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Abstract 

The hydrodynamic behaviour of an oscillating wave surge converter (OWSC) in large motion 

excited by nonlinear waves is investigated. The mechanism through which the wave energy is 

absorbed in the nonlinear system is analysed. The mathematical model used is based on the velocity 

potential theory together with the fully nonlinear boundary conditions on the moving body surface 

and deforming free surface. The problem is solved by the boundary element method. Numerical 

results are obtained to show how to adjust the mechanical properties of the OWSC to achieve the 

best efficiency in a given wave, together with the nonlinear effect of the wave height. Numerical 

results are also provided to show the behaviour of a given OWSC in waves of different frequencies 

and different heights. 

Keywords: Wave energy, Oscillating wave surge converter, Nonlinear wave/structure interactions, 

Boundary element method. 

1 Introduction  

With the extensive use of fossil energy, it becomes evident that this is not sustainable as the energy 

resource can be exhausted. Furthermore the excessive use of this kind of energy has caused 

environment pollution and climate change. Therefore there has been an increasing interest in 

developing technology to efficiently make use of renewable energy, in the form of water wave, 

hydro, wind and solar powers, etc. Indeed some of technologies are already widely in use, and had 

supplied an estimated 22.1% of global electricity consumption by the end of 2013, among which 

hydropower provided about 16.4%, and wind energy produced around 2.9%. In contrast, use of 

wave energy is less developed while it has a great potential. 

Most wave energy exits in deep seas, and thus the earlier wave energy converters were usually 

designed for deeper waters (Salter, 1974, Budal and Falnes, 1975&1978, Evans, 1976&1981). 

While during recent years, the wave energy in nearshore has received increasing attentions, which 

is a result of the new understanding of the nature of wave energy. It is common that the nearshore 

wave power resource is dramatically less than that offshore. However this statement is usually based 

on the omni-directional or gross wave power resource, which is particularly advantageous for the 

devices which are not sensitive to the direction of wave propagation such as isolated axi-symmetric 

heaving buoys. However for the devices which respond differently to waves from different 

directions, “the exploitable wave energy resource”, which is defined as the mean value of the 

directionally resolved incident wave power, where the threshold power level is not allowed to be 

more than four times the mean value, is a more realistic measure (Folley and Whittaker, 2009). 

Based on such a new definition, there is only 10–20% energy losses from the offshore to the 
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nearshore in many sea sites (Folley et al., 2009). From engineering and economy perspectives, the 

devices located in the nearshore have a number of advantages. Through the depth induced wave 

breaking, the large although infrequent extreme waves, which may be a threat to the survival of 

wave energy devices, can be filtered (Henry et al., 2014). In addition, cost of the cables which are 

used to bring power to the shore and power losses in the cables will be lower due to closer distance 

to the coast. The installation and maintenance costs in nearshore are likely to be reduced due to the 

shorter weather windows, the closer location to the shoreline and shallow water depth (Folley et al., 

2007a). Thus the wave energy converters designed for shallower water gradually gain momentum 

during the last decade. This type of devices are often classified as oscillating wave surge converters 

(OWSCs), as energy is mainly extracted from the horizontal or surging motion of water particles in 

ocean waves (Whittaker and Folley, 2012). One of the most typical OWSCs is Oyster. This device 

is a buoyant and hinged flap which is attached to the seabed and has the top edge piercing through 

the water surface. It is usually used in area of water depth of between 10 and 15 m, which is often 

referred to as nearshore. Two full-scale prototypes of Oyster were installed in summers of 2009 and 

2011 at the European Marine Energy Centre's test site (EMEC), Orkney, Scotland. Apart from 

Oyster, WaveRoller (Folley et al., 2007b) with a flap completely submerged is another typical 

representative of OWSCs. The previous two devices typically comprise a single flap spanning their 

full width. Recently, a new concept ‘Modular Flap’, formed by splitting the flap into multiple 

modules, is receiving increasing attention. Sarkar et al. (2016) made comparison of the 

performances between a rigid flap and a modular system with six identical modules. The combined 

length of the latter was the same as that of the former. It was found that the module system had the 

potential to gain more energy due to its multiple natural frequencies at which resonance could occur. 

Wilkinson et al. (2017) showed through both the numerical and experimental methods that the 

modular device could absorb power more smoothly. 

Over the past decade, OWSCs have been investigated by many authors though various analytical 

and numerical methods. Folley et al. (2005, 2007a) investigated the effect of water depth on the 

power capture efficiency and surge wave force of an OWSC through the combined method of 

analytical and numerical results. The capture efficiency and surge wave force were obtained through 

the equations with hydrodynamic coefficients obtained from the linear potential flow theory. Similar 

work includes those by Folley et al. (2007b), Van’t Hoff (2009), and Whittaker and Folley (2012). 

In addition, a three dimensional semi-analytical model based on the potential flow theory was 

developed by Renzi and Dias (2012a, 2012b, 2013) to investigate the behaviour of an OWSC. 

Recent years, generally CFD techniques have been increasingly used. Among them, Smoother 

particle hydrodynamics (SPH) method was used by Rafiee et al. (2013) to investigate the wave 

loading on an OWSC, and by Yeylaghi et al. (2016) to investigate the interaction between wave and 

OWSC. Another important CFD technique is to combine the finite volume method (FVM) in solving 

RANS function, with some surface tracking methods, such as volume of fluid (VOF) or level-set 

(LS) technique for the free surface. In this context, viscous effects and slamming effects on an 

OWSC were investigated by Wei et al. (2015, 2016) though the Fluent Software. Similar method 

was also adopted by Schmitt and Elsaesser (2015) in simulating the motion of an OWSC in 

significant waves through an open source toolbox OpenFOAM. 

Within the linear theory, it is generally accepted that the wave energy absorbed by WECs 

from waves very much depends on the difference between the wave and body frequencies and 

the damping from the power take-off system. Specifically, the wave energy converter must 



first be resonated at the design wave frequency. Simultaneously, the radiation damping of the 

WEC should be matched with the externally imposed damping. Mei (2012) named it as 

“impedance matching”, and found that the power output could be maximized when 

“impedance matching” was realized. Therefore achieving resonances is recognized as one of 

the best options to improve the performance of a WEC. For instance, a coupled resonance was 

considered by Evans and Porter (2012) through inserting a water tank having separate mass 

/spring /damper characteristics into a WEC. The multiple resonances of system were exploited 

by Crowley et al. (2013) through inserting a mechanical system of compound pendulums inside 

the hollow cylinder to provide a broad-banded response. Other similar work includes those by 

Eriksson et al. (2005) and Renzi and Dias (2012a, 2012b, 2013). 

Within the potential theory, the linear frequency domain method, which is most commonly used 

above, is very effective for the efficiency evaluation of WECs in small regular waves. However, in 

large waves, the neglected nonlinear effects may lead to the significant deviation of the efficiency 

and performance evaluation. In such a case the fully nonlinear time domain method may be needed. 

In the present paper, we shall focus on the oscillating wave surge converter undergoing large 

amplitude motion. The governing Laplace equation will be solved by the boundary element method 

(BEM). The nonlinear free surface boundary conditions will be satisfied through time stepping 

method. In the following sections, we shall first introduce briefly the OWSC system, with the 

definitions and equations for the absorbed power and efficiency. This is followed by the detailed 

description and the methodology for hydrodynamic analysis. Results are then provided to assess the 

performance of the device in the nonlinear periodic waves. Efficiency analysis is undertaken in a 

given incoming wave while varying the natural frequency and the mechanical damping of the 

system. Analysis is also made to access the nonlinear effect through the incoming wave amplitude. 

All these aim to provide a better understanding of the mechanism of wave energy conversion.  

2 Methodology for efficiency prediction 

2.1 Definition of wave energy absorbing efficiency of an oscillating wave surge converter  

 

Fig. 1. The sketch of an oscillating wave surge converter   

From a practical point of view, OWSC is a three dimensional device. However two dimensional 

analysis can still shed some insight into the physics of the problem. Fig. 1 gives a sketch of a two 

dimensional OWSC (Henry et al., 2014), in which a flap hinged at distance h  from the calm water 

surface, is allowed to rotate about a horizontal axis perpendicular to the direction of wave 

propagation. The Cartesian coordinate system O xy  with the origin O  fixed at the hinge centre 

is defined so that x  axis is parallel to the flat seabed with depth d  and y  axis points vertically 

upwards. The angular displacement   is zero when the flap is in the vertical position and is 

positive in the anticlockwise direction.   is the angular velocity and therefore /d dt  . In 



the present paper, the distance h , the acceleration due to gravity g , and the water density   are 

used for dimensionalisation. The flap will be in oscillatory rotation under the excitation of the wave, 

and its hydrodynamic behaviour is to be investigated through the time stepping method. It is 

expected that the rotation of the flap is resisted by the forces exerted by the generator. Thus the 

equation of motion of the flap can be written as  

McbaI  ptoptopto )(                           (1) 

where dot denotes temporal derivative, I  is the rotational inertia of the flap about the hinge, ptoa  

and ptoc  respectively imply the inertia and elastic characteristic of the generator, while ptob  

implies the mechanical damping due to power take off system or generator. M  in Eq. (1) is the 

moment due to fluid as well as the gravity. The power per unit length PE  extracted by the converter 

over each cycle is the average of the work done to the converter by the fluid over a period of time. 

We have  
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after Eq.(1) is used to obtain M  and the coefficients are assumed to be as constants, where T  is 

the period of the body motion and 1m   is an integer. If we write 
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where / 2T   is the frequency and n  is the complex amplitude corresponding to the 

oscillation at the frequency n , then Eq. (2) becomes  
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which shows that ptob  is the equivalent energy extraction rate.  

To consider efficiency of the device, we may consider the energy propagation in the incident 

wave. If the wave energy E  confined within 0 x   , where   is the wavelength, we then 

have (Wehausen and Laitone, 1960) 
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The first term is in fact the energy leaving the domain and the second term is the energy moving 

into the domain and is the one to be absorbed. We notice that for the progressing wave, 

( , , ) ( , )x y t x ct y   , where /c k  is the speed of the wave and k  is the wave number. 

This gives t xc   . Thus, the average energy flux over a period at 0x   becomes  



(0, )
2

W 2 0

T t

x
l

E dydt
T





                              (6) 

in which cT   has been used and   is the elevation of the free surface. The efficiency R  of 

the system can be defined as the ratio of the power extracted by the device to the power in the 

incident wave, or 
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2.2 Hydrodynamic analysis for fully nonlinear interaction between waves and converter 

For the wave problem, water can be assumed to be inviscid as the viscous effect becomes 

important only after many wave periods or wavelengths (Lighthill, 1978). When the fluid is further 

assumed to be incompressible and the flow to be irrotational, the velocity potential whose gradient 

is equal to the fluid velocity can be introduced and it satisfies the Laplace equation. Let the incident 

potential be denoted by I  and the incident wave elevation by I . Eq. (6) becomes 
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In addition to the incident wave, the moment M  in Eqs. (1) and (2) includes the contribution from 

the diffracted and radiated waves. This can be obtained only by solving the hydrodynamic problem. 

Based on the velocity potential theory, the total potential  , including incident, diffracted and the 

radiated waves, satisfies the Laplace equation in the fluid domain 

2 0                                     (9) 

Based on the impermeable body surface boundary condition, the normal derivative of the potential 

can be written as 
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where ( , )x yn nn  is the normal of the body surface pointing out of the fluid domain. Similar 

impermeable boundary condition can be imposed on the fixed bottom of the fluid. Thus we have 
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The dynamic and kinematic boundary conditions on the free surface FS  in the Lagrangian form 

can respectively be written as 
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At the far field, the disturbed wave will propagate to infinity and there should be no reflection. 

Numerically, the disturbed wave will be absorbed and then diminishes when x  . In such a 



case, the potential will tend to the incident potential, or   

I
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To implement in the numerical simulation, this condition is imposed at a truncated vertical boundary 

at a sufficiently large distance x . On the free surface near the truncated boundary, a numerical 

damping zone, is introduced in the dynamic and kinematic free boundary conditions in the following 

mixed-Eulerian-Lagrangian (MEL) form (Contento et al., 2001, Aliabadi et al., 2013) 
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where 
t




 includes the variation of the potential due to the change of the free surface elevation. 

We notice that the last terms in both Eqs. (15) and (16) correspond to the difference between the 

total potential (total wave elevation) and the incident potential (incident wave elevation). This is to 

ensure only the disturbed potential, including the diffracted and radiated potentials, is absorbed, but 

not the incident potential I . The damping coefficient ( )x  in these two equations is chosen 

such a way to ensure a smooth transition from Eqs. (12) and (13) to (15) and (16) at their intersection 

0x x . We adopt the following form in the present work 
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where   and   mean the frequency and nonlinear wavelength of the incident wave respectively. 

The strength and the length of the damping zone are respectively controlled by two coefficients   

and  . Based on the numerical tests in the presented problem, it is found that values of   and 

  can both be taken as 1.0. For initial condition at 0t   in the mathematical modelling, the flap 

can be assumed to be put in the incident wave suddenly, and the potential on the free surface and 

the wave elevation can be taken as  
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The mathematical problem is solved using the boundary element method. Through Green’s 

identity, the Laplace equation in the fluid domain can be converted into an integral equation over 

its closed boundary S .  
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where ( )A p  is the solid angle at the field point ( , )p x y , while ( , )q x y  denotes the source point, 

and the Green function can be written as  

1 2( , ) ln lnG p q r r                            (20) 

with 2 2

1 0 0( ) ( )r x x y y    , 2 2

2 0 0( ) ( 2 )r x x y y l     , and l  being the vertical 

distance from the hinge centre to the bottom. The first term in Eq. (20) in fact corresponds to a 

source at point 0 0( , )x y  while the second term is its mirror image about the bottom BS  at 

y l  . Together they satisfy / n 0G    on BS . Combining with Eq. (11), BS  then can be 

excluded from S  in Eq. (19). The remaining boundary is divided into many small elements. 

Within each element the potential and its normal derivative are assumed to vary linearly. Boundary 

conditions are used, and the unknowns are then found from the solution of the matrix equation (Lu 

et al., 2000, Sun and Wu, 2013). 

Once the solution of the above problem is found, the fluid moment may be obtained from the 

integration of the local moment created by the pressure over the flap surface. We have  
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where m  is the mass of the flap and cy  is the vertical coordinate of the gravity centre of the flap 

when 0  . We note that in the equation, even when the velocity potential   has been obtained 

at each time step numerically, t  is still not explicitly known. An effective method to resolve this 

is to treat t  as another unknown function which satisfies the Laplace equation in fluid domain. 

On the body surface, the normal derivative of t  can be written as (Wu, 1998) 
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We note that in the equation the acceleration   is not yet known before Eq. (1) is solved, which 

in turn depends on M  in Eq. (21) and   in the Eq. (22). To decouple this nonlinear mutual 

dependence of the flap acceleration and fluid loading, we adopt the method of Wu and Eatock Taylor 

(1996, 2003). In particular, we define 1  and 2  as  

21   t
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They both satisfy the Laplace equation in the fluid domain. The body surface boundary conditions 

for 1  and 2  can respectively be written as 
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The second derivative in the normal direction can be transformed into that in the tangential 

directions 
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and their numerical calculations can be performed based on the procedure in Xu and Wu (2013). 

Based on the Bernoulli equation, together with zero pressure on the free surface, we have 
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Sufficiently far away from the flap, t  tends to the temporal derivative of the incident wave 

potential It  after numerical damping is imposed in Eqs. (15) and (16). Thus the condition at the 

truncated boundary can be written as  
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Based on 1  and 2 , Eq. (21) can be written as 
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which is effectively an added inertia, and 
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Eq. (1) can be written as  

McbaaI  ptoptopto )(                      (31) 

At 0t  , the free surface and the potential on the free surface are prescribed based on the incident 

wave, together with the initial value of   and  . The solution of the discretized form of Eqs. 

(19) and (31) then gives  , from which   and   can be updated though the Runge Kutta 

process. At the same time, Eqs. (12) and (13) are used to update the potential and free surface. The 

calculation then moves to the next time and it continues until the desired time step.  

On the free surface the discrete element nodes may cluster or scatter in the process of updating, 

and thus the mesh needs to be re-generated after every few time steps. Here we choose the 5-point 

4th order Lagrangian interpolation method to redistribute the nodes (Abramowitz and Stegun, 1964) 
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is the Lagrangian interpolation polynomial. We adopt the length measured along the free surface as 

variable e , with its origin at the intersection between the free surface and body surface. je  are 

the length coordinates of the nodes of the existing mesh and kf  is the value of function on node 

k . When the coordinate e  of each new node after remeshing is obtained, Eq. (32) can then give 

( , , )x y   at e . 

The present methodology can deal with any given incoming wave. The tenth order and fifth order 

Stokes waves may give similar overall results in the present cases, such as total force and motion. 

When the detailed results such as higher order force components are needed, the higher order Stokes 

wave is more appropriate. Thus we choose the 10th order periodic Stokes wave through Fourier 

approximation method (Fenton, 1988) as an example. The wave elevation and potential can be 

written as 
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where 

0( )k x ct                                 (36) 

and 0  is the initial phase, k  is the wave number and c  is the wave velocity. The detailed 

results for jB , jY  can be obtained through a set of nonlinear equations (Fenton, 1988). All the 

parameters above are nondimensionalized based on the manner described before Eq. (1). 

2.3 Linear frequency domain method for fluid flow 

When the wave amplitude and motion amplitude are small, the problem can be simplified as a 

linear one. We may follow the analysis in Section 7.9.2 of (Mei, 1983). M  in Eq. (1) can be 

decomposed as the hydrodynamic moments due to the incident wave iM  and diffracted wave 

eM , the radiated wave rM , the buoyancy bM  and the weight of the flap gM   

i e r b gM M M M M M                            (37) 

The last two terms are related to the displacement   and therefore together they constitute the 

restoring moment. The boundary conditions will be imposed at the mean position of each surface 

and only linear terms will be retained. Correspondingly there will be only the first term of 1n   

in Eq. (3). Also only the linear term in Eq. (35) is used for the incident potential, which can be 



written as 
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where A  is the linear wave amplitude and 
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where r  and d  are respectively wave radiation and diffraction potentials, and they satisfy the 

following body surface boundary conditions 
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Their contributions to the moment can be written in the following forms 
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where bm  is the mass of the water displaced by the flap at the vertical position, by  is the vertical 

coordinate of the buoyancy centre and sin   has been used due to linearization. Eq. (1) can 

then be transformed as 

1
2 2 2 2

pto z pto z pto z[( ) ( )] ( )

M

I a a c c b b


 




      
             (45) 

za  and zb  here respectively are effectively the linear added inertia and radiation damping 

coefficient, and they are both the function of the frequency  . zc  is the restoring force coefficient 

due to the difference in the contributions from the hydrostatic term and the weight of the flap. From 

Eq. (45), Eq. (4) becomes  
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P 2 2
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1
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b M
E

I a a c c b b 
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

     
               (46) 

For the linear problem and a symmetric body, the Haskind relationship (Mei, 1983) 



2 2

g z2M A C b                              (47) 

may be used, where gC  is the group velocity. Eq. (46) becomes  
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For the linear wave, Eq. (6) gives  

2

g

1

2
WE A C                                (49) 

Thus the efficiency in Eq. (7) becomes  
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To find the added inertia za  and radiation damping coefficient zb  through our present time 

stepping method, we can impose the flap in the forced rotation in calm water with a small amplitude

0 , or 

             0 sin t                                 (51) 

When the numerical result becomes virtually periodic, the temporal variation of the moment rM  

can be written as  

2

r z 0 z 0sin( ) cos( )M a t b t                          (52) 

from which za  and zb  can be obtained based on the variation of rM  with time. The natural 

frequency n  is defined when the inertial term is cancelled by the restoring force, and can 

therefore be obtained from  

pto z

n
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                           (53) 

Based on Eq. (46), in a given incident wave of fixed  , the extracted power for the flap can be 

optimized by adjusting 
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which is obtained by using 
P
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0
E

b





. Substituting this into Eq. (46), we have 
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Eq. (55) means that at a given wave frequency, when ptob  is chosen based on Eq. (54) for a given 

device, PE  will achieve its maximum. We then notice that based on such a choice we have 



opt zb b  and its lowest value opt zb b  is achieved when the n  . We also notice when 

opt zb b , Eq. (55) reaches its highest value at  

2

P g

1

4
E A C                              (56) 

which is the same as that of Eq. (9. 10) of Section 7.9.2 of (Mei, 1983). Substituting Eqs. (49) and 

(56) into (7), we notice that the highest efficiency is 50%. This is a well known result for a symmetric 

device based on the linear theory and will be assessed below when the nonlinear theory is used.    

3. Numerical results and discussions 

3.1 Convergence study and validation  

The computational domain is truncated at 6x   where   is the nonlinear wavelength. The 

smallest elements of length ml  are used on the body surface and on the free surface nearer to the 

body, for example up to 1x  . Beyond this point, the size of the element increases gradually at a 

fixed ratio  . However it is limited by a maximum of / 25 . The time step t , is taken as a 

fraction of the ratio of m max/ ( )l V , where maxV  is the maximum of the velocity magnitude on 

the free surface at each time step and 1   is a coefficient. Simultaneously, t  is not allowed 

to be larger than m /t T n  , or at least n  time steps are needed within one period. The angular 

displacement history with three different meshes and two different time steps are shown in Figs. 2 

and 3 respectively. The height of the flap h , thickness B , rotational inertia about the hinge I , 

mass m  and the height of mass centre cy  in Fig. 1 are respectively set as 1.0, 0.427, 0.063, 0.153 

and 0.646. The frequency and height of the incident wave are respectively set as 0.478   and 

0.49H  . Water depth 1.49d  . Mechanical coefficients of the converter ptoa , ptob  and ptoc  

are all set as 0. The good agreement can be seen in the figures and this verifies that the present 

method is mesh and time independent. Unless specified, in the following simulations, m 0.1l  , 

1.01  , 5   and 100n  . The main parameters for the oscillating wave surge converter in 

Figs. 2 and 3 are adopted in the following simulations, unless their variations are specifically 

explained.   

 



Fig. 2. Mesh convergence study  

 

Fig. 3. Time step convergence study  

We now consider the case in Henry et al. (2014) for comparison. 0.205mh   is the height of 

the flap in Fig. 1 in dimensional sense. The motion is excited by a wave with height 0.1mH   

and period 1.9sT  , and the water depth d  is set as 0.305m. The thickness B , rotational inertia 

about the hinge I , mass m  and the height of mass centre cy  are respectively set as 0.0875m, 

0.1147kgm2, 4.27kg and 0.1324m. After nondimensionalization, the values of H , T , d , h , 

B , I , m  and cy  are the same as those in Figs. 2 and 3. The coefficient ptoa , ptob  and ptoc  

due to mechanical system are all set as zero. The histories of the angular displacement and velocity 

from the present fully nonlinear BEM are presented in Fig. 4. The tip of the jet was cut regularly 

(Sun et al., 2015). The results are compared with the experimental data of Henry et al. (2014) and 

those from their numerical simulation based on the finite volume approach through Fluent Software. 

Dimensional parameters are used in the figure to be consistent with their results. It can be seen from 

the figures that all the results are in good agreement in general, while the present results are even 

closer to the experimental data. This validates the present methodology and procedure.   

 

Fig. 4. Comparison between the present result and those of Henry et al. (2014) (a) the angular 

displacement   and (b) the angular velocity  . 

3.2 The effect of the design parameters for the generator 

We now investigate how the variation of the coefficients ptoa , ptob  and ptoc  will affect the 

results under a given wave. The frequency   of the incident wave will be set as 0.5. At this 

frequency, the added inertia za  is approximately 0.739 and the radiation damping coefficient zb  



is about 0.336 from the linear theory. Based on Eqs. (54) and (55), when ptob  is set as optb , the 

rate of extracted power PE  can reach its peak. In such a case when natural frequency n  is close 

to the wave frequency  , PE  can reach the highest value. To investigate such a behaviour, the 

flap is released into a wave with height 0.05H  , which is small enough that nonlinear 

characteristics will not have major effect on the results. Fig. 5 gives the motion amplitude 0  and 

the rate of power extracted PE  against n  at different ptob . PE  is calculated from Eq. (2) 

when the results become virtually periodic, for example at 20t T , and the number of periods 

m  are taken as 20 or more. 0  is measured from the mean peak value during the m  periods. 

According to Eq. (53), n  can be adjusted by changing ptoa  or ptoc , and the effects will be 

similar. In the current case, ptoc  is adjusted to vary n  around   while pto 0a  . ptob  is set 

as optb , where   is a coefficient. Fig. 5 give the results for  =0, 0.5, 1.0 and 1.5 respectively. 

As expected at 0  , or when the mechanical damping is zero, the motion amplitude 0  is 

largest. However, this large motion does not lead to any energy extraction by the flap. In fact we 

have P 0E   at 0   based on the Eq. (2). This means that all the energy has been returned to 

wave. To absorb energy,   must be larger than 0. It can be seen when 0.5  , the motion 

amplitude becomes smaller due to the additional damping. However, exactly due to the reduced 

motion, some of the energy has been transferred to the generator, which can be seen through the 

curve of PE  in Fig. 5(b). Based on the linear theory, when ptob  is given by Eq. (54), PE  will 

reach its optimum at each n . This can be seen from the curve of PE  at 1  , which is higher 

than the curve of 0.5   as well as the curve of 1.5  . The motion amplitude 0  on the other 

hand always decreases as   increases. This shows that at motion of either very large amplitude or 

very small amplitude, corresponding to the small and large mechanical damping respectively, the 

rate of power extracted PE  is small. The largest PE  occurs at motion with middle range 

amplitude when pto optb b . At each given  , however, both 0  and PE  will reach their 

maximum at n  , or when resonance occurs. Thus overall PE  is the largest when n   

and pto optb b , which is consistent with the discussion in Sec. 2.3. 



     

Fig. 5. Results against n  at different ptob  ( 0.05H  , pto 0a  , 0.5  ) (a) the motion 

amplitude of the flap 0  and (b) the rate of power extracted PE  

We now consider the effect of the wave height H . In the linear theory, 0  is linearly 

proportional to H , while PE  to 2H . The efficiency R  is independent of H .The results for 

0 / H , 2

P /E H  and the efficiency R  against n  with different H  are provided in Fig. 6. 

All the curves for motion amplitude in Fig. 6(a) reach their peaks when n  . However, this is 

not exactly true in Figs. 6(b) for the extracted power and (c) for efficiency. When H  is small, for 

example at 0.05H  , the results are very close to those from the linear theory, and the peak PE  

and R  both appear at n  . The largest difference between the result of 0.05H   and that 

of linear theory is no more than 3%. The peak happens when n  may be slightly larger than 0.5, 

but the difference is no more than 1%. When H  is increased to 0.2, 2

P /E H  and R  become 

slightly larger. The largest 2

P /E H  and R  also appear at n  . When H  is increased to 

0.5, nonlinear effect becomes far more prominent, and some very different features appear. When 

n  is small, both 0 / H  and 2

P /E H  at 0.5H   are smaller than those at 0.05H   and 

0.2H  . However PE  at 0.5H   increases much faster with n . It becomes much bigger 

than those at 0.05H   and 0.2 at large n . Its peak occurs when n  is away from  . We may 

notice that the natural frequency n  is estimated from the linear theory. At large H , the real n  

will be affected by the nonlinearity obviously. At a given   and H , WE  will be a constant. 

Thus based on Eq. (6), the efficiency curves in Fig. 6(c) follow the exact shapes of the corresponding 

PE  curves in Fig. 6(b). However WE  at different H  is different, therefore the relative 



magnitudes of those at 0.05H  , 0.2, 0.5 in Figs. 6(b, c) are different. Based on the discussion 

after Eq. (56), the highest possible efficiency from the linear theory is 50%. This can be observed 

from Fig. 6(c) at 0.05H  . However, at larger H , this barrier can be broken and the efficiency 

can exceed this limit.  

   

 

Fig. 6. Results against n  at different H ( pto 0a  , pto optb b , 0.5  ) (a) 0 / H , (b) 

2

P /E H  and (c) R  

3.3 Behaviour of an oscillating wave surge converter in different incident waves 

We then consider the cases in which an oscillating wave surge converter with fixed mechanical 

properties is in different waves. When mechanical coefficient ptoa  and ptoc  are both set as zero, 

the natural frequency of the flap is 0.324, and this corresponds to a radiation damping coefficient 

0.166zb  . Thus mechanical damping coefficient ptob  is set as 0.166. The wave frequencies 

chosen in current case correspond fully to the range in the experiment of Henry et al. (2014). 

0 / H , 2

P /E H  and R  against   with different H  are provided in Fig. 7. As   

increases, both 0 / H  and 2

P /E H  decrease gradually, and efficiency R  decreases first and 

becomes more stable later. When 0.05H   and 0.2, nonlinear effect on 0  and PE  is not 

prominent, and the results are close to those of linear theory. The nonlinear effect becomes 



prominent at 0.5H  . 0 / H  and 2

P /E H  are lower when 0.8  , while R  is lower 

over the whole range of the frequency.   

 

 

Fig. 7. Results against   at different H  ( pto 0a  , pto 0.166b  , pto 0c  ) (a) 0 / H , (b) 

2

P /E H  and (c) R  

In the above case, the frequencies of incident waves are all larger than natural frequency n  

and there is no peak in Fig. 7. We now adjust the natural frequency n  to 0.5, which can be 

achieved by setting pto 0.091c   and pto 0a  . The mechanical damping coefficient is set as 

pto 0.336b  , which corresponds to the radiation damping coefficient zb  at 0.5  , or is the 

optimal optb  when n  . Figs. 8 (a, b, c) give the ratio of 0 / H , the ratio of 2

P /E H  and 

the efficiency R  respectively against wave frequency  . It is interesting to see as   increases, 

0 / H  decreases and there is no peak at n  . This is because the damping term in Eq. (45) 

is relatively large compared with the difference of inertial and restoring force terms. Thus even 

when the difference is zero, i.e, when n  , the ratio of 0 / H  is not the prominently largest. 



Also unlike results in Fig. 6 where the excitation force M   in Eq. (46) does not vary with n , 

it varies here with  . For the same reason, there is no obvious peak of PE  in Fig. 8(b) either. 

However the peak is obvious for the efficiency in Fig. 8(c). The figure shows that when the 

mechanical properties of the converter are tuned for a given wave frequency, the device can achieve 

the highest efficiency at this frequency. However, when the incoming wave changes, the efficiency 

can decrease significantly, especially if the wave amplitude is large. This suggests that when a 

device is designed, a balance may need to be found if the wave condition at the site changes regularly. 

 

 

 

Fig. 8. Results against   at different H  ( pto 0a  , pto 0.336b   and pto 0.091c  ) (a) the 

ratio of 0 / H , (b) the ratio of 2

P /E H  and (c) the efficiency R . 

4. Conclusions 

The performance of the oscillating wave surge converter has been analysed based on the fully 

nonlinear velocity potential theory with the boundary element method. The following conclusions 

can be made.  

(1) The choice of the mechanical damping ptob  of the converter is highly significant for an optimal 

extraction of wave power. Based on the linear theory the wave energy converter will achieve the 

highest possible efficiency of 50% when pto optb b . However this limit can be exceeded when the 



nonlinear theory is used.  

(2) For the wave at a given frequency, the mechanical parameters of devices can be adjusted to 

improve the efficiency. At a small wave amplitude, the high efficiency is reached when the natural 

frequency is equal to the wave frequency. However it is no longer the case when the wave amplitude 

is large and nonlinear effect is important.  

(3) In the design of an OWSC, the natural frequency can be tuned to the characteristic frequency of 

the wave to achieve the high efficiency. However this may mean much lower efficiency when the 

sea-state changes. Therefore it is important to ensure the wave energy converter is efficient in a 

band of frequencies of a range of incoming waves. 
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