearly energy 

end-uses for the two meta-models (M1 and M3), 
first-principle models (C1-C3) and base case 

model (B) and measurements. 

 
Figure 7.21: NMBE between monthly predictions 

from the two meta-models (M3 and M2), first-
principle models (C1-C3) and base case model (B) 
against measurements, each boxplot representing 

12 data points for the monthly NMBE. 

It again highlights the importance of calibrating energy models at a high level of data 

granularity when employing automated calibration. With manual calibration, it is up to the modeller to 

understand how changes in inputs affect the output, however also for manual calibration it is necessary that 

results are analysed at a high level of data granularity, including end-uses and hourly variation. In contrast, 

the automated calibration procedure adjust whichever parameter minimises towards their objectives, 

therefore C1 is not well suited at predicting monthly energy use and vice-versa C2 is not well suited at 

predicting yearly energy end-uses. Their respective meta-models M1 and M2 are not even able to predict 

these values as they are trained to only predict their specific objectives. M3 and M4 on the other hand are 

more comprehensive, able to predict monthly energy end-uses, these can also predict yearly energy end-

uses or monthly energy use by taking the sum. As such, M3 and M4 can be seen as multi-purpose meta-

models, although their accuracy in predicting specific objectives of, for example M1 will be less accurate. 

 
Figure 7.22: Normalised mean bias error between monthly predictions from meta-models M3 and M4, 

first-principle models (C1-C4) and base case model (B) against measurements, each boxplot representing 
12 data points for the monthly mean bias error. 

Table 7.6 shows the final total performance based on the NMBE and CV(RMSE) of the meta-

models and their respective first-principle models with identical input parameters. The base case 

performed within the calibration criteria, the optimised meta-models M2 to M4 minimise the difference 

between predictions and measurements, but translation of the calibrated inputs into EnergyPlus again 

shows that it is affected by model errors. Finally, only C4 seems to perform significantly better than the base 

case, but the relevance of the increase in accuracy is arguable. During manual calibration it was identified 
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that minor changes or previously unobserved changes in the building can significantly affect the difference 

between predictions and measurement, much more than the increase of accuracy that was attained through 

the automated calibration of the base case model for CH. 

Table 7.6: Statistical measures for the performance between measurements and predictions of the base-
case model, meta-model optimisations and first-principle models.  

 B M2 M3 M4 C1 C2 C3 C4 
NMBE (%) 0.6 -0.1 -1.1 -0.9 -0.9 4.2 -5 -0.9 
CV(RMSE) month (%) 8.4 0.4 4.2 3.9 12.4 5.5 8.4 4.9 
CV(RMSE) hourly (%)* 26.6    32.9 32.8 30 29.2 
*CV(RMSE) hourly is based on L&P and Systems hourly electricity use only 

Finally, typical weekday and weekend day energy use for L&P and systems are compared, 

shown in Figure 7.23. Parametric simulation for CH included a horizontal offset of the lighting, power and 

occupancy profiles, which, as can be seen in the final calibrated input parameters, has also been adjusted 

during optimisation, different for the five models (B, C1 to C4). In contrast to Office 71, the profiles are now 

able to move horizontally, allowing automated adjustment of parameters that influence the width of the 

profiles instead of solely the height or magnitude. 

 
Figure 7.23: Electricity use for a typical weekday and weekend day for L&P and Systems, comparing 

measurements with predictions from the input parameters of the four calibrated meta-models at different 
levels of data granularity. 

It seems however that the profiles, although adjusted, do not align more accurately with the 

measurements, at least not for the typical day profiles of energy use. As was evident in Table 7.6, the base 

case has the smallest error on an hourly basis. This was expected for the models C1 to C3, but not so, for C4, 

which included objectives for minimising the difference intended to lower the hourly error metric. The 

optimisation was over parameterised, i.e. there were many input parameters adjustable with too many 

objectives, but also limited to the variation in put parameters. The offset on the lighting and power profiles 

was not sufficient to allow for replicating measured energy use behaviour on an hourly level. 
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7.4 MPEB 

7.4.1 Meta-model development 

For MPEB four meta-models were trained on the inputs and outputs from 3000 parametric 

simulations. In total, 120 input parameters were varied, including system efficiencies, power densities for 

lighting and appliances and people density in different space types, a horizontal offset to these profiles, 

parameters that determine when windows are opened, DHW hot water use, natural, mechanical and 

unwanted infiltration rates and a seasonal variation factor per month. Four meta-models were created, by 

training them on the variable input parameters and energy use outputs. These models predict energy use 

at different levels of data granularity as follows: 

 Meta-model M1: Yearly end-uses (5 objectives: L&P, chillers, systems, servers, workshops). 

 Meta-model M2: Monthly energy use (12 objectives: Sep ‘16 to Aug ‘17). 

 Meta-model M3: Monthly energy end-uses (60 objectives: 5 end-uses per 12 months). 

 Meta-model M4: Monthly energy end-uses plus typical weekday and weekend day per end-use 

((12 months * 5 end-uses + (5 end-uses * 24 hours * 2 days)) 

Table 7.7 shows a comparison of the prediction scores obtained for the trained meta-models 

for partial least squares regression and the use of artificial neural networks for regression. Accuracies 

obtained for the meta-models are different from previous two case studies. For Office 71, linear regression 

techniques were extremely accurate in learning the data patterns due to the linearity in the different end-

uses, specifically lights, power and gas use were predicted. However, in CH, additional input parameters 

and the objective of systems energy use introduced complexity in the relationship between inputs and 

outputs, the neural network outperformed linear regression techniques in predicting three energy end-

uses; system, gas and L&P. In MPEB however, the amount of objectives increased from 3 to 5 for yearly 

energy use and from 36 to 60 for monthly energy end-uses. In both cases, PLS and the neural network were 

unable to achieve similar levels of accuracy as those obtained for CH, r-squared scores of 0.84 are obtained 

for both. In contrast, for monthly energy use (no end-uses) an r-squared value of 0.99 is calculated, which 

is a near perfect fit. However, the RMSE for the neural network is about 1/3 higher than that predicted by 

the partial least squares regression, indicating that PLS is a better predictor. 

Table 7.7: Predictor scores for artificial neural network (NN) and partial least squares (PLS) used for 
multivariate regression at the different levels of granularity of data. 

 R2 MAE (kWh) RMSE (kWh) no. of objectives 
 PLS NN PLS NN PLS NN  
M1 0.84 0.83 4648 6149 7612 9395 5 
M2 0.99 0.99 1866 2669 2424 3427 12 
M3 0.84 0.83 506 698 896 1119 60 
M4 0.87 0.89 197 156 794 664 300 

7.4.2 Mathematical optimisation 

Optimisation towards the objectives using meta-models M1 and M2 achieved similar results 

as for Office 71 and CH. The minimisation converged to zero after several hundred iterations. Meta-model 

M3 and M4 also showed similar results to CH, in that they did not converge towards zero for all end-uses as 

can be seen for M3 for the monthly energy end-uses in Figure 7.24 and meta-model M4, which includes the 

monthly energy end-uses and shows the typical weekdays for each end-use in Figure 7.24. 
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Figure 7.24: Minimisation of monthly energy end-uses between meta-model M3 predictions and 

measurements (60 objectives). 

Although lighting and power is being minimised for both meta-models M3 and M4, the other 

end-uses remain relatively stable throughout the generations. The optimisation is not able to find better 

solutions and is limited by the input space. 
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Figure 7.25: Minimisation of monthly energy end-uses between meta-model M4 predictions and 

measurements (300 objectives, including monthly energy end-uses). 

The best individual for each optimisation using the different meta-models is shown in Table 

7.8. Similar to the previous case studies, the change in input parameters seems to happen arbitrarily, but 

rather the optimisation process is trying to find the best set of input parameter combinations that fit the 

objectives (measured energy use targets). As such, many combinations will exist that minimise the 

difference, however with the amount of input parameter and objectives, local minimisation is very likely 

and difficult to avoid. This was clear when the optimisation was run for in particular the more complex 

meta-models M3 and M4, which when running the optimisation multiple times, in some cases stabilised 

earlier than others. 



7. Quantifying the effects of data granularity on model accuracy 

C. van Dronkelaar (2018)  172 

Table 7.8: Most significant parameter values before (base case) and after automated calibrations 
optimisation using meta-models (M1 to M4) for MPEB. 

Parameters Limits B M1 M2 M3 M4 
Server  409 condenser CCOP (1.16, 6.27) 3.38 2.7 4.6 3.2 4.1 
Out-of-hours equipment baseload (%) (60, 100) 85 95.9 93.9 74.6 98 
HWS fixture labs (l/h) (0.15, 0.61) 0.38 0.34 0.59 0.25 0.37 
HWS labs schedule y-axis (0-1) (0.1, 1) 0.50 0.24 0.39 0.37 0.63 
Labs mechanical ventilation (l/s) (1.6, 6.4) 4 4.4 3.5 4.1 3.7 
Labs equipment (W/m2) (6.5, 26) 16 14.6 21.6 19.9 11.0 
Labs lighting (W/m2) (8, 23) 16.26 15.1 16.8 21.0 11.4 
Out-of-hours lighting baseload (%) (30, 100) 65 70.0 80.1 68.2 73.7 
Office mechanical ventilation (l/s) (3.2, 12.8) 8 8.8 7.4 9.2 9.3 
Office equipment (W/m2) (6.4, 25.6) 16 21.1 17.4 22.4 13.4 
Office lighting (W/m2) (4.8, 19.2) 12.03 16.3 12.6 11.3 14.5 
Workshop equipment (W/m2) (22, 88) 55 62.8 51.6 52.1 57.5 

7.4.3 Impact of data granularity 

The different meta-models (M1 to M4) and their respective first-principle based model (C1 to 

C4) are compared for yearly energy use, monthly energy use and monthly energy end-uses in Figure 7.26, 

Figure 7.27 and Figure 7.28 respectively. Similar to Office 71, the meta-models optimised for their specific 

objectives perform best in predicting their objective energy use. 

 
Figure 7.26: NMBE between total yearly energy 

end-uses for the two meta-models (M1 and M3), 
first-principle models (C1-C3) and base case 

model (B) and measurements. 

 
Figure 7.27: NMBE between monthly predictions 

from the two meta-models (M3 and M2), first-
principle models (C1-C3) and base case model (B) 
against measurements, each boxplot representing 

12 data points for the monthly NMBE. 

The three figures show that the meta-model error propagates through to the first-principle 

models when these are simulated using the best optimised individuals (set of inputs). Comparing M1 to C1 

in Figure 7.26 shows a difference of nearly -10% NMBE, while smaller still significant differences for the 

models, M2 compared to C2 in Figure 7.27 and M3 to C3 in Figure 7.26. The larger difference in the first 

meta-model M1 to C1 could be due to one or several input parameters that have a significant impact on 

energy use, possibly the server equipment power density input. In other words, the meta-model is trained 

based on inputs and outputs, but will not be 100% accurate in replicating the first-principle software. Thus, 

it may accurately represent the effect a certain parameter has on an output, which when computed in 

EnergyPlus will show a significant difference in the output from that predicted by a meta-model.  
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Figure 7.28: Normalised mean bias error between monthly predictions from the meta-model (M3), first-
principle models (C1-C3) and base case model (B) against measurements, each boxplot representing 12 

data points for the monthly mean bias error. 

The base case, meta-model and first principle model predictions are compared with the 

measurements and their differences are quantified by three statistical measures, the NMBE and CV(RMSE) 

on a monthly and hourly basis as shown in Table 7.9. The meta-models established were reasonably 

accurate in predicting new sets of inputs, and used in the optimisation process establish significantly low 

CV(RMSE) values < 0.1 % for the monthly criteria. However, the meta-models are of limited use by 

themselves, as they are limited to only predict new solutions by changing parameters they are initially 

trained on. However, for predicting retrofit savings in existing buildings, or perhaps other purposes, a 

calibrated model will preferably predict a higher level of data granularity and also allow for more specific 

changes to be made within a model. 

Table 7.9: Statistical measures for the performance between measurements and predictions of the base-
case model, meta-model optimisations and first-principle models.  

 B M2 M3 M4 C1 C2 C3 C4 
NMBE (%) 4.5 0.3 3.2 3.2 8.6 2.6 3.5 4.0 
CV(RMSE) month (%) -2.0 -0.1 0.0 0.1 -1.8 -0.6 -0.6 -0.5 
CV(RMSE) hourly (%)* 9.8    12.3 8.8 9.2 9.7 

Another limitation of the automated calibration approach taken is clarified when analysing 

differences at an hourly level. Figure 7.29 shows the typical weekdays and weekend days for the different 

energy end-uses. The variable input parameters previously defined during parametric simulation mainly 

affect the magnitude of different components in the building energy simulation. For example, a change in 

lighting, equipment or a flow rate will directly increase or decrease energy use. Thus on a time scale, energy 

use will go up or down, but will not affect the typical profile or duration of energy use. These are typically 

static, limiting the measured energy use profile to be replicated through the automated calibration process. 

With this thought in mind, the approach taken here was to incorporate some variability into the schedules, 

in particular lighting, power and occupancy schedules were varied by introducing an offset. However, this 

offset was applied to the whole profile throughout a year, it changes a typical daily profile   
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Figure 7.29: Electricity use for a typical weekday and weekend day for the different end-uses and total 

energy use, comparing measurements with predictions from the input parameters of the four calibrated 
meta-models at different levels of data granularity. 

7.5 Summary 

The automated calibration process sought to further reduce the discrepancy between 

predicted energy use from the manually calibrated models and measurements. It did this successfully at 

different levels of data granularity using the created meta-models and optimisation process. The automated 

calibration process extended the state of the art, by utilising meta-model based multi-objective optimisation 

to minimise energy use at a high level of data granularity. Typically, automated calibration is performed on 

yearly or monthly energy use, which as was found during the manual calibration procedure, masks energy 

use at a higher level of data granularity. 

Meta-model development 

This chapter investigated the application of developing meta-models as surrogates for the full-

scale first-principle models. Several machine learning algorithms were tested to learn relations between 

variable input parameters and outputs (energy use). Multivariate regression models were developed using, 

in particular, partial least squares and artificial neural networks. Other algorithms, such as Radial Basis 

Functions, Support Vector Regression were not utilised, but have been reported to perform reliably in other 

research and should be further investigated concerning multivariate regression of building energy 
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modelling data. Meta-models were built for different levels of data granularity, in particular for predicting 

yearly energy end-uses (M1), monthly energy use (M2), monthly energy end-uses (M3) and monthly energy 

end-uses including typical weekday and weekend days for these end-uses (M4). Fundamentally, only one 

meta-model would have been necessary, for example M4 predicts the outcomes of the other three meta-

models (M1 to M4). However, the aim was to understand the limitations of meta-models and the impact of 

data granularity on model calibration accuracy. Their prediction scores for the different case studies are 

shown in Table 7.10. 

Table 7.10: Machine learning (meta-) models best predictor scores, number of inputs and outputs. 
 Office 71 CH MPEB 
No. simulations 1000 3000 3000 
Inputs 115 85 120 
Outputs (M1 to M4) (3, 12, 36) (3, 12, 36, 180) (5, 12, 60, 300) 
       
 R2 MAE (kWh) R2 MAE (kWh) R2 MAE (kWh) 
M1 0.992  450 (rr*) 0.975  4094 (PLS*) 0.84 4648 (PLS) 
M2 0.986  107 (Lasso) 0.958  1065 (NN*) 0.99 1866 (PLS) 
M3 0.985  73 (Lasso) 0.977  359 (PLS) 0.84 506 (PLS) 
M4 - - 0.978  113 (NN) 0.89 156 (NN) 

*rr (ridge regression), PLS (partial least squares), NN (artificial neural network)  

Meta-models developed with many inputs, but several outputs (M1 and M2) were trained 

relatively quickly and needed only several hundred simulations to achieve high prediction scores. Whereas 

more simulation runs were necessary with many more inputs (M3 and M4), in particular for CH and MPEB 

where the interactions between inputs and outputs were more complex. More specifically, for Office 71, 

only lights, power and gas use were trained on as energy end-uses which are mostly linearly related to the 

inputs. Which was not the case for heating, cooling and auxiliary energy use, such as fans and pumps, which 

fluctuate significantly and are much more dependent on the external environment. For CH and MPEB, the 

neural network outperformed the linear regression techniques significantly in learning non-linear 

relations. All four trained meta-models achieved high levels of accuracy, but with more complexity between 

inputs and outputs, more sophisticated machine learning techniques and data (number of simulations) 

were required. This was in particular evident in CH, where 3000 simulation runs achieved reasonable levels 

of accuracy, but where a 1000 simulations were shown to be 40% less accurate. In stark contrast to Office 

71, were just 300 models were enough for predicting lights, power and gas energy use. 

Mathematical optimisation 

Optimisation (i.e. automated calibration) was performed using the developed meta-models. 

Significantly small margins of error were achieved for different levels of data granularity. However, 

optimisation at a higher level of hierarchical data granularity made it more difficult to find specific solutions 

to the objectives as they were not always within the solution space. In addition, multi-objective optimisation 

with many inputs and outputs introduced local minima where the optimisation converged to non-optimal 

solutions. Furthermore, the calibration approach included a certain level of uncertainty within the lighting, 

power and occupancy profiles, to allow for the automated calibration process to find better fitting profiles 

to represent measured energy use. However, the horizontal offset parameter still strongly constrained the 

optimisation algorithm, it allowed mostly only horizontal movement of the daily profile as a whole, in reality 

the profile varies on an hourly level. Therefore, the initial profile from the base case will retain the same 

shape and if this shape is not in line with measurements, it could not be replicated. Additional variable input 

parameters would have to be defined that allow changes on an hourly basis during parametric simulation, 

but this would mean hundreds of extra parameters if several different profiles were to be included. Such an 
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increase in the number of parameters is likely to be too difficult as an optimisation problem, in addition, 

this would also affect the accuracy of the meta-model, and more simulation runs would be necessary.  

Although high levels of prediction accuracy were obtained for the trained meta-models, some 

margin of error still existed and was propagated to the first-principle software when simulating the 

calibrated inputs from the optimisation process. In turn, this margin of model error reduced the 

effectiveness of the process, as these models did not improve the base case model. However, the use of meta-

models was unavoidable, as the run time of full-scale models of existing buildings proved to be too time 

consuming for optimisation using genetic algorithms, which typically need thousands of simulations. Final 

results of the optimisations are shown as the difference between measurements and predictions by the base 

case model (B), meta-models (M1-M4) and first-principle model (C1-C4), which are the best individuals 

(calibrated sets of input parameters) simulated using EnergyPlus, see Table 7.11. 

Table 7.11: Optimisation results, showing differences between measurements and predictions for the best 
individuals for the base case (B), meta-models (M1-M4) and first-principle models (C1-C4). 

 CV(RMSE) % B M2 M3 M4 C1 C2 C3 C4 
Office 71 month 12.11 6.54 10.78  17.34 7.04 12.63  

 hour 66.73    71.82 70.13 71.84  
CH month 8.38 0.36 4.22 3.86 12.36 5.47 8.35 4.91 

 hour 26.60    32.90 32.77 29.96 29.19 
MPEB month -1.99 -0.05 0.00 0.07 -1.81 -0.59 -0.55 -0.46 

 hour 9.81    12.31 8.84 9.22 9.70 

Due to the limitations of automated calibration, manual calibration is a pre requisite in order 

to establish a base case model that represents the existing building operation. Although this was already 

evident in the manual calibration chapter, it is even more apparent during optimisation, where many 

parameters cannot be adjusted.  

Impact of data granularity 

The meta-models were used to minimise predicted and measured energy use at different 

levels of data granularity, purposefully to understand how automated calibration affects the accuracy of the 

model. When optimisation is performed with different objectives, or an increase in the number of objectives, 

the solution space will become smaller. A minimisation of yearly energy use will have many possible 

combinations of input parameters that will solve the minimisation problem, however with monthly energy 

end-uses the number of solutions will reduce. As such, after performing optimisation, at a lower level 

(yearly), this will not represent objectives at a higher level of data granularity, while this was not necessarily 

true when the optimisation is performed at a higher level of data granularity. In other words, minimisation 

of monthly energy end-uses (M3 objectives) performed well in predicting yearly energy end-uses (M1 

objectives) or monthly energy use (M2 objectives). Thus, there is much risk involved in using automated 

calibration at lower levels of data granularity as they mask the underlying energy end-uses, and might even 

reduce the accuracy of a previously manually calibrated model. For example, for Office 71, C1 predicts 

monthly energy use significantly worse than C2 and C3, by about -20 and +10% NMBE, and about -20% and 

+20% NMBE for the monthly energy end-uses. Similarly, for CH, calibrated model C2 optimised towards 

monthly (total) energy use masked the energy end-uses on a yearly basis (C1) by -10 to 30% NMBE and for 

the monthly end-uses it was about 10 to 25% NMBE worse than C3. Therefore, when applying automated 

calibration, it is recommended to minimise differences on a monthly energy end-use basis (if such data is 

available), or that strict control of the input variables is maintained to prevent optimising towards 

inaccurate input parameters. 
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8 CASE RESEARCH DISCUSSION 

A research methodology was developed in order to investigate and mitigate the discrepancy 

between predicted and measured energy use, this methodology was employed on four case study buildings. 

The methodology involved: (1) collecting design information and determining actual operational 

procedures through energy audits, O&M manuals, sub metering, building management system and other 

data sources. (2) Synthesising and ensuring quality of collected data to understand the building operation 

and its performance, including establishing a hierarchy to compare data at different levels (3). Modelling 

four case study buildings based on as-built collected information, which was then compared to measured 

performance to identify discrepancies. (4) Sensitivity and uncertainty analysis of parametric simulation 

results to understand how input parameters affect the outputs. (5) Manual calibration of the as-built models 

to measured performance of the existing building through iterative improvements identified through 

different data sources. (6) Quantifying the impact of underlying causes of the performance gap through 

implementing typical assumptions to the calibrated models. (7) Meta-model development and automated 

calibration at different levels of data granularity to determine the effect of data granularity on model 

calibration accuracy. Results from the case research are discussed in this chapter. 

 

  



8. Case research discussion 

C. van Dronkelaar (2018)  178 

8.1 Utilising operational data to inform building performance simulation 

Data collection was an essential part of this research, integral to the analysis and modelling of 

energy performance at a high level of data granularity. As-built information to inform the building model 

was collected by performing building audits, talking to facilities management, and searching for relevant 

information in O&M manuals. Quantitative energy performance data was collected from the sub-metering 

systems and additional short-term monitoring. Occupancy presence data was retrieved based on Wi-Fi 

connections and swipe card access data. Finally, system performance and environmental data were 

obtained through a building management system. This data was used to inform the building performance 

simulation process. In this research, Python programming language was used to integrate and analyse the 

different data sources; to compare like-for-like objects and evaluate the importance of data granularity on 

building model calibration. A data hierarchy was established to distinguish granularity at a hierarchical, 

spatial and temporal level. 

Data collection 

During the process of data collection, it became apparent that its quality was hard to ascertain. 

In the case of sub-metering, it was difficult and sometimes impossible to establish how building appliances 

were connected to their respective meters. Labelling was often incomprehensible and/or there were 

several electrical distribution schematics, from different contractors with different labels for the meters. 

Distribution schedules from O&Ms are rarely up to date, especially so for older buildings which have gone 

through several commissioning phases. In Office 71, a good level of disaggregation was established, but the 

large HVAC systems (VRF heat pump and AHU) were not measured, even though the VRF indoor units were. 

In contrast, for both MPEB and CH, many meters existed throughout the building, but some of the larger 

energy uses were not separated, while smaller ones were. In the end, the hierarchical granularity extended 

to separating lighting, power, system and gas energy use, where spatial granularity extended to all floors. 

In Office 17 and 71, lighting and power energy use was available for each floor separately, but this was not 

available from the sub-metering system in CH and MPEB. Although data was available on some floors, it was 

not for all floors, and additional sub-metering was necessary.  

For the building management system, similar issues arose. Labelling of particular system 

components were difficult to distinguish, in particular when numerous components existed, such as with 

fan coil units. It was often unclear in what space a certain fan coil was located. Nevertheless, the BMS data 

proved helpful in tuning the performance of some of the HVAC systems, such as the air-handling units in 

MPEB, where the supply and return air temperatures were compared with those predicted. In addition, the 

internal space temperatures in MPEB were analysed to establish typical setpoint temperatures in different 

space types. This however, proved to be difficult as there was a lot of variability in between spaces and the 

control strategies were very dissimilar. In addition, the reported setpoint temperatures measured at the fan 

coil units were not always representative for the actual control in that space, internal temperatures often 

deviated from the setpoint temperatures. 

Developing modelling assumptions 

Collected operational data was used to inform as-built modelling assumptions, where design 

information from O&M manuals can describe operational strategies, measured data can verify these 

strategies and be used to develop specific assumptions. In particular, measured occupancy and electricity 

data was used to develop occupancy, lighting and equipment schedules. Occupancy presence from Wi-Fi 

and swipe-card access data informed when and where the building was occupied. 
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In Office 71, lighting and power were separated for each floor, measured electricity was used 

to create typical weekday and weekend day schedules for lighting and equipment per floor. Similarly, in 

MPEB and CH typical weekday and weekend day schedules and seasonal occupancy factors were applied to 

occupancy, equipment and lighting schedules to increase the accuracy of the model during manual 

calibration. However, at a yearly temporal granularity, an average typical profile masks the differences 

existent in the weeks and days. The level of detail could be increased by creating average schedules for each 

week or even implement actual daily data as schedules, but the model would then become fitted to the data. 

Instead typical daily schedules were created based on monthly data.  

Lighting and equipment schedules are separate inputs into building energy software, with no 

direct relation to occupancy schedules, however, in reality occupancy presence has a large influence on both 

energy lighting and equipment energy use, and were therefore programmatically related in the case 

research. For MPEB and CH, this was accounted for by including variable parameters for the out-of-hours 

baseload and a horizontal offset. This allowed for representing any changes in occupancy affecting lighting 

and power energy end-uses. This approach was taken as occupancy data for CH and MPEB was available 

from Wi-Fi data, which showed a strong correlation between lighting and power energy use and occupants. 

Although Wi-Fi data and swipe card access can be a valuable data source for understanding occupancy 

presence, when such data is unavailable, detailed sub-metering data could be used as a proxy for occupancy 

and the creation of lighting and equipment schedules. However, the assumed baseload identified within the 

electricity profile needs to be correctly assumed to achieve an accurate representation. 

Created schedules were transformed by applying a seasonal variation factor that was strongly 

present in both university building, applied on a monthly basis. The daily variability of occupancy was then 

included as uncertainty within the model. The occupancy schedules were then further adapted to create 

equipment and lighting schedules as these follow a very similar pattern, however the baseload of equipment 

and lighting is much higher than that of occupancy, (there are no occupants present during the night). This 

was accounted for when developing these schedules programmatically. In addition, a further variability in 

the scheduling was allowed for by quantifying the uncertainty of assumed baseloads and horizontal 

variability (i.e. time variability) of the schedules. Instead of using occupancy data, it was found that 

electricity can be used as a proxy for occupancy presence if detailed information on lighting and equipment 

electricity use is available. Occupancy schedules based on the Wi-Fi data were replicated through the 

manipulation of lighting and power electricity data. However, the assumed baseload identified within the 

electricity profile needs to be correctly assumed to achieve an accurate representation. 

Space and set-point temperatures measured by the BMS were used to validate design 

assumptions from the O&M manuals. By analysing space temperatures in different space types and 

comparing them during occupied hours, it became apparent that a large variability in similar space types 

exists, but generally follow the design assumptions. Nevertheless, the manual control of space set-point 

temperatures is difficult to represent in a building energy model, specifically if temperatures can fluctuate 

significantly. In CH, the impact of space set-point temperatures was quantified by introducing a variability 

in set-point temperatures during parametric simulation. In MPEB, it was helpful to verify set-point 

temperature in the computer cluster rooms, which have a significant impact on energy use. 

Besides space and set-point temperatures, the supply and return temperatures of the five air 

handling units in MPEB were analysed in order to validate if the design strategies in the O&M manuals were 

employed. The building model was then adjusted where necessary to represent the actual operation of these 

systems. The validation of design assumption and subsequent adjustment is actually part of the manual 

calibration process as it iteratively improves the accuracy of the model to the existing situation. This should 
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be an integral part of the calibration process as incorrect assumptions can have a significant effect on model 

accuracy. 

8.2 Quantifying the impact of underlying causes of a discrepancy 

Model calibration of large existing buildings is a time-consuming process, although similar to 

performance modelling for building design, additional activities, such as the perusal of O&M manuals, 

energy audits and obtaining measurement data are necessary. This process would be much more time-

efficient when previous design models are readily available, building information is well organised and 

complete, and sub-meters are properly commissioned and their data is collected in an easily accessible 

database. Fortunately, progression in software development and information technology has led to the 

development of such integration procedures, a major advancement has been building information 

modelling (BIM) which facilitates the exchange and interoperability of information in a digital form. 

Integrated energy modelling within BIM standardised software could drastically improve time-efficiency of 

typical modelling tasks and consequently the calibration of such models to existing building performance. 

Currently, model calibration is used for research purposes and Energy Performance Contracting, but may 

become more common when the development of calibrated models is a proven and less costly technique 

that has a significant benefit on improving and validating the performance of existing buildings, both 

through retrofitting and better operation. Until then, several issues concerning model calibration and 

necessary improvements highlighted throughout this research need to be alleviated. 

Manual calibration process 

Data collected in this research from sub-metering systems was directly compared with energy 

modelling outputs through customised meters in EnergyPlus. This process is however complicated when 

labelling of existing meters are incorrect or actual components are different from what is specified. In-depth 

analysis of all building components is a time-consuming process for large buildings. When a building has 

more than several hundred individual spaces, simulation runtimes can take up to more than 30 minutes on 

a high-end laptop, which makes manual calibration a time consuming process. A solution would be the 

simplification of building energy models (common practice among energy modellers), where similar spaces 

or floors are multiplied, however this introduces a margin of error. Avoided in this research, which aimed 

to capture all processes within a building and compare energy use data at a high level of data granularity at 

a hierarchical-, spatial- and temporal level. 

This research focussed primarily on mitigating a discrepancy between predictions and 

measurements in energy use. However, environmental system variables can be considered to further 

improve calibration accuracy of a model. Variables such as space temperature are dependent on 

fundamental processes in the building, such as the operational strategy (system type, set-point 

temperatures and scheduling) and the heating and cooling loads (based on external environment and 

internal gains), and can therefore give a good indication of these processes, their actual settings and 

behaviour. Environmental data is however not always readily available, nor easily collected for a large 

number of spaces. Furthermore, with many space types and differences in spaces, it is difficult to find typical 

patterns and to represent these patterns with a model. Utilising space temperatures and system 

performance data for several spaces may be possible for manual calibration purposes, but when calibrating 

an existing building with numerous spaces, this becomes a complex process. A comprehensive framework 

for the automation of such tasks would need to be established, but this needs to take into account the fact 

that each building is very different. Furthermore, to benefit from such a framework, rigorous and extensive 
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data collection and data management are essential and need to vast improvement over what is typically 

available in existing buildings. The immediate benefit of such a calibration framework for the sole purpose 

of predicting energy saving measures is untenable as the time-intensiveness of setting up such a 

comprehensive model is likely too time consuming. Rather, a real-time calibrated model or platform would 

be more constructive if it were used continuously. Another potential application would be the use of 

machine learning to learn and forecast the behaviour of a building, based solely on measurements of space 

temperatures, occupancy and external and internal environmental parameters, instead of relying on a 

virtual model. 

Predicted and measured energy use was mitigated through manual calibration, i.e. the 

iterative manual adjustment of a building energy model to reduce differences between performance 

predictions and measurements. The reliability of this process is strongly dependent on the availability of 

data, both design and measured data, which is the evidence to support any iterative changes. If there is a 

lack of such data, any iterative changes will be arbitrary, even though a discrepancy will be mitigated. Under 

this rationale it becomes clear that a higher level of data granularity supports the development of a more 

accurate model, but that a lack of information can mask the real situation. As such, the utilisation of 

operational data to inform building performance simulation assumptions is essential in model calibration. 

Furthermore, O&M manuals need to be reviewed to understand the design and intended operation of a 

building, which subsequently have to be validated through energy audits. Especially the latter is important, 

in the existing buildings it was clear that the intended design and design strategies differ from that observed, 

which in many cases had a significant effect on building performance. For example, in Office 17, the boiler 

radiator heating was manually turned off during the summer, in CH an AHU was out of operation throughout 

the measurement period, in MPEB some of the server load was connected to the L&P bus-bars as 

communicated by the facilities manager. Each of these observations had to be accounted for in the models 

to represent the actual situation. Calibration is an underdetermined process, where many configurations of 

input parameters can accurately fit the solution. A higher level of data granularity and availability of 

evidence, can filter out the wrong solutions and increase the accuracy of the model. In this research, a 

significant amount of data was collected and utilised to inform the calibration models, but in some buildings 

the lack of certain end-uses introduced significant uncertainty into these models, as these could not be 

directly compared. In MPEB, a faulty heat meter was not logging district heating data during the 

measurement period, and in Office 71 the air handlers were not connected to the sub metering system, both 

which were likely to have a substantial effect on the model accuracy, even though this could not be directly 

validated. The impact and significance of uncertainty in input parameters was assessed through uncertainty 

and sensitivity analysis. 

Uncertainty and sensitivity analysis 

Uncertainty assigned to input parameters results in a spread in predictions from parametric 

simulation. The spread signifies the different combinations of inputs and outputs, where the input 

parameters follow a certain distribution (normal, uniform, triangular). Uncertainty in the predicted end-

uses was analysed using the coefficient of variation, which quantifies the variability that is predicted by the 

numerous simulations. Uncertainty in outputs was compared to the measured data, which indicated that 

measured data points did not always fall within the uncertainty of the predictions. This is an important 

observation, as subsequent automated calibration will not be able converge towards non-existing solutions, 

further manual calibration was necessary in these cases to be able to effectively apply automated 

calibration. 
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The influence of parameters on energy use can be understood based on the fundamental 

principles of building performance simulation and its underlying equations. Quantitatively, sensitivity 

analysis can compute their significance for detailed building energy models and system analysis where the 

relationship between inputs and outputs is not so easily understood. In the case study buildings, the highest 

energy end-uses are typically lighting, equipment, systems and or gas energy use, the input parameters that 

affects these energy uses directly and most significantly are often the lighting and equipment power density 

and efficiency coefficients respectively. Although this depends on the uncertainty assigned to these 

parameters. Smaller input uncertainty will lead to a smaller significance coefficient, in case of the boiler 

coefficients and VRF heat pump COPs, the change from a 20% variability to 2-5% variability was significant. 

The uncertainty in equipment and lighting loads is likely much larger as it is much more dependent on the 

number of people present and equipment in the spaces, and type of lighting. In an office building, lighting 

loads were therefore being assigned a lower uncertainty as they are likely much more static than equipment 

loads. Again, people presence is typically disconnected in building energy modelling, i.e. lighting and 

equipment loads have their own schedule, in this case, the uncertainty should actually be larger than when 

the occupancy schedule directly influences these load schedules. 

Impact of typical assumptions 

The manually calibrated models were used to compare how typical design assumptions 

influence energy use. Typical design assumptions are those defined under the National Calculation 

Methodology, in the UK, which pre-scribe the inputs for specific space types in order to determine the 

minimum performance requirements of a building for Building Regulations (i.e. compliance modelling). 

Compliance modelling should not be used as a design tool by informing building efficiency improvements. 

In practice, however, this occurs as increasingly stringent building efficiency targets set by the government 

or local councils are not being met. Further refinement of the design is necessary to achieve these targets, 

tested through the compliance model. Inevitably, this model is then used to test the necessary efficiency 

measures and will be used to support design changes, even though the compliance model is not an actual 

representation of the to be build building. As such, efficiency measures can have a significant impact on the 

compliance model, but may have a less significant or even adverse effect on the carbon emissions or energy 

use of the actual building. A stronger emphasis on the use of performance modelling is needed in order to 

drive design decisions that will effectively mitigate energy use and the energy performance gap that arises. 

The impact of typical assumptions on energy use highlighted the importance of using 

performance modelling over compliance modelling. It identified the significant differences that exist 

between typical assumptions and the actual operation of a building, giving a better understanding of how 

and what assumptions should be made when using performance modelling. The impact of these 

assumptions, or ‘simplifications’ were applied to the calibrated model, in particular significant input 

parameters, as determined through sensitivity analysis, were analysed. The findings emphasise the need to 

confirm, most importantly; future equipment loads, equipment and lighting (or occupancy) schedules, 

seasonality of use, and heating and cooling strategies of a building. In addition, typical lighting and 

equipment baseloads under compliance modelling are a gross under prediction of actual baseloads 

measured in the four case study buildings. Some input parameters, such as future occupancy presence, are 

difficult to determine and may need to be based on realistic use profiles, preferably based on those in similar 

existing buildings, rather than the simplified assumptions under NCM. 



8. Case research discussion 

C. van Dronkelaar (2018)  183 

8.3 Quantifying the effects of data granularity on model accuracy 

Model calibration is a complex and time-consuming process. Automating calibration can 

alleviate some of the time-intense tasks. As such, automated calibration was employed based on a meta-

model of the first-principle model using a genetic algorithm for mathematical optimisation. It proved to 

introduce an extra level of complexity, but reduced the time needed to run simulations. This is particularly 

useful for the larger models which took more than half an hour to run for a full-year simulation in 

EnergyPlus. In terms of effectiveness, the automated calibration process was found to have some 

limitations; convergence is not always guaranteed, analysing retrofit options with the meta-model is limited 

to the initial variable parameters and the meta-model introduces model error when feeding back calibrated 

parameters to the first-principle modelling software. 

Automated calibration was used to find calibrated models within the initial search (possible 

input ranges) and solution space (possible outputs), computed during parametric simulation. When 

measured data is ‘out of bounds’ of the predicted solutions space, the optimisation will not be able to 

converge (as long as input parameters values are within the same bounds as during parametric simulation). 

Convergence is dependent on the base case model used during parametric simulation and the variability of 

its input parameters, an increase in variability increases the number of potential solutions. Preferably, the 

uncertainty in variables is limited, a lower uncertainty implies that the modeller has a higher level of 

confidence of the value of occurrence. This means that the initial manual calibration of the base case model 

determines the effectiveness of the automated calibration process to find calibrated solutions. In the case 

research this became more apparent with an increasing level of data granularity, when calibrating to just 

monthly energy use, the mathematical optimisation would be able to find many solutions that fit the 

measured data extremely well (<1% CV(RMSE)). However, when the meta-model tried to calibrate 

between predicted and measured monthly energy end-uses, it often could not converge, as the measured 

data was simply out of bounds. To increase the likelihood of convergence, seasonal variation factors were 

introduced (based on the seasonal occupancy variation), that adjusted the lighting and power schedules on 

a monthly basis, but even then, convergence was not always ascertained. 

The meta-models were trained on inputs and outputs from the parametric simulations using 

the first-principle model (EnergyPlus), after training, the meta-models can predict new sets of inputs with 

remarkable accuracy. However, because the meta-model is based on an initial set of parameters, it is unable 

to compute new parameters unknown to the meta-model, which for the purposes of assessing efficiency 

measures for retrofitting, is a limitation. Nevertheless, it can be used for analysing a large amount of input 

parameters, such as coefficients of performance of systems, material properties, equipment power density, 

and many others. Alternatively, the calibrated set of parameters from the meta-model can be used in the 

first-principle software for further analysis. However, it was found that feeding back the calibrated inputs 

into the first-principle model introduced a model error (<1% CV(RMSE) for monthly energy use). In other 

words, when the calibrated input parameters from the meta-model were simulated with the first-principle 

software, it showed slight variations in predicted monthly energy use to that predicted by the meta-model. 

Although small, the calibrated inputs were then less accurate in predicting measured energy use. This model 

error occurs because the trained meta-models were not exact in their predictions. 

The accuracy of an increase in data granularity was assessed using meta-model optimisation. 

The increase in accuracy of using manual calibration at a higher level of data granularity is difficult to 

determine without bias, therefore automated calibration clarified how different convergence criteria in data 

granularity will mask some of the energy end-uses and can lead to inaccurate calibration results. 

Optimisation towards lower levels of data granularity finds more solutions that are considered calibrated, 
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but were more likely to mask the deeper levels of data granularity. For example, when calibrating towards 

yearly end-uses, the calibration accuracy at that level was easily obtained. After several evolutionary 

generations tight calibration criteria of CV(RMSE) <0.01% between predicted and measured energy use 

were achieved. However, using the calibrated input parameters in the first-principle model showed that 

monthly energy end-uses were not necessarily accurate. The highest levels of accuracy were obtained when 

calibrating for monthly energy end-uses, however this in turn meant that sometimes the yearly end-uses 

were not necessarily as accurate, as convergence at the monthly level was not always ascertained. 

Although only included in the manual calibration process, automated model calibration 

towards environmental parameters and system performance in addition to energy use is likely to improve 

prediction accuracy, but with an increase in complexity. Research into the feasibility and importance of 

calibrating towards different building performance aspects would be beneficial. Especially for future 

integration of building energy models in existing building and real-time performance forecasting, in 

addition to retrofit engineering to understand which calibration performance criteria are important to 

replicate a real situation, while taking into account complexity and feasibility. 
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9 CONCLUSION 

The aim of this research was to quantify and mitigate the energy performance gap and its 

underlying causes, achieved by fulfilling several interrelated objectives. Existing knowledge on the energy 

performance gap was reviewed, a classification of different gaps was identified, typical underlying causes 

were summarised and several suggestions were made in regards to reducing the discrepancy between 

predicted and measured energy use. In addition, it identified model calibration as a way to investigate 

predicted and measured energy use in order to further understand why and how the performance gap can 

be mitigated, it also realised there was a need to further improve model calibration capabilities, in particular 

concerning its complexity and accuracy. One of the main findings from reviewing existing literature was 

that differences between predicted and measured energy use are caused by factors existent in different 

stages of the building life cycle, related to activities performed by different stakeholders in the construction 

industry. As such, an exploratory study of industry perspectives on delivering reliable building performance 

identified common barriers, suggested how such barriers can be overcome and in what way stakeholders 

need to be engaged. Instead of focussing on energy, it looked at generic building performance, including any 

stakeholder incentives for building procurement. The remaining objectives in this engineering doctorate 

involved conducting case research into four existing non-domestic buildings. A methodology was developed 

to quantify the discrepancy between predicted and measured energy use, utilising model calibration 

techniques and extensive data collection. This methodology was applied to the case study buildings in order 

to investigate discrepancies and their underlying causes to build on the existing body of knowledge. Finally, 

it determined the importance of collecting a high level of operational data granularity to ensure accuracy of 

building model calibration. 
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9.1 Main findings 

9.1.1 Literature review 

Predicted and measured energy use has been shown to deviate significantly, also termed ’the 

performance gap’. This gap can be classified as a difference between compliance and measured energy use 

(the regulatory gap), but also as a gap performance modelling and measured energy use (the static 

performance gap) or calibrated prediction with measured energy use with longitudinal perspective (the 

dynamic performance gap). Literary sources were reviewed that quantify the magnitude of the regulatory 

performance gap to be +35% with a standard deviation of 55%, based on 62 buildings. The main underlying 

causes for the performance gap were related to be from specification uncertainty in building modelling, 

occupant behaviour and poor practice in operation, with an estimated effect of 20-60%, 10-80% and 15-

80% on energy use respectively. 

The literature review identified different types of performance gaps. It explains how the 

regulatory performance gap is a complicated issue where many facets of the building procurement and 

delivery process have an impact. To reduce this gap, key measures for further work and research by the 

building industry needs to be established: 

 Accessible energy data is required for a continued gathering of evidence on the energy 

performance gap, this can be established through collaborative data gathering platforms. 

 Legislative frameworks set limits for predicted performance and penalize buildings for high 

operational energy use. More effectively, however governments should relate predicted to 

measured performance through predictive modelling and in-use regulation. Furthermore, it 

should consider mandating the disclosure of design stage calculations and assumptions as well 

as operational energy use outcomes in Building Regulations. 

 Monitoring and data analysis of operational building performance is imperative to driving 

change and management in operation. While well-defined assumptions need to be established 

through detailed calibration studies identifying the driving factors of energy use in buildings. 

Understanding and mitigating differences between predicted and measured energy use 

requires an expansion of research efforts and focus on its underlying causes. Detailed energy audits and 

model calibration are invaluable techniques in order to quantify these causes. Furthermore, tools are 

necessary to support intuitive visualisation and data disaggregation to display energy uses at detailed levels 

and for different time granularity, comparing predicted and measured energy use taking a longitudinal 

approach. This would help in better understanding typical profiles of use and discrepancies at a higher level 

of granularity, whereas most current building simulation software solely provide an overview of energy use 

at a monthly level or as a time series (half-hourly/hourly) without the ability to further analyse the statistics 

of the information, such as typical profiles. Currently, such analysis would have to be done separate to the 

building simulation software. 

9.1.2 Industry perspective of building performance 

An exploratory study was carried out in partnership with the UK Green Building Council in 

order to answer the question, "How can the construction industry deliver better building performance and 

more reliable outcomes?” A group of industry experts was brought together to seek out and highlight 

process improvements that design, construction and property communities, as well as occupiers, might 

adopt deliver building which perform more predictably in operation. Through semi-structured interviews 
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and round-table discussions with industry experts, supported by desk-based research, behaviour and 

process were examined across the built environment that affect building performance.  

Building performance was defined as the incentives for industry stakeholders procure 

buildings, which for a capital provider could mean a return on investment and yield, for a designer it is the 

provision of a safe, resilient and sustainable building with great aesthetics, and for facilities management 

this is the assurance of an operable building in which occupants can be comfortable. Economic, 

environmental and social aspects in building procurement can complement each other, creating a business 

case for delivering high building performance. However, the construction industry is fragmented and 

incentives are rarely aligned, demonstrating and communicating the business case is necessary to transition 

the market to delivering better buildings.  

The study identified many different barriers and gaps that need to be overcome and structured 

necessary changes around five key success factors that need to be driven through the different stages of the 

building life cycle in order to deliver better building performance. (1) Aspiration, set targets for final 

outcomes of the project. Expectations and requirements need to be clear from the start and can then be 

driven throughout the project delivery supply chain, aiming to tie in different stakeholders intended to limit 

fragmentation. (2) Control, procurement methods have been found to considerably affect inter-

relationships between stakeholders and the delivery of building performance, the construction industry has 

started moving away from traditional methods (design-bid-build) to design-build and on towards more 

collaborative frameworks. One of those is collaborative procurement/contracting, which promotes teams 

to 'work together' and aims to find the best solution that creates and shares values for all parties involved. 

(3) Design for performance, with a target set out, there is a need to understand what is necessary to achieve 

it. This requires going beyond compliance. Performance needs to be incorporated in early design and actual 

use needs to be taken into account to alleviate later changes in the design process, but more importantly, 

the building needs to operate according predictions. (4) Feedback, reciprocal links need to be established 

between stakeholders, facilities management and design, but also to building occupiers. Feedback of 

performance is essential and needs to be measured, verified and demonstrated. Raising awareness, 

understanding of operational features, improving commissioning processes, and informing new designs are 

essential to reliable building performance. (5) Knowledge, and skills need to be improved in many facets of 

the construction industry. Enhancing understanding of the role that each part of the supply chain plays, not 

only within stakeholder groups, but also across them, will facilitate more meaningful conversations on how 

to achieve reliable building performance. Developers/owners need to be engaged to adopt new method for 

capturing a property's value and understand life-cycle benefits of a highly performing asset. Operational 

staff need to be given resources to carry out the necessary activities to attain a well-performing building, be 

it training or actual investments for effective operations. Tenants need to be educated in using the building 

and its systems to satisfy their own needs of health, comfort and safety. On-site workmanship needs to be 

trained to increasing levels of complexity in building construction. Finally, information needs to be in the 

right language, several people that were interviewed indicated that those engaged in the building 

performance debate tend to speak to each other rather than the whole industry. 

As a continuation of the UKGBC work, the case research; (1) provided comprehensive 

examples of measured energy performance of existing buildings compared to detailed performance 

modelling (i.e. demonstrating performance and measurement and verification); (2) investigated the effect 

of simplifications of modelling assumptions on energy performance predictions and explains the limitations 

of regulations in the context of the energy performance gap; (3) explored the use of detailed measurements 

to identify patterns in energy use and to inform design assumptions (i.e. feedback). It demonstrates how 
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energy performance can be better predicted during the design stage by proposing techniques for 

incorporating uncertainty in assumptions and more representative assumptions of actual use. 

9.1.3 Case research 

A methodology was developed and applied to compare and mitigate predicted and measured 

energy performance at a high level of data granularity in four non-domestic buildings. The methodology 

involved the following activities; collection of operational data and building information through building 

audits, synthesis of information and development of a data hierarchy, utilising operational data to inform 

building performance simulation assumptions, sensitivity and uncertainty analysis to understand how 

input parameters affect the outputs, mitigating differences between predicted and measured energy use 

through manual calibration, quantifying the impact of underlying causes of the regulatory performance gap, 

utilising meta-model based optimisation to quantify the impact of data granularity on model calibration 

accuracy. The methodology is based upon previous research and extended it by introducing several 

processes and techniques within the model calibration process. First, the parametric modelling process 

uses variable scheduling of occupancy presence, equipment- and lighting loads, to allow for automated 

adjustment of schedules to improve the accuracy of the calibration model. Second, the methodology 

introduced seasonal variability in profiling and uncertainty in heating and cooling setpoints in addition to 

uncertainty in typical static parameters. This allowed for replicating seasonal trends of an existing building, 

important for certain building types (e.g. university buildings). Finally, the methodology focussed on 

achieving a high level of data granularity and describes a hierarchy for comparing performance data. 

Up to date O&M manuals that include as-built design and commissioning data supported by 

operational data of building performance are essential to improve the accuracy of building calibration 

models. It was found that as-built design information needs to be verified through energy audits; systems 

are often not functioning as expected, the metering strategy in schematics deviates due to mislabelling and 

intermittent adjustments, where space layouts may have changed and system components (FCUs, lighting, 

etc.) may have been added or replaced. Especially in older buildings design data is unreliable, where newer 

buildings have more up-to-date drawings and schematics, with only slight deviations from the original 

design. The collection of O&M design data and carrying out of an energy audit are a necessity in order to 

ensure a good level of understanding of the building, its processes and operation. This is strengthened by 

the analysis of operational data, collected at a high level of data granularity from; sub-metering systems, 

building management system and data from other sources, such as environmental sensors, Wi-Fi routers 

and swipe-card access data to quantify occupancy presence in a building. In the case research, data on these 

aspects was collected, analysed, and utilised to inform building performance simulation assumptions and 

verification of design strategies. Both electricity use and Wi-Fi data were used to understand the occupancy 

presence in the buildings to inform occupancy-, equipment- and lighting schedules. 

Occupancy presence data, when contrasted with energy use, showed that occupants have a 

strong influence on energy use. In particular, on lighting and power (r2 = 0.86 and 0.82 for CH and MPEB 

respectively) and less so on systems (r2 = 0.22 and 0.43 for CH and MPEB respectively). Typical weekday 

and weekend day schedules were created based on occupancy presence and then manipulated using 

electricity baseloads for lighting and power to create separate schedules. Additionally, the process 

incorporated a horizontal variability to account for daily variations and differences between occupancy and 

equipment and lighting loads. The typical weekday occupancy profiles that were created based on the data 

were nearly identical for CH and MPEB, indicating that perhaps they may prove to be very similar in other 

buildings as well. It is suggested that a database is established based on this type of occupancy data for 

different buildings and building types, this can then in the future prove an essential source of information 
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for both the calibration of models, but also for performance modelling purposes in the design stage of a 

building. Finally, system operation and performance was validated through analysing BMS data, such as 

supply-and return air temperatures of AHUs and operational setpoints on FCUs. Furthermore, space 

temperatures were analysed and compared to set-point temperatures to inform the heating- and cooling 

strategy. 

The case study buildings were compared to typical, albeit outdated, benchmarks, and did not 

provide a meaningful comparison. It highlights the need for more comprehensive benchmarking 

techniques. Understanding if buildings fall within typical or good benchmarks as presented is not 

straightforward due to internal differences such as additional services; large server rooms in MPEB or 

laboratory type spaces within a building. The office buildings were more similar to the benchmarks (as the 

benchmarks are also intended for offices), but determining their efficiency in operation or performance 

against the stock was difficult. As such, their electricity patterns were also compared at a higher level of 

data granularity by computing their representative load pattern and other load shape metrics. These proved 

to be more effective in identifying operational differences within the buildings. Total energy use baseloads 

were significantly different, from high to low, MPEB, CH and Office 17 and 71, with baseloads of about 60%, 

45%, 30% and 10% respectively. In addition, on-hour duration for MPEB was determined to be around 13 

hours, while the other buildings fluctuate around 16-18 hours. This was mainly due to the steep difference 

in energy use between the day and night in MPEB, whereas the profiles for the other buildings are much 

smoother and therefore calculate longer on-hour durations. 

Manual calibration was an essential part of the research methodology, as it gave an 

understanding of common differences between predicted and measured energy use and its underlying 

causes. It was evident that many solutions or configurations of input parameters or scheduling of 

operational processes can deem a model to be calibrated. However, this was narrowed down through 

collecting data at a high level of granularity so as to filter out incorrect solutions. Through the calibration 

process, it became clear that the reliability of a model is strongly dependent on the availability and accuracy 

of both design and measured data, which is the evidence to support any iterative changes. A higher level of 

data granularity proved essential in understanding and implementing correct operational schedules and 

HVAC strategies.  

Parametric simulations were employed in combination with uncertainty and sensitivity 

analysis to assess the sensitivity of input parameters on different energy end-uses and total energy use. It 

became clear that in all buildings, equipment power density was one of the more significant parameters to 

influence energy use, typical for non-domestic buildings. It is therefore important to make evidence based 

assumptions about these loads to make sure predictions are in line with measurements. For MPEB 

specifically, the large server rooms contribute to a significant proportion of total energy use and are the 

main driver of energy use within the building as they also affect system energy use. Other important factors 

are the heating and cooling set points, in particular in spaces with high internal gains. Insignificant 

parameters to influence energy use are material properties, in contrast to domestic buildings. For non-

domestic buildings there is an unintuitive trade-off between the thermal performance of the envelope and 

energy use. An improvement of the conductivity (decrease in U-value) of the envelope can have a negative 

effect on energy use due to high internal gains in certain spaces, which inhibit heat loss to the outside and 

therefore have an increased cooling load. Similar to the conductivity of materials, infiltration did not show 

to have a significant effect on energy use in any of the buildings, although there is a distinct difference 

between the seasons. 

The manually calibrated models were used to quantify the impact of simplifications (i.e. 

typical NCM assumptions) on the regulatory performance gap. The simplifications concerned with a change 
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of internal gains highlight the importance of accurately determining the assumptions for equipment and 

lighting power density in spaces, as they have a large effect on total energy use. In particular, server loads 

can be dominant in modern buildings, in MPEB energy use was strongly affected by the power use of the 

computer clusters, indirectly influencing systems energy use. Defining the right use-schedules for these 

loads is tantamount to establishing the right load assumptions for these spaces. As part of the manual 

calibration process, it was found that high baseloads exist in the buildings, which had to be accounted for 

by adjusting the internal gains schedules. These were a large contributor to a discrepancy between 

regulatory predictions and measurements as there was a significant difference to the typically assumed 

NCM equipment power baseload. In the case study buildings, the baseloads for equipment in Office 17, 71, 

CH and MPEB were ~25%, ~20%, ~65%, ~85% respectively, compared to the NCM assumption of 5.3%. 

Besides internal gains, the heating and cooling temperatures in different space types can vary significantly 

from that initially assumed to that in operation, without detailed temperature or BMS data, this would be 

difficult to replicate within a model. Moreover, in CH the operational set-point are manually adjustable, 

making it even more difficult to implement static strategies within a model. Replacing the calibrated set-

point temperatures with NCM assumptions led to a significant decrease in energy use for Office 17 and CH, 

while for Office 71 the temperatures were similar to NCM assumptions. Finally, the weather file based on 

historical weather data in London was replaced by a design weather file from Gatwick (simplification #10), 

which had a minor, but notable effect in increasing total energy use. 

Manual calibration achieved the statistical criteria that according to available guidelines deem 

a model to be calibrated, where automated calibration further mitigated differences between predictions 

and measurements to CV(RMSE) < 1%. Automated calibration at different levels of data granularity showed 

that calibrating to monthly energy end-use predictions compared to yearly end-uses and monthly energy 

use increased model accuracy by 23.5% and 11% respectively. Nevertheless, energy model calibration is a 

complex and time-consuming process. Automation alleviated some of the time-intense tasks, but also added 

another level of complexity. In terms of effectiveness, the automated calibration process was found to have 

some limitations; convergence is not always guaranteed, analysing retrofit options with the meta-model is 

limited to initial variable parameters, a meta-model introduces model error when feeding back calibrated 

parameters to the first-principle physics based software. Automated calibration can only find calibrated 

models within the initial search (possible input ranges) and solution space (possible outputs), computed 

during parametric simulation. The meta-model used for automated calibration is based on an initial set of 

parameters, it is therefore unable to compute new parameters unknown to the model, which for the 

purposes of retrofit is a limitation. Feeding back calibrated inputs into the first-principle physics based 

model introduced a model error <1% CV(RMSE) for monthly energy use. Finally, tight control and 

understanding of input parameters remains essential, even though calibration might obtain values and 

models that accurately fit measured data, it does not necessarily mean they are representing the real 

situation. Nevertheless, this was alleviated by increasing the level of data granularity, which in turn 

increases the accuracy of input parameters. 

Building performance modelling is a time-intense process, further protracted by the 

exhaustive nature of building model calibration, the verification of design data and analysis of operational 

data is helpful in improving model calibration accuracy, but at a cost. Automating some of the underlying 

processes can improve its time efficiency, further improved by prioritising tasks in order of significance on 

increasing model accuracy. Through the process of calibrating four full-scale building energy models to 

measured existing performance, the author found that the accuracy of models is strongly dependent on the 

granularity of energy data collected. At a hierarchical level, calibrating towards total energy use masks the 
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underlying end-uses significantly, while at a temporal level, sub-hourly data can inform on typical schedules 

of use to represent the actual processes more accurately than when only monthly data is available.  

Ultimately, the necessary level of detail of building calibration models is dependent on the 

purpose of calibration. For example, (1) if the model is needed to make recommendations of the indoor 

environment of a museum exhibition area for a close-control strategy, model calibration should focus on 

calibrating to space temperatures and humidity. While assumptions concerning material properties, control 

systems and people presence in this space need to be captured at a high level of detail. However, at this level 

of detail, such information is typically not directly available from built-in metering systems and would need 

additional sensors. In contrast, (2) if the purpose is to understand the impact of energy use by changing 

from a natural ventilation to comfort cooling strategy, then calibration towards energy uses should be at a 

high granularity. 

9.1.4 Contributions to knowledge 

This thesis and the author made three contributions to knowledge.  

First, in partnership with the UKGBC an investigation was carried out to understand how high 

building performance can be delivered throughout the building life cycle. It did this through qualitative data 

collection in the form of 15 semi-structured interviews with building construction industry experts, 

including architects, developers, investors, project managers, contractors, owner/occupiers and those in 

facilities management. In addition, round-table discussions were held with other industry experts, which 

formed a ‘task-group’ that aimed to explore different aspects in the building life cycle with regards to 

building performance, by discussing results from interviewees, desk-based research and their expert 

knowledge. Common barriers to delivering building performance were identified. It developed five key 

factors which should be adhered to in order to deliver reliable building performance. This research was 

published in an industry-focussed report by the UKGBC. 

Second, case research was conducted to mitigate differences between predicted and measured 

energy use in four existing buildings, while quantifying the impact of typical underlying causes of the 

regulatory performance. The case research highlighted common issues in data collection and performance 

prediction. Operational data was collected and used to inform building performance simulation, where 

sensitivity analysis and manual calibration mitigated differences between predictions and measurements. 

It furthermore explored the effects of building parameter assumptions and uncertainties on predictions and 

indirectly the energy performance gap. This contribution was support by developing a calibration 

methodology that compared predicted and measured energy use in existing buildings, for the application of 

both manual and automated calibration to mitigate discrepancies. It introduced several parametric 

techniques that improved the calibration process over previous research. 

Third, the effects of data granularity on model calibration accuracy was quantified through the 

application of meta-model based optimisation in three of the four case study buildings. Building on previous 

research in the area of model calibration, it sought out to understand how the data granularity affects model 

accuracy. Such knowledge is useful as it determines the relationship between model accuracy and need for 

quantitative data and information, establishing a trade-off between time consumption, cost and accuracy. 

Subsequent to the second contribution, which used manual calibration processes, meta-models were 

created based on the relationships between inputs and outputs created through parametric simulation. 

Higher levels of accuracy were achieved through using these meta-models for optimisation (i.e. automated 

calibration), but this was found to introduce additional complexity. 
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9.2 Further work 

The main research findings alleviate some of the limitations found in model calibration, while 

reiterating others that require further research for improvement. The author recognises that further 

improvements can be made to increase the calibration accuracy of building energy models and recommends 

that further research is beneficial in order to; effectively utilise calibrated models in retrofitting, advance 

automation in developing calibrated models, improve automated calibration techniques, and refine the use 

of machine learning in supporting calibrated models. In particular, the following areas for further work 

were identified: 

 There is a need for further development of more stringent and specific statistical measures for 

the acceptance criteria of calibrated models set out in different standards. In particular, they 

should account for higher levels of hierarchical data granularity, as a minimum, separating 

lighting, power and system energy use. Garret and New (2016) provide some background into 

the suitability of these criteria. Although, the availability of data at a high level of granularity 

is difficult to obtain in many existing buildings, recent regulatory changes require building 

energy data to be collected and disaggregated. 

 Model calibration in this research has mainly focussed on energy use, but can be extended to 

systems, see (Yin, et al., 2016) and environmental performance, see (Royapoor & Roskilly, 

2015). This is another level of model validation, making them better at representing reality. 

In addition, when this level of data granularity is not accurately represented in the model, it is 

unlikely to accurate predict conservation measures that are related to specific system changes 

or changes in their operational control. Research into the importance of these different data 

sources and their effect on model accuracy are necessary to understand how they increase 

model calibration accuracy. 

 Full-scale building models were constructed in this research to perform an in-depth 

comparison of energy use at a high level of data granularity. However, in practice, such time-

consuming work is infeasible as it takes weeks or even months to collect all the necessary data 

and build detailed energy models. Efforts at reducing the workload could look into the 

simplification of this process depending on the purpose of the calibrated model, several 

suggestions are made: 

o Research into the effect of simplifying the model by replicating similar zones and 

floors on accuracy of the model. 

o Software development to include features that support parametric simulation and 

automated calibration, which in many cases are already under way.  

o Building Information Modelling (BIM) could potentially make a positive difference 

in this area, as it aims to integrate information flows between different disciplines 

through all stages of the building life cycle, increasing efficiency and accuracy of 

model development. 

 Linking calibrated models to operational buildings for real-time forecasting of performance, 

and analysis of control strategies. Some research was done by O’Neill et al. (2014) and Pang 

et al. (2012), however research in this field is still in its early stages and is primarily limited 

to the availability and quality of data. Which is likely to change in the near future due to the 

internet of things and need for improved energy efficiency, health and wellbeing in buildings. 
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 The use of machine learning algorithms in building performance forecasting. In contrast to 

linking calibrated models with existing building for real-time forecasting, they can be used to 

learn and forecast the behaviour in the buildings solely based on measured building 

performance, including system performance, occupancy presence, weather data and energy 

performance. This avoids the need for building energy modelling, but will need high quality 

data at a high level of granularity.
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APPENDIX A. SUPPORTING TABLES 

Table A 1: Predicted and measured data taken from literary sources 
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Norford et al. (1994) Office 125  325 160% 1994 B 12000 DOE-2.1C 
Piette et al. (1994) Office   79 108 36% 1994 A 2304 DOE 2.1 
Piette et al. (1994) Office   80 118 48% 1994 A 1505 DOE 2.1 
Piette et al. (1994) Office   84 172 104% 1994 A 72734 DOE 2.1 
Piette et al. (1994) Office   89 118 33% 1994 A 288 DOE 2.1 
Piette et al. (1994) Office   91 226 148% 1994 A 2332 DOE 2.1 
Piette et al. (1994) Multipurpose   91 205 124% 1994 A 557 DOE 2.1 
Piette et al. (1994) Office   92 140 52% 1994 A 492 DOE 2.1 
Piette et al. (1994) Office   93 86 -7% 1994 A 279 DOE 2.1 
Piette et al. (1994) Office   99 108 9% 1994 A 195 DOE 2.1 
Piette et al. (1994) Office   106 140 32% 1994 A 790 DOE 2.1 
Piette et al. (1994) School   111 108 -3% 1994 A 2917 DOE 2.1 
Piette et al. (1994) Office   111 129 16% 1994 A 7404 DOE 2.1 
Piette et al. (1994) Multipurpose   123 258 110% 1994 A 307 DOE 2.1 
Piette et al. (1994) Multipurpose   125 258 106% 1994 A 1236 DOE 2.1 
Piette et al. (1994) Office   144 151 5% 1994 A 1245 DOE 2.1 
Piette et al. (1994) School   149 140 -6% 1994 A 5175 DOE 2.1 
Piette et al. (1994) Office   158 108 -32% 1994 A 399 DOE 2.1 
Piette et al. (1994) Multipurpose   191 215 13% 1994 A 4366 DOE 2.1 
Piette et al. (1994) Multipurpose   200 484 142% 1994 A 1171 DOE 2.1 
Piette et al. (1994) Office   215 269 25% 1994 A 10986 DOE 2.1 
Piette et al. (1994) Office   226 237 5% 1994 A 36139 DOE 2.1 
Piette et al. (1994) Office   276 215 -22% 1994 A 8482 DOE 2.1 
Piette et al. (1994) Restaurant 166  237 43% 1994 B 1960 DOE 2.1 
Piette et al. (1994) Restaurant 384  657 71% 1994 B 232 DOE 2.1 
Piette et al. (1994) Restaurant 1147  1399 22% 1994 B 251 DOE 2.1 
Piette et al. (1994) Restaurant 1658  1442 -13% 1994 B 381 DOE 2.1 
Piette et al. (1994) Supermarket 775  581 -25% 1994 B 307 DOE 2.1 
Piette et al. (1994) Supermarket 472  495 5% 1994 B 3865 DOE 2.1 
Diamond et al. (2006) Library 240  164 -32% 2006 B (ASHRAE) 38275  
Diamond et al. (2006) Multipurpose 218  151 -30% 2006 B (ASHRAE) 20476  
Diamond et al. (2006) Office 199  148 -25% 2006 B (ASHRAE) 1672  
Diamond et al. (2006) Multipurpose 177  139 -21% 2006 B (ASHRAE) 5946  
Diamond et al. (2006) Office 164  151 -8% 2006 B (ASHRAE) 1689  
Diamond et al. (2006) Office 215  246 15% 2006 B (ASHRAE) 567  
Diamond et al. (2006) Library 208  309 48% 2006 B (ASHRAE) 2044  
Diamond et al. (2006) Office 110  192 74% 2006 B (ASHRAE) 6503  
Ahmed & Culp (2006) Multipurpose 247  214 -13% 2006 B (ASHRAE) 11516 DOE-2.1E 
Ahmed & Culp (2006) Multipurpose 500  438 -12 2006 B (ASHRAE) 17837 DOE-2.1E 
Ahmed & Culp (2006) Multipurpose 423  413 -2 2006 B (ASHRAE) 12156 DOE-2.1E 
Ahmed & Culp (2006) Multipurpose 698  1030 48 2006 B (ASHRAE) 16450 DOE-2.1E 
Diamond et al. (2006) Multipurpose   486 151 -69 2006 A (ASHRAE) 2992  
Diamond et al. (2006) Office 530  498 -6 2006 B (ASHRAE) 779  
Diamond et al. (2006) Office 218  218 0 2006 B (ASHRAE) 11664  
Diamond et al. (2006) Office 249  230 -8 2006 B (ASHRAE) 4853  
Diamond et al. (2006) Office 394  69 -82 2006 B (ASHRAE) 6689  
Diamond et al. (2006) Office 836  404 -52 2006 B (ASHRAE) 4840  
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Diamond et al. (2006) Laboratory 1114  1126 1 2006 B (ASHRAE) 6544  
Diamond et al. (2006) Laboratory 842  855 1 2006 B (ASHRAE) 6685  
Diamond et al. (2006) Laboratory 470  915 95 2006 B (ASHRAE) 31178  
Diamond et al. (2006) University 85  104 22 2006 B (ASHRAE) 7322  
Diamond et al. (2006) Multipurpose 145  325 124 2006 B 34221  
Pegg et al. (2007) School 103  219 112 2007 D 10627  
Pegg et al. (2007) School 100  228 127 2007 D 10529  
Pegg et al. (2007) School 99  209 111 2007 D 13000  
Knight et al. (2008) University 286  310 8 2008 B (SBEM) 11150 SBEM 
Calderone (2011) Office 67  76 13 2011 B (NABERS) 14500 IES VE 
Calderone (2011) Office 83  61 -26 2011 B (NABERS) 34000 IES VE 
Calderone (2011) Office 168  122 -27 2011 B (NABERS) 14500 IES VE 
Calderone (2011) Office 89  76 -15 2011 B (NABERS) 5900 IES VE 
Menezes et al. (2012) Office 60 30 128 113 2012 E 2000 TM22 
Menezes et al. (2012) Office 60 30 103 72 2012 E 2000 TM22 
Korjenic & Bednar (2012) Office 82  115 40 2012 H 4811 BuildOpt 
Bertagnolio et al. (2012) Office 153  170 11 2012 C 4432 ISO 13790 
Austin (2013) Office 240  353 47 2013 B (NCM) 9144 VIS DOE 3.0 
Salehi et al. (2013) Multipurpose 35  59 69 2013 B (NECCB) 5700 IES VE 
Daly et al. (2014) Office 68  66 -2 2014 B (ASHRAE) 7500 ECOTECT 
Kimpian et al. (2014) School 160  280 75 2014 F 10490 DSM / TM22 
Kimpian et al. (2014) School 190  245 29 2014 F 10172 DSM / TM22 
Kimpian et al. (2014) School 111  212 91 2014 F 10418 DSM / TM22 
Kimpian et al. (2014) School 75  168 124 2014 G 14610 DSM / TM22 
Kimpian et al. (2014) School 92  125 36 2014 F 2834 DSM / TM22 
Kimpian et al. (2014) Office 142  100 -30 2014 F 2310 DSM / TM22 
Murphy & Castleton (2014) Office 168  140 -17 2014 B (SBEM) 9996 SBEM 
Ruyssevelt (2014) Office 138  225 63 2014 unclear   
Ruyssevelt (2014) School 119  163 37 2014 unclear   
Ruyssevelt (2014) University 124  317 156 2014 unclear   
Ruyssevelt (2014) Retail 174  195 12 2014 unclear   
Torcellini et al. (2006) Multipurpose 0  52  2006 B (ASHRAE) 1265 DOE 2.2 
Torcellini et al. (2006) Retail 48  78 62 2006 B (ASHRAE) 1076 DOE 2.1E 
Torcellini et al. (2006) Office 86  114 31 2006 B (ASHRAE) 3205 DOE 2.2 
Torcellini et al. (2006) Office 73  126 73 2006 B (ASHRAE) 2900 EnergyPlus  
Torcellini et al. (2006) Multipurpose 39  90 132 2006 A (ASHRAE) 930 DOE 2.1E 
Torcellini et al. (2006) Multipurpose 64  124 95 2006 B (ASHRAE) 3940 DOE 2.1E 

Table A 2: Prediction methods, see Table A1. 
 Type of prediction 
A Design stage calculation, excluding unregulated loads 
B Design stage calculation, including equipment loads, standard operation 
C Design stage calculation, including equipment loads and detailed operation 

D 
CIBSE building energy code 1 (1998) using monthly average temperatures and included unregulated 
loads, no thermal modelling, similar to CIBSE TM22 bottom-up approach 

E CIBSE TM22 Bottom-up approach 
F NCM in thermal modelling + equipment, external lighting and lift using TM22 

G 
NCM in thermal modelling + benchmarking for DHW and Auxiliary loads +equipment, external lighting 
and lift using TM22 

H Monthly balance method (EN-ISO 13790) + equipment loads 
I Quasi steady-state hourly simulation relying on simple normative models (EN-ISO 13790) 
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Table A 3: Underlying causes identified in literature case studies 
Source Effect on 

energy use 
Underlying issue Context 

Austin (2013) 44% Poor practice Fans, pumps and cooling showed greatest divergence between 
modelling and metered, underestimated caused by the  way the 
plant is controlled, different from assumptions 

Austin (2013) 25% Specification uncertainty Lighting and small power overestimated 
Austin (2013) 30% Calculation methodologies Main server room and its air conditioning not included in 

original model, a substantial load of the total electricity use 
Bhandari et al. (2012) 7% Scenario uncertainty Predicted energy use can vary up to 7% as a function of the 

provided location’s weather data 
Bloomfield (1988) -46% to 

106% 
Heuristic uncertainty BRE observed 25 users giving different predicted energy 

consumption of a large complex building 
Brown et al. (2010) 9% Energy use variability in 

operation 
Present a longitudinal analysis of 25 buildings in the UK and 
found an increase of 9% in energy use on average per year, with 
a standard deviation of 18% 

Burman et al. (2012) 10% Modelling uncertainty Found that pumps’ auxiliary power could not be modelled for 
compliance purposes and had to apply default values based on 
HVAC system type the case study building, this amounts to 
approximately 9.3 kWh/m²/yr error in estimating the actual 
energy usage of pumps (10% of total energy use), whereas a 
simple back of envelope calculation based on the pumps’ ratings 
would yield a result close to the sub-metered data 

Burman et al. (2012)  Scenario uncertainty Wrong setpoints, too high estimation in DHW use 
Burman et al. (2014) 25% of gap Poor commissioning Poor implementation of control strategy for mechanical 

ventilation led to failure of demand-controlled ventilation (fans 
run at full capacity regardless of actual demand), led to excessive 
auxiliary and heating energy use. Poor actuator control at the 
sliding header interface between GSHP and gas-fired boilers, 
which led to low contribution of the heat pumps to heating, 
almost half of design intent. 

Burman et al. (2014) 75% of gap Poor practice Schedules of operation of heating and ventilation systems were 
not controlled 

Calderone (2011) +16% Specification / Scenario 
uncertainty 

Higher ventilation rates than design and lower internal heat 
loads resulted in an increase in 40% increase in gas use 

Calderone (2011) -5% Specification uncertainty HVAC pumps using 40% more electricity than predicted due to 
optimistic profile use for variable speed pumping strategy 

Calderone (2011) +5% Specification / Scenario 
uncertainty 

Heat pump VRF system is using 6 times more electricity than 
predicted due to an increase in longer than expected operating 
hours and higher infiltration rates 

Calderone (2011)  Modelling uncertainty Modelling software cannot model all control scenarios installed 
within a building 

Calderone (2011)  Poor practice Building management can have a large impact on overall energy 
use based on their understanding and operation of systems 

Calderone (2011)  Scenario uncertainty Weather variation adversely impact energy consumption of 
HVAC system, especially noticeable for extreme events which are 
generally not found in test reference year data 

de Wilde (2014) 5% Energy use variability in 
operation 

Heat pump coefficient of performance high effect on prediction, 
degradation of heat pump due to being used at partial load 

Fedoruk et al. (2015)  Institutional issues Primary impediments were institutional in the sense that they 
arose from the way the various stages of the building life cycle 
were specified, contracted and implemented. Problems had to do 
with a lack of useful information, interpretation, communication, 
feedback and integration than with the expense and technical 
difficulty involved in implementing design goals 

Fedoruk et al. (2015)  Measurement system 
limitations 

Significant fault in meters that did not recognize flow 
directionality, were mislabelled, incorrectly installed and 
calibrated, left out of the energy understanding boundary, or 
which used differing convention for various system components. 

Guyon (1997) ±40% Heuristic uncertainty Investigated influence of 12 energy modellers on predicted 
energy use of residential house 

Karlsson et al. (2007) 2% Inter-model variability Differences between three difference dynamic simulation tools 
(domestic building) 
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Source Effect on 
energy use 

Underlying issue Context 

Karlsson et al. (2007) 7% Occupant behaviour Difference in internal gains due to occupant habits 
Karlsson et al. (2007) 10% Poor practice Airflow control 
Karlsson et al. (2007) 20% Specification uncertainty Heat exchanger efficiency 
Kimpian et al. (2014)  Poor practice Excessive heating consumption due to BMS shortfalls and lack of 

seasonal commissioning 
Kimpian et al. (2014)  Scenario uncertainty Setpoints and operational schedules often higher and longer 

than assumed 
Kimpian et al. (2014)  Changes after design Automatic doors had sensors that were difficult to adjust to 

achieve smaller openings during winter time and security 
camera links that would have enabled the doors to stay shut 
longer were value-engineered out. 

Kimpian et al. (2014)  Degradation of materials Window seals were found to degrade within the first year of a 
school’s operation 

Kimpian et al. (2014)  Poor practice Thermal setpoints for plenum ventilation flaps were not enabled 
in the BMS, resulting in complaints about overheating 

Kimpian et al. (2014)  Specification uncertainty Energy use predictions routinely under-estimate occupier 
electrical loads arising from appliance and IT loads 

Kimpian et al. (2014)  Specification uncertainty / 
poor practice 

Full load specific fan powers (SFP) achieved at the 
commissioning stage were higher than the design intent in all 
cases. Dirty and clogged air filters found in the buildings further 
aggravated these. 

Kimpian et al. (2014)  Energy performance target The lack of energy-focused commissioning had a major impact 
on performance outcomes 

Kimpian et al. (2014)  Changes after design Users found actuators for automated windows disruptively noisy 
at these buildings, motors specified were replaced with a 
cheaper model. These resulted in excessive heat consumption 
during winter and discomfort from overheating during the 
summer. 

Kleber & Wagner 
(2007) 

 Poor practice Monitored and office building and found that failures in 
operating the building’s facilities caused higher energy 
consumption, they underline the importance of continuous 
commissioning 

Kawamoto et al. (2004)  Occupant behaviour 82-97% power down overnight 
Maile (2010)  Poor commissioning Uncalibrated sensors on electrical sub-meters were off by a 

factor eight 
Maile (2010)  Poor practice Wrongly assumed control strategies 
Martani et al. (2012) 63-69% Occupant behaviour Analysed two building and revealed significant correlation 

between electricity consumption and occupancy 
Masoso & Grobler 
(2010) 

 Occupant behaviour Night-time energy use (leaving office equipment on) 

Moezzi et al. (2013)  Poor practice Building operations can help achieve higher energy savings 
through better operation, and indicate that assumption may not 
be met. 

Mulville et al. (2014)  Occupant behaviour 70-72% power down overnight 
Murphy & Castleton 
(2014) 

 Changes after design Report in their case study that the roll-out of unspecified low-
energy equipment not taken into account in the predicted model 
affected final unregulated loads, influencing both unregulated 
energy use and cooling energy due to lower internal gains.  

Murphy & Castleton 
(2014) 

 Changes after design / 
Specification uncertainty 

Equipment loads 50% lower due to “thin-client” pc terminals 

Murphy & Castleton 
(2014) 

 Heuristic uncertainty Reviewed a compliance model, which they wished to compare 
with measured energy use. Although not having access to the 
model, they realised that the compliance model output 
suggested a total floor area twice the size of the actual floor area, 
likely due to the model taking the ceiling void into account as 
occupied spaces 

Murphy & Castleton 
(2014) 

 Specification uncertainty Lower lighting energy use than predicted 

Neymark et al. (2002) 4-40% Inter-model variability A comparative study of 7 different tools 
Neymark et al. (2002)  Numerical uncertainty Faulty algorithms caused errors of up to 20-45% in predicting 

COP values 
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Source Effect on 
energy use 

Underlying issue Context 

Norford et al. (1994) 24% Scenario uncertainty Extended HVAC operation 
Norford et al. (1994) 64% Specification uncertainty Lighting and office equipment powers in design 10.8 and 5.4 and 

practice 16.2 and 15.1 
Norford et al. (1994) 12% Specification uncertainty HVAC equipment not operating to specs (assumed) 
Pang et al. (2012)  Poor practice Poor operational practice, malfunctioning equipment, 

incorrectly configured control systems and lack of continuous 
commissioning are often reported as main drivers for 
underperformance in operation 

Parys et al. (2010) ±10% Occupant behaviour Reported a standard deviation of up to 10% on energy use to be 
related to occupant behaviour 

Pegg et al. (2007) 30-45% 
heating 

Poor practice Heating energy consumption underestimated 30-45% due to 
mechanical ventilation on outside occupied hours 

Pegg et al. (2007) 3x 
Operational 
hours 

Scenario uncertainty Hours of operation underestimated by a factor of 3 although 
design lighting load correct 

Pegg et al. (2007) 57-75% 
small power 
energy 

Specification uncertainty 57% to 70% underestimation of small power energy use, 
different load and operation 

Piette et al. (1994) 6% Energy use variability in 
operation 

Variability in use from 3th to 4th year by 6% 

Raslan & Davies (2010)  Modelling uncertainty Steady state models have a difficulty to model complex systems 
while dynamic simulation systems were capable 

Salehi et al. (2013)  Specification uncertainty Underlying assumption for plug loads and lighting significantly 
underestimated actual energy use 

Schwartz & Raslan 
(2013) 

35% Inter-model variability Differences between three difference dynamic simulation tools 

Torcellini et al. (2006)  Changes after design Important changes to the design occurring late in the design 
development were not updated in the energy models 

Torcellini et al. (2006)  Changes after design Omission of a lighting display area 
Torcellini et al. (2006)  Changes after design Electrical lighting circuiting not installed as designed, limiting 

daylight control strategy and giving uneven light distribution. 
Torcellini et al. (2006)  Changes after design Not installed specified window and door frame thermal breaks 
Torcellini et al. (2006)  Energy performance target Measurable performance goals translate into efficient building 

performance 
Torcellini et al. (2006)  Poor practice and 

malfunctioning equipment 
Energy-saving technologies such as lighting controls, CO2 
sensors an desiccant heat recovery are not used or faulty 

Torcellini et al. (2006)  Procurement issue Foundation missing specified perimeter insulation resulting in a 
thermal bridge and affecting occupant comfort and energy 
performance 

Torcellini et al. (2006)  Scenario uncertainty Simulation create idealistic controls, actual performance showed 
different setpoints and less setup and setback of space 
temperatures 

Torcellini et al. (2006) Twice those 
assumed 

Specification uncertainty Plug loads were often greater than design predictions, and loads 
underestimated for server room, exterior lighting and 
mechanical accessories 

Torcellini et al. (2006)  Specification uncertainty Insulation values are optimistic compared to actual construction 
techniques 

Torcellini et al. (2006)  Specification uncertainty 
and Occupant behaviour 

Designers were too optimistic about the behaviour of occupants 
and their acceptance of systems 

Wang et al. (2012)  Poor practice Uncertainty due to operational practices poor practice increase 
in energy use by 49-79% while good practice reduces 
consumption by 15-29% 

Wang et al. (2012) -4% to 6% Scenario uncertainty Year-to-year weather fluctuation on energy use -4% to 6% 
Wetter (2011)  Modelling uncertainty Mechanical systems often simplified and do not capture their 

dynamic behaviour and part-load operation 
Zhang et al. (2011)  Occupant behaviour Surveyed 143 staff and found that 60% never turn down 

computer, while 31% did so occasionally 
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APPENDIX B. BACKGROUND OF QUOTED INTERVIEWEES 

The qualitative research carried out through the use of interviews and round-table discussions 

with industry experts resulting in a variety of quotes that were used. Although all interviewees are 

anonymised, Table B1 provides some context to the quotes given in chapter 3. 

 

Table B1: Role and background of quoted interviewees in chapter 3. 
Code Professional role Background 

INT1 
Head of sales at a 
proprietary software 
developer 

Wealth of experience in multi-disciplinary, collaborative, 
building design and specific expertise in energy modelling, 
building physics and building performance. Previously led 
Building Physics team and large global engineering 
consultancy. 

INT2 

Head of energy & 
sustainability at 
multinational defence 
technology company in 
the UK 

Experience in energy and carbon, sustainability in the built 
environment, economic decision making, statistics and 
financial appraisal techniques. Previous experience as a 
sustainability and environmental operations manager for a 
large project management and construction services 
company for the UK government. 

INT3 
Head of sustainability at 
large property investment 
and development business 

Responsible for developing and delivering the sustainability 
agenda for a large property investment and development 
business headquartered in London. Previous experience as a 
sustainability and environmental design manager. 

INT4 
Sustainability manager at 
one of the largest property 
managers in the UK 

Environmental and sustainability professional with 
experience in the property industry for the management 
and delivery of complex schemes at asset and portfolio level. 
Experience in negotiating and facilitating discussions with 
key stakeholder groups within the built environment 
throughout the RIBA stages. 

INT5 
Head of Sustainability at 
large global asset 
management company 

Previous experience at global engineering consulting 
companies, heading the sustainability teams therein. 25 
years’ experience in the sustainability and carbon 
management sector.  

INT6 

Head of innovation and 
property solutions at a 
large commercial 
property investment 
company 

Responsible for creating and implementing long-term 
engineering, environmental, smart procurement, intelligent 
building and product innovation strategy. With previous 
experience in heading up the design and engineering 
departments at a large property investment company 

INT7 
Portfolio manager at a 
multinational technology 
company 

Strong technical engineering and environmental 
background and broad range of experience across areas 
including strategic planning, operations and change 
management. Previous experience as sustainability program 
manager and consultant. 

INT8 

Head of sustainable 
development at 
international professional 
engineering association 

With 10 years of experience in a large consulting firm, 
specialises in low-carbon buildings, health and wellbeing 
and a variety of built environment projects from early 
master planning through to post-occupancy evaluation and 
policy work.  
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APPENDIX C. DESCRIPTION OF CASE STUDY BUILDINGS 

Office 17 

Office 17 is a pre-1930’s office building with a total gross floor area of ~1924 m2, occupied by 

about 200 people. It partially adjoins other office buildings and provides daylight through openable 

windows and roof lights. All floors, from basement to second floor are open plan office with typically 1 or 2 

meeting rooms. In addition, the basement contains a large print room, server room and canteen. The ground 

floor reception is the main entrance to the building and directly connects to the open plan office. The front 

façade and an aerial view of the building are shown in Figure C1 and Figure C2 respectively.  

 
Figure C1: Front façade of the building 

 
Figure C2: Aerial view of the building 

Building elements 

The building fabric consists of solid walls with no insulation and single glazing in aluminium 

frames. Two stairwells connect the basement, ground- and first floor, in addition a lift connects all floors. In 

the basement, a canteen and print room are located with open connection to the open plan office space. 

Heating and cooling 

Heating is provided by two gas-condensing boilers installed on the first floor, whereas 

domestic hot water is provided by decentralised electric heaters. The print room, canteen and office spaces 

in the basement and the server are air-conditioned, as well as most of the meeting rooms, while all other 

floors are naturally ventilated with fans located on ceilings to provide extra air movement during the 

summer. Local desk fans are provided during the summer months. 

Lighting and power 

T-8 high frequency fluorescents provide electric lighting in the office spaces, with LED lights 

in the reception and meeting rooms, additional desk lamps are present in some cases. The office spaces are 

densely populated. Desks typically have two screens and a laptop or in some cases a desktop computer to 

run heavier engineering software. The building is equipped with a sub-metering system connected to all 

floors and is used to provide half-hourly data used in this study.  
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Office 71 

Office 71 is a 6-storey mid-terrace office building. The building has been substantially 

refurbished both internally and externally in 1997. Consequently, the building can be considered to be in 

good condition commensurate with its age (thought to be late 1950s/early 1960s).  

 
Figure C3: Office 71 located in dense urban area. 

 
Figure C4: Aerial view of Office 71 

Building elements 

Building structure includes a reinforced concrete frame with solid concrete basement floor, in 

situ cast concrete upper floors and roof decks with asphalt finished flat roofs. Assumed cavity brick and 

blockwork to the rear elevation, with reinforced concrete cladding to the front elevation. Double-glazed 

aluminium tilt and turn windows are provided throughout, with secondary glazing to the ground floor. 

External areas are minimal, with a small loading bay to the rear of the building. 

Heating and cooling 

Building services were designed and installed in 1997, since, a heat pump installation (VRV) 

was added in 2000. Heating for the building is provided by a low pressure low temperature hot water 

(LPHW) heating system, generated by 2 gas fired cast iron boilers each rated at 147kW, arranged in parallel 

and controlled by a sequence controller. Circulation through the primary heating circuit is maintained by 

duplicate direct drive centrifugal pumps installed in the primary circuit flow, arranged in parallel to serves 

the boiler primary heating circuit and air-handling unit heater batteries. Radiators are located around the 

external elevation beneath the windows on each floor. In addition, an air-handling unit provides 

supplementary heating and cooling for the office floors, supported by an air-cooled modular multi-zone 2-

pipe VRV system. The air-cooled units are located within the roof plant area and condensing units are 

located on the external area of roof.  Fan coil units serve the offices and meeting rooms, this system operates 

independently of the LPHW heating and ventilation plant. Domestic hot water is generated via local electric 

point of use water heaters located adjacent to tea points and toilets. Domestic hot water for the kitchen is 

generated via a 550-litre capacity unvented direct storage calorifier. 

Ventilation 

An air-handling unit distributes tempered fresh air to each floor via a row of side wall extract 

grilles running at high level along the south elevation of each floor. The return air is distributed via an 

extract riser separate from the air handler. Additionally, mechanical fans located on the roof, extract air 
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from the kitchen, print room and toilet spaces. An overview of the HVAC systems in Office 71 is shown in 

Figure C5. 

  
Figure C5: Office 71 HVAC schematic, arrows representing supply to sub-system components. 

Lighting and power 

Compact fluorescent lighting exists throughout the building, typically fittings were used with 

lamps in two varieties, a 26W and 58W fitting. Equipment power use in the building is mainly through 

computers/laptops and screens, where some ancillary equipment can be found in both the office and 

meeting spaces, such as projector, printers and TV’s. 

CH 

CH hosts the University College London departments of the Bartlett School of Environment, 

Energy and Resources, Communications & Marketing, the Development & Alumni Relations Office (DARO). 

UCL acquired the majority of CH in mid-2009. Originally built around the early 1900’s, it had a major 

refurbishment on all seven floors in 2010. CH provides 4585 m2 of office accommodation, library and other 

facilities over basement, ground floor and six upper floors. 
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Figure C6: CH front entrance 

 
Figure C7: Aerial view of CH 

The building consists primarily of higher education office (44%). There are student work 

areas in the basement, which are more like meeting rooms and several IT intensive office spaces (2%), 

which provide hot desks for students. On the ground floor, there is a lecture theatre that is regularly used 

in the evenings for lectures or gatherings and during the day by students. The refurbishment created space 

for a new library (300 m2) to provide both storage for literary works and working space for students. 

Building elements 

The building structure consists of a combination of cast concrete floors and brick walls. 

External walls have been insulated on the inside with a thermal lining composite board, fixed to the 

brickwork. In addition, secondary glazing has been added behind the single glazing at every window, where 

double glazing is fitted to the ground floor skylights. 

Heating and Cooling 

Heating and cooling to all offices, meeting rooms, comms rooms and learning spaces is 

provided by a VRV multi split system with heat recovery. 19 outdoor condensing units are located on the 

roof and connect to a multitude of indoor evaporators of differing capacities. The system allows for 

simultaneous heating and cooling in different zones. Central control panels allow for adjusting and resetting 

the setpoint temperatures of the units. Hot water is provided to the toilet areas, kitchenette areas and 

cleaners’ cupboard through electric hot water heaters. Radiator heating to the stair spaces is provided by 

two condensing boilers located within the basement boiler house. An overview of the HVAC systems in is 

given in Figure C8. 



 

C. van Dronkelaar (2018)  213 

 
Figure C8: CH HVAC schematic. 

Ventilation 

Nearly all perimeter spaces have openable windows to allow for natural ventilation, spaces 

without windows have air provided through transfer grills from other spaces. For some spaces in the 

basement and ground floor, an air-handling unit provides fresh air. These come with complete DX coils, 

cooling and heating the air as required. Ducted extract systems serve the toilets and shower areas on all 

floors. 

Lighting and Power 

In the lavatories and circulation spaces, lighting is activated through occupancy detection, for 

all other areas lighting is turned on manually, but will switch off when people leave the space. Lighting in 

offices and meeting rooms is typically provided by recessed 600x600mm modular luminaires (3x24W T16) 

with dimming. In the circulation spaces there are single downlights luminaires (TC-TEL 32W). The 

reception and library have generally lower wattage luminaires (18W LEDs) installed. Equipment power is 

similar a typical office building, but follows a different pattern of use as it serves as a university building, 

where occupancy fluctuates heavily throughout the year. 

Renewables 

Electricity is generated by 18 photovoltaic panels each 190W, able to generate 3.42 kWp, 

which is estimated to produce approximately 3,000 kWh per year. The PV system is connected to a 

distribution board, separately monitored to determine the exact amount of electricity generation. 

MPEB 

MPEB was completed in 2005 and is home to a number of UCL Engineering departments as 

well as the Institute of Making. The main facade is divided into three sections, covered with glass and 

terracotta. 
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Figure C9: Front entrance of MPEB on UCL campus 

 
Figure C10: Aerial view of MPEB 

The UCL Department of Computer Science, Medical Physics & Biomedical Engineering and 

Mechanical Engineering, occupy most of the building. The basement is split into three main functional areas 

- engineering workshop, technology laboratory, and a thermodynamics laboratory. The ground floor 

comprises of an entrance foyer/reception, loading bay, computer cluster, fuel store, and plant room. The 

upper floors are predominately used for research. The main teaching facilities are located on the first floor, 

with cellular offices and labs on second to fourth floors, and a combination of open-plan and cellular office 

accommodation on fifth to eighth floors. The building is located within the UCL campus premises and closely 

surrounded by other UCL estates owned buildings. The building is multi-functional and contains offices, 

laboratory, workshops, large server space, computer labs, meeting rooms and a small number of kitchen 

and reception areas. The upper levels consist of office space, whereas the basement, first floor and ground 

floor mostly contain workshops, seminar rooms and laboratory spaces. 

Building elements 

The building structure is made of a nine storey steel frame (1 basement and 9 floors in the 

superstructure). Some of the steel columns extend down to basement level for founding. The superstructure 

is generally pre-case concrete planks with a concrete box basement. The cladding finish to North, South & 

West elevations is profiled PVF2 coated galvanised steel sheeting with ribbon windows on the 1st to 8th 

floors. The East elevation finish is curtain walling with terracotta tile panels. The front of the building has a 

glazed curtain wall, which encloses the entrance foyer, and passenger lift lobbies on all above ground floors. 

Heating and cooling 

MPEB is connected to the UCL district heat network. This serves the heating system with 

LTHW to the air handling units, re-heater heating coils, radiators and local duct mounted heater batteries 

(fan-coil units and over door curtain heater). Radiators provide heating primarily to office spaces at the 

perimeter of the building, about half of the office spaces are provided with fan coil units sometimes in 

combination with radiators. Chilled water is generated by two packaged air-cooled water chillers located 

on the roof. Chilled water is distributed to serve the cooling coils in the air handling units, remote duct 

mounted cooling coils and fan coil units throughout the building. Basement laboratory and workshop areas 

are provided with electric storage water heaters. domestic hot water is serviced from the existing heating 

network from the building next door, providing hot water through various risers to the male and female 

lavatories. 

Ventilation 

Plenum fresh air is provided to the 2nd to 8th floor general areas (circulation and several open 

plan offices) from AHU5. The lift lobby at the front of the building at every floor and the lavatories are 
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provided with fresh air from AHU4, and separately extracted through independent twin toilet extract fans, 

located at roof level. The first floor areas including the lecture theatres are provided with treated, heated 

and cooled supply air and extract ventilation from AHU1, located in the ground floor plant room. Each of 

these rooms is also provided with a duct mounted LPHW re-heater coil and chilled water cooling coil to 

adjust the supply condition to suit the various zone load conditions. Ground floor areas are provided with 

treated, heated and cooled supply air and extract ventilation, served by AHU3 located on the ground floor 

with separate extract. Most of the basement areas are served by AHU2 with separate extract, where 

additional ventilation is and extract are provided to the engine dynamometer cells through louvres and high 

duty extract fans. Fume extract is provided to several of the workshop and separate Institute of Making. 

Along the perimeter, offices on the first floor and up have openable windows for natural ventilation. An 

overview of the HVAC systems in MPEB is shown in Figure C10. 

    
Figure C10: MPEB HVAC schematic, arrows representing exclusively supply to sub-systems. 

Lighting and power 

From the ground floor to the 8th floor, lighting comprises of recessed- and compact fluorescent 

luminaries controlled via a lighting management system at each floor, movement sensors are provided 

throughout the general use areas. Lecture theatre and meeting rooms are provided with a dimming 

interface to allow the lighting to be controlled. Local switching is provided in spaces such as storage, 

cupboards, dark rooms, laboratories and plant rooms. Equipment loads in the spaces are somewhat higher 

than those found in CH, although most of the spaces in MPEB are offices, there are multiple spaces such as 

laboratory, workshops spaces and smaller server rooms that contain a large amount of additional 

equipment.  
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APPENDIX D. BUILDING MODELLING INPUTS 

In Table D1 an overview is given of the space types present in the four buildings, the number 

of spaces assigned to them and their total floor area.  

Table D1: Space types in the case study buildings,  
the number of spaces assigned, and floor area in their respective models.  

Space type Office 17 Office 71 CH MPEB 
 no. m2 no. m2 no. m2 no. m2 
Office 4 1258 3 1042 69 1999 114 2588 
Circulation 1 55 28 489 46 895 95 1698 
Storage 3 54 9 137 28 111 33 231 
Lavatory 3 45 6 143 24 246 28 345 
Meeting 4 120 6 217 24 235   
Lift 1    16 111 27 130 
Kitchen   1 41 11 171 2 34 
Server 1 54   9 62 2 168 
Shower     6 16 1 8 
Lecture Theatre     4 172 5 281 
Plant 1  1 80 3 77 9 320 
Reception 1 155 1 121 2 116 2 35 
Computer Cluster     2 76 6 492 
Print Room 1 115   1 9 3 28 
Library     2 303   
Workshop       9 714 
Laboratory         
Lift Lobby       10 524 
Canteen 1 68 1 284     
All spaces   1924 56 2554 225 4598 467 8451 

Materials 

In Office 17, different material properties were included as uncertain parameters and it was 

evident that mainly the conductivity of materials was important. Macdonald (2002) quantified the 

uncertainties in material properties for conductivity, solar absorptance and emissivity to be 5%, 1% and 

12.25% respectively. These uncertainties were taking into account for the materials in Office 17, however 

only the conductivity in the remaining three case studies was taken into account. See Appendix E for 

properties of the building materials used and their build-up. 

People density and metabolic rate 

People have a large influence on the energy use of a building, they are the ones that use the 

equipment, lighting and for whom generally a conditioned space is provided. In building energy modelling 

the amount of people in a building or zone is defined by the people density. The number of people in a 

building or zone can be difficult to determine. For CH and MPEB, use is made of Wi-Fi and swipe card access 

data to establish when and how many people are present in the building. Base people density values were 

taken from the National Calculation Methodology (NCM) modelling guide for buildings other than dwellings 

in England (NCM, 2013). These were combined with the by the peak number of occupants to establish a 

specific people density for different space types, shown in Table D2.  

Table D2: People density (m2/p) per space type 
Space type Office 17 Office 71 CH MPEB 
Office 5 9 7 11 

Circulation 15 9 16 25 

Storage 20 40 16 25 
Lavatory 9 9 7 11 
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Space type Office 17 Office 71 CH MPEB 
Meeting  9 7 11 
Lift 20 20 16 25.2 
Kitchen   3 5 
Server   7 11 
Shower   7 11 
Lecture Theatre   3 5 
Plant  9 20 11 
Reception 5 10 10 11 
Computer Cluster   6 5 
Print Room 5  7 11 
Library   7 11 
Workshop    11 
Laboratory    11 
Lift Lobby    5 
Canteen 5 3.5   
Peak no. of people   600 800 

The number of people can directly affect parameters such as natural and mechanical 

ventilation flow rates. Additionally, people dissipate heat, the amount depends on the type of activity they 

perform. Typical values for the heat generation of people for different types of activities are assigned to 

different space types as shown in Table D3. 

Table D3: Typical metabolic rate and heat generation per unit area of body surface for various activities 
Activity Metabolic 

rate (Ma) 
Heat generation 

(W/m2) 
Model input 

(W) 
Space type 

Resting:  CIBSE / AHSRAE   
- sleeping 0.7 41 / 40 74  
- seated, quiet 1.0 58 / 60 104 Residential, Lavatory 
- standing, relaxed 1.2 70 / 70 126 Lift 

Office work:     
- reading, seated 1 58 / 55 104  
- typing 1 58 / 65 104 Office, Meeting 

Walking     
- 3.2 km/h (0.9 m/s) 2 116 / 115 209 Circulation 
- 4.3 km/h (1.2 m/s) 2.6 151 / 150 272  

Occupational     
- light machine work 

3 93 – 116 / 115 - 140 188 
Plant, Workshop, 
Laboratory 

Note 1: Average surface area of an adult human is about 1.8m2, used for the W calculation. 1 Ma is 58.1 W/m2 

Note 2:  Figures from CIBSE (CIBSE, 2007) and ASHRAE (ASHRAE, 2013) 

There is however a large uncertainty in measuring metabolic rates and in defining the tasks, 

it is therefore reasonable to assume a ±20% variability for engineering purposes for well-defined activities 

with Ma < 1.5 and ±50% for poorly defined activities with Ma > 3.0 (CIBSE, 2007). Other space types not 

mentioned in the table have the same value as that for the Office space type. 

Lighting loads 

Lighting loads are based on the type of lighting used in a space and the number of fixtures. 

This is determined from available drawings in O&M manuals and verified during building audits. For each 

space type the lighting load in all spaces belonging to that space type were aggregated and divided by floor 

area. The lighting load (W/m2) is then determined per space type, the total lighting load is then based on 

the schedule of operation, i.e. when lighting is on/off in spaces. Spaces are assigned to space types, however 

they are not identical, a standard deviation was therefore calculated where multiple spaces assigned to the 

same space type, shown in Table D4. Lighting loads were varied at 20% standard deviation and varied 

according to the noted standard deviations in the table for the ‘evidenced’ ranges. 
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Table D4: Lighting load (W/m2) per space type with their respective standard deviation 
Space type Office 17 Office 71 CH MPEB 

Office 15 8 10 (3) 12 (4) 

Circulation 10 3 8 (4) 9 (6) 

Storage 12 8 14 (4) 11 (7) 

Lavatory 8 7 13 (3) 19 (9) 

Meeting 10 8 19 (4) 12 (5) 

Lift   7 (3) 5 (3) 

Kitchen   11 (4) 11 (5) 

Server 12  15 (4) 18 (6) 

Shower   14 (5) 15 (1) 

Lecture Theatre   12 (3) 10 (1) 

Plant 7 7 14 (2) 7.67 (10) 

Reception 20 10 12 (3) 15 (3) 

Computer Cluster   16 (3) 11 (1) 

Print Room 15  16 (0) 12 (2) 

Library   8 (0) 10 (0) 

Workshop    9 (4) 

Laboratory    16 (9) 

Lift Lobby    8 (3) 

Canteen 15    

Plug loads 

Similar to the lighting loads, plug loads are defined by the appliances used by people, however, 

such data is not available on drawings as these items are typically not permanent components in a building. 

Instead, an approximation is made based on building audits and counting the pieces of equipment used in 

different space types. Because access to all spaces was not always possible, benchmarks were established 

for different spaces types, by counting the number of laptops/computers, screens and other type of small 

equipment. The benchmark wattage is used to determine the total plug load in a space. This is done for 

several spaces and then the average is taken for each space type and used as a modelling input, in Table D5. 

Plug loads have a larger uncertainty than lighting loads, due to the method used for data 

collection and larger variability in loads as the actual load has a higher dependency on the amount of people 

present. Theoretically one person present in a space requires the lighting for a whole space or large part of 

a space to be on, whereas one person only uses one or two pieces of equipment in a space where normally 

perhaps 5 to 6 people are present. Plug loads were varied at 20% standard deviation. 

Table D5: Plug load (W/m2) per space type 
Space type Office 17 Office 71 CH MPEB 

Office 30 18 16 25 

Circulation 1.5 1.5 2 2 

Storage 0 0 0 0 

Lavatory 2 5 2 2 

Meeting 12 12 12 12 

Lift 0 2 2 2 

Kitchen   12 12 

Server 50  50 700 

Shower 3  3 3 

Lecture Theatre   10 18 

Plant 50 50 50 50 

Reception 10 8 16 12 

Computer Cluster   16 30 

Print Room 30  16 20 

Library   10 12 
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Space type Office 17 Office 71 CH MPEB 

Workshop    50 

Laboratory    35 
Lift Lobby    10 

Canteen 25 25   

Building systems and control 

Most spaces in the building are conditioned, heated (H) through radiators or and/or cooled 

(AC) through more active systems, such as air handling units or fan coil units, a few spaces are mechanically 

ventilated (mV), but most have a provision for natural ventilation (nV) through window openings, while 

lavatory spaces have only extract ventilation (eV). An overview of the type of conditioning per space type 

is shown in Table D6. 

Table D6: Zone conditioning by space type 
Space type Office 17 Office 71 CH MPEB 
Office H mV nV  H AC mV nV H AC nV  H AC mV nV 
Circulation H nV   H    H    AC mV   

Storage                 

Lavatory eV    eV    mV    H mV eV  
Meeting H nV   H mV nV  H AC nV  H AC mV nV 
Kitchen         H AC nV  H nV   

Server H            H AC   

Shower H eV   H eV   H nV   H mV eV  
Lecture         H AC nV  H AC mV nV 
Plant                 

Reception H AC mV  H AC   H AC nV  H AC mV  
Computer Cluster         H AC mV nV H AC mV  
Print Room H AC       H AC nV      

Library         H AC nV  H AC mV nV 
Workshop             H AC mV  
Laboratory             H AC mV  
Canteen H AC mV  H mV           

 
*mV only for 
basement     

*Heating in 
staircases     

Information regarding system capacities and performance coefficients is available from O&M 

manuals, but actual figures might retain a certain level of uncertainty. As suggested by Heo et al. (2015), 

uncertainty in actual system efficiency is quantified by industry standards for different system types. 

Uncertainties of 2% for boiler efficiency (Kemna, et al., 2007, p. 27) and 5% for air conditioners and heat 

pump efficiency were taken into account. 

Mechanical ventilation 

Mechanical ventilation is several spaces is available in MPEB, Office 71 and partially in Office 

17 in the basement, assumed provision of tempered fresh air to different space types are given in Table D7. 

All design air flow rates were varied at 20% standard deviation according to a normal distribution. CH does 

have an air handling unit located outside of the building, but was out of operation during the building audits. 

According to the O&M manual it is supposed to provide fresh tempered air to several spaces in the 

basement, spaces without operable windows.  

Table D7: Design airflow (ltr/s) rate for mechanical ventilation. 
Parameter Office 17 Office 71 MPEB 

Office 8 (basement) 8 8 

Circulation  0 4 

Lavatory  10 10 

LiftLobby, Workshop   8 
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Parameter Office 17 Office 71 MPEB 

Computer Cluster   6 

Meeting  8 4 

PrintRoom 8  4 

Lecture Theatre, 
Laboratory, Kitchen, 
Library 

  4 

Reception  8 4 

Shower   10 

Canteen 8 8  

Natural ventilation and infiltration 

The principle role of ventilation is to provide an appropriate level of indoor air quality (IAQ) 

by removing and diluting airborne contaminants (CIBSE, 2005). This can be accomplished by using extract 

ventilation, whole building ventilation (supply and extract) or purge ventilation (used for activities that 

have intermittent high concentration release of pollutants, such as in a workshop or laboratory. In the 

building models purposeful (natural) ventilation is represented by allowing windows to be opened to 

provide a certain flow rate to a space. 

For Office 17 the “AirflowNetwork” in EnergyPlus was utilised which allows for more detailed 

configuration of natural ventilation into the building. The amount of natural ventilation is determined 

window dimensions and criteria for opening the window. In particular, the discharge coefficient indicates 

the fractional effectiveness for air flow through a window or door a certain opening factor, where the 

opening factor is determined based on the dimensions and type of the window (pivoting 

horizontal/vertical). In addition, a minimum window opening factor is applied that determines that a 

window is at least open a certain percentage (minimum window open factor) as long as temperature and 

enthalpy indoor and outdoor conditions are met. Uncertainty in the discharge coefficient and minimum 

window open factor are taken into account as shown in Table D8. 

Table D8: Natural ventilation uncertainty parameters for Office 17. 
Parameter Mean (µ) Standard dev. (σ) 
Discharge coefficient (DischargeC) 0.68 15% 
Minimum window open factor (WinOpen) 0.3 15% 
Note: both upper and lower limits are set to 3 standard deviations of the nominal value. 

Implementing the AirflowNetwork is however considerably complex in larger buildings with 

numerous windows and spaces, natural ventilation was therefore simplified in Office 71, CH and MPEB. 

Instead, windows are opened when the following temperature criteria for inside (Tin) and outside (Tout) are 

met; 

 IF 𝑇𝑖𝑛 >  23 AND 𝑇𝑜𝑢𝑡 < 30 AND 𝑇𝑖𝑛  –  𝑇𝑜𝑢𝑡 <  ∆T THEN open window. (12) 

The delta temperature is the temperature difference between Tin and Tout at which ventilation 

is shut off. A negative value allows ventilation to occur even if the outdoor temperature is above the indoor 

temperature, which is typically the case. Input parameters for the natural ventilation objects in the models 

are shown in Table D9. 
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Table D9: Natural ventilation model parameters. 

Parameter Mean (µ) Standard dev. (σ) 

Flow rate per person (m3/s) 0.008 20% 

Min indoor temperature (⁰C) 23 1 

Delta temperature (⁰C) -2 0.5 

Min outdoor temperature (⁰C) 18 1 

Max outdoor temperature (⁰C) 30 1 

Note: both upper and lower limits are set to 3 standard deviations of 
the nominal value. 

Infiltration in buildings can have a large influence on the heating and cooling demands of a 

building. Over the years, the air tightness of buildings has improved as its significance in reducing energy 

use and improving comfort was acknowledged. Since Part L 2002 an air permeability of 10 m3/m2h at 50Pa 

is required for commercial buildings in the United Kingdom. However, three of the case study buildings are 

built before 2002, in fact they are significantly older. CIBSE Guide A provides empirical values for the air 

infiltration rate for different office types. In general terms, a leaky building falls within the range of 20 m3/h-

m2 @ 50Pa, while 10 m3/h-m2 @ 50Pa complies with Part L 2002 regulations, 7 m3/h-m2 @ 50Pa complies 

with 2005 regulations,  5 m3/h-m2 @ 50Pa is deemed a tight building, and 3 m3/h-m2 @ 50Pa  a very tight 

building (CIBSE, 2007).  

For CH and Office 71 infiltration values have been estimated by taking into account the age of 

the building, height, building type (naturally ventilated) and any recent refurbishments. Infiltration values 

for MPEB are based on actual test data performed after completion of the building. For Office 17, the 

AirflowNetwork in EnergyPlus has been utilised for ventilation and infiltration, therefore infiltration is 

calculated differently from the other buildings. More specifically, it is calculated using: 

 
𝑄 = (𝐶𝑟𝑎𝑐𝑘 𝑓𝑎𝑐𝑡𝑜𝑟) ∙ [

𝜌𝑜

𝜌
]

𝑛−1

[
𝑣𝑜

𝑣
]

2𝑛−1

∙ 𝐶𝑄 ∙ ∆𝑃𝑛 (13) 

where, 𝑄 = air mass flow (kg/s), 𝐶𝑄= air mass flow coefficient, ∆𝑃 = pressure difference 

across crack (Pa), n = air flow exponent, 𝜌 and 𝑣 are the air density and kinetic viscosity of air respectively. 

The air flow exponent in this equation has been varied to quantify the uncertainty in the air infiltration for 

Office 17. Air permeability inputs are shown in Table D10. 

Table D10: Air permeability parameters 
Parameter Office 17 Office 71 CH MPEB 
Air permeability 
(m3/h-m2 @ 50Pa) 

- 12 16 8 

Flow per exterior surface area  
(m3/h-m2 @ 4Pa) 

- 0.00065 
(σ = 20%) 

0.00075 
(σ = 20%) 

0.00043 
 (σ = 10%) 

Flow exponent 0.65 (σ = 0.05) 0.65 0.65 0.65 
Source Estimate Estimate Estimate Based on test 
Note: Flow per exterior surface area is obtained by multiplying the air permeability by 40.65 / 500.65, using a flow 
exponent of 0.65. 

In EnergyPlus the flow per exterior surface area is used which requires the air permeability 

values to be converted from 50Pa (used in airtightness tests) to a reference value of 4Pa, the flow is then 

applied to all external surfaces. In addition, the DOE-2 air change method is used to represent a change in 

summer and winter conditions. 

Hot water use 

Energy use from hot water services is a factor with a large uncertainty. Used for showering, 

washing hands and drinking (typically from zip taps), the amount depends on the volume to be heated, peak 

loads and duration of use. Both ASHRAE and CIBSE provide peak hourly and daily demands for various 
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categories of buildings, whereas ASHRAE provides data on hot water demand per fixture for different 

building types, as shown in Table D11.  

Table D11: Hot water demand for office buildings. 
Hot water daily use (l/person) CIBSE1 / ASHRAE2 

Min daily average  - / 1.5 

Daily average 14 / 3.8 

Max daily average 26 / 7.6 

  
Fixtures (l/hr)  

Basin, public lavatory 7.6 

Shower 114 

Kitchen sink 76 

Average daily hot water demands were used to determine the use per fixture as input in the 

building energy model.  Electric water heaters provide hot water to fixtures in the showers, offices, 

lavatories and kitchens. In the building energy model, the peak flow rate (m3/s) and their schedules were 

defined and determine the hot water use load per fixture. Energy use for hot water heating is based on the 

efficiency of the hot water heating system. There is large difference between the figures found in the 

ASHRAE and CIBSE documentation, therefore a large uncertainty is taken into account for the hot water use 

loads in the buildings. Final calculated loads for the buildings are given in Table D12. 

Table D12: Hot water use input parameters and variability (σ in %) on peak flow rate 
No. of Fixtures Office 17 Office 71 CH MPEB 

Office 3 4   

Canteen 1 1   

Showers 3 2 8  

Lavatory sinks 9  57  

Kitchen sink / zip tap 2  10  

Cleaners’ tap   7  
Laboratory    10 

Workshop    10 

     

Peak flow rate (l/hr) 140 329 (±20%) 774 (±20%) 684 (±20%) 

Weather data 

The building model was calibrated towards measured energy use, to accurately perform such 

a calibration it is essential that historical meteorological factors were used. Weather files were obtained 

covering the measurement periods. The weather files are based on data collected in the City of London, with 

the following latitude and longitude coordinates; 51.5168° N, 0.0987° W. This location is in close vicinity 

(within a 4 km radius) to all case study buildings. 
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APPENDIX E. BUILDING MATERIALS 

Table E1: Building constructions and opaque materials properties in CH. 

Material (out > in) 
Thickness 

(mm) 
Conductivity 

(W/mK) 
Density 
(kg/m3) 

Specific 
heat 

(J/kgK) 

Thermal 
resistance 
(m2K/W) 

External walls      
Brick 200 0.9 1845 840  
Air cavity 50    0.15 
Brick 100 0.9 1845 840  
Air cavity 10    0.15 
Insulation Celotex 40 0.025 50.4 840  
Plasterboard 12.5 0.17 670 800  
MDF board 10 0.3 750 1700  
      
Exposed floor      
Cast Concrete 300 0.2 1900 930  
Concrete deck 50 0.2 1900 930  
      
External roof      
Roof Membrane 10 0.16 1121 1460  
Cast Concrete 300 0.2 1900 930  
Insulation Celotex 40 0.025 50.4 840  
Plasterboard 12.5 0.17 670 800  
      
Internal partition      
Plasterboard 12.5 0.17 670 800  
Air cavity 10    0.15 
Insulation partition 25 0.035 33 840  
Air cavity 10    0.15 
Plasterboard 12.5 0.17 670 800  
      
Internal ceiling      
Carpet     0.1 
Plywood 40 0.15 608 1630  
Air cavity (floor) 130    0.18 
Cast Concrete 300 0.2 1900 930  
Air cavity (ceiling) 350    0.18 
Plasterboard 12.5 0.17 670 800  

Table E2: Window materials in CH. 

External windows 
Thickness  

(mm) 
Conductivity 

(W/mK) 
Slat width  

(mm) 

Slate 
separation 

(mm) 

Visible 
transmitta

nce 

Solar heat 
gain 

coefficient 

U-factor  
(W/m2K) 

Secondary glazing 6 / 6    0.71 0.54 2.91 
Venetian blinds 1 220 0.025 0.01875    

Table E3: Building constructions and opaque materials properties in Office 71. 

Material (out > in) 
Thickness 

(mm) 
Conductivity 

(W/mK) 
Density 
(kg/m3) 

Specific heat 
(J/kgK) 

Thermal 
resistance 
(m2K/W) 

External walls      
Brick 90 1.5 2083 921  
Air cavity 12    0.18 
HW Concrete block 90 1.5 2234 837  
Gypsum plasterboard 19.1 0.15 801 837  
      
Exposed floor      
London clay 750 1.41 1900 1000  
Brickwork 250 0.84 1700 800  
Cast concrete 100 0.64 2000 1000  
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Material (out > in) 
Thickness 

(mm) 
Conductivity 

(W/mK) 
Density 
(kg/m3) 

Specific heat 
(J/kgK) 

Thermal 
resistance 
(m2K/W) 

EPS insulation 63.5 0.025 30 1400  
Synthetic carpet 10 0.06 160 2500  
      
External roof      
Stone chippings 10 0.96 1800 1000  
Cast concrete 350 0.64 2000 1000  
      
Internal partition      
Plasterboard 12.5 0.16 600 800  
Brickwork 100 0.62 1700 800  
Plasterboard 12.5 0.16 600 800  
      
Internal ceiling      
Carpet     0.1 
Cast Concrete 200 1.4 2100 840  

Table E4: Window materials in Office 71. 

External windows 
Thickness  

(mm) 
Conductivity 

(W/mK) 
Visible 

transmittance 

Solar heat 
gain 

coefficient 
Pilkington 6 1.06 0.71 0.69 
Argon 12    
Pilkington  1.06 0.71 0.69 
Internal shading 0.5 220   

 

 
Figure D1: Location of different façade materials in MPEB. 

 

Table E5: Building constructions and opaque materials properties in MPEB. 

Material (out > in) 
Thickness 
(mm) 

Conductivity 
(W/mK) 

Density 
(kg/m3) 

Specific heat 
(J/kgK) 

Thermal 
resistance 
(m2K/W) 

External walls      
Sinusoidal Corrugated Sheet 0.7 50 7850 490  
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Material (out > in) 
Thickness 
(mm) 

Conductivity 
(W/mK) 

Density 
(kg/m3) 

Specific heat 
(J/kgK) 

Thermal 
resistance 
(m2K/W) 

Air cavity 25    0.15 
Mineral fibre RW2 Rockwool 150 0.035 33 840  
Sinusoidal Corrugated Sheet 0.7 50 7850 490  
Plasterboard 12 0.17 670 800  
      
External walls (ground)      
Concrete construction 600 2.15 1900 930  
Mineral fibre RW2 Rockwool 60 0.035 33 840  
      
Exposed floor      
Mineral fibre RW2 Rockwool 60 0.035 33 840  
Concrete construction 500 2.15 1900 930  
      
External roof      
Roof Membrane 10 0.16 1121 1460  
Mineral fibre RW2 Rockwool 120 0.035 33 840  
Plywood 25 0.15 608 1630  
Sinusoidal Corrugated Sheet 0.7 50 7850 490  
Air cavity 350    0.18 
Plasterboard 12 0.17 670 800  
      
Internal partition      
Plasterboard 30 0.17 670 800  
Insulation partition 70 0.035 33 840  
Plasterboard 30 0.17 670 800  
      
Internal ceiling      
Carpet     0.1 
Plywood 40 0.15 608 1630  
Air cavity (floor) 130    0.18 
PreCast Concrete 150 0.2 1900 930  
Air cavity (ceiling) 350    0.18 
Plasterboard 12.5 0.25 670 800  

Table E6: Window materials in MPEB. 

External windows 
Visible 

transmittance 
Solar heat gain 

coefficient 
U-factor  

(W/m2K) 
Type A SingleClear StairCase 0.95 0.7 5.5 
Type B LowE Double 0.52 0.5 1.5 
Type C/D LowE Double N/W/S 0.71 0.5 2.2 
Typce C/D LowE Double Main Entrance 0.54 0.7 1.9 
Type D Low E Double Lift CurtainWall 0.71 0.5 1.8 
Type E Double North CurtainWall 0.61 0.8 1.9 
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APPENDIX F. ENERGY USE OVERVIEW 

For all case study buildings, there is some electric sub-hourly metering data available. 

Buildings are serviced with distribution boards (DB’s) to provide electricity to lighting and appliances in 

spaces and to HVAC equipment. Typically, several distribution boards are located on each floor and are 

connected either directly to a low-voltage power distribution (LV-panel) or indirectly via bus-bars. The LV-

panel typically has one or several main electrical incomers, which should aggregate all electricity use in a 

building. Lighting and appliances in spaces are typically connected to the same distribution board, while in 

some cases these are configured to be on separate meters, it is otherwise difficult to correctly separate their 

electricity use. For predicted data, this can be more easily accomplished, and possibly energy use for each 

individual component in a building could be separated. For the metered data however, some assumptions 

in regards to the ratio of electricity use from power and lighting had to be established in order to make a 

comparison viable. Not all distribution boards have a meter installed, to fully capture and understand all 

energy end-uses in the building it was deemed necessary to install additional short-term monitoring. In 

Figure F1 and Figure F2 two distribution boards are shown that are sub-metered and short-term 

monitored respectively. 

 
Figure F1: Distribution board with 

permanent meter located next to it. 

 
Figure F2: Distribution board with 
short-term monitoring equipment. 

  

Measured energy use can identify typical patterns of use, which will feed back into the building 

energy simulations and the underlying assumptions made. Typical profiles for different energy end-uses 

were identified, such as when the lighting is on, when small power equipment is being used and when 

systems are running. This is not always as straightforward when working with many meters. The aim was 

to capture the highest level of data granularity in the sub-metered data, this meant keeping the distribution 

boards disaggregated where possible, while at the same time making sure that different boards capture 

similar energy end-uses as those that will be predicted by the model. However, most electricity meters 

capture multiple building components, which can make it difficult or impossible to establish all energy end-

uses as could be calculated by a building energy model. 
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Office 17 

Gas and energy data from April 2012 to October 2017 were available, electricity is 

disaggregated into equipment, lights, lift, AC, server, canteen and print room. The data contained erroneous 

(peaks) and missing data points, corrected for by replacing them with the average half-hourly energy use 

over their respective year at a similar time and day. Gas energy use is missing for the winter of 2014/2015 

(due to a faulty meter), but is available for a full year in 2013, the year used for comparison to predictions. 

Monthly energy use over the measurement period is shown in Figure F3. The dominant energy uses in 2013 

were from gas (~37%), equipment (~35%), lighting (~10%) and server (~10%). 

 
Figure F3: Monthly energy use in Office 17. 

There is a large difference between weekday and weekend day energy use as shown in Figure 

F4. Equipment energy use high during the night and weekend. It is likely that a lot of equipment is being left 

on, whereas the server is run continuously at a constant load. The baseload during the night and weekend 

is found to be around 35% of the peak load during the day, excluding the gas use. 

 

 
Figure F4: Energy use for a typical weekday and weekend day in Office 17, based on 2013 excl. gas use. 

The typical weekday and weekend day profiles are based on a whole year of data, averaging 

out gas use, which should be proportionality higher during the winter than the summer. Lighting and power 

fluctuate during the day and night, while the server is operated 24/7. Two boilers use gas mainly during the 

winter months and is therefore separated from the other end-uses, shown separately in Figure F5. Gas use 

made up 50% of total energy use in 2013 due to the heating system being on constantly, this was notified 

to the facilities manager. During subsequent years, the meter turned out to be faulty and no data was 

collected for the winter of 2014 and 2015, however the meter was fixed during 2016 and coincidentally the 

boiler was replaced with a more efficient one, while the heating system was adjusted to operate on a time-

basis, saving a significant amount of gas use. 
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Figure F5: Gas energy use for an average weekday  

during January to April 2013 (left) and 2016 (right). 

Office 71 

For Office 71 a sub-metering system is in place that disaggregated energy use into lighting, 

power, air conditioning (AC), lifts, canteen and gas use. Lighting, power and AC meters are disaggregated 

per floor. Unexpectedly, the metering system did not extend to the outdoor VRF system and air-handling 

unit, and these are therefore could not be analysed. Energy use data was available from April 2012 to 

October 2017, monthly energy use for this period is shown in Figure F6. 

  
Figure F6: Monthly measured energy use in Office 71. 

Electricity use throughout the year is fairly stable, gas use however fluctuates significantly, 

being more than 50% of monthly energy use during the winter months. Dominant energy uses are from gas 

(~38%), equipment (~36%) and lighting (~18%). Air-conditioning (mainly the FCUs in the spaces) use a 

negligible amount of energy use, even though these systems are part of the HVAC strategy. It is likely that 

the AHU on the roof provides the necessary cooling conditioning to the spaces, whereas the radiators 

provide the heating. However, the mechanical plant room on the roof, nor the VRV heat pumps were 

measured separately, so actual building energy use cannot be fully established without these components. 

Therefore, the model should separate these energy end-uses, and calibration will only focus on the energy 

use that is measured. Energy use for a typical weekday and weekend day provide more insights into the 

patterns of use, shown in Figure F7 for electricity use. Equipment is on until late, indicating that some people 

are still present during the evening. Lighting energy use is relatively low during the night, but turned on 

early in the morning, due to cleaning, and turned off late. 
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Figure F7: Energy use for a typical weekday and weekend day, based on 2014. 

CH 

The distribution schematic for CH is shown in Figure F8, most of the meters in the building are 

sub-metered (green), additional short-term monitoring (orange) was deemed necessary to capture all 

electrical energy use on the different floors. Meters not monitored, measure negligible loads or are logged 

by a parent meter. On some of the office floors, the lighting and power are segregated, used for separate 

analysis of their loads. 

 
Figure F8: Electrical distribution schematic for CH. 

In CH, the level of disaggregation is not exhaustive of all the energy using components in the 

building. Many components are not monitored separately, some of which would be useful in order to 

understand how they were used. Distribution boards serve different parts of the building, which parts of 

the building they serve and the type of components they serve need to be determined in order to make 

predicted and measured energy use comparable. Lighting and equipment are in some cases separated by 

floor, their boards being connected to the BB1 and BB2 bus bars, however these often also provide 

electricity to other types of equipment, such as FCUs and electric water heaters, ideally separated, as they 

are large energy users. Another example is the systems, in CH conditioning is primarily provided by VRF 
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heat pumps for heating and cooling. The heat pumps are connected to R1 and R2, but heating and cooling 

cannot be separated, as is typically done in building energy model. For several meters lighting, power and 

systems are separately measured, lifts are connected to separate distribution boards. Finally, energy use 

was aggregated in; lighting and power (available per floor), systems, server, lifts and gas use, shown in 

Figure F9. 

  
Figure F9: Monthly measured energy use in CH. 

A clear distinction can be made between the size of different energy end-uses, systems and 

lighting and power are dominant in CH, as they are in most buildings. Although lighting and power were 

measured separately on some floors, an accurate distinction at the building level could not be made and for 

calibration purposes both were combined as L&P. Nevertheless, some further analysis into the separate 

lighting and power meters proved helpful in determining their typical profiles of use. Energy use from gas, 

the server and lifts were relatively marginal, but could be clearly distinguished. Another observation is the 

large difference in energy use throughout the months, gas use is slightly higher during the winter (only 

serves the radiators). 

Aggregated electricity energy use is visualised at a higher temporal granularity in Figure F10, 

plotted as a heat map, electricity use during January and February 2017 is represented by hourly blocks, 

and is aggregated into daily totals shown in the bottom graph. Electricity use during the night and on 

weekdays are similar. Furthermore, there is a clear distinction between occupied and unoccupied hours, 

where night time use is about 3/5ths of electricity use during day time. People seem to be mainly present 

from 9am to 6pm, with a few coming in earlier (from 6am) and leaving later (until 9pm). 

 
Figure F10: Heat map showing total energy use (kWh) for a month of August for CH. 
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Figure F11 shows the variation between day and night-time electricity use, typically in 

compliance modelling the difference between day and night-time use be significantly larger as they assume 

more ideal (less energy consuming) profiles of operation. Evidently, systems energy use (VRF system) and 

lighting and power energy use are significant during the night and the weekend, this will need to be 

accounted for in the energy model. 

 
Figure F11: Typical weekday and weekend day for CH. 

 On the roof of CH, several PV panels generate renewable electricity for the building. Generated 

electricity from PV is however negligible (<0.5% of total) compared to total energy use and has therefore 

been neglected in further analysis. 

MPEB 

The distribution schematic for MPEB is shown in Figure F12, most of the meters in the building 

are sub-metered, and additional short-term monitoring was used to retrieve data on lighting and power 

data on several representative floors. The building electricity separates into two main meters, LV1 and LV2, 

LV1 serves the workshops in the basement, chiller 1, lifts and mechanical plant room (MCCB03) on the 

ground floor. LV2 serves two bus bars; BB1 and BB2, in addition to chiller 2, mechanical roof plant room 

(MCCB01) and the server room DB409, which connect to it directly. The bus bars in turn serve lighting and 

power on separate floors, but none of the meters were logged initially. Due to difficulties with the 

installation of the heat meter, no data has been collected on the district heating system, therefore this case 

study focusses solely on the electricity use in the building. 
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Figure F12: Electrical distribution schematic for MPEB, each rectangle corresponds to 

 a distribution board, bus bar or low-voltage mains. 

Systems energy consists of two chillers, two mechanical plant rooms and the dynamometer 

(uses minimal amount of energy, but is considered to be part of the systems), the chillers are considered 

separately. All the distribution boards in the basement, apart from the dynamometer, lifts and GP2 were 

taken together and are defined as workshops. DB409 and GP3 serve two large servers, in particular DB409 

is a significant energy user and additional FCUs besides the computer cluster are connected to it. GP3 has a 

somewhat smaller computer cluster, but serves additional spaces such as the VR room, entrance space with 

over door heater and an additional office on the ground floor. Measured energy use is aggregated from the 

sub-metered and short-term monitoring data in; lighting and power, chillers, systems (mechanical plant 

rooms), workshops, servers (DB409 and GP3) and lifts, collected from September 2016 until April 2017, 

shown per month in Figure F13. 



 

C. van Dronkelaar (2018)  233 

 
Figure F13: Monthly measured energy use in MPEB. 

Nearly half the electricity in the building is consumed by lighting and power, system energy 

use including the chillers make up only about one quarter of the total, where servers consume only 

marginally less. There is similar difference between the total amount of energy used monthly when 

compared to CH, but it is less apparent in MPEB. Figure F14 shows the electricity use during a typical 

weekday and weekend day for the year, indicating a time operation between around 7am and 7pm, in 

particular so the systems. Furthermore, it is clear that MPEB operates 7 days a week as there is no difference 

between weekdays and weekend days. Other end-uses remain relatively stable throughout the day and 

night. 

 
Figure F14: Electricity use for a typical weekday and weekend day. 

Systems located in the mechanical plant rooms are the air handling units and auxiliary 

equipment, conditioning the occupied spaces. Whereas, servers conditioned 24/7 to manage high internal 

gains from the computer clusters, chillers therefore run continuously, as shown in Figure F15. However, if 

AHUs are time controlled, a difference in cooling load would be expected during occupied and unoccupied 

hours, only marginally evident in the graph. 
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Figure F15: Chiller electricity consumption (CH1 and CH2) 

Lighting and power were not sub-metered separately, therefore additional short term 

monitoring was put in place to retrieve information on their typical energy use. Four floors were measured; 

the 6th and 7th floor were deemed representative of other office floors, and the 2nd and 3rd floors contain 

computer labs and laboratory spaces, likely to be more energy intensive due to higher equipment loads.  

Finally, lift energy use (from three lifts) is analysed, daily energy use during the measurement 

period is shown in Figure F16. There is some fluctuation throughout the seasons, where considerably less 

use is made of the lifts during March and April 2017. The baseload or standby energy use is also quite 

significant, during unoccupied hours the lifts still use about 30% of their daily peak loads. Relatively 

however, lift energy is negligible, accounting for less than 0.5% of total energy use. 

 
Figure F15: Daily energy use (kWh per day) from lifts in MPEB. 
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