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Highlights: 

 Understanding the variables impacting DNA transfer is highly relevant 

 DNA transfer awareness is required to limit contamination risk 

 Dedicated training is required for experts providing opinion on DNA transfer 

 More research is required to generate probability estimates for more situations 

 

Abstract: 

Understanding the variables impacting DNA transfer, persistence, prevalence and recovery 

(DNA-TPPR) has become increasingly relevant in investigations of criminal activities to 

provide opinion on how the DNA of a person of interest became present within the sample 

collected. This review considers our current knowledge regarding DNA-TPPR to assist 

casework investigations of criminal activities. There is a growing amount of information 

available on DNA-TPPR to inform the relative probabilities of the evidence given alternative 

scenarios relating to the presence or absence of DNA from a specific person in a collected 

sample of interest. This information should be used where relevant. However, far more 

research is still required to better understand the variables impacting DNA-TPPR and to 

generate more accurate probability estimates of generating particular types of profiles in 

more casework relevant situations. This review explores means of achieving this. It also 

notes the need for all those interacting with an item of interest to have an awareness of 

DNA transfer possibilities post criminal activity, to limit the risk of contamination or loss of 

DNA.  

Appropriately trained forensic practitioners are best placed to provide opinion and guidance 

on the interpretation of profiles at the activity level. However, those requested to provide 

expert opinion on DNA-related activity level issues are often insufficiently trained to do so. 

We advocate recognition of DNA activity associated expertise to be distinct from expertise 

associated with the identification of individuals. This is to be supported by dedicated 

training, competency testing, authorisation, and regular fit for purpose proficiency testing. 

The possibilities for experts to report on activity-related issues will increase as our 

knowledge increases through further research, access to relevant data is enhanced, and 

tools to assist interpretations are better exploited. Improvement opportunities will be 

achieved sooner, if more laboratories and agencies accept the need to invest in these 

aspects as well as the training of practitioners. 

 

 

Key words: DNA, transfer, persistence, prevalence, recovery, trace, activity level 
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1. Introduction 

1.1 Scope of review 

This review will traverse what we know about DNA transfer and the associated elements of 

DNA persistence, prevalence, and recovery, sometimes collectively referred to as DNA-

TPPR. It will consider the factors impacting transfer during different types of contact and the 

likelihood of detecting DNA from a sample of interest following a particular sequence of 

events. It will not, however, collate all the data available to provide probability estimates for 

specific observations in certain circumstances. Furthermore, it is not our intention to 

analyse the abundance of cases where indirect transfer has been a major issue, or the 

different types of scenarios that have been presented in court deliberations. This is 

therefore not a definitive account of all matters and information relating to the transfer of 

DNA within the forensic context. Instead, this review provides a snap-shot of the current 

knowledge, along with pointers to areas requiring improvements and a brief discussion on 

our readiness to utilise the available data to help address activity level inquiries. Activity 

level refers to the generally accepted hierarchy of propositions [1] for evaluation of 

evidence in forensic science. We refer to this as ‘activity level reporting’ or ‘activity level 

assessments’ for legibility. We wish to stress that whenever we refer to ‘activity level 

reporting’ in this review we discuss the evaluation of evidence given activity level 

propositions. By no means do we wish to endorse the practice of commenting by experts on 

activities given their findings (e.g. ‘primary transfer is more likely given the results’). See 

Taylor et al. [2] for more information on formal methods for evaluation of evidence given 

activity level propositions. 

This review will reference several papers that have significantly impacted this field. Although 

the review intends to capture the bulk of such papers, it is not exhaustive of all related 

publications, and since hands can be a major and highly contested source and/or vector for 

transfer of (often invisible) DNA containing material detected at crime scenes, the transfer 

of ‘touch’ DNA will at times have preferential focus. Those papers not included are by no 

means irrelevant, and we urge readers to consider these too when seeking information 

relevant to their specific needs. As the research activity in this field is ramping up, there is 

also a good chance that this review will be remiss of material published after the submission 

of this manuscript. Furthermore, this review does not intend to summarise all the details 

within the many references listed, rather, we urge readers to extract these from the 

relevant publications as deemed relevant to their needs. 

We advocate the need for forensic scientists to equip themselves well, by constantly staying 

abreast of the available DNA-TPPR related knowledge, to facilitate activity level 

assessments. However, whilst we will be discussing the available data, we will not be 

providing details on how best to conduct activity level assessments, as this is the focus of 

another paper within this series by Taylor et al. [2]. We also hope this review will entice 

greater commitment and investment (from stakeholders as well as government and other 

funding bodies) towards further research to improve our knowledge of DNA-TPPR and its 

application to casework and legal deliberations addressing activity level questions. Note, the 
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views expressed in this paper are our own and do not necessarily reflect those of our host 

institutes. 

 

1.2 Why it is important to understand DNA transfer 

The demonstrated ability to attribute a DNA profile to a specific person, and the increased 

sensitivity of the profiling systems to generate these profiles from decreasing quantities of 

DNA, has seen an increasing reliance on trace biological samples, especially from touched 

objects, to assist investigations of criminal activity. The increased sensitivity and the types of 

objects from which samples are collected, however, also means that many of the profiles 

generated are mixed profiles, that is, DNA from multiple contributing individuals 

represented together in the one profile. Consequently, the number of potential scenarios 

that may have led to the transfer and deposition of detected DNA have increased 

substantially. There is, thus, apart from the need to determine the identity of individuals 

whose DNA has become part of the evidence, an increasing need to understand how the 

DNA within a trace got to where it was collected from.  

 

1.3 Brief history 

The notion that, during a criminal act, an offender will both leave trace evidence at a scene 

and take it away on their person or clothes was raised by Locard almost 100 years ago [3], 

and further discussed by Inman and Rudin [4]. The pursuits of detecting these traces have 

spawned many forensic disciplines. Since the initial discovery of the ability to generate 

unique genetic profiles from biological materials and its application to address questions of 

identify to assist investigations of criminal activity by Sir Alec Jeffreys and his colleagues [5, 

6], the subsequent technological advances allowing relatively quick and affordable 

generation of extremely discriminating profiles from many sources of biological material [7-

9], along with uniformity across jurisdictions and the construction of offender DNA 

databases with associated legislations [10-13], have seen DNA playing an ever increasing 

role in the identification of those who have committed criminal offences and exonerating 

the innocent [14-21]. The same methodologies have also played equally increasing roles in 

the identification of victims of disasters and missing persons [22-25]. The discovery that 

DNA can be detected from non-visible biological material left on a surface merely through 

touching it by hand [26], and the extrapolation of this observation to contact with skin in 

general, drastically broadened the types of items that could be targeted to obtain DNA 

profiles and the variety of situations in which DNA profiling could be applied [7, 14, 18, 27, 

28]. This discovery of the ability to generate profiles from touched objects was initially met 

with disbelief by many within the forensic community, but once verified, became a welcome 

tool for law enforcement agencies. Within several jurisdictions, samples collected from 

touched objects now represent more than half the total number of samples processed for 

DNA profiling [16, 29].  
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The notion that DNA could also be picked-up and transferred to somewhere else, and the 

potential implications thereof, was presented in the same Nature paper reporting the 

discovery of touch DNA [26]. The relevance of this aspect took longer to appreciate and 

propagate into forensic investigations and legal deliberation. Over the last several years an 

increasing number of cases no longer question ‘whose DNA it is’ but wish to know ‘how or 

when it got there’ [30]. Cases thus hinge on the relative likelihoods of the DNA of a certain 

person being deposited directly by that person or by someone, or something, else. Whilst 

very few studies were published in the first fifteen years post-discovery of indirect transfer 

of DNA by hands to help understand the variables associated with the indirect transfer of 

DNA [18, 31-38], it has only very recently become more widely recognised that much more 

needs to be done to resolve the current paucity of empirical data on the variables that may 

or may not impact DNA-TPPR [39-43] and assist those tasked with addressing questions at 

the activity level [44-47]. It is thus timely to take stock of what we currently know about the 

transfer of DNA and consider the direction of required further efforts. 

 

1.4 What is DNA transfer and the meaning of associated terms? 

1.4.1 Direct and indirect transfer 

Direct and indirect transfer relates to the routes by which DNA may be transferred (Fig 1A-

D). The terms ‘direct’ and ‘primary’ transfer are, and can be, used interchangeably. The 

terms ‘indirect’ and ‘secondary’ transfer are also used interchangeably, however, as a 

specific source of DNA may have been transferred multiple times, i.e. secondary, tertiary, 

quaternary etc. (multi-step transfer pathway), one needs to be clear on what is meant by 

secondary transfer within the context of the scenario at hand. For some, secondary transfer 

means any transfer event after the primary transfer; for others it only refers to the singular 

transfer step after the initial deposit. In addition, when referring to a specific contact event 

within a long sequence of multiple contacts, one may refer to the primary and secondary 

substrates involved in a specific contact even though they may not be the first or second 

substrates within the sequence of contacts. As in most case scenarios, when contemplating 

the possibility of direct versus indirect transfer, the number of indirect steps are unknown, 

therefore, we prefer using the term ‘indirect transfer’ rather than ‘secondary transfer’, 

unless the scenarios put forward by prosecution or defence, or known facts in the case, 

establish that the indirect transfer is based on only a single step after initial deposit. 

A person’s DNA can be directly deposited onto an object/surface or hand/skin of another 

person just by contacting it. Some examples of direct/primary transfer are: 

- Person drops their blood after sustaining an injury, spits their saliva or ejaculates 

their semen onto a surface or someone. 

- Person’s DNA transferred when touching an object or surface with their bare hand. 

- Person’s DNA transferred when touching another person’s bare hand with their bare 

hand. 

- Person’s DNA transferred to their clothing and jewellery contacting their skin whilst 

wearing it. 
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If the DNA deposited during direct transfer by any of the means outlined above is 

transferred again, an indirect transfer event has taken place. During indirect transfer, there 

is no direct contact of the original source of the DNA with the location/surface on which it is 

located. Some examples of indirect transfer are:  

- Blood or saliva from an individual (person A) deposited on surface 1 is transferred to 

surface 2 upon the two surfaces coming into contact. DNA from person A is detected 

on surface 2 [38, 48, 49]. 

- DNA deposited on surface 1 by an individual handling it with bare hands (person A) is 

transferred to surface 2 upon the two surfaces coming into contact. DNA from 

person A is detected on surface 2 [37]. 

- DNA from one individual (person A) is deposited on a knife handle (object 1) when 

handling it with bare hands. DNA from person A is then acquired by a second 

individual (person B) when they handle the knife (object 1) with bare hands [50]. 

DNA from person A residing on the hand of person B is then transferred to object 2 

when contacted by person B with bare hands. DNA from person A is detected on 

object 2 [50]. 

- DNA originating from, and residing on, the hand of one individual (person A) is 

transferred to the hand of a second individual (person B) during handshaking. DNA 

from person A residing on the hand of person B is then transferred to object 1 when 

contacted by person B with bare hands. DNA from person A is detected on object 1 

[51-54]. 

- DNA residing on a specific area of a collected item (object 1), that has been packaged 

along with a second item (object 2) in the same packaging, is transferred to another 

area of object 1, to another item (object 2), or to the inside of the packaging [55]. 

DNA residing on the external packaging is transferred to an exhibit during 

examination [56]. 

- DNA picked-up by gloves or tools coming into contact with various items and 

surfaces at a crime scene during the investigation, or an exhibit during examination, 

is transferred to another item or surface if gloves and/or tools are not cleaned or 

replaced in between use [57-62]. 

- During a social setting where multiple individuals and items are present, DNA from 

one individual (person A) is transferred to other individuals and items without 

person A having touched them [63]. 

- Within a work environment, DNA from co-workers is transferred to items and 

surfaces within a shared space during use. DNA from co-workers is transferred to the 

clothing worn by an individual (person A) through contact with items and surfaces 

within the shared space [64]. 

(Additional examples of indirect transfer are presented in later sections.) 

1.4.2 DNA transfer vs. contamination 

DNA transfer, as explained above, and DNA contamination refer to the same physical 

phenomenon of DNA movement from one surface/location to another. However, it is the 

timing of this movement that defines whether DNA transfer is associated with a crime-
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related activity prior to securing a crime scene (be it pre-, during, or post-criminal activity), 

or a non-crime related contamination event during, or post-, securing of a crime scene (see 

Rudin and Inman [65] for further exploration of this concept). In a forensic setting, non-

crime related contamination can come in many forms and via different vectors. For 

example, a police officer at the scene, a scientist examining the evidence, a dirty 

examination tool, or a non DNA-free reagent used during sample analysis. Conversely, 

crime-associated DNA transfer refers to the movement of DNA from a source that may, or 

may not, be involved in the criminal activity, such as a perpetrator acting as a vector for the 

transfer of someone else’s DNA to the crime scene while performing a specific activity 

relevant to the crime (e.g. handling an alleged weapon). This someone else’s DNA could be 

that of an innocent individual (otherwise not associated with the offender, crime or crime 

scene) picked-up by the perpetrator during an interaction directly with that person, or an 

object that person had previously touched, just prior to the criminal activity taking place. 

While crime-associated DNA transfer occurs only before the crime scene is established by 

the authorities, contamination can only occur afterwards. See section 9 for more on 

contamination. 

1.4.3 Simultaneous direct and indirect transfer 

One contact event can simultaneously include both direct/primary and indirect/secondary 

transfer events (Fig 1D). Transfer of DNA during a hand contact can result in deposits of DNA 

of the person making the contact as well as any other DNA that may have been present on 

that person’s hand. For example, following contact with a DNA-free surface, most of the self 

DNA deposited within the handprint may be considered a direct deposit, but the non-self 

component will have been indirectly deposited. 

In some situations, the self component deposited by a hand may not have been generated 

by the hand itself, but acquired (through touching) from other parts of the person’s body 

from where it was generated (section 2.2.2) or from personal objects previously touched by 

the individual. One must be mindful of the various means a particular source of biological 

material could be deposited onto an item. For example, saliva on an item could have been 

deposited directly through contact with the mouth, or via a hand that had been placed in 

the mouth (e.g. to remove something, bite their fingernails, or wet a finger to flip a page of 

a book). 

1.4.4 Bi-directional transfer 

Transfer upon contact can be bi-directional (Fig 1E). When two surfaces (be it an inanimate 

object or a person) that both have DNA on them come into contact, there can be an 

exchange of DNA material between the two. For example, when a hand of person A touches 

the hand of person B, then not only can the DNA on the hand of person A be transferred to 

the hand of person B, but DNA from the hand of person B can transfer to the hand of person 

A [52, 53]. The same can be applicable for DNA, of different origins, on contacting objects. 

During bidirectional transfer events, the total amount of DNA on the hands of persons A and 

B, or their objects, may increase, stay similar or be reduced. This would be dependent on 

the relative amounts of DNA on the contacting surfaces and the impacts of the variables 
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pertinent during the contact event (including substrate types and manner of contact). The 

amount of DNA of the source originally present on the hand of person B, or the object, 

however, will have been diminished. (Unless, one happened to be dealing with a unique 

situation where the source of interest on the hand of person B, or their object, happened to 

have been the same as on the hand of person A, or their object.) 

1.4.5 Multiple contacts and multi-step transfer 

When multiple different contacts are made with an originating surface upon which a finite 

DNA resides (Fig 1F), the amount of DNA remaining on the originating surface will diminish 

after each contact. The level of reduction will be dependent on the substrates and manner 

of contacts involved.  Depending on the magnitude of the loss of this DNA, the amount 

remaining on the surface may become undetectable. Further, the same original amount 

could also become undetectable within a mixture during a bi-directional transfer, if the 

amount of DNA transferred from any of the contacting surfaces is sufficient enough to 

overwhelm the DNA on the original surface [66]. Alternatively, transfer from multiple 

different sources to the originating surface can result in a mixture of DNA of such complexity 

that renders it uninterpretable.  

Conceptually, 0 to 100% of the DNA present on a substrate could be transferred to another 

substrate upon contact. Usually a proportion of the DNA will be transferred; how much will 

depend on a range of variables to be discussed in the following sections. During a multi-step 

transfer event (Fig 1C), each subsequent step will involve diminished DNA amounts (a 

proportion of the initial deposit) and the amount of DNA recovered from an ultimate 

substrate will be dependent on the number and type of the sequential contacts in the 

transfer pathway [49]. If DNA from one or more different biological sources are present on 

multiple substrates contacted along a multi-step pathway, this “other” DNA may also be 

picked up and transferred further, complicating the interpretation of the DNA profile 

obtained from the ultimate surface/location, especially if these other sources are more 

prevalent [66]. 

If during any contact event within a series of contacts along a direct pathway, the portion of 

transferred DNA is very limited, then this becomes a limiting factor for what will be detected 

on the last substrate (within the sequence) from which a sample is collected. This is 

irrespective of the variables associated with the subsequent contact events within the 

transfer pathway, even if these variables are conducive to high transfer rates. The amount 

of DNA transferred during initial and subsequent transfer steps may be influenced by: the 

type of substrates contacting (section 2.1) and/or manner of contact (section 2.3), 

alignment of areas making contact (relative to where the sample of interest is located on 

the item), and the time and/or activities performed between contacts of interest (section 

5.3). 

1.4.6 Pathway interruption 

Any surface/object involved in the multi-step transfer pathway may come in contact with 

other surfaces/items not related to the direct pathway in question, resulting in multiple 

divergent transfer pathways. If the item within the pathway of interest, after receiving the 

ACCEPTED M
ANUSCRIP

T



9 
 

biological material of interest, has been contacted multiple times, or has been cleaned or 

washed, prior to the item contacting the following item within the pathway, then the 

amount of DNA that can be transferred from that substrate further along the pathway of 

interest will have diminished. Therefore, the amount of DNA from the original deposit 

retrievable from an ultimate substrate at the end of the transfer pathway of interest is 

reduced relative to the amount transferred if no intersecting pathways were involved (Fig 

1G) (see also section 5.3). 

1.4.7 DNA parking 

The term ‘DNA parking’ was first coined, and the potential thereof considered, in a study by 

Szkuta et al. [52]. ‘DNA parking’ refers to secondarily transferred DNA that is temporarily 

deposited on an object and recollected again prior to being deposited on the surface of 

interest (Fig 1H). For example: DNA acquired by person A from an acquaintance (person B) 

during handshaking may be transferred to an object (object 1) (such as a cup, tap, phone) 

immediately after the handshake. Object 1 could remain unused for an extended period of 

time (possibly days) whilst person A continues to undertake a myriad of activities, 

consequently losing any remaining DNA of person B from their hand. At a later point in time, 

person A may contact object 1 and pick-up some of the DNA from person B that was 

deposited during the previous contact. DNA from person B may then be transferred to 

another item (object 2), that could potentially be involved in a criminal activity, via the 

hands of person A. Further studies by a subset of co-authors is currently being undertaken 

to further demonstrate the legitimacy of the phenomenon. This phenomenon should be 

closely considered together with aspects of persistence (see section 4). 

 

1.5. Terminology: trace, skin, touch, wearer, handler, shedder, background DNA 

From a forensic perspective, ‘trace’ can be, and often is, referred to as any substance 

collected for testing to assist investigations [67]. From a DNA perspective, this includes 

biological material from which DNA profiles may be generated. The term used this way does 

not imply anything regarding the quantity of the material collected or used for testing. Some 

have defined ‘trace’ more from a quantitative perspective, i.e. when the quantity of DNA 

available for testing is below a certain threshold at which the chance of obtaining a full DNA 

profile is low [7, 18]. Such low amounts of DNA have been described as ‘low template’ and 

‘low copy number DNA’ [10, 68, 69]. DNA, of otherwise sufficient quantity, that does not 

provide a full profile due to the presence of inhibitors affecting part of the profiling process 

(e.g. amplification), and/or degradation due to exposure of the DNA to adverse 

environmental conditions and/or time, is also often referred to as ‘trace’. van Oorschot et 

al. [7] defined it more holistically as: ‘any sample which may fall below the recommended 

thresholds at any stage of the process – detection, collection, extraction, amplification and 

interpretation’. Gill [42] redefined this to: ‘any sample where there is uncertainty that it may 

be associated with the crime event itself—so that it is possible that the transfer may have 

occurred before the crime event (innocent transfer) or after the crime event (investigator 

mediated)’. Gill wrote that the definition is deliberately vague as it hinges upon an 
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assessment of the relevance of a ‘trace DNA’ profile to the crime event. We feel that such a 

definition is inadequate for intended uses of the term. 

The context in which ‘trace’ is used tends to make its meaning implicit, but where it may be 

ambiguous and relevant the intended meaning should be clarified. 

‘Trace’ or ‘trace DNA’ does not say anything about the source of the sample/DNA, the action 

of how it got to where it was collected from, or if it was deposited during a criminal act. 

Meakin and Jamison [39] defined ‘trace DNA’ as ‘DNA that cannot be attributed to an 

identifiable body fluid’. This could be refined to: DNA that has not been attributed to an 

identifiable biological material. Perhaps because a) no tests have been conducted, b) some 

were conducted and provided negative results, or c) only a positive presumptive test result 

is available which is not accompanied by a second more accurate test result, or the latter is 

negative. 

‘Skin DNA’ is sometimes used to describe DNA collected from surfaces assumed to have 

been touched, thus trying to imply the source of DNA and avoiding any context associated 

with the action of how it got there. However, as discussed in later sections, the source of 

DNA on skin, especially hands, can be from multiple sources. So referring to ‘skin DNA’, 

without having performed confirmatory tests to establish the source, could be misleading. 

‘Touch DNA’ is a term commonly used to describe DNA collected from a range of item types 

that are assumed to have been handled. The broader use of the term can include samples 

and/or DNA from marks made by contact with other areas of the skins surface (e.g. 

forehead, ears, feet, arm, breast, back etc.) and/or include the terms ‘wearer DNA’ and 

‘handler DNA’ (see below). Usually, it relates to DNA from a biological source that is invisible 

and has not been tested for a source. Sometimes the source is unknown, but has been 

shown not to be semen, blood and/or saliva, making it more likely to be from skin cells or 

skin associated glands. Where the sample has been taken from an area verified, by the 

application of fingerprinting methodologies, to have been touched, the utilisation of the 

term ‘touch DNA’ may appear to be more applicable. However, as the DNA subsequently 

collected and profiled may include ‘background DNA’ (see below) that was present on the 

surface prior to it being touched during the action of interest, which may have been 

deposited by other means (originating from the same and/or other individuals), as well as 

indirectly transferred DNA during the touching action, implying that all the DNA collected is 

‘touch DNA’ could be misleading. Furthermore, the action of touch can take many forms, so 

where the specific details of the ‘touch’ is known, this should be made clear. Alternatively, 

limitations of the knowledge should also be conveyed. 

The term ‘touch DNA’ is often used to describe trace samples of unknown cellular source, 

and/or mode of action associated with its deposition. Describing such a sample as ‘touch 

DNA’ can be misleading, as it implies a specific mode of action and, to some degree, also a 

type of biological source. Using a less descriptive term such as ‘trace DNA’ is a more 

appropriate term to be used in casework when the source and mode of deposition are 

unknown. If the source and/or action associated with the trace DNA are known (such as in 

research projects or mock simulations) then it is acceptable to use a term reflecting this.  
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Similarly, use of the term ‘wearer DNA’ could be misleading, as it implies the action of 

wearing, associating a specific person as the person who wore the clothing from which the 

sample was collected. In casework, this is sometimes assumed rather than being verifiable 

(e.g. if the sample was of a shirt removed from an individual by investigators, and a 

reference sample of the individual matches the one collected from the shirt). Furthermore, 

DNA collected from clothing is often from multiple individuals that have been deposited by 

various direct and indirect means and, as such, could be of different sources (section 3.5, 

5.2). The same issues are applicable in relation to the use of the term ‘handler DNA’ used to 

describe DNA from handled items (e.g. knives, firearms, tools etc.) such that using this term 

could also be misleading. 

‘Shedder’, and associated terms such as ‘shedder status’, ‘shedder type’, good shedder’ and 

‘poor shedder’, are terms used to categorise an individual with respect to the degree of DNA 

deposited on a surface when touched, usually relating to hands. However, there is currently 

no standard quantity of DNA left on a specific area when touched in a standardised manner, 

to help categorise an individual as poor, intermediate or good shedder, or to score them 

based on some kind of scale. It is currently just a term applied based on relative quantities 

among a cohort of individuals. Further, the relative origins of DNA sources (shed skin vs. 

cells/DNA deposited in a medium, self vs. non-self, or directly vs. indirectly acquired DNA) 

within a deposit are not always known, or considered, when referring to someone’s shedder 

status. As the term ‘shedder status’ (and its derivatives) are in common use, we will for now 

continue referring to this within the manuscript. However, as we advocate refraining from 

using terms that imply an action or source without knowing the ground truth, a more 

neutral term should be considered for use in the future. A more appropriate term may be 

‘prevalence status/index’ with a prefix identifying the relevant surface being sampled, or 

from which the sample was derived, e.g. ‘hand prevalence status’. Further, words being 

used to indicate quantity such as ‘good’ and ‘poor’ could be replaced with ‘high’ and ‘low’, 

preferable according to a still to be determined standardised scale. See section 2.2.3 for 

more information on shedder status. 

‘Background DNA’ can have different meanings [42, 70-73]: a) The DNA present on the 

surface prior to the deposit of interest being placed on the surface during the action of 

interest; b) The DNA of sources present within a sample other than the person of interest 

(POI); c) The DNA present within the sample derived from unknown individuals. Meanings 

‘b’ and ‘c’ of background DNA may be inclusive of DNA from other sources that may have 

been deposited during the same action of interest, and/or pre- and/or post- action of 

interest. When we use the term ‘background DNA’ in this review, this relates to meaning ‘a’. 

Gill [42] has used the terms ‘active’ and ‘passive’ transfer. ‘Active’ is used to distinguish DNA 

originating from the perpetrator being transferred during a criminal event, from DNA that is 

present due to events unrelated to the crime event. However, as perpetrator DNA could be 

on a surface of interest, not just because of direct transfer during the criminal activity, but 

also due to direct transfer while using the item prior to use during the criminal activity or 

indirectly transferred there by a vector before or during the criminal activity, the use of this 

term could be misleading. Further, ‘passive’ could be read to mean ’background DNA’ on the 
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item prior to the offence taking place and/or indirectly transferred DNA of innocent others 

that happen to be on the hands of the perpetrator. We therefore refrain from using these 

terms when discussing DNA transfer. 

Many trace samples produce mixed profiles where the sources and actions of the 

contributors are different from one another. Using a term relating to the source and/or 

action of interest (which could relate to a major or minor component of a profile), such as 

the aforementioned terms, without acknowledgement of the other sources and/or actions 

could be misleading. In casework, when reporting DNA findings, it is important that the 

terminology used is neutral to the source and/or action when they are unknown or 

questioned. If terminology is used that does imply a source and/or action, then the 

supporting evidence should be made available. When the supporting evidence is not based 

on validated test results or verifiable action, but assumptions based on common uses, 

applications, and/or histories, then the potentially misleading terminology should be 

avoided or at least the limitations and/or assumptions made explicit to the trier of fact.  

Throughout this paper, we will frequently be referring to ‘biological material’ (i.e. undefined 

source) ‘deposited’ on or ‘transferred’ (i.e. undefined action of contact) to an 

item/substrate by placing a hand on or handling it (i.e. defining the action of contact). We 

also use the term ‘touch DNA’, but only when referring to data from research experiments 

where the ground truth is known, i.e. that the DNA recovered is from touch.  

 

2. Core factors impacting transfer 

The core factors currently known to impact DNA transfer include the substrate of the 

contacting surfaces, the nature of the biological material on the contacting surfaces, the 

manner of contact between the contacting surfaces, and shedder status (for DNA 

transferred through contact with hands or other areas of the skin). Further, these variables 

do not affect DNA transfer in isolation and depending on the different variable 

combinations, different transfer rates will be achieved. This section will explore each of 

these factors. 

 

2.1 Substrates 

Goray et al. [37, 38] demonstrated that the type of substrates/surfaces on which a biological 

material resides (primary substrate) and the type of substrates they come into contact with 

(secondary substrate) will impact how much is transferred. The authors demonstrated that 

less DNA will be transferred from a porous substrate than a non-porous primary substrate, 

while a porous secondary substrate will facilitate transfer from the primary substrate. For 

example, Goray et al. [38] found that <1% of DNA from dried blood transferred from a 

porous cotton substrate to another cotton substrate or to a non-porous flat plastic 

substrate, when pressure with friction was applied. In contrast, far more of the deposit was 

transferred under the same conditions when on the non-porous plastic primary substrate 

and contacting another plastic substrate (~45%) or cotton (~16%). In all these situations, far 
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less (0-3.4%) was transferred when no friction was applied between substrates (i.e. contact 

was ‘passive’ or ‘pressure without friction’). 

The same study found that when the blood was wet on the plastic substrate, approximately 

half (44-64%) was transferred to another plastic substrate, and more (90-98%) to a cotton 

substrate, irrespective of the type of contact (passive, pressure, friction). When both 

substrates are non-porous, during contact, liquid biological material can equalise between 

the two surfaces; while with porous secondary substrates liquid will continually absorb into 

the surface until saturation is reached, resulting in an increased transfer rate. In contrast, 

when the wet blood was deposited on a porous cotton substrate, far less (≤3%) transfer was 

observed to the secondary substrate, irrespective of substrate type (plastic, cotton) or 

manner of contact (passive, pressure, friction) due to biological material absorbing into the 

primary substrate. 

In similar experiments to the study above, Goray et al. [37] found that deposits of biological 

material from hands through the action of touching appeared to be impacted by moisture; 

however, in most instances these were insignificant. In this study, less DNA appeared to be 

transferred when touch deposits were left for 24 h prior to transfer than when the material 

was freshly deposited, in most of the pairwise combinations of substrate types contacting 

each other, during passive and pressure contacts. In contrast, more of the dried (~13-49%) 

than the fresh (~8-33%) appeared to be transferred when friction was applied. 

When similar substrates were applied in secondary transfer experiments conducted by 

Verdon et al. [74] and Fonneløp et al. [60], results were consistent with those of Goray et al. 

[37, 38]. Furthermore, studies by Goray et al. [37], Daly et al. [75], Fonneløp et al. [60] and 

Helmus et al. [76] also found differences in the quantities of DNA directly transferred by 

hands depending on the type of substrate, observing that more DNA was transferred to 

wood and fabric than glass, metal or plastic.  

The initial studies by Goray et al. [37, 38] used a single type of cotton fabric to represent a 

porous substrate and hard flat plastic to represent a non-porous substrate. Verdon et al. 

[74] explored a wider range of fabrics, with different compositions and types of weaves, and 

found that these impacted the transfer significantly. In transfer experiments by Buckingham 

et al. [50, 77], DNA picked up by a hand, from a previously touched knife handle, that 

subsequently contacted a glass plate or a cotton plate was far less retrievable from the 

cotton than from the glass. The substrate difference influenced the transfer of the DNA to 

the secondary plates and/or the ability to retrieve DNA from the substrate given the DNA 

collection method applied. 

Physical and chemical differences in contacting surfaces, including those relating to their 

topography, chemical compositions, fibre type, weave, thickness, electrical charge etc., are 

likely to impact transfer, persistence and recovery of biological materials and DNA from 

substrates to varying degrees. Further research into the impacts of variables within such 

factors would be welcomed. 

See section 7 for a discussion regarding the impact of the interaction between substrate, 

collection method and extraction method. 
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2.2 Biological material 

2.2.1 Source and freshness /moisture content 

Biological material such as blood, saliva and semen are often transferred during 

altercations, whether while fresh or at some time after it has dried. Blood and saliva transfer 

at a similar rate [38], with wet/liquid biological materials being transferred more readily 

than dried deposits. When all other variables (substrates and manners of contact) are kept 

constant, wet/liquid biological sources had significantly higher transfer rates than when the 

same biological materials were dry [38]. Results of a study by Warshauer et al. [78] are 

consistent with these findings. Given the large difference in the relative quantity of DNA 

transferred between wet and dry substances (~44 – 100% and <1% respectively, depending 

on substrate and manner of contact [38]), and because altercations can occur over extended 

periods, it becomes important to have an awareness of how quickly the material dries, and 

the duration between its initial deposition and contact with another surface. The moisture 

level of a sample at the time of contact will potentially impact the likelihood of its detection 

given alternate scenarios. 

Blood dries relatively quickly depending on the temperature, humidity and 

presence/absence of wind [79-81]. A study by van Oorschot et al. [82] showed that blood 

(15 and 30 µl) on a hard non-porous substrate will dry within 30-60 min (quicker in warmer 

temperatures), and that the transfer rates of blood, 5 min after deposition, declines 

exponentially until the deposit is dry. Furthermore, drying rates did not differ among the 

different conditions tested (primary substrate is plastic; secondary substrate is cotton; 

contact manner is pressure; at temperatures of 4 to 40oC). Lesser and greater volumes of 

blood (such as a small blood spatter stain created during a forceful event or a large pool of 

blood created when a body with a bleeding injury remains in the same position for a while) 

may have different reaction characteristics. 

Drying of blood can induce flaking, and has been shown to impact transfer [74]. The extent 

to which biological substances flake and/or powderise over time is dependent on substrates 

[74]; its potential impact on transfer is poorly understood and requires more research. 

DNA deposits by hand transfer at a different rate to blood and saliva [37]. Goray et al. [37] 

found that such DNA deposits transfer at significantly lower rates than blood and saliva; 

however, drying has little impact on touch (at least 24 h post deposit) and therefore 

increased transfer rates, but not necessarily total amounts of DNA, were noted for ‘touch 

DNA’ compared to dried biological liquids [37]. ‘Touch DNA’ is not present in a liquid 

medium and therefore a time delay post-deposit does not appear to play a significant role 

when considering transfer for this biological material. However, these experiments only 

investigated the transfer of DNA through touching ~24 h after deposit when blood and 

saliva deposits are dry but skin deposits are not. Further assessment of transfer of primary 

touch deposits after longer time periods may be useful. It would also be of interest to 

determine the drying patterns and transfer rates of other relevant biological materials, such 

as semen, and the impact different substrates may have. 
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2.2.2 Source of DNA within touch deposit 

2.2.2.1 Skin derived DNA: epithelial contained DNA + cell free DNA 

Following its initial discovery, skin-derived DNA was believed to originate from epithelial 

cells sloughed from the outermost layer of the skin’s surface [83-86]. Morphological 

analyses of fingerprints established that the majority of deposited cells were nuclei-free 

corneocytes, with only a limited number of nucleated cells and stripped nuclei observed [87, 

88], suggesting earlier views regarding the transfer of shed epithelial cells may have been 

oversimplified. 

Immunological staining of human skin from the neck revealed the granular layer of the 

epidermis comprised flattened cells with condensed nuclei that had lost their shape [89]. As 

described by Kita et al. [89], the nucleus disintegrates as epidermal cells (keratinocytes) 

move through the outer, cornified layer of the skin. Also in their study, Kita et al. reported 

the finding of fragmented DNA in samples taken directly from the skin’s surface. They 

suggested that keratinocytes containing residual DNA are sloughed from the cornified layers 

and transferred onto a secondary surface by sweat. Others described the possibility of 

extracellular bodily secretions, such as sweat or sebum, as vectors for the transfer of cell-

free DNA through the layers of the skin [90, 91]. This latter point fits with an earlier 

suggestion by Linacre et al. [92] who noted an increase in the number of alleles in profiles 

obtained following omission of the extraction process, whereby free DNA acted as a 

template for direct amplification by PCR. 

Excluding the palms of the hands and soles of the feet, sebum secreting glands, or 

sebaceous glands, are dispersed over the entire body within the dermis. In their study on 

human skin samples from autoptic subjects, Zoppis et al. [90] described the finding of 

fragmented single stranded DNA in the cells forming the sebaceous gland, but not in the 

epidermis layers. They concluded that secretions from sebaceous glands in the skin, which 

are abundant in the scalp, face and around apertures of ear, nose, mouth and anus, may act 

as a vector for DNA residing in the fluid, part of what is transferred upon contact with skin 

areas. The study implies that the variable activity of sebaceous glands, which are under 

hormonal control, and the different parts of their own body an individual touches with their 

hands, will influence how much DNA is transferred by hands (see also section 2.2.3 

regarding shedder status). 

In contrast to sebaceous glands, sweat glands are located on all areas of the body, with the 

highest density in palms and soles. Quinones and Daniel [91] evaluated whether cell free 

nucleic acids (CNAs) could be detected in sweat and whether these contributed to the DNA 

recovered from a touched surface. They noted that the overall quantity of DNA retrieved 

within samples taken from sweaty hands increased when CNAs were present as opposed to 

those where CNAs were eliminated during processing. 

The findings from these studies suggest that a combination of sources and factors influence 

what is deposition of skin-derived DNA through touch. While it is likely that sweat and 
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sebum act as vectors for the transfer of sloughed-off nucleated (and non-nucleated) cells, 

stripped nuclei and CNAs, the transfer of nucleated cells to the hands from other parts of 

the body is also a possibility, as is discussed in the following section. 

 

2.2.2.2 Source identification 

Any biological material can be transferred. Material such as blood when transferred tends to 

provide a stain that can be identified as ‘what appears to be blood’. However, stains or 

smears may be of a minute level that is not obvious to the eye and/or present on a surface 

type and/or colour that makes visualisation difficult. Stains of saliva and/or semen are less 

visible to the eye. Methods are available to visualise these stains, and to some extent 

provide an indication of the likely source of the material [93, 94]. Various tests are available 

to determine the source of biological materials [95, 96] . 

The source identification of skin is possible using mRNA techniques [97-101] or through 

microbiome analyses [102, 103]. However, as suggested [18, 95] and later demonstrated 

using RNA-based methodologies [104, 105], touch samples may consist of more than just 

skin cells. Biological material from other parts of the body, and from within the general 

environment [106], can be transferred to the hands, thus complicating the characterisation 

of material and increasing the quantity of DNA residing on the hands. This has an impact on 

source identification, as well as shedder status (section 2.2.3) and further DNA transfer.  

Further, as the yield of DNA from a small volume of semen, blood and saliva tends to be 

greater than DNA collected from touched objects [27, 107], knowledge of the origin source 

of the DNA may assist with the interpretation of the profiles generated from a collected 

sample. 

Source identification of the main biological substances can be highly relevant to the activity 

level assessment, either because the type of cellular material (1) will inform the probability 

of the material transferring, persisting or being recovered, or (2) may be informative 

regarding the alleged activity. Examples of the first are given earlier in this section (e.g. 

touch deposit by hand transfer at a different rate to blood and saliva). An example of the 

second could be taken from an alleged sexual assault case. Assume that a victim claims that 

the suspect has touched her inappropriately and has penetrated her vagina with his fingers. 

The suspect states that this did not happen, but that they have been dancing intimately in a 

club that evening. Determining whether any DNA from the victim found under the 

fingernails of the suspect was derived from vaginal epithelial cells [95] or another type of 

cellular material may be very informative towards assessing these findings given activity 

level propositions [2]. Associating a specific cell type to a specific contributor in a mixed 

stain may be very complex, particularly if there are no sex-specific cell types (e.g. semen or 

vaginal epithelial cells) or if there are multiple contributors of the same gender present in 

the mixture. Probabilistic assessment at source level, that is, assigning an evidential weight 

to source testing results, has been described by Taylor et al. [108], Taylor [109], De Wolff et 

al. [110] and de Zoete et al. [111, 112].  
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2.2.3 Shedder status 

The study by van Oorschot and Jones [26] indicated that the amount of DNA deposited by 

hands was dependent on the individual. Several studies since have observed that there is 

variation in the propensity of individuals depositing their DNA upon contacting an item [32-

34, 51, 52, 64, 71, 87, 113-115].  

Lowe et al. [32] and Wickenheiser [18] suggested that there are good and poor shedders. It 

appears that some individuals consistently deposit more or less DNA than others [113]; 

these individuals are often referred to as ‘good shedders’ and ‘poor shedders’ respectively. 

From the studies by Goray et al. [113] and Kanokwongnuwat et al. [115] that investigated a 

number of individuals for their shedder propensity, it appeared that most individuals landed 

in the middle of the range, with relatively few individuals consistently being either very good 

or very bad shedders. This phenomenon requires much more investigation. 

A study by Szkuta et al. [52], in which different pairs of individuals shook hands prior to 

depositing a handprint on DNA-free glass plates, demonstrated the impact that the relative 

shedding ability of the persons involved can have on the type of profiles generated from the 

post-handshake deposits. Good shedders (whether depositor or contributor) could swamp 

poor to intermediate shedders, while the pairing of two good, two intermediate or two poor 

shedders could result in the detection of both individuals. 

The shedder status of individuals associated with an item of interest will impact how much 

of their DNA is detected on the item and its relative contribution to a mixture profile 

generated from a sample of interest. This impact has been demonstrated by Fonneløp et al. 

[64], whose study also showed that this will depend on the type of the item and its use 

history (i.e. frequency and type of use).  

However, it is yet unclear how best to categorise an individual into a shedder class, or how 

to allocate a shedder score on a sliding scale. It is also uncertain how one could best 

determine the shedder status of a POI at some point of time after the event of interest. 

Fonneløp et al. [64] described a simple, binary shedder test which distinguishes low 

shedders from high shedders, whereby, individuals held plastic conical tubes in their 

dominant hand for 10 s to deposit their DNA. Associated factors were also investigated 

including the effect of time since hand wash and of wearing gloves (both of which were not 

controlled), and gender. High shedders were assigned when the DNA quantities obtained 

were above the average concentration in deposits made by all participants and at least two 

profiles were of high quality, while all other participants were defined as low shedders. They 

also provided an example of incorporating shedder status in casework considerations by 

means of the Bayesian approach, which considers the evidence in relation to the probability 

of secondary and/or direct transfer given shedder status. Counting the number of cells 

(within a specified area) deposited by a finger on a glass slide visualised by Diamond™ 

Nucleic Acid Dye [115] is an avenue worth considering further. Further studies are required 

to gain appreciation of the frequency of different shedder categories within specific 

populations and how this knowledge can be applied in casework deliberations.  
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While there is evidence that some people shed more than others, the factors influencing 

this are somewhat uncertain. Warshauer et al. [78] and Oleiwi et al. [114] demonstrated 

that the quantity of DNA shed from the palm surface is significantly less than from fingers, 

which, as previously suggested, may be linked to the prominence of sweat and sebum 

secreting glands in different areas of the body [90, 91]. Skin conditions that increase the 

proliferation rate of the skin cells, such as dermatitis and psoriasis, may also result in the 

deposition of higher quantities of DNA through touch [116]. Further, studies have shown 

that younger individuals tend to deposit greater quantities of DNA compared to those that 

are older [117, 118], while males may be more likely to be classified as heavy shedders 

compared to females [105, 117, 119]. Determining the extent to which genetic factors and 

various non-genetic factors (e.g. behavioural traits, health situation, and/or environmental 

conditions), and their potential interactions, impact shedder status, as well as identifying 

and understanding their underlying properties, warrants further investigation. 

As indicated in the previous section, other sources of DNA may be present on the hand and 

contribute to what is deposited. The extent to which this occurs would be dependent on an 

individual’s behaviour and habits, and would likely impact one’s apparent shedder status. 

Warshauer et al [78] demonstrates this in their examination of transfer of saliva. 

As shedder status may be a relevant factor when interpreting profiles in activity level 

assessments, further research focussed on shedder status is highly desirable. 

 

2.3 Manner of contact / handling 

van Oorschot and Jones [26] observed that substantial transfer of DNA material occurs 

during initial contact. Findings of others [18, 60, 120] concur with these observations. One 

may predict that there will be some accumulation of DNA on an object due to increased 

duration or frequency of contact. However, little is known with respect to DNA quantity 

accumulation profiles for objects of different types and substrates that may be dependent 

on duration and/or frequency of use; this requires further research. 

How contact is made with an object will impact the level of transfer. As indicated in section 

2.1, Goray et al. [37, 38] demonstrated that in most situations, when two objects come into 

contact with each other, more DNA tends to be transferred when pressure with friction is 

applied compared to passive contact or pressure contact without friction. Tobias et al. [121] 

confirmed that when surfaces were contacted by fingertips, increasing the pressure 

significantly increased the amount of DNA deposited, which resulted in the detection of 

more alleles from both the donor and unknown sources. 

Different parts of a hand will contact different items in different ways. In some 

circumstances, it may be relevant to have an awareness of the impact of these differences 

on the amount of DNA deposited and the profiles generated. Oleiwi et al. [114] observed 

that less DNA was deposited by, or collected directly from, the entire palm area than by the 

combined total of the distal phalanges of the middle and ring fingers, despite the 

differences in surface area. The results of McColl et al. [122] concur with these observations. 
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They observed that different parts of a hand appear to have proportionally more DNA, more 

non-self DNA, and may be more likely to pick-up and transfer non-self DNA, than others 

(especially fingertips relative to other hand parts). 

Different objects are handled differently depending on their shape, size and use. 

Furthermore, identical objects may be used differently by different people. Therefore, 

different parts of an object may possess different levels of DNA, possibly from different 

sources. For example: 

- Handles of most tools and weapons are used relatively similarly by different users, 

but objects such as a long pipe or stick, or a stretch of rope or tape, can be handled 

in different locations depending on use. 

- The handle of a knife is handled by the stabber, and if done so by bare hands, tends 

to contain DNA of the offender, whereas the blade inserted into a victim will 

typically contain DNA from the victim. 

- A chair seat and armrest are contacted as a matter of course when using a chair to 

sit on, but may be grabbed by its back legs (an area normally very rarely touched by 

hands or exposed to human legs), when the chair is used as a weapon of 

opportunity. 

- A door may be pushed at different locations depending on the height of the person 

pushing the door. 

- An adjustable lamp or instrument with handles on the right and left side, may be 

grabbed solely from one side depending on the handedness of the user. 

- The switch or plug of a standing lamp may be targeted for the normal user, but other 

areas not frequently touched, like the lamp’s stem, may be targeted for DNA from 

the intruder who is suspected of having grabbed it there to use as a weapon of 

opportunity, or the lamp’s base targeted for DNA from the victim whose injuries are 

suspected to have been caused by contact with it during an assault.  

- Inner collar and wrist areas of an upper garment are targeted preferentially to detect 

DNA from a potential wearer, whereas an external area of the upper arm or shoulder 

may be targeted to detect DNA from the person who grabbed them during an 

alleged assault. 

Furthermore, the level of interaction (from a single static contact of a specific sub-area of an 

object, to multiple, frequent, varied manners and locations of contact) of a handled object 

with another object will also vary widely. A study by Pfeifer and Wiegand [123] 

demonstrated the impact of different intensities of handling a tool (intense mock break-in 

to a premises versus normal use of a tool according to its designed purpose) on the types of 

profiles subsequently collected. 

An awareness of the common means of use/handling of items of relevance, in combination 

with knowledge of a) the specific histories of the item of interest, b) the contacts with the 

item relevant to the alleged criminal activity, and c) the differences in transfer rates by 

different parts of a hand (or other body part), may become useful when a choice needs to 

be made regarding which area of an object, or print, to prioritise when sampling. 
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3. Prevalence of DNA / Background DNA  

3.1 General considerations 

It is reasonable to assume that most surfaces and items, unless new or cleaned, will have 

some DNA on them that has been acquired from previous use. This DNA is often termed 

‘background DNA’. This is especially so for personal items and shared items used regularly. 

Surfaces that are not regularly contacted may have less DNA on them. If items possessing 

background DNA are then used by others (i.e. the offender) during the course of an alleged 

criminal activity, mixtures from the usual user and offender can be expected [27, 82, 104, 

123-128]. For example, a study of background levels of DNA on common burglary entry 

points from 20 different premises (windows, doors) found 26% (n=150) produced a DNA 

profile [129]. Furthermore, the authors observed the level of DNA on common entry points 

to be relatively low and suggested that, as windows are a common entry point for burglars, 

but have a low baseline level of DNA compared to other surfaces, these may therefore be a 

good target area for evidence recovery if a window was used to gain entry [129]. 

Background DNA may be derived from one person (mainly personal objects/environments) 

or from several individuals (mainly shared objects/environments, but also personal objects). 

When the sample of interest contains a substantial quantity of semen, blood or saliva that 

has been deposited on an item with a background of ‘touch’, or minute levels of other 

sources of DNA, then an appropriately collected sample of interest (the semen, blood or 

saliva) may provide a single source profile, as the quantity of DNA from this source can 

overwhelm that of the background. However, many such samples still provide mixed 

profiles. If the stain of semen, blood or saliva is itself at minute levels, one is more likely to 

generate a mixture profile that is inclusive of DNA from the semen/blood/saliva, as well as 

one or more individuals from the background DNA. This is illustrated in a study by Peel and 

Gill [130] who found that when dilute blood/saliva samples were deposited on a glass slide 

that had been handled before or after the deposit, DNA was recovered from both the body 

fluid and the handler; the respective ratios of which were dependent on the volume and 

concentration of the body fluid and the shedder status of the handler. If both the 

background DNA and the deposit of interest are ‘touch’ sources, then a mixed profile 

inclusive of owner and the second user is likely. However, the proportional contributions 

will be dependent on the levels of background DNA due to history of use, how the second 

user interacted with the surface, the duration of this interaction, and the shedder status of 

both users. 

When dealing with ‘touch’ DNA as a background or a deposit of interest, the presence of 

non-self DNA on the hand of the individuals involved may contribute to a more complex 

mixed DNA profile. Furthermore, from a casework perspective, it may be relevant to assess 

whether the same unknown contributor has contributed to multiple traces. This is often 

difficult due to limitations in mixture interpretation. Developments in probabilistic models, 

including mixture deconvolution, may assist in identifying the same unknown in multiple 

traces [131]. 
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3.2 Distinguishing background from deposit 

Deciphering what was already on the object and what was added during the action of 

interest can become a contentious issue. Therefore, awareness of general levels of 

background DNA quantity, origin and quality may be useful. Further complicating factors are 

a person’s shedder status and frequency of item use. This type of data is however very 

sparse and needs addressing. 

Researchers are investigating means of distinguishing recent deposits from old deposits 

(background) and/or time since deposition. These include exploiting time dependent 

changes relating to nucleic acid degradation, mRNA, proteins, biomarkers and cell 

morphology [132-135]. 

Whilst not a prescribed policy in most jurisdictions, and often not possible, in some 

situations it may be useful to collect a sample from an area immediately adjacent to the 

area targeted for an evidentiary sample, thus revealing a profile that is possibly very similar 

to the background component of the target evidentiary sample [136]. The similarity, 

however, may have been compromised depending on the nature of the action depositing 

the biological substance of interest in the target area, as some of the background may have 

been lost from the primary surface to the contacting secondary surface (bi-directional 

transfer). van den Berge et al. [137] present data from a small example study considering 

the potential value of collecting post-activity background samples as a control to assist 

activity level reporting. 

There was a time when such background samples, known as ‘substrate controls’ were taken 

alongside areas of body fluid staining, for example in the UK (and possibly other 

jurisdictions). However, these were for the purpose of checking for any potential 

interference from the substrate when using blood grouping tests on a specific area of body 

fluid staining. When DNA profiling superseded blood grouping, the value of such substrate 

controls for the purpose of detecting interference was brought into question [138] and 

ultimately the taking of substrate controls ceased. Interestingly, although critical of the use 

of substrate controls for their original purpose, Gill also commented that the taking of such 

substrate controls could help with certain types of DNA interpretation [138]. 

Within the broader context, when the prevalence of a POI within a crime scene is relevant, 

one may benefit from collecting a range of samples, depending on the case, including: (1) an 

item for controls (for instance immediately adjacent to targeted area), (2) similar items (like 

knives from a kitchen), (3) items in the immediate vicinity of the item of evidence (like the 

pillow under which the gun was found), and/or (4) from the wider crime scene. Such 

samples would provide case specific probabilities for prevalence/background, which would 

be better than generalised probabilities based on experimental studies. From a cost/benefit 

perspective, such samples could be collected, but only analysed if they become relevant 

within the context of the case. 
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The availability of reference samples of known regular users/wearers of an object may also 

assist the interpretation of the profile, irrespective of them being the victim, POI, or an 

incidental non-associated individual. 

Further research is required to understand the influence of any background DNA on the 

interpretation of mixed profiles. 

 

3.3 Prevalence and origin of non-self DNA on hands 

Several studies have detected the presence of foreign DNA on the hands of individuals [33, 

51, 52, 54, 60, 75, 82, 104, 113, 139-141]. For example: 

- van den Berge et al. [104] found non-self alleles present in 83% (n=20 profiles) of 

samples taken from the neck and 88% (n=40) from hands, originating from up to 3 

and 4 contributors respectively. The donor was present in all samples and was the 

major contributor in 100% and 93% of the samples, with an average peak height 

donor to background ratio of 7.6 and 8.8, respectively, in these sample sets. 

- Goray et al. [113] found that 79% of samples (n=236) generated from touch deposits 

of left and right hands (of 10 individuals three times a day on four separate days, 

without any prescribed action prior to placing deposit) onto DNA-free glass plates 

contained non-self DNA. 

- Samie et al. [139] found non-self alleles present in 97% (n=64) of samples of direct 

deposits by hands (after carrying out normal daily activities in their office 

environment) on DNA-free plastic knife handles (16 from each of 4 individuals). 

Three percent of samples were single source DNA profiles of the donor. The donor 

was clearly the major contributor in 83% of samples; 12% of the profiles were 

mixtures with no clear major/minor contributor; and 5% were deemed of insufficient 

quality. 

- Meakin et al. [51] found non-self alleles present in 100% of samples of direct 

deposits by hands onto DNA-free plastic knife handles (3 from each of 4 individuals). 

The donor was also present in all samples as the major component. The non-self 

component contributed 1-3% of the total DNA on knives from three of the 

participants, but ~25% of the total DNA from the hands of the fourth participant. 

Few of these studies tried to identify the origin of the non-self DNA, except for the 

following: 

- The study by Samie et al. [139] tested for the presence of colleagues, of the donors 

of hand prints on glass plates, encountered during the day of the experiment, and 

did not observe their presence within the profiles generated from the plates. 

- The prominent minor component reoccurring in the samples of one participant in 

the study by Meakin et al. [51], upon further investigation, was attributed to the 

romantic partner of the donor. 
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The extent to which non-self DNA is present on a person’s hand, or is deposited upon 

contact with items, is dependent on the actions of the hands prior to sampling or 

depositing (see also sections 5.1, 5.3). For example: 

- Cale et al. [54] maximised the likelihood of transfer of DNA from person A to person 

B and then from person B to a knife handle by having the persons A and B wash and 

dry their hands, then wear a glove for 1.5 h prior to shaking hands and to shake 

hands vigorously for 2 min prior to handling a knife handle for 2 min. They found 

that the detectable DNA of person A transferred to the knife in 85% of occasions, 

and was observed as either the only or major contribution in 25% of occasions 

(n=25). 

- Szkuta et al. [52] also used handshakes between persons A and B (with bare hands 

and without any prior washing protocol) as a means of transferring DNA; however, 

they used a more realistic time of 10 s, followed by the subsequent immediate 

placement of a handprint for 10 s with pressure on a glass plate. They found DNA of 

person A was transferred to the glass plate by person B in 58% of occasions (n = 12). 

Person A was never observed as the major component in these profiles, nor were 

they observed as the sole contributor. 

- Meakin et al. [51], also employed a 10 s handshake between persons A and B, but 

instead of person B touching a DNA-free object, they immediately picked up a knife 

handle they had regularly used previously and proceeded to stab a stabbing 

apparatus repeatedly for 60 s. In their study, person A was observed as a minor 

contributor (~10%) to the mixture profiles retrieved from the knives of three 

pairings, but not on knives of the fourth pairing.  

In most circumstances within these studies, when person A was observed as a major 

contributor, the DNA of person B was still present as a co-major or minor. 

However, in other studies where the circumstances were less controlled and/or optimised, 

the non-self component of the transferred profile was the major or only contributor in no 

more than 3% of samples [63, 75, 123, 139, 142, 143]. 

These studies focused on elements of transfer that incorporated variables within their 

experimental design, such as specific actions prior to DNA sampling, use of pre-cleaned 

objects, reuse of the same cohort of participants in different combinations, and/or use of 

optimised conditions, which limit their relevance for casework investigative/evaluative 

purposes [144, 145]. The overall numbers of samples are also low. To acquire more accurate 

probabilities of finding non-self DNA, and of the different relative mixture proportions 

within a deposit made by a hand, we need to collect more samples from random individuals 

in a wide range of situations. For many research laboratories, this will require more 

extensive ethical considerations. 

 

3.4 Prevalence and origin of non-self DNA on body areas other than hands 
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Graham and Rutty [71] found non-self DNA present on the neck of 14 of 24 volunteers, with 

most non-self DNA being detected on the necks of volunteers who were married or lived 

with partners. In all instances the number of non-self alleles was fewer than the number of 

self alleles detected. 

In a separate study by Graham et al. [72], surface swab samples collected from 12 face/neck 

sites and 20 body sites of 50 children less than 5 yr of age showed that overall, extremely 

small amounts of non-self DNA was present, with foreign DNA observed on 35% of swabs 

tested (most showing only a few alleles). Furthermore, their study found a high degree of 

variation between children and between areas tested.  

Evaluation of findings, particularly in cases of sexual assault, often requires information on 

the prevalence of DNA on other body parts than the hands. Especially on the more intimate 

locations of the bodies of both men and women. We do encourage, where possible, more 

research effort on the prevalence of non-self DNA on the bodies of both children and adults. 

 

3.4.1 Fingernail samples 

It is well established that foreign DNA can accumulate under an individual’s fingernails [70, 

146-159], and this knowledge has been considered further in respect to its use in 

investigating crimes [39, 42]. This DNA is relatively protected compared to other parts of the 

body that are exposed to physical contacts and actions. When evaluating DNA profiles 

obtained from under the fingernails in a forensic context, direct versus indirect contacts and 

normal everyday versus criminal activities are often assessed against each other when 

presenting this evidence in court. This assessment is further complicated when the victim 

and offender are known to each other, are in a relationship or live together. Understanding 

of the prevalence, persistence and type of foreign DNA profiles under the fingernails after 

different sets of circumstances can assist profile interpretation.  

The incidence of direct versus indirect DNA transfer under the fingernails is difficult to 

assess as, to our knowledge, no studies to date have specifically investigated indirect 

transfer to the fingernails (for instance, by occupying another person’s space for a certain 

amount of time). Currently, inferences regarding indirect transfer can only be made, to a 

degree, from the results showing the detection of foreign DNA in direct contact studies. 

Initial results show that there is a higher probability of finding full, good quality DNA profiles 

from simulated direct contact studies, than from indirect transfer of DNA in these 

persistence studies. However, one could also argue that fingernails are a site where non-self 

DNA could accumulate over time, and from several different types of actions. The potential 

quantity and quality of this relative to the quantity and quality of DNA from the same other 

individual, but from a single direct contact activity, needs to be researched. 

Examples of various studies include: 

- General population: Various studies have found foreign DNA in fingernail samples, 

with occurrence ranging from 5 to 41% of samples, and higher quality mixtures (as 

defined by the respective authors) detected in 6-14% of these [70, 148, 150, 155]. Of 
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the over 300 people tested within these studies, only one sample had foreign DNA 

detected as a major contributor, however this sample was taken from a participant 

who self-reported previous intimate activity. When these studies investigated factors 

affecting foreign DNA detection, time since last human contact, incidence of intimate 

contacts, participants’ sex (increased detection in males), and in some studies, the 

length of the fingernails, were found to be significant. Notably, fingernail 

scrubbing/washing did not guarantee complete removal of foreign DNA [147, 148].  

- Co-habitation: A study by Kettner et al. [151] of the male quantification results in a 

scratching study showed highly significant differences in the amount of DNA 

between scratching and non-scratching fingers of females that scratched their 

partners, indicating that even if females are living with male partners, the amounts 

of male DNA can provide an indication of different types of contact taking place. 

Studies that look at cohabitating individuals, both in intimate and non-intimate 

relationships, found mixed DNA profiles in 14 to 37% of the samples (collectively n= 

45 people), however only 6 to 17% were higher quality mixtures [146-148]. 

Interestingly, with non-intimate cohabitation, in one study, household members 

were excluded as the source of foreign DNA in all samples (n=25 people) [148]. Most 

of the mixtures obtained in these studies originated from two people indicating that 

more complex mixtures are rare. Within these studies, there was only one reported 

instance of the mixture inversion, where the foreign DNA was detected as a major 

component, highlighting its rarity (<1%) in fingernails sampled after everyday 

activities  

- Intimate activity and digital penetration: A study by Flanagan and McAlister [147] 

observed single source female profiles and mixtures with the major female 

contributor in all male fingernail samples immediately after digital penetration. The 

female DNA was shown to decline over time; however, informative female profiles 

(more than 4 alleles) were still detected within a mixture with the male donor in 75% 

and 63% of the samples at 12 and 18 hours post penetration, respectively.  

- Physical altercation/scratching: A study by Wiegand et al. [152] of evaluating the 

impact of superficial scratching of arms, necks and scalps, detected more instances 

of foreign DNA in fingernail samples after scratching of necks and scalps than arms. 

However, fingernail samples from the scalp/neck scratching were collected with the 

less invasive sampling procedure (light sample removal avoiding abrasions to the 

fingernails versus extensive cleaning leading to abrasion of the fingernail and skin), 

which the authors suggest can possibly explain the result. A study by Matte et al. 

[148] of fingernails of 30 male/female pairs that scratched each other on the 

underside of the forearm detected foreign DNA in 37% of the samples. Increased 

vigour and number (x30) of scratches resulted in better quality foreign DNA 

detection. The foreign DNA under the fingernails diminished with time. The length of 

time that foreign DNA can still be detected after scratching was shorter than after 

digital penetration [147]. A study by Kettner et al. [151] that included vigorous 
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scratching of the flank of the 34 participating males by their female partners showed 

that scratching fingers had significantly higher concentration of male DNA. However, 

in approximately 31% of all couples, no male DNA was detected after scratching, 

thus highlighting that a negative result does not necessarily indicate that scratching 

did not take place. 

- Casework fingernail samples: A number of casework sample studies (including 

homicides and sex offences) reported mixed DNA profiles in the range of 13 to 35% 

of samples (n=over 300 cases); however, ‘higher quality’ mixtures were detected in 

7-21% of these [148, 149, 153, 156-158]. In several instances, the foreign component 

was detected as the major contributor. Note, as the ground truth knowledge within 

all these cases may not be fully known, these limitations should be made clear to the 

court when used in casework practice. 

The above studies assess the impact of different activities performed prior to sample 

collection, and utilise different collection strategies and methodologies, which can 

complicate comparisons and use (sections 7.4, 8.4.1, 8.4.2). However, in instances where 

the study differences relate to differences in methodologies post collection, the mixture 

proportions of donor to foreign DNA will in many cases likely hold true, as both will be lost 

and gained at a similar rate. 

Samples taken from fingernail scrapings may be informative when evaluating findings given 

scenarios on the manner or timing of contact. There are differences found in both the 

persistence of DNA and the composition and quality of the DNA profiles after different 

contact situations. However, we also note a crucial gap in our knowledge. Specifically: a) 

acquisition of non-self DNA during regular social interaction (e.g. the defence position 

involving dancing in the case example in section 2.2.2.2.); b) indirect transfer by occupying 

another person’s space for a certain amount of time. Hence we encourage further 

investigations into these aspects. These should include further investigations of the effects 

of personal habits, and an individual’s shedder status, on detection of donor and foreign 

DNA under fingernails. Availability of more data would benefit assessments of findings given 

alternative propositions relating to innocent versus criminal contact.  

 

3.5 Prevalence and origin of non-self DNA on personal items 

Personal items and clothing are often collected as evidentiary or reference material. It is 

usually assumed that these will provide the profile of the regular user/wearer, which they 

usually do; however, they often also contain DNA from other sources [64, 82, 104, 123, 137, 

160-164]. For example: 

- van den Berge et al. [104] found non-self alleles present in all samples collected from 

exterior surfaces of trouser legs (n=48) and armpits of shirts (n=16) originating from 

up to 5 and 3 contributors respectively. The donor/wearer was present in all of these 

samples and was the major contributor in 60% and 100%, with an average peak 

height donor to background ratio of 4.4 and 5.3 in these sample sets respectively. 
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- Noël et al. [161] found that of 168 samples taken from underwear (n=24) of children 

that had been regularly worn and washed with the rest of the family’s laundry, 52% 

yielded interpretable mixtures of DNA corresponding to multiple family members 

(including fathers, brothers, sisters and mothers) post-washing and drying. DNA 

corresponding to the mother was detected in 51% of samples contributing 5 to 90% 

of the total genetic mixture. 

- Stouder et al. [163] found that, for all 11 items of clothing (T-shirts and hosiery) that 

were worn for a day following laundering, DNA from the wearer was recovered as 

either the major or co-major profile. In the latter case, the other co-major profile 

was attributed to the wearer’s spouse. Minor profiles on the other items were 

attributed to the respective wearers’ spouses, but also to their children and to 

unknown sources.  

- Magee et al. [164] observed the spouse of the wearer as a minor contributor in DNA 

profiles obtained from three of four garments sampled (from the collar or cuff) that 

had non-wearer DNA components, and for which reference profiles were available 

from the spouse. 

One of the likely sources of non-self DNA on personal objects is transfer from the hands of 

the owner/user acquired by handling items belonging to and used by others. It is of interest 

to become informed on not only the extent to which non-self DNA resides on the hands/skin 

of an individual and their personal objects, but also of its origin. 

Very few studies have focused on establishing the origin of the non-self DNA on personal 

objects. Awareness of likely contributions of various known associates of an owner/user of 

an item/space may assist understanding of contributions to background DNA and the 

interpretation of mixture profiles. We encourage further studies be conducted to improve 

our awareness of contributors to the non-self component of DNA retrieved from personal 

objects and occupied spaces. Such studies will require appropriate consent from relevant 

associates of primary volunteers, as well as adherence to relevant ethics protocols. 

Improved awareness of the probability of detecting specific known close associates (e.g. a 

family member, live-in partner, co-resident, friend and/or colleague) of the 

owner/handler/wearer/occupant of an item or space, given the history of the item or space, 

may identify common associates regularly found on specific types of items. This may 

highlight the need for reference samples to be collected from such close associates during 

casework to assist profile interpretation. During casework investigations, comparisons to 

reference/elimination samples from known potential contributors may assist interpretation 

of mixture profiles. 

 

4. Persistence of transferred DNA 

4.1 Persistence of deposit over time without further use 

The DNA of biological samples, including those assumed be deposited by handling, can 

retain sufficient quantity and quality to generate full STR profiles for several years, even 

decades, which is being successfully exploited to assist cold case investigations [36, 124, 
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165-168]. The persistence of any biological material will be dependent on a range of 

environmental factors, including: temperature, exposure to UV, rain, wind, humidity and 

presence of micro-organisms on the surface. 

Caseworkers have anecdotally collected trace samples, of unknown source assumed to be 

deposited by handling, from many items after various exposures. However, Raymond et al. 

[129] showed that the recovery percentages of naked DNA and buffy coat cells placed onto 

external painted wooden window frames of a residential building and collected at different 

times after deposit (1 day to 6 wk) declined more rapidly than the replicate samples on glass 

slides kept in a dark laboratory cupboard, with the naked DNA declining more rapidly than 

the buffy coat. 

Wigand & Klieber [83] reported detecting DNA derived from the suspect in a sample taken 

from an area of the neck of a strangulation victim ~48 hr after death. 

A study by Meakin et al. [51], in which participants shook hands and then immediately 

stabbed one of their previously handled knives into a foam block, observed that indirectly-

transferred DNA from the opposing ‘handshaker’ could be recovered from the knife handles 

for up to at least one week after the stabbing. Whilst the peak heights of the unique alleles 

attributed to the opposing handshaker significantly decreased over the course of the week, 

only minor partial DNA profiles were obtained at any time point [51]. 

 

4.2 Persistence of deposit after continued use 

A study by Szkuta et al. [52] aimed to determine the probability of detecting DNA from person B 

on five glass surfaces contacted sequentially by person A either immediately or 15 min after shaking 

hands with Person B. Following immediate contact post-handshake, Person B was observed as a 

minor contributor, or as a contributor when no major was assigned, in 27% (n = 60) of profiles 

obtained. This decreased to 15% (n = 60) when contact was delayed by 15 min. Of these profiles, 

person A (the individual contacting the surfaces) was excluded as a contributor from three 

profiles (5%) obtained from the surfaces following immediate contact post-handshake and a 

single profile (2%) when contact was 15 min post-handshake. Regarding the latter, both bi-

directional transfer and DNA parking were postulated as the mechanisms for transfer of 

person B. In a separate study, where the deposit after handshaking was onto a wood handle 

(firmly grasped while rotating the hand to create friction) 40 min, 5 h and 8 h after the 

handshake, person B was observed as a contributor (minor in all cases) were 25% (n = 12), 

8% (n = 12) and 0% (n = 12) respectively [53]. Person A (the individual contacting the handle) 

was observed as a contributor on all occasions. Thus, in these studies, person B was 

observed as the only contributor in a single profile obtained following immediate contact 

post-handshake and was never observed as the major contributor in mixed profiles [52, 53]. 

In a study by Graham and Rutty [71], saliva deposited on the neck of another person by 

licking appeared to still be detected in 3 of 5 samples of necks collected after a day of 

normal activity.  
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The quantity of biological source of interest present on any one item will likely diminish 

after each contact. One can expect this is also the case when considering self and non-self 

DNA on hands after touching multiple objects. This has been demonstrated in studies by van 

Oorschot et al. [35], Buckingham et al. [50, 77], and Szkuta et al. [52]. 

 

4.3 Persistence of original user after use by another 

As demonstrated by a number of studies, it is possible for the DNA of an original 

handler/wearer of an item to persist for lengthy durations after being used by a second 

person. For example: 

- van Oorschot et al. [82] showed that DNA contributions from the original user 

(rubbed vigorously for a total of 210 s) and second user of a pen were approximately 

in equal proportions after 1-5 min through to 61-80 min use by the second person. 

The detectability of the original user gradually declined as a pen was used more by a 

second person, but was still detectable at 15% of profile contribution after 90 min. In 

a separate experiment, the original wearer (worn for a total of 34 h) of elastic 

armbands also declined as they were worn longer by a second person, but was still a 

major contributor to the profile retrieved up to 28 h after wearing by the second 

person. It gradually declined to ~10% after 96 h [82]. A full profile of the original 

wearer was present in 57 of 60 armbands sampled after being worn by a second 

person. The remaining three, worn by the second person for 8 or 16 days, provided a 

partial profile of the original wearer. In another experiment, most of the profiles 

generated from 108 samples taken from a wide range of previously used personal 

objects (owned for different periods of time) from known individuals that had been 

temporarily used for various durations by known second persons, were mixture 

profiles inclusive of the original owner and second user [82]. The profile of the owner 

was present in 80% of samples. This included samples such as a fabric lanyard worn 

by a second person for 1 month (work days). Items where the profile of the second 

user completely replaced that of the owner included a lighter, eye shadow case, USB 

stick, hair clip, lip stick holder, lip gloss container and lid, pen and pen lid, sunglasses 

nose and ear bridge, and perfume bottle lid. Some of these had been used by the 

second user for relatively long and short periods. Full profiles of the owner were 

recovered from 39% of the non-porous substrate samples and 79% of porous 

substrate samples. 

- Oldoni et al. [141] examined profiles generated from a wide range of items (including 

computer mouse, key, pen, watch, internal and external part of disposable glove, 

cap, bracelet, necklace) after sequential contact by two different users for different 

time periods. They found large variability in relative profile contributions depending 

on the duration of use by a second person, substrates of the items, and the 

individuals handling the items. Contributions of the second individual progressively 

increased relative to the first user with prolonged use. The second user was 

observed as the major contributor in ~15%, 33% and 55% of samples taken from a 

variety of items after 5, 30 and 120 min of use respectively. The first user was no 
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longer detectable after use by the second person in 2 of 234 (0.9%) of samples (both 

were bracelets, one worn for 30 min, the other for 120 min by a second person). 

- Fonneløp et al. [140] showed that DNA of an initial user of a personal regularly-used 

computer keyboard and mouse, can persist and detectable level transferred to 

hands of a second user, up to 8 days after 30 min of use per day. Differences in the 

ability to detect the initial user’s DNA on the hands of the second user among 

participating pairs over time, was reasoned to be due to differences in shedder 

status. 

- In simulation robbery tests conducted by Raymond et al. [124], wallets used for 1 wk 

by one person and then used by a second person for either 1 min, 1 h or 1 wk (n=5 

per handling time of second person, at normal amplification) all showed mixture 

profiles representing both persons, except for one sample (1 wk first person, 

followed by 1 min handling by second person) which contained DNA of the first 

handler only, and another sample (1 wk first person, followed by 1 h second person 

B) which contained DNA of the second person only. 

- Pfeifer and Wiegand [123] studied the persistence of DNA on burglary-related tools 

(including screwdrivers, crowbars and hammers) that had been owned, or mock 

owned (i.e. used for 30 s in a manner the tool was designed for, 30 min after 

washing hands with soap, with the amount deposited deemed comparable to the 

amount found on real tools tested), by one person and then used by a second 

person. Tools were either used intensely in a mock burglary action (~30 s) (n=30), or 

moderately as per normal use (30 s) (n=30), with bare hands and without any prior 

handwashing protocol. They found the second user to be more frequently present 

than the first user (80% and 3.3%, respectively) in the profiles from the samples of 

the tools after the mock burglary situation, whereas, the second and first users were 

present in a similar percentage (64.7% and 52%, respectively) of profiles after 

moderate handling. It is to be noted that, apart from the manner of handling, the 

types of tools and the substrates of the contacted areas within the two sample sets 

were different; this may have contributed to the differences in profile compositions 

observed. 

- In a study by van den Berge et al. [104], trouser ankles (n=48) and armpits of shirts 

(n=16) of known wearers were sampled after being contacted during dragging 

events by known individuals. The profiles contained 2 to 5 contributors and all 

indicated the presence of both the wearer and grabber. The peak height ratios of 

victim to background ranged from 0.7 to 29.8, and of grabber to background from 

0.6 to 14.7. 

- Poetsch et al. [120] found that of 84 sweat bands, sampled separately from the 

inside and outside, worn for 4 h to 3 days by a first wearer, followed by 10 min to 3 

days by a second wearer, 92.9% provided a mixture profile containing both wearers. 

A single source profile of the first wearer was observed in only one sample. This 

sample was from the outside after being worn for the shortest period by a second 

wearer (1st wearer 4 h + 2nd wearer 10 min). A single source profile of the second 

wearer was observed in 6 outside samples and 5 inside samples. In each of these 
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cases the sweatband had been worn for a far longer period by the second wearer 

than by the first wearer. 

- In a study by Breathnach et al. [125] underpants that had been worn for ≥12 h by a 

male, were gripped at a specific location of the waist band (while unworn), with two 

hands for 15 s by a female (n=63), then sampled from the whole waist band. Based 

on their suite of applied methodologies and internal interpretation guidelines they 

found that the probability of observing reportable DNA profiles to be 61.9%. In 

addition, the wearer was detected as a single source profile or part of a mixture in 

50.8% of samples; the wearer when present in a mixture was always observed as the 

major contributor; the gripper was detected in 11.1% of samples; and the 

background DNA (non-wearer and non-gripper) was present in 87.3% of samples, 

with a reportable unknown profile observed in 14.3% of samples (as a major in one 

sample and as a minor in eight samples). 

In respect to the study by Breathnach et al. [125], the authors themselves indicate that their 

observed rate of detecting the wearer, and presence as a major contributor, was lower than 

in another study, may be attributable to differences in sampling methods, RFU 

thresholds/interpretation standards and/or kit/instrument sensitivities. 

Apart from the impact of these suggested potential contributing factors, the experimental 

designs of the studies discussed have features that will have impacted the outcomes and 

would thus also need to be considered when contemplating utilisation of data for 

interpretation of casework related profiles and events [169]. 

Overall, the above examples, whilst demonstrating that DNA on an item derived from an 

original user can persist after the use of the item by a second person, show differences in 

outcomes dependent on items/substrates, activities/action, and durations involved, as well 

as the interpretation methods utilised, thus illustrating the need to apply data from 

circumstances most closely aligned with the conditions of the scenario of interest. 

 

4.4 Persistence of temporary user after original user resumes using the object 

Within some casework scenarios an object of interest that belonged to, and was originally 

used by, one person may be temporarily used by a second person. This second person may 

be the POI, but rather than the object not being used again after an action of interest, it was 

used again by the original user, prior to securing the item for examination. For example, an 

accused may claim that they:  

- Had been an incidental driver in a vehicle at some time in the past rather than at the 

time of the offence; i.e. that after they drove the vehicle, it was used again by the 

regular driver/owner. 

- Borrowed and wore a balaclava at a fancy dress party once, and that after the party, 

it was returned to its owner and subsequently worn by a perpetrator during a 

robbery. 
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- Belonged to a group of individuals that commit burglaries, for which the accused was 

convicted in the past. The group shared tools like crowbars among themselves 

whenever they committed a burglary. Although the accused was active in the past, 

they claimed they had not committed any offence (including the one they are 

charged with) recently, and that one or more others must have used the item after 

the accused last handled it.  

To our knowledge, no major study has been conducted to determine the persistence of the 

temporary user of an item after use by the original owner has resumed. Whilst one may 

extrapolate from the data presented in the studies mentioned in the previous section, and 

those mentioned in the following sub-section, further research on this aspect may be 

warranted. 

 

4.5 Persistence after multiple users on non-personal items 

When an item has been touched by multiple individuals in similar fashions one is likely to 

obtain a mixed DNA profile. For communal non-personal items, the last user is not 

necessarily going to be the major contributor. The mixture proportions generated from the 

item will depend on the shedder status of the individuals in question and the type and 

frequency of contacts by all users. This was observed in the initial study on DNA transfer by 

van Oorschot and Jones [26], and in subsequent studies under controlled [63] and non-

controlled conditions [127]. 

A study by van den Berge et al. [104] of DNA profiles generated from public items (n=51) 

such as railings at train stations, door handles and flush buttons of public toilets, handles of 

shopping carts and baskets, library books, coins and indoor handle bars, found that useful 

quantities of DNA were retrieved from the majority of samples with most profiles having 

multiple contributors. A major contributor was detectable in 17% of profiles. Of the 

banknotes (n=51) and coins (n=6) where the last user was known, the last user was not 

necessarily the major contributor to the profile obtained; they were the major contributor 

in 5 of 9 samples where a major contributor was detectable. 

To determine which of multiple last known handlers of an item is detectable, Buckingham et 

al. [50] had sets of four individuals each consecutively handle a knife by simulating a 

stabbing action. They found that in each situation (n=6) all four individuals were detectable, 

with the more recent handlers of a knife being the most prominent within the DNA profile 

generated from the handle. However, the last handler was not always the major 

contributor. 

Greater knowledge would be welcomed of probabilities of detection, and relative 

contribution, of individuals to profiles retrieved from a wider array of shared objects and 

surfaces within confined shared spaces (e.g. homes, offices, cars) and public spaces, given 

known histories. 
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4.6 Persistence of sperm (and other foreign DNA sources) in the vaginal cavity 

Sperm persistence in vaginal samples decreases over time, and is believed to result from 

vaginal lavage and drainage, menstruation, and general time-dependent cellular 

degradation. However, studies have suggested that phase of menstrual cycle is not a crucial 

factor [170, 171]. Further factors considered during sperm survival assessment are the use 

of oral contraceptives and presence of vaginal flora that are known to affect detection 

frequency. The cellular sperm degradation in the vagina, assisted by the immune system, is 

also associated with increased structural fragility that can cause premature lysis of sperm 

cells during differential extraction and detection in the non-sperm fraction.  In such 

instances, male DNA may not be detected with autosomal STRs due to high female to male 

DNA ratios.  

Various studies have contributed to our knowledge of the persistence of sperm in the vagina 

post intercourse. This knowledge includes, but is not limited to: 

- Morrison [172] detected spermatozoa 12 and 9 d after intercourse in the cervical 

and vaginal samples respectively, but noted that detection rate decreased 

progressively after 48 h. 

- A study by Casey et al. [173] of the results of 1450 cases observed the longest sperm 

persistence in the vagina to be 96 h after intercourse with significant decline in 

detection after 18 h and again after 48 h. The same study noted that, on rare 

occasions, spermatozoa were detected in the anal and oral samples 48 h after the 

alleged offence, however rapid decline in detection was reported after 6 and 15 h 

respectively.  

- Hellerud et al. [174] found very few sperms in samples taken at 96 h and no acid 

phosphatase (AP) positive reactions past 24 h. 

- An analysis of 900 alleged vaginal penetration cases detected sperm in 29%, 12% and 

4% of vaginal, anal and oral swabs with the longest recorded detection time of 83 h, 

29 h and 12 h respectively [175]. 

- Another study based on casework samples showed that while most positive samples 

were taken within 6 h of the alleged offence, on occasion spermatozoa can persist 

for 24 h and on one occasion was detected in a sample from a deceased person 

taken 48-96 h after the offence [176]. 

- Willott et al. [177] detected spermatozoa in vaginal, rectal, anal and oral swabs 120 

h, 65 h, 46 h and 6 h after the alleged offence, respectively. 

- A study by Astrup et al. [178] of three different sites (external genitalia, posterior 

fornix and cervical canal) of 60 women post intercourse (all samples taken within 48 

h) detected spermatozoa in 88% of women who reported ejaculation into the vagina 

and in 14% of women who reported that no ejaculation occurred. They detected 

significantly higher numbers of spermatozoa in the posterior fornix sites. The same 

study also reported observing significant inverse correlation between time since 

intercourse and the number of spermatozoa detected and observed a negative 

effect of the use of lubricants on sperm detection. 
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Some of the above data are from collated casework findings. For further studies, see also 

DiFrancesco & Richards [179]. As noted previously, limitations should be stated when 

interpreting collated casework data to assign probabilities as the ground truth is very rarely 

known. However, it is to be noted that the ground truth has many aspects. We tend to focus 

on those that are deemed relevant to the factors of interest in the case. Whilst 

overwhelmingly the ground truth of the full circumstances of a violent crime is unknown, 

there are different types of crime and different elements to a crime (biological and non-

biological). There are circumstances where the ground truth of a relevant element is known. 

For example: a sexual assault case where the debate is about whether or not the act was 

consensual. The time of intercourse is not questioned, and may be used to infer persistence 

of semen in the case file study. 

Olofsson et al. [180] showed that the detection and persistence of both sperm and trace 

male DNA in the vagina increased when using Y-STR DNA profiling. Further, a study by Hall 

and Ballantyne [181] showed that sperm persistence in vaginal samples taken at 0-6 d post 

intercourse analysed using a autosomal DNA profiling test detected male donors up to 12 h 

post-coitus, whereas Y-STR testing increased partial male DNA detection to up to 4 d. 

Benschop et al. [182] compared post-coital vaginal sampling success using cotton and nylon 

flocked swabs and found improvements in total male DNA yields and cell release during 

elution when using the latter. The authors suggested that nylon swabs may retain sperm 

cells more efficiently or vaginal cells less efficiently. Positive presumptive tests (PSA and 

RSID- semen) in this study were reported up to 60 h after intercourse; however, over 50% of 

the samples that were negative during presumptive testing produced male DNA profiles 

during autosomal typing, and Y-STR profiles were detected up to 84 h post intercourse. 

Male DNA found in the vagina post intercourse could be derived from sperm within 

ejaculate and/or biological material (e.g. skin derived or saliva derived DNA) on the penis, 

fingers, tongue or object that entered the vagina [183-186]. McDonald et al. [183] in their 

study of persistence of male DNA, with no detected spermatozoa after penile and/or digital 

penetration, obtained Y-STR positive results up to 48 h post alleged offence, however as no 

samples were taken past the 48 h cut off the authors suggested that male DNA may be 

detected even later if tested. An analysis by Albani et al. [187] of 259 vaginal samples 

analysed for the background levels of Y-STR profiles showed that without intercourse, no 

profiles with three or more alleles were detected in the tested samples. However, 14% of 

these samples had between 1-2 non-reproducible alleles that did not correspond to the 

expected males and were likely introduced during sampling. In contrast, 93% of samples 

taken after unprotected intercourse produced partial and full Y-STR profiles up to six days 

later.  

 

5. Other factors impacting transfer  

5.1 Washing of hands 
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Lowe et al. [32] first suggested that handwashing may impact DNA transfer.  They showed 

that the proportion of donor DNA, deposited on a clean DNA-free tube during a hold of 10 s, 

increased with increasing time since handwashing. At 6 h post-handwashing, all eight 

participants deposited full DNA profiles (detected using low copy number profiling of 34 PCR 

cycles); non-donor DNA was also recovered.  Similarly, when comparing DNA recovered 

from clean tubes handled for 10 s at 15 min post-handwashing versus without controlling 

for handwashing, Phipps & Petricevic [33] observed a general increase in numbers of alleles 

when handwashing was not controlled. 

Further effects of handwashing have been observed more recently. In particular, Zoppis et 

al. [90] only observed recovery of self and non-self DNA from fingermarks on glass slides 

that had been deposited prior to handwashing, as no DNA was recovered when participants 

touched the slides 10 min after either conventional handwashing with regular hand soap or 

deep handwashing with antiseptic soap. This study also suggested that handwashing may 

impact secondary DNA transfer. When participants rubbed their finger on a sebaceous skin 

area (e.g. back of the hand) of another individual and then touched a glass slide, mixed DNA 

profiles were recovered when hands were not washed first, while in the majority of cases (5 

of 8) post conventional handwashing, only DNA from the other individual was recovered and 

not from the participant who touched the slide [90]. Addressing more than just DNA 

recovery, Stanciu et al. 2015 [188] considered the contribution of whole cells versus 

extracellular DNA to the DNA deposited via touch before and after handwashing with soap 

and water. They found that a greater quantity of extracellular DNA was transferred from 

unwashed hands (0-4.646 ng) than from washed hands (0-0.242 ng) on to clean tube held 

for 5 min. Interestingly, although they observed a greater transfer of whole cells from 

washed hands than from unwashed hands, these cell pellets resulted in very low DNA yields. 

In contrast, a number of transfer-related studies that recorded when participants last 

washed their hands prior to placing a deposit did not observe an impact from handwashing. 

For example, Goray et al. [113] found no significant difference in DNA deposits recovered 

from handprints on glass plates between those left by individuals who had washed their 

hands less than an hour prior to the deposition (64 of 240) and those left by individuals who 

had washed their hands more than an hour prior (176 of 240). Similarly, Szkuta et al. [52] 

observed no connection between the time since handwashing and the contribution of donor 

DNA to the samples recovered from handprints on glass plates deposited after a handshake, 

even though time since handwashing ranged from as short as 5 min to as long as 6 h. 

Given these mixed results, a greater understanding of the impact of handwashing on the 

amount and quality of DNA deposited from hands is required, particularly through further 

systematic study. Factors, such as different methods of washing hands, the natural 

accumulation of DNA on hands post-handwashing, and the different personal habits of 

individuals, and their effect on the accumulation of self and non-self DNA on hands need 

further attention. 

 

5.2 Washing of clothes 
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Research has been conducted to examine the persistence of DNA on clothing after washing 

and the extent of DNA transfer to clothing during washing. Initial studies investigated the 

persistence and transfer of DNA from body fluids, such as semen, blood and saliva. For 

example, DNA profiles from semen stains were found to still be retrievable after washing 

and also retrievable from other co-washed clothing as well as the washing machine drum 

[161, 189]. Similarly, reportable and/or informative DNA profiles from blood tended to be 

obtained from washed blood-stained cloths and from co-washed clean cloths [190-192]. In 

contrast, van den Berge et al. [104] found that the average persistence rates of DNA from 

both blood and saliva-stained cloths after washing were less than 0.001%, and the transfer 

of DNA from these stains onto the co-washed items was found to be extremely limited with 

only a very few alleles, if any, being detected. Whilst Kulstein and Wiegand [191] also 

obtained no reportable or informative DNA profiles from clean cloths washed with saliva-

stained cloths, they found 52% of saliva-stained cloths gave reportable DNA profiles after 

washing. The reason for such different results between the studies is unclear, especially 

given that the starting volumes of blood and saliva in Kulstein and Wiegand’s study were 

smaller than those used by van den Berge et al. (20/100 µl versus 500/1000 µl).   

Further studies have started to address the transfer and persistence of skin derived 

biological material on washed clothing. DNA deposited onto cotton cloths via rubbing on the 

neck for 5 s gave full DNA profiles from 40% of cloths held under a running tap (with cold or 

hot water at different time points up to 10 min) and 56% of cloths submerged in water in a 

bathtub (with or without soap and at different time points up to one week) [193], but gave 

only partial profiles from 13% of cloths that were machine washed [192]. Kamphausen et al. 

[192] observed few alleles, if any, on the remaining cloths that were machine washed and 

similarly few alleles were recovered from co-washed clean cloths. 

Although both van den Berge [104] and Kamphausen et al. [192] concluded that DNA 

persistence and transfer in a washing machine is very unlikely, further studies have found 

different results. Of unworn items washed in household washing machines with normal 

loads of dirty laundry, Voskoboinik et al. [194] found that 19% gave single-source or major 

DNA profiles matching that of a member of the household and Ruan et al. [160] found 76% 

gave single-source or mixed DNA profiles. As suggested by Ruan et al. [160], this increase in 

detection of DNA transfer could be due to the use of a profiling kit with increased sensitivity 

(PowerPlex21® as opposed to SGM Plus™). Voskoboinik et al. [194] also found that no 

detectable DNA was recovered from unworn socks washed alone or from swabs taken 

directly from the interiors of several washing/drying machines, suggesting that DNA transfer 

occurs via the dirty clothes within a washing machine rather than via the machine itself. 

These studies demonstrate that background DNA can be acquired on clothing via various 
means, including washing. Ruan et al. [160] raise the valuable point that whilst we assume 
that the observed DNA transfer occurs within the washing machine itself, there are other 
opportunities for DNA transfer during the whole process of washing and drying clothes, such 
as via the mixing of clothing in a laundry basket prior or after washing and the varied modes 
of drying clothes. A wide range of possibilities may therefore need to be considered during 
the DNA evaluation process, depending on the scenarios under consideration.  
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5.3 Activities between activities 

When considering the likelihood of transfer from one area to another, with a hand as the 

vector, one tends to focus on the variables potentially impacting transfer associated with 

the original deposition of the sample of interest onto a primary substrate and its pick-up by 

the hand, then consider those associated with the contact of that hand with the item of 

interest from which a sample was collected. However, it would be deficient if one did not 

also consider the known facts and/or probabilities of that hand contacting things in the 

period of time between those two actions of interest, given: 

A) Knowledge that loss of DNA, and the potential gain of DNA, can occur upon every 

contact. Thus loss of DNA, and/or acquisition of more own and/or other DNA, from 

intermediary contacts, will impact the likelihood, quantity and relative proportions 

of the DNA of interest detected from the final surface of interest. 

B) Studies have shown that a person’s hands will contact many surfaces (including 

themselves, objects they own, objects they share, and/or non-personal objects) 

within a very short period of time, in a range of everyday general activities [195] as 

well as during criminal activity [196]. 

Any contacts by a hand in the interim period will impact what may be found in the collected 

sample. Similarly, an object that acquires biological material of a POI during one activity, and 

sometime later biological material from a second POI, could have had nothing contacting it 

and not be exposed to any detrimental environmental factors in the interim period, or could 

have been contacted by one or more individuals or other objects with or without other DNA 

on them, to different degrees, and/or exposed to detrimental environments, causing loss of 

existing DNA and/or gain of other DNA in the intervening period. 

 

5.4 Flies 

Transfer of human DNA associated with criminal activities will usually be through direct 

contact between individuals, an individual and an object, or between objects. However, in 

some settings it may be relevant to consider the possibility of transfer via animals. One 

example is the possibility of transfer of human DNA via flies. Flies will be attracted to blood, 

semen, and dead bodies and feed from them. Their artefacts (defecation and regurgitation) 

deposited later, at the same site or elsewhere, can contain sufficient human DNA to 

generate full profiles [197-199]. Sampling of fly artefacts in the absence of a body and/or 

stains due to removal/cleaning, as the only remaining potential source of DNA associated 

with a POI, may thus be of assistance. However, as artefacts can be deposited on surfaces 

some distance away from the feeding site, and because their detection and distinguishing 

features can be difficult [197, 200, 201], they could also be collected as an incorrectly 

assumed stain source, misdirecting profile interpretations and relevance to the crime event. 

Human DNA can also be profiled from the excreta of adult human crab louse [202] and from 

mosquitos after feeding from humans [203-205]. 
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6. Complexities of trace DNA dynamics 

When assessing the probability of detecting DNA of interest (section 11) within a scenario 

incorporating multiple contact events where transfer may have occurred, one first needs to 

determine the order of contact events within the pathway of interest and then to consider 

the impact of the variables present at each event. All of the variables mentioned in the 

earlier sections need to be considered for each contact event within a sequence, as well as 

any potential inter-variable effects. Even factors which at first may not appear to be 

relevant in the process of committing a crime may still have a very significant impact on the 

ability to identify the POI associated with the criminal activity. This includes consideration of 

what might have been happening to the sample of interest in the interim period between 

assumed key contact events. 

It is relevant to consider available knowledge of DNA quantities and profile types at the 

starting point, intermediate points, and final point of transfer pathways. This is assisted by 

having access to data on: how much DNA is typically present on a wide range of common 

surfaces/items (when handled in common ways, and in manners associated with specific 

criminal activities); and the profile types and/or whose DNA is present on surfaces/items 

given the use, shedder status of users, and environment within which the item is used and 

stored. 

One can assume that the amount of DNA present on a final substrate that is derived from an 

original deposit on a preceding substrate at the beginning of a transfer pathway will, after 

having been transferred multiple times before landing on the final substrate, be less than 

was originally deposited on the primary substrate at the beginning of the transfer pathway. 

The total amount of DNA collected from the final substrate could, however, be similar or 

greater than what was on the primary substrate due to background DNA presence on the 

final substrate, additional DNA being added along with the source DNA of interest derived 

from the original deposit by the contacting vector, and/or a larger sampling area. 

Factors that may contribute to the reduced transfer from one substrate to the next, other 

than the type of substrate and the persistence of the biological material, may include the 

relative areas and manner of contact (i.e. the extent to which the secondary substrate 

overlaps the whole, or only a portion of, the area of the primary substrate where the 

relevant biological substance is located). 

Goray et al. [48] performed a few mock case scenarios involving multiple transfer steps and 

compared the expected transfer percentages, given the then available knowledge of the 

impacts of substrate, manner of contact and biological material on transfer, with what was 

observed. In some instances, they were similar; however, major differences were also 

recorded between the observed and expected transfer percentages, as well as among 

repeats of the same scenario, implying that other variables were having an impact. Some of 

these relate to the need for a better understanding of the elements of the core variables 

impacting the transfer of DNA, and may also relate to the interactions among these 

variables. Other factors discussed in earlier sections may also have influenced the 
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differences detected, as may other not yet identified factors. This all points to the need for 

further research to understand the variables influencing transfer. 

DNA, through various combinations of direct, indirect, bi-directional, multiple contacts and 

pathways, can end up in unexpected places. Some of these pathways and contacts are 

difficult to decipher without ground truth knowledge of all the actions, and associated 

relevant details, involved. For example: 

- Goray and van Oorschot [63] in their study where three individuals participated in a 

social interaction of sitting at the table and drinking from a communal jug of juice, 

found DNA of an individual who did not directly contact a surface and postulated 

several multi-step transfer pathways to explain the finding. 

- Taylor et al. [127] observed the DNA of individuals in areas of a laboratory they did 

not frequent. 

- Forensic scientists deal with case scenarios on a daily basis that require 

consideration of the various pathways and contacts that could have led to the DNA 

evidence observed, even with limited scenario information and in the absence of 

ground truth knowledge. This is illustrated by cases such as that of Meredith Kercher 

[43], Daniel Fitzgerald [206], Farah Jama [207], Phantom of Heilbronn [208], Dirk 

Greineder [209], and Steven Wayne Hillier [210]. 

 

7. Recovery 

7.1 Impact of different recovery methodologies 

Different laboratories use different methods to collect DNA from similar items. The main 

methodologies applied are swabbing, tape lifting or direct extraction via excision [7, 211]. 

There are however many types of swabs and tape-lifts, and means of their application, with 

significant differences in retrieval rates [7, 212-221]. Some other methods are available such 

as a wet-vacuum system [222] or sampling of individual skin flakes [167], but these are less 

commonly utilised. In some special situations, DNA recovery is aided by soaking the item in 

solutions, for example fired cartridge cases [223]. Furthermore, there are a wide range of 

methodologies applied to extract DNA from collection devices or directly from the substrate 

the sample is on, with varying degrees of efficiency [9, 224]. A number of studies have also 

shown that direct amplification of trace quantities of sample from swabs, small items and 

fabrics can provide profiles as good as or better than using traditional methods [92, 225-

229] . 

Section 2.1 showed that the transfer rates at interactions between two surfaces are 

dependent on the substrates involved. However, the observed transfer rates can also be 

impacted by the efficiency of the sampling methods applied and the efficiency of the 

extraction methods applied to extract the DNA from the collection device. 

Verdon et al. [74] showed that the amount of DNA retrieved from different amounts of 

biological material on the same and different substrates, using the same collection and 

extraction methodology, can differ significantly. They indicated that these differences 
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should not be ignored when analysing and interpreting results from transfer perspectives. 

They demonstrate the application of a correction factor for extraction efficiency when 

comparing results of samples collected from different substrates after similar transfer 

events, and go on to suggest consideration of applying appropriate correction factors where 

relevant. The generation of correction factors, for a range of suites of conditions, could 

conceptually be an avenue to allow fairer comparisons of data, and their application, to 

address a range of situations. Utilisation of correction factors has also been advocated by 

others [47, 143, 164].  

 

7.2 Targeting 

Targeting the sample of interest to gain the best possible profile to assist investigations is 

not always an easy task, especially when that sample is of a minute nature. Poor targeting 

can affect the quality of results obtained. For example, sampling beyond the boundaries of 

the sample of interest heightens the risk of collecting more of the background DNA, thus 

increasing the likelihood of mixed profiles and reducing the proportional profile contribution 

of the POI. Furthermore, if one collects within the boundaries of the sample of interest, but 

only collects a small proportion of it, then this could lead to a partial or less informative 

profile. 

Some touched surfaces and objects sampled for DNA have initially been examined for 

fingermarks using methods to visualise the contacted areas. Many other objects sampled for 

DNA are sampled from target areas, where the object is logically assumed to have been 

contacted (e.g. weapon and tool handles). However, with some objects, assumptions of 

areas contacted are less straightforward (e.g. grab impressions on clothing [230]). In these 

latter instances, it may be beneficial to apply visualisation techniques, e.g. gold or silver 

vacuum metal deposition, fluorescent in-situ detection [231-234], to try to locate the areas 

of contact for increased sampling accuracy. 

 

7.3 Differential sampling 

As it is often the last deposit that one is interested in and not the background DNA that is 

present on the substrate, Verdon et al. [212] hypothesised that the last/fresher deposit may 

be somewhat layered on top of the background DNA and, thus, may be able to be 

differentially collected using subtle taping techniques. Their findings, however, did not 

demonstrate that this was readily possible, probably because of the extensive mingling of 

the different contributions to the biological mixture on the substrate. 

More promising means of separating different cellular contributions to mixtures prior to 

DNA extraction are available to assist obtaining clearer profiles of the separate 

contributions. These include: differential lyses methods where the DNA from the non-sperm 

cell fraction can be separated from the sperm cell fractions [235], laser microdissection 

[236-242] and cell sorting [243-246]. Where cells of the same type are within a mixture, but 

derived from individuals of different sex, these too can be separately isolated [247, 248]. 
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Where cells of the same type within a mixture are from individuals of the same sex, use of 

fluorescently-labelled human leukocyte antigens may assist separation of cells [246]. 

 

7.4 Impact of different suites of methodology from collection through to profiling 

A general comparison of success rates of similar samples collected from similar items 

demonstrate the impact different suites of methodologies may have on the success rates 

[27, 29, 249, 250]. There is unfortunately a paucity of meaningful success rate data available 

for comparison. Several authors have advocated that more success rate data be collected 

and disseminated, and accompanied with all the relevant details in relation to the methods, 

processes and thresholds applied, to allow proper comparisons of the impacts of different 

suites of methodologies [47, 251-253]. Such information allows for: assessments of impacts 

over time as internal methods/processes/training change; comparisons with performances 

of other laboratories for like sample types; identification of continuous improvement 

opportunities; improvement of sample targeting strategies and prioritisation; better work 

flow management; and equipping staff to better manage expectations of stakeholders 

(including crime scene officers, informants, legal fraternity). Reports by Mapes et al. [14] 

and Baechler [16] begin to demonstrate the value of success rate data collection and 

comparisons. 

It is to be acknowledged, and considered, that as new methodologies, from collection 

through to profiling, are developed and applied, they may impact DNA-TPPR detection 

outcomes and thus influence probability assessments. 

 

8. Data to be used in a case  

8.1 General considerations 

The primary source of information to rely on should be experimental/research data, where 

the ground truths are known, and where data on relevant variables and propositions are 

also well known. If there is ambiguity surrounding severity of impact of a specific factor 

within a sequence of events, then available research data on the variables potentially 

impacting this factor should be taken into consideration. Where such data are not available, 

consideration should be given to undertaking the research to acquire the necessary data. 

However, since time and resources devoted to a case may be limited, other sources of 

information may be used to assign probabilities to DNA TPPR [2]. We will discuss these 

sources in more detail below. See also guidelines from various agencies relating to 

evaluative reporting [44, 254-256]. 

 

8.2 Knowledge of case specific information 

For any proper activity level assessment, there should be an understanding of all the 

potential factors that may impact DNA-TPPR, and as much task-relevant case-specific 
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information/details regarding these factors should be collected as possible and made readily 

available to the scientist conducting the evaluation of the findings. This includes those 

relating to: 

A) Event details 

a. Pathway of alleged transfer events (including activities between and after 

those in focus – see also ‘g’) 

b. Time line of events 

c. Details of the items involved in each contact, including:  

i. Type, size, substrate 

ii. Areas of items making contact 

d. History of each item prior to the action of interest within the pathway, 

including: 

i. Amount of use, by whom, when 

ii. If cleaned, and if so, how and when 

iii. Environment (storage) when not in use 

e. Details of the manner of contacts 

f. Location of events, including: 

i. History of location (occupation, cleaning regime) 

ii. Environmental details (indoors or outdoors, weather conditions) 

g. Details of what happened with the items of interest post criminal activity and 

prior to packaging of item or sampling of item, including: 

i. Ongoing use by POIs or others 

ii. Examinations conducted prior to packaging or sampling for DNA, 

including other types of examination (e.g. latent fingermark 

enhancement techniques) 

B) Relationships 

a. Suspect with the items of interest and the locations of interest 

b. Victim with the items of interest and the location of interest 

c. Suspect with the victim 

d. Known others not directly involved in the criminal activity, but associated 

with the suspect, victim, location or items of interest 

C) Packaging, storage and transport of items examined 

a. Condition of item and biological material at scene (including if wet or dry, and 

whether dried, if wet prior to packaging) 

b. Sampled at scene or packaged, transported and stored 

c. Type of packaging 

d. Transport conditions 

e. Storage conditions 

D) Recovery of sample through to profiling 

a. When recovery of the sample occurred relative to alleged criminal activity 

and exhibit creation 

b. Area sampled 

c. Method of sampling 
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d. Method of extraction 

e. Method of profiling 

f. Method of profile interpretation 

g. Knowledge of biological materials from which the DNA was derived 

h. Availability of reference samples of suspect, victim, known associates, 

background of area sampled 

Not all details will be equally relevant, and not all may be relevant in a particular case. Those 

relating to C and D should be readily available from the examiners; B will be indicated by the 

informant, instructing parties or the court; whilst much of A will come from the crime scene 

attending and investigating officers, victim and/or witnesses. Alternative information may 

be indicated by other parties. Limited information may be available for elements associated 

with these points, especially A, due to practicalities and/or legal framework. We encourage 

efforts towards understanding the impact of the absence/presence of the types of 

information one relies on that may be gathered by the crime scene attending officer, and to 

consider means of improving the gathering of relevant information in an efficient and 

consistent manner. 

 

8.3 Re-enactments and mock simulation 

Scenario re-enactment or mock simulation testing, incorporating all the relevant factors and 

potential variables within each as accurately as possible, relevant to the scenarios being 

investigated, is highly desirable. Care must be taken that any simulations truly address the 

questioned issues in the case given two or more competing scenarios. However, these case 

specific experiments can be very time consuming and costly, and the design/execution and 

interpretation of results of these require their own expertise. 

 

8.4 Research data 

8.4.1 Same or comparable suites of methodologies 

In the absence of data from case-specific re-enactments, the use of empirically collected 

research data on the impact of a wide range of variables, for a breadth of factors potentially 

influencing transfer, can be appropriate. Ideally, this is data produced using the same suite 

of methodologies as applied in the case under investigation. However, most experts trying 

to address activity level questions use data from studies that have used suites of 

methodologies dissimilar to the ones used in the case being considered. Differences in the 

suite of methodologies applied can make it difficult to compare the data from one source 

with that of another. For some questions, the dissimilarities in suites of methodologies 

applied are not that relevant, but for others they may be. For instance, if interested in the 

relative proportion of known contributors to a profile, then in certain circumstances 

differences in collection, extraction and amplification methodologies applied may not be 

relevant, yet differences in sensitivity, number of loci and discrimination power of the kit 

used, and the thresholds applied to allele RFUs during interpretation, may impact the results 
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and interpretation, and subsequently an opinion on the potential for transfer. Alternatively, 

if the question relates to how much DNA from a particular source was collected from the 

area sampled, then differences in the methods applied to collecting the sample from the 

area, and how the DNA was extracted from the collection device, would be relevant, yet 

differences in amplification kit and profile interpretation would not. Further, some 

methodologies within each phase of the collection to profiling process may be very distinct 

from each other, and reliant on different technologies, but have been demonstrated to 

provide similar outcomes (e.g. different extraction methodologies providing the same 

quantity and quality of DNA from a specific type of sample and/or collection device). 

Alternatively, similar technologies may have different efficiencies (e.g. if both use a 

swabbing technique to collect the sample, but use different types of swabs and/or wetting 

solutions that impact directly the quantity and/or quality of what was retrieved, or interacts 

differently with the extraction method to affect the same). It is thus important to consider 

(and incorporate) the potential impacts of these differences during interpretation. 

Apart from the impact of using different sample collection devices and strategies, and DNA 

extraction methodologies raised in section 7, the quality of the profiles obtained can be 

dependent on the amplification/profiling systems applied (especially with respect to their 

sensitivity and discrimination power). A further complicating factor is the highly divergent 

interpretation and statistical methodologies used. 

To illustrate these difficulties, Steensma et al. [143] examined the effect of laboratory 

procedure on the outcome of a DNA transfer experiment. Five sets of 20 cable ties bound by 

different volunteers were distributed to four participating laboratories. These laboratories 

then sampled the cable ties, extracted the DNA, amplified and profiled the extracted DNA, 

and interpreted the resultant profiles, all according to their standard operating procedures. 

The results of the study showed that there were statistically significant differences between 

amounts of DNA recovered by the four laboratories, as well as different success rates in 

DNA profiling. The reportable profiles further showed differences in the number of mixtures 

versus single source profiles that were obtained. Steensma et al. [143] also demonstrated 

that packaging, transport and/or time delay before sampling of the items impacted the 

quantity of DNA retrieved and profiles generated, and thus potentially the interpretation of 

experimental results. 

Furthermore, an inter- and intra-laboratory exercise on the assessment of complex 

autosomal DNA profiles showed variation within and between laboratories indicating that 

interpretation outcomes are impacted by differences between internal guidelines and 

methods available, as well as the need for improved guidelines and training within 

laboratories [257]. These findings are corroborated by Butler et al. [258], although it is likely 

that probabilistic genotyping in time will reduce the impact of the human factor in DNA 

profile interpretation [259]. Assessing the impact of interpretation guidelines may be 

difficult when relevant details of the suites of methodologies applied in relevant studies are 

not available or clear. It is thus desirable for future publications of DNA-TPPR related data to 

be inclusive of relevant details of the methods, protocols and thresholds applied to generate 

the data presented [73]. 
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8.4.2 Experimental designs generating transfer data 

Much of the available research data on DNA transfer incorporate experimental designs to 

ascertain if a particular factor impacts transfer and the general direction of that impact. 

These experiments did not aim to generate probability estimates of specific quantities of 

DNA transferred, or of the various profile types that may be encountered, in given 

situations. Furthermore, the circumstances being investigated in many of the publications 

thus far, have been elementary and not focussed on commonly encountered crime-related 

situations, or lack consideration of aspects of background DNA, prevalence or recovery 

methodologies, making translation of the data into real life situations less 

applicable/straightforward. This even extends to simple things; the samples in many 

reported research studies are collected relatively soon after the action of interest, which is 

quite different from casework samples that have been packaged, transported and stored for 

a period of time. The impact of these simple actions could be multiple and potentially 

profound [55, 143]. Whilst some recent studies are starting to address the need for such 

data, there remains a substantial void to be filled. 

When considering the use of published data, one must, apart from considering the impact 

of the suite of methodologies used, also consider the experimental design and the potential 

implications/limitations they may have on their utilisation when interpreting the case 

scenarios at hand [144, 145]. For example, if assessing the probability of detecting DNA of 

person B from a full handprint on an object left by person A immediately after a handshake 

with person B, the factors requiring consideration should include: what persons A and B did 

with their hands prior to shaking hands; shedder status of persons A and B; manner and 

duration of handshake; object shape and substrate on which a handprint was placed; and 

the manner and duration of handprint deposit. Each of the available studies focussed on this 

type of scenario [51, 52, 54] incorporate different variables of the factors and combinations 

thereof (see section 3.3 for some details). Similarly, each of the studies focused on 

determining whose DNA is on a knife handle [50, 51, 54, 139] apply different scenario 

conditions within their experimental design. Hence, the outcomes of each of these studies 

may not be as directly relevant as the others to inform probabilities on DNA-TPPR in the 

case in question. 

The interpretation of results in any specific casework scenario will depend on the subset of 

available data used during interpretation. One needs to utilise the data that are most fit for 

purpose. The choice of data used (and the associated limitations), plus the available relevant 

data not used accompanied with the reasons why, needs to be transparent to the trier of 

fact. 

The different factors influencing DNA-TPPR will also impact each other to varying degrees 

depending on the set of circumstances. Contemplation and weighing the potential impacts 

of the multitude of potential interrelated factors within alternative scenarios/propositions 

can be very difficult. The use of Bayesian networks can facilitate such analyses (section 11). 
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A number of recent papers have collated the best available information to determine a 

specific probability and have applied it to specific scenarios, e.g. [53, 64, 108, 125, 139, 143]. 

There is a need to utilise probability estimates that closely relate to the factor of relevance 

and are as accurate as currently available data permit. Even if the variation is large then this 

needs to, and can, be incorporated within the Bayesian networks through modelling 

distributions and/or performing sensitivity analyses. Wide variation signals that other 

factors are influencing outcomes. Identification of these other factors can lead to creation of 

additional/separate nodes within Bayesian networks. However, any data analysis is only as 

good as the quality and quantity of the data it relies on; thus, unless sufficient data is 

utilised, results generated could be less accurate than desired and potentially result in an 

uninformative opinion. 

Separately, the sourcing of the experiment participants is not always representative of the 

general population. Furthermore, the total number of participants or replicates within 

reported studies is often limited. Those relying on this type of data for activity level 

assessments would benefit from more expansive studies to help establish more accurate 

probability distributions for relevant factors impacting transfer. 

 

8.5 Collating casework data 

Laboratories examine many cases involving similar items in similar situations. For some, the 

ground truth is not contested and can be reasonably assumed. Where probabilities of 

obtaining a particular type of profile within a given situation is required, there is value in 

collating in-house casework information to determine the frequency of particular profile 

types from similar objects in similar situations, especially if there are a reasonable number 

of relevant cases and where the suites of methodologies applied are the same. Any use of 

this type of data should be transparent and the relevant data made available to other 

relevant parties in the case if and when appropriate. 

 

8.6 Casework experience  

DNA transfer expertise requires an understanding of the effects of different combinations 

and single variables affecting DNA transfer that comes from experimental results with 

known ground truths. In day to day casework practice, it may be found that no, or very 

limited, current data are available that align closely enough with the case at hand to be of 

any use. In these circumstances, the expert may refrain from providing an opinion, or, whilst 

acknowledging the caveats, resort to informing the court based on their expertise with 

forensic analysis of biological traces and DNA. Experience with casework DNA profiles which 

results from the interplay of many different real life variables is of value when determining 

someone’s expertise in the topic of DNA transfer. Experimental data generated from 

transfer experiments allow researchers to see the impact of known variables, including what 

the profiles are likely to look like given the known variables. In casework, the ground truth 

knowledge is usually unavailable and competing hypotheses are often provided to explain 
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the DNA evidence. There can be great differences between the DNA profiles generated from 

experimental samples and real casework data. Effects of background DNA, environmental 

conditions, presence of inhibitors and interpretational complications, such as assumptions 

of known contributors, allow casework scientists to accumulate knowledge of the 

complexities of real life casework profiles. With experience, DNA interpretational case 

managers are usually exposed to thousands of profiles generated from a wide variety of 

biological materials and item types, accompanied with some knowledge of scenario 

components, established through casework relevant information. A case manager may also 

elicit accumulated experiences from other case managers. If different methodologies are 

applied within a laboratory, any impacts of these differences may become obvious to an 

experienced caseworker. In such situations the ground truth regarding the application of 

different methodologies is known and therefore the elicited knowledge regarding the 

impact may be considered slightly more reliable. When using elicitation as a source of 

information, proper procedures should be adhered to, to avoid confirmation or observation 

bias [260]. Utilisation of elicited casework experience must, like all data utilised, be 

transparent to the court. 

Thus, both casework and experimental experience and understanding have their benefits 

and limitations, and in order for a court going biologist to be in the best position to assess a 

complicated issue such as DNA transfer, exposure and experience in both is beneficial when 

addressing the subject. 

However, the fact remains that in most casework circumstances the ground truth is not 

known. Furthermore, human cognitive abilities to effectively accumulate, and weigh, all the 

relevant data without unconscious biases, are limited. We thus reiterate that elicitation of 

probabilities of DNA-TPPR based on general casework experience is a poor substitute to 

probabilities informed by structured analyses of collated casework data, when no 

experimental data are available. 

Jamieson and Bader [169] noted that experience as a source of reliable scientific opinion on 

the probability of DNA transfer has been challenged, and question the validity of this 

approach. However, they support the conduct of research to determine the accuracy of 

‘experiential’ assessment relative to ‘experimental’ assessment. We concur that such 

research would be useful.  See Taylor et al. [2] for further discussion of the merits and 

limitations of expert elicitation. 

 

8.7 Awareness and transparency of limitations of the data utilised 

As noted above, one needs to use the best currently available data and be transparent 

about the potential limitations of these data (and potentially counter these limitations with 

other supporting evidence/data). Reporting guidelines should require disclosure of the data 

on which an evaluative opinion is based upon request, especially in cases where that 

particular opinion is in dispute. This has been noted previously when considering both case-

specific data [261, 262] and unpublished data that may be shared among scientists working 

for one ‘side’, but not with those working on the other [41]. The limitations of the data 

ACCEPTED M
ANUSCRIP

T



48 
 

and/or methodologies used to provide probabilities of alternative scenarios should be 

known and taken into consideration when utilising the data, and also need to be clear and 

understood by the trier of fact [263, 264]. 

 

8.8 Accessibility and sharing of data 

The limited published DNA-TPPR research data are presented in different formats, not all of 

which are readily accessible. Studies generally aim at presenting data to inform on the 

research question, and additional information (e.g. on number of contributors, DNA 

quantity etc.) may not be fully explored and/or presented. The data from unpublished in-

house research and/or casework data collections are even less accessible to others. The 

paucity of available data limits the accuracy of probabilities and opinions provided. 

There is thus a need to consider the potential value of having a quality controlled open 

access depository of relevant DNA-TPPR information, which can be easily mined for the 

various purposes that it could accommodate. Furthermore, if deemed of potential value to 

an array of stakeholders, then consideration of the potential means of establishing such a 

depository/database/portal is required [73]. 

 

9. Transfer as a contamination risk 

Addition of DNA to a sample post-criminal offence activity (by investigation personnel, tools, 

equipment, etc) can complicate the interpretation of a profile and/or misdirect 

investigations. The contaminating source is usually from individuals who are not a POI (e.g. 

investigator or other person attending the scene or examining laboratory). However, 

depending on the what, when and how the contact causing the contamination occurred, the 

contaminating source could potentially be a POI within the case under investigation, or a 

POI in an unrelated case. Distinguishing the post-criminal activity contribution of DNA from 

background DNA, originally present prior to the sample deposited during the criminal 

activity, further complicates the interpretation of the generated profiles. 

Contamination of DNA profiles through transfer events post crime scene establishment can 

occur through various means, including: 

- Direct transfer by handling an item to be sampled without wearing gloves. 

- Direct transfer through the air whilst talking or coughing over an item, when not 

wearing a mouth mask [265, 266]. 

- Direct transfer through the air, from a person moving when not wearing any 

protective clothing [266]. 

- Indirect transfer from item to item when packed together within the same 

packaging, or from one area of an item to another area of the item when 

inappropriately packaged [55]. 

- Indirect transfer from the external packaging to the internal packaging and/or 

exhibit during handling and transport [56]. 
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- Indirect transfer via gloves, because: gloves were not DNA free when purchased 

[267]; the box of gloves was not kept DNA free during use; gloves were not replaced 

after picking-up DNA by touching something with DNA on it prior to touching the 

exhibit (especially an area from which is to be sampled) or an area that was 

designated to be and remain DNA free (such as a bag of DNA-free tools to be used 

later) [58, 60]. 

- Indirect transfer via dirty tools or equipment. For example, scissors or forceps not 

appropriately cleaned between uses [58, 59]; fingerprint brushes reused to powder 

different sites in the search for fingermarks within and over multiple scenes without 

cleaning the brush in between [57, 62]; having multiple items being fumigated 

simultaneously within a superglue chamber and/or the chamber not being 

appropriately cleaned after each use [268]; handling of dirty equipment such as a 

magnifying lamp, camera, torch whilst also handling the exhibit with the same 

gloved hand [269]. 

- Indirect transfer due to sharing of equipment among colleagues, such as a camera, 

without appropriate handling and/or protocols adopted [270] 

- Indirect transfer due to placement of exhibits on unclean surfaces [270]. 

- Indirect transfer by handling of non-exhibit items during examinations without 

awareness that they contain DNA, such as the packaging and casefile notes [56, 127]. 

Such events may occur due to: absence of proper procedures and/or poor compliance to 

them; poor training; ineffective cleaning procedures and/or compliance to such; and 

absence of environmental monitoring procedures [57, 127, 128, 271-276].  

Contamination events can be mitigated by: having proper procedures relating to crime 

scene access, examination laboratories, and exhibits; wearing, appropriate use and 

replacement of personal protective clothing; effective training and competency 

assessments; use of validated effective cleaning procedures and regimes; application of 

effective contamination monitoring procedures [168, 211, 266, 270, 271, 277-285] and use 

of certified DNA free consumables where possible [286, 287]. However, with respect to use 

of certified DNA free consumables one needs to be wary of the tests and standards applied 

by the manufacturer, relative to your use of the product [272, 288] and where possible 

conduct control tests using in-house suite of profiling methodologies. 

Furthermore, procedures should be in place that allow detection of contamination events if 

they occur, so that the profiles can be interpreted accordingly. This should include controls 

and checks for item to item transfer during examinations and sample processing. This must 

also include having an elimination database, against which each evidentiary profile is 

compared to assess if any of the profiles on this database is clearly present within the 

profile generated from the evidentiary sample. The elimination database should be inclusive 

of all those who: attend a crime scene; handle an exhibit from which a DNA sample may be 

collected, either during examinations or just handling packages containing the exhibit; work 

in areas where the exhibit is stored and/or examined, including those entering these areas 

for the non-scientific reasons such as general cleaning, maintenance or repair [270, 271, 

277-286, 289].  
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In order to allow the laboratory to improve their work practices and the confidence 

stakeholders have in the DNA evidence presented, appropriate contamination minimisation 

procedures must be used and monitored, with all contamination events being fully and 

transparently investigated [277, 279]. 

Contacts with an exhibit, especially the areas to be sampled, are not just risking 

contamination, but are also potentially reducing its probative value through the reduction of 

the amount of DNA material remaining for collection. When dealing with trace quantities of 

sample, any loss could reduce the ability to generate a full profile, thus lessening the 

probative value of the collected sample. 

There are several high profile case examples of the impact of lack of, or inappropriate, 

contamination mitigation and detection procedures that emphasise the relevance of 

maintaining proper contamination minimisation procedures. These include the ‘Phantom of 

Heilbronn’ [208] and ‘Farah Jama’ [207] cases. See Taylor et al. [2] for some further cases. 

 

10. Readiness of those addressing transfer related questions 

Most laboratories conducting forensic examinations and reporting evidence do so under 

accreditation rules and guidelines, which require those performing these tasks to be 

deemed competent in doing so having undertaken appropriate training and be deemed 

knowledgeable of the relevant information/methodology and able to apply it competently. 

It is expected that those working within the same crime laboratory receive the same level of 

training according to established training units, demonstrate equal levels of competency, 

and apply them in the same manner as each other when confronted with the same set of 

circumstances. 

It is often the expert interpreting the DNA profiles obtained from collected samples with 

respect to the identity of the person(s) from whom the sample was derived (i.e. sub-source 

level issue), who is then also asked about the relative likelihood of their findings given 

alternative means of how it may have gotten to where it was collected from (activity level 

issue). It is incumbent on those addressing such questions to be willing [290] and competent 

in doing so. This requires contemporary awareness of the available relevant knowledge and 

how to apply this knowledge in an appropriate unbiased transparent manner. In order to do 

so, training is required according to approved training modules, which are aligned with 

relevant procedures/protocols/methodologies and include appropriate competency 

assessments.  

Where possible, opinions should be based on empirically collected and analysed data 
(section 8) using appropriate methodologies and tools (section 11). Training of scientists 
should include becoming familiar with a multitude of profiles where the ground truth is 
known, generated using different multi step transfer scenarios and a variety of different 
variable conditions. Furthermore, there should be regular refresher training and regular 
proficiency testing of authorised individuals. 
Testing of some DNA reporting officers, including many with experience in reporting on DNA 

transfer, on their general understanding of DNA-TPPR and ability to identify key factors that 
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could impact transfer probabilities, has demonstrated differences between individuals (from 

between and within laboratories) in their levels of comprehension of DNA-TPPR [291]. 

Anecdotally, it appears that the training of those required to address DNA transfer activity 

level issues in legal settings is limited and ad-hoc. Further, some accrediting bodies do not 

identify the expertise required as distinct from other aspects of DNA collection, profiling and 

interpretation at sub-source level. Specific requirements are thus limited. There is also an 

absence of readily available proficiency tests to assist checking of the ongoing competencies 

of authorised individuals. 

There is a need for the forensic community to acknowledge that addressing activity level 

issues requires separate skill sets and thus separate training programs, competency testing, 

authorisations and ongoing proficiency testing. Such programs could be composed of 

different levels to cater for different needs (e.g. from basic awareness, through 

intermediate, to expert). Standardisation within and among jurisdictions should be a major 

goal. Useful guidelines on evaluative reporting, including in relation to activity level 

assessments, have been published [44, 254, 255]. Some jurisdictions are already progressing 

well down this path. For example, the UK’s Forensic Science Regulator, with guidance from 

statisticians, forensic scientists and judiciary representatives among others, is currently 

developing an evaluative interpretation standard to standardise activity level interpretations 

of trace evidence [292]. 

11. Tools to assist activity level assessments 

There are many aspects to consider when evaluating forensic genetics findings at the 

activity level, including those alluded to above. The different aspects can also impact each 

other and the overall outcomes, to varying degrees. For example, the relative presence of 

sources of DNA other than the source of interest may inform the overall interpretation. 

Guidance and tools are becoming available to assist in these endeavours. 

Some guidance has been published on evaluative reporting [44, 254]. These guidelines 

stress that reports providing opinions at the activity level should conform to four basic 

quality criteria. The evaluation should be; 

(1) balanced (e.g. address at least two competing propositions), 

(2) logically correct (e.g. logical fallacies, like transposing the conditional, should be 

avoided), 

(3) robust (the interpretation should not be overly sensitive to small variations in the 

parameter values) (Note, we have substituted the meaning stated by The Association 

of Forensic Science Providers , i.e.: ‘should withstand scrutiny by the court or other 

experts’ [254], with this meaning as we feel it is more appropriate),  

(4) transparent (the line of reasoning and supporting data should be clearly stated). 

Bayesian networks are becoming the de facto standard tool used in activity level evaluations 

in forensic science [293] and can assist experts with their compliance to these four criteria. 

Bayesian networks allow the expert to model all relevant parameters and their 

dependencies. The graphical visualisation of complex Bayesian formulations enhances the 
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transparency of the expert’s reasoning. The model also explicitly requires experts to assign 

probabilities to all modelled parameters, thereby avoiding implicit assumptions. Sensitivity 

analyses on relevant parameters can further provide clarity on the robustness of the 

evaluation. The structure of the Bayesian network, particularly if based on existing template 

structures (e.g. Evett et al. [294]; Taylor et al. [45]), will also guard against logical fallacies, 

and will enforce balance in the evaluation since at least two propositions need to be 

specified. 

Bayesian networks are flexible and can be used for different aspects relevant to assessment 

of DNA TPPR. In casework, they can be used to perform a proper case assessment [295] or 

to evaluate forensic genetic findings given propositions at activity level [53, 296, 297]. They 

may also be used to direct research efforts through clarifying, by sensitivity analysis, which 

parameters require more data [47]. See Taylor et al. [2] for more information on the use of 

Bayesian networks, and evaluation of forensic genetics findings given activity level 

propositions in general. 

 

12. Where to from here 

As noted by others [40, 41, 44, 46, 144, 145, 298], activity level questions concerning DNA 

need to be addressed. Forensic scientists with expertise in DNA-TPPR are therefore in a 

responsible position to provide guidance on the probabilities of specific evidence given 

specific scenarios using the information that is available at the time. 

This review demonstrates that over the last few years we have become aware of several 

factors affecting DNA-TPPR, but much more research needs to be undertaken to understand 

the impact of the many variables, build the data necessary to determine probabilities of 

different profile type occurrences in different situations, and to improve the accuracy of the 

profile interpretation given the uniqueness of each case scenario to be considered. As the 

number of potential scenarios in which DNA-TPPR are to be contemplated is infinite, there 

will be reliance on extrapolating from research findings. The research thus needs to be of 

high quality, broad scope, and sufficient quantity. Sensitivity studies to identify the factors 

and variables most likely to impact likelihood ratios within transfer related scenarios will 

help prioritise the focus of further research. 

We encourage:  

 pursuit of the various suggested means of building our knowledge and data sets;  

 efforts towards making generated data readily accessible to improve awareness and 

utilisation by stakeholders;  

 greater use of available methods and tools to evaluate likelihood of forensic genetics 

findings given case specific scenarios using available DNA-TPPR data and further 

development of user friendly interactive tools to assist their adoption; and  

 harmonisation and, where possible, standardisation of methodologies. 

Recognition of DNA activity level as a defined expertise requiring dedicated training and 

competency testing towards authorisation will assist the provision of sound opinion and 
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guidance to the triers of fact. Apart from improvements in training of experts, further 

general education of all stakeholders in relation to DNA-TPPR would be beneficial. 

We implore stakeholders to invest time, resources, funding and commitment towards 

enabling forensic scientists to provide high quality expert opinion and guidance to courts to 

accommodate the provision of a fair justice system. 
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Figure 1. Diagrammatic illustration of various modes of transfer 
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