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Abstract

The loss of huge areas of peat swamp forest in Southeast Asia and the resulting

negative environmental effects, both local and global, have led to an increasing

interest in peat restoration in the region. Satellite remote sensing offers the

potential to provide up-to-date information on peat swamp forest loss across

large areas, and support spatial explicit conservation and restoration planning.

Fusion of optical and radar remote sensing data may be particularly valuable in

this context, as most peat swamp forests are in areas with high cloud cover,

which limits the use of optical data. Radar data can ‘see through’ cloud, but

experience so far has shown that it doesn’t discriminate well between certain

types of land cover. Various approaches to fusion exist, but there is little infor-

mation on how they compare. To assess this untapped potential, we compare

three different classification methods with Sentinel-1 and Sentinel-2 images to

map the remnant distribution of peat swamp forest in the area surrounding

Sungai Buluh Protection Forest, Sumatra, Indonesia. Results show that data

fusion increases overall accuracy in one of the three methods, compared to the

use of optical data only. When data fusion was used with the pixel-based classi-

fication using the original pixel values, overall accuracy increased by a small,

but statistically significant amount. Data fusion was not beneficial in the case of

object-based classification or pixel-based classification using principal compo-

nents. This indicates optical data are still the main source of information for

land cover mapping in the region. Based on our findings, we provide method-

ological recommendations to help those involved in peatland restoration

capitalize on the potential of big data.
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Introduction

There is growing recognition of the importance of tropi-

cal peatlands as globally significant carbon sinks and bio-

diversity hotspots (Jaenicke et al. 2008; Dargie et al.

2017). The greatest extent of tropical peatland is in

Southeast Asia (247 778 km2), of which 206 950 km2 is

found in Indonesia (Page et al. 2011). The natural land

cover in these peatlands is peat swamp forest, but logging,

drainage, conversion to industrial plantations and fires

have led to large-scale forest loss and degradation

(Dohong et al. 2017). Peat swamp forests have been lost

at a very fast rate: an estimated 73 000 km2 of peat forest

was lost across Sumatra, Kalimantan and Peninsular

Malaysia between 1990 and 2015 (Miettinen et al. 2016).

This has had devastating consequences for wildlife, partic-

ularly peat swamp forest specialist species such as fresh-

water fish and trees (Posa et al. 2011).

Peat consists of incompletely decomposed plant mate-

rial that has accumulated over thousands of years in

waterlogged environments that lack oxygen. The process

of converting peat swamp forest to plantations involves

draining the peat, in order to lower the water table and

increase productivity. Not only does this land-use change

reduce biodiversity, but dry peat oxidizes more quickly,

releasing CO2 into the atmosphere; dry peat is also more

prone to fires (Page and Hooijer 2016). Fires affect

drained peatland regularly in Indonesia, and during the

very severe El Ni~no events in 1997 and 2015 very large

areas of peat burned, causing hazardous levels of air pol-

lution, posing a risk to human health (Chisholm et al.

2016) and causing economic losses estimated at 16.1 bil-

lion USD in 2015 (World Bank, 2016). The economic

impacts combined with fragmentation of habitat, release

of a major carbon sink and threat of fire and smoke, has

made peatland restoration a priority in the region (Gra-

ham et al. 2017). Restoration aims to reinstate the envi-

ronmental and economic services that tropical peatlands

provide (Page et al. 2009). In Indonesia there is currently

a focus on canal blocking in cultivated areas to re-wet

drained peatland (Ritzema et al. 2014) and selecting

appropriate restoration sites to replant with natural vege-

tation (Graham et al. 2017).

In order to protect remnant peat swamp forest and

locate optimum sites for peatland restoration efforts, it is

essential to have up-to-date information on the extent

and condition of peat swamp forests. The use of open

source software and satellite remote sensing data allows

cost-effective and standardized mapping of ecosystem

extent and dynamics for large areas, at a high temporal

resolution (Murray et al. 2018). Two main types of satel-

lite remote sensing data can be used in forest mapping:

optical and radar. These two types of sensors offer

complementary information about the Earth’s surface, as

they operate based on different fundamental physical

principles. Optical sensors passively measure electromag-

netic radiation reflected from the Earth’s surface, enabling

land cover mapping based on spectral reflectance; they

are thus sensitive to cloud coverage. Radar sensors

actively emit electromagnetic radiation in wavelengths

that penetrate cloud, and measure the returning signal, so

they are not affected by cloud cover. Radar responds to

the three-dimensional structure of objects, so the signal

returned for vegetation depends on the size, density, ori-

entation and dielectric properties of elements comparable

to the size of the radar wavelength, such as canopy or

stems (Moreira et al. 2013).

Data fusion techniques are emerging as a powerful way

to integrate information from the two complementary

sensor types (Joshi et al. 2016). Peat swamp forests are

generally found in areas with high cloud cover, which

means that their distribution can potentially be mapped

more reliably through the use of data fusion (Schulte to

B€uhne and Pettorelli 2018). However, there are many dif-

ferent data fusion techniques, and little information exists

on how they compare (Schulte to B€uhne and Pettorelli

2018). To fill this gap in knowledge, this study compares

three common data fusion methods, applied to the map-

ping of the remnant distribution of peat swamp forests in

the area surrounding Sungai Buluh Protection Forest,

Sumatra, Indonesia. The first data fusion method is a

pixel-based classification using the original pixel values

(OPVs), the second method uses an object-based classifi-

cation, and the third method is a pixel-based classification

using principal components (PCs).

Materials and Methods

Study area

The study area covers 2874 km2 and is located in Jambi

Province, Sumatra, Indonesia (Fig. 1). The area is located

40 km north of Jambi City, and predominantly falls

within the East Tanjung Jabung Regency. Peatland covers

a large part of the study area (Wetlands International

2003), but the original peat swamp forest cover has

mostly been removed and replaced by plantations or lost

in forest fires (Miettinen et al. 2016).

Land cover in the area is dominated by cash crops,

which cover about 85% of the study area, in the form of

large monoculture plantations and a patchwork of small-

holder areas (Miettinen et al. 2016). The main crops are

oil palm (Elaeis guineensis), areca palm (Areca catechu),

acacia (Acacia spp.), rubber (Hevea brasiliensis) and coco-

nut (Cocos nucifera). The Sungai Buluh Protection Forest

lies in the centre of the study area and is a peat swamp
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forest with a history of fires and disturbances (Hapsari

et al. 2017). The forest is about 120 km2 in size, repre-

senting about 4% of the study area. The study region also

has areas of regrowth left unmanaged after severe fires,

which are covered with ferns, shrub and other regrowth

(Miettinen and Liew 2010). These fern-dominated areas

cover approximately 3% of the study region and are

thought to occur in areas where intense or frequent fires

have severely degraded peatland, preventing a natural suc-

cession back to tropical peat swamp forest (Page et al.

2009). The rest of the study region (approximately 8%)

includes canals, rivers, roads and urban areas.

The climate in the region is tropical humid, with a

mean annual temperature of 26°C and an annual rainfall

of 2400 mm (Karger et al. 2016). The temperature varies

little throughout the year but there is a slightly drier sea-

son from June to September, corresponding to the onset

of the southeast monsoon (Hapsari et al. 2017). However,

even during this drier season average monthly precipita-

tion remains above 100 mm, meaning that it is unlikely

any seasonality will be seen in the vegetation due to water

stress in the drier months.

The area is low-lying, with most of the study area less

than 30 m asl. The highest point is 143 m asl and is

found in the south-west of the study area. This means

that the radar data will not show the foreshortening and

layover effects that can be found in areas with steep relief

(Moreira et al. 2013).

Remote sensing data

This study uses a C-band Sentinel-1 radar product and

optical Sentinel-2 products from 2017 (Table 1). We

downloaded C-band dual polarized (VV+VH) Sentinel-1

Ground Range Detected Geo-referenced (GRD) products

with a spatial resolution of 10 m, captured in Interfero-

metric IW-mode. The Sentinel-2 data were available as

Level 1C products and we used bands 2 to 8A, 11 and 12

throughout this study. All of the Sentinel-1 images are

from relative orbit number 18 and the Sentinel-2 from

relative orbit number 118.

An overview of our pre-processing step and an outline of

our workflow can be found in Figure 2. We pre-processed

the Sentinel-1 product using the Sentinel-1 Toolbox in

SNAP Desktop (Version 6.0.0; SNAP 2017). The pre-

processing workflow was as follows: (i) apply orbit file,

(ii) thermal noise removal, (iii) calibration, (iv) terrain cor-

rection, (v) subset, (vi) stack and (vii) multi-temporal

speckle filter (Lee Sigma, window size 7 9 7).

We also pre-processed the Sentinel-2 products in SNAP

Desktop (Version 6.0.0; SNAP 2017), using the Sentinel-2

Toolbox. We carried out atmospheric correction using

Sen2Cor, which outputs Bottom-of-Atmosphere Level 2A

Products. Sentinel-2 bands 5, 6, 7, 8a, 11 and 12 (all

short-wave infrared) have a native resolution of 20 m by

20 m, so we resampled them to 10 m by 10 m in SNAP

using the nearest pixel value, so they match the resolution

of the other bands. Finally, we collocated the Sentinel-1

and Sentinel-2 data and subset to the extent of the study

area.

The study region has very high cloud cover throughout

the year, so for this study it was necessary to create a

composite scene for 2017, using cloud-free areas from

various dates in 2017. Due to severe limitations in the

cloud detection algorithms available for Sentinel-2 prod-

ucts, we had to create the composite scene manually,

Figure 1. Overview map of the study area in Jambi Province, Sumatra, Indonesia. The study area is indicated with a red box. Data: https://

www.naturalearthdata.com/.
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selecting cloud free areas from the various dates. We used

12 images in total (Table 1), and there was still 6.3% of

the image left with no information due to persistent

cloud cover in all the Sentinel-2 scenes available for 2017.

The resulting composite image can be seen in Figure 3.

Because the largest part of the composite Sentinel-2 image

(>55%) comes from the scene acquired on the 12th of

March 2017, we chose a Sentinel-1 scene with the same

acquisition date (Table 1).

Reference data and definition of land cover
classes

The classes used throughout this study (Table 2; Data S1)

were chosen to represent the most common land cover

types in the region (Miettinen and Liew 2010). The areas

of fern are regrowth left unmanaged after severe fires.

Whilst areas that have been subject to low-intensity fire

undergo succession to secondary forest, high intensity or

frequent fires degrade peatland to the extent that succes-

sion back to forest is prevented. These areas undergo ret-

rogressive succession to lower growing, less structured

plant communities dominated by ferns, with very few

trees (Page et al. 2009). The different species of palm

(betel nut, coconut and oil palm) were considered as a

single class because it was not possible to distinguish

them from each other on the very high resolution images

available. There are also areas of traditional rubber

agroforestry in the region (Ekadinata and Vincent 2011),

but these represent only a small proportion of the study

area and distinguishing these from peat swamp forest was

beyond the scope of this study.

We collected the reference data through visual interpre-

tation of very high resolution imagery, namely a PlanetS-

cope scene from the 28th of July 2017 with a spatial

resolution of 3 m (Planet Team 2017) and, where avail-

able, higher resolution images for 2017 from Google

Earth. The Google Earth images we used were SPOT

images (sourced from DigitalGlobe), with a spatial resolu-

tion of approximately 1.5 m.

We used the same reference dataset for all the classifi-

cations in this study, made up of 1400 training points

and 2800 test points, divided equally between the seven

classes. We ensured that the reference data were well dis-

tributed throughout the scene (Data S2) and only selected

areas that we were confident we could identify. In addi-

tion to this, because the optical image is a composite

from various dates, we took the training and test points

from all the imagery dates used, proportionally to the

area they occupy in the final composite scene. This is

based on the previous work that found that decision tree

classification accuracy is not highly dependent on whether

histogram match was used to make the composite ima-

gery, provided that the training data are well distributed

to include all the imagery dates and thus reflect class

spectral variability (Helmer and Ruefenacht 2007).

Table 1. Overview of the Sentinel-1, Sentinel-2, PlanetScope and Google Earth images used in this study. We used the Sentinel-2 images to cre-

ate a single composite scene for 2017, displayed in Figure 3. It should be noted that 6.3% of the composite image has no information, due to

persistent cloud cover in all available Sentinel-2 images for 2017.

Product name Bands Spatial resolution Acquisition date

% of Sentinel-2 composite

image for 2017

Sentinel-1 C-band (VV+VH) 10 m 12.03.2017 NA

Sentinel-2 2 to 8A,

11 and 12

10 m

20 m

01.01.2017 0.2

10.02.2017 1.2

20.02.2017 1.8

12.03.2017 55.6

31.05.2017 0.1

10.07.2017 10.2

25.07.2017 0.4

30.07.2017 5.1

19.08.2017 0.3

18.10.2017 3.8

22.11.2017 14.4

17.12.2017 0.6

PlanetScope Analytic Ortho

Scenes

Red, green, blue and near infrared (NIR) 3 m 28.07.2017 NA

Google Earth SPOT images Red, green and blue 1.5 m 04.04.2017

08.03.2017

NA
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Figure 2. Overview of the workflow used in this study. The software used for each step is indicated by the capitalized text running vertically to

the left of the boxes.
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Classification

We used three different approaches to map land cover: a

pixel-based classification using OPVs, an object-based

classification, and a pixel-based classification using PCs.

For each approach we compared the results from data

fusion (using the composite Sentinel-2 scene with a single

Sentinel-1 scene from March 2017) with the use of a sin-

gle data source (the composite Sentinel-2 scene on its

own, or a single Sentinel-1 scene from March 2017 on its

own).

We used a Random Forest classifier in all three

approaches as it has demonstrated robust performance in

land cover studies using diverse remote sensing datasets

(Gislason et al. 2006; Waske and Braun 2009; Stefanski

et al. 2013). We used the package randomForest (version

4.6-14; Liaw and Wiener 2002) in the R environment (R

Core Team 2017). We set the parameter mtry to the

default value (in this case 3) and ntree to 500, based on

various trial runs and recommendations in the literature

(Belgiu and Dr�agu 2016). In the case of the object-based

classification, the features included in the Random Forest

were mean and standard deviation of the objects for each

layer in the stack.

We used the open source image segmentation tool in

GRASS 7.0.5 (i.segment; Momsen and Metz 2017) to create

objects and associated summary statistics (i.segment.stats;

Lennert 2017). The GRASS image segmentation tool uses a

region growing and merging technique, in which all pixels

are used as seeds and the similarity between segments and

unmerged objects is used to determine which objects are

merged. We set the threshold for merging at 0.01 and the

minimum object size to five pixels, based on various trial

runs.

For the pixel-based classification using PCs we applied

standardized principal component analysis in the R envi-

ronment, using the package ‘RStoolbox’ (version 0.1.10;

Leutner and Horning 2017). We then used the PCs as

predictors in the Random Forest classification. The num-

ber of PCs included in the different classifications was

decided upon through examination of the loadings and

Figure 3. The map shows the composite 2017 Sentinel-2 image used throughout this study, displayed as a natural-colour (RGB) image. Note the

inconsistencies in illumination visible in some areas of the image, due to the fact that the image is a mosaic from various dates. The areas marked

as cloud cover (6.3% of the scene) are where information is unavailable due to persistent cloud cover in all available Sentinel-2 scenes for 2017.

Table 2. Description of the various classes used this study.

Class Description

Peat swamp forest Primary peat swamp forest and secondary peat

swamp forest

Water Rivers, canals, lakes and the sea

Urban Area where the dominant land cover is

human-made, impermeable surfaces,

such as buildings and roads

Plantation - palm Plantations with oil palm (Elaeis guineensis),

coconut (Cocos nucifera) and/or areca palm

(Areca catechu) as the dominant crop

Plantation - acacia Plantation with Acacia spp. as the dominant crop

Fern Fern dominated herbaceous ground cover,

typically less than 2 m in height (Miettinen

et al. 2012).

Plantation - young Young plantations or recently cleared

plantations, where the dominant land cover

is grass, bare soil or some other understory

vegetation
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visual examination of the PCs. The classification using

only optical data included 7 PCs, the classification using

only radar data 2 PCs and the classification using data

fusion 9 PCs.

We carried out an accuracy assessment for each classifi-

cation in order to compare performance. We calculated

overall accuracy (proportion of correctly classified cases)

and class-specific producer’s and user’s accuracies for

each classification. Producer’s accuracy is calculated as the

number of correctly classified test points divided by the

total number of test points of that class, and it represents

how often a real feature on the ground is correctly shown

on the classified map. User’s accuracy is calculated as the

number of correctly classified test points divided by the

total number of test points classified as that class, and it

tells us how often the class on the map will actually be

present on the ground (Congalton and Green 2009). We

used McNemar’s test for paired-sample nominal scale

data (Agresti 2002) to assess whether statistically signifi-

cant differences exist between the classifications. This test

is suitable to assess the performance of multiple classifica-

tions that use the same test and training samples (Foody

2004) and has been applied widely in thematic map com-

parison (Duro et al. 2012; Fu et al. 2017).

Results

Data fusion increased overall accuracy by a statistically

significant amount only in the case of the pixel-based

classification using OPVs, compared to the use of only

optical data (Table 3). In the case of the object-based

classification and the pixel-based classification using PCs,

fusion did not significantly increase overall accuracy com-

pared to the use of only optical data. In all three meth-

ods, fusion had a positive effect on some classes and a

mixed or even negative effect on others (Data S3). The

results from using only radar data showed comparatively

low overall accuracy, but the object-based classification

was the most promising results.

The object-based classification using data fusion had a

significantly higher overall accuracy than the other two

approaches to fusion (P < 0.02 in both cases). It also had

the highest user’s and producer’s accuracies for ‘forest’ and

‘acacia’, indicating its strength in discriminating these two

classes (Table 4). Confusion between forest, plantation-

palm and plantation-acacia was reduced with object-based

classification, compared to the other two approaches

(Data S5).

The land cover maps produced by data fusion using

the three classification approaches can be seen in Fig-

ure 4. All approaches detected the main rivers in the

region, various urban centres and large industrial acacia

plantations to the south and west of the protected area.

Large swaths of the landscape were identified as palm

plantations and a few discrete patches were identified as

fern, including a large area in the south east of the study

area. The resolution offered by the Sentinel data allowed

many roads to be identified, mapped as either ‘urban’ or

‘plantation-young’. The canals, which often run parallel

to roads, were not identified for the most part, presum-

ably because the resolution of the imagery does not allow

for it (even the largest canals in the region are typically

less than 10 m across).

As can be seen in Figure 4, the object-based classifica-

tion produced a map with less of the ‘salt and pepper’

effect seen in the other two approaches. This led to a

more homogenous classification of the Sungai Buluh Pro-

tection Forest (Figure 4 H) and acacia plantations (Fig-

ure 4 G) for example, but also a loss of detail, such as

smaller roads (Figure 4 F).

Discussion

Our results demonstrate that data fusion significantly

improves our ability to map the loss of peat swamp for-

ests in Southeast Asia within a pixel-based classification

using OPVs, resulting in a 1% increase in overall accu-

racy. However, data fusion did not increase overall accu-

racy in the object-based classification or the pixel-based

classification using PCs, compared to the use of optical

data only. The results also show that the object-based

classification is associated with the best results in terms of

accuracy, and produces a map with reduced speckle,

although at the cost of a reduction in the detail of the

mapping.

Those considering whether to use data fusion within a

project might find the 1% increase in overall accuracy

reported for the pixel-based approach using OPVs too

low to warrant the additional pre-processing time and

expertize required when radar data are used. The pre-pro-

cessing steps for Sentinel-1 scenes do not require excessive

computational time. It took us around 10 min to pre-

process a Sentinel-1 scene following the steps described in

the methods section. The use of fusion did not have a

Table 3. Overall accuracy (%) for the different approaches to

classification.

Pixel-based

classification

using OPVs

Object-based

classification

Pixel-based

classification

using PCs

Fusion 90.41 91.6 89.7

Optical 89.4 91.2 89.4

Radar 47.0 66.6 47.9

1Indicates significant difference compared to optical at the 95%

confidence level (McNemar’s test |z| > 1.96; Foody 2004).
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noticeable effect on the time it took to train the Random

Forest classifier, which remained at around 30 sec when

run on a desktop computer (6Core 2.60 GHz Processor,

56 Gb RAM and 446 GB of free hard drive space). How-

ever, navigating the Sentinel-1 Toolbox and deciding on a

pre-processing workflow can be daunting for those less

familiar with radar data. There is thus a trade-off between

the increase in accuracy when data fusion is used and the

additional work involved.

Indeed, the results of the classification using the com-

posite optical image on its own were surprisingly good

considering the clear inconsistencies due to illumination

differences between the 12 different dates used (Fig. 3). It

may be that when faced with high cloud cover, project

time is best spent creating as good a composite scene as

possible and ensuring that reference data come from all

the dates used, rather than processing and integrating

radar data. The creation of the composite Sentinel-2

image took about 2 weeks to complete and was by far the

most time-consuming step in this study. Any future

improvements in the cloud detection algorithms available

for Sentinel-2 images will increase automation, speed up

this step and make it easier to scale up the method (Zhu

et al. 2015).

The comparison of the three classification approaches

highlights the strength of the object-based approach for

our study area, even if only optical data are used. For

those considering implementing it elsewhere, it is worth

noting that in our study area the acacia plantations and

peat swamp forest areas have large, clearly defined geo-

metrical shapes, which might have made the landscape

particularly well suited to an object-based classification.

This approach is likely to be less suitable in areas where

patterns are more subtle, and changes between land cover

more gradual. In addition, the computational time was

greater for the object-based classification than for the

other two approaches. The tools implemented in GRASS

GIS were comparatively slow and hampered by some

problems with the GIS interface. The creation of segments

and associated statistics for the study area took about

200 min, whilst running the Random Forest algorithm in

R took less than 1 min, using data fusion and a desktop

computer (6Core 2.60 GHz Processor, 56 Gb RAM and

446 GB of free hard drive space). The segmentation step

also required more involvement from the user when

selecting parameters. Thus, for anybody concerned with

maximizing speed and automation, the best approach

would be a pixel-based classification using OPV.

One of the limitations with the methods described in

this paper is that the use of a composite Sentinel-2 scene

with dates taken from throughout the year creates a risk

of intra-annual land cover change. Clearance of forest

for plantations and fires have been the key drivers of

deforestation in the study area. However, there were no

large fires in our study region in 2017 and the protected

status of the Sungai Buluh forest means that degradation

was minimal in 2017, even if it has not completely

stopped. Thus the most likely rapid land cover change

in the region is the harvest of acacia plantations. Whilst

in our study area we can safely assume that intra-annual

land cover change will not greatly affect our results, in

regions where large areas of peat swamp forest are being

removed within a year it would be more problematic to

use a composite optical image with dates from through-

out the year.

The best method for a mapping project depends to a

great extent on the land cover dynamics in the study

area, but also on how the information will be used.

Land cover maps can support a range of decision-mak-

ing in a conservation context, such as helping identify

suitable sites for peatland restoration (Graham et al.

2017). In our study site, for example, the areas of fern

are of particular interest for restoration work because

they are not economically productive and need tree

planting, alongside hydrological restoration, if they are

to return to a peat swamp forest (Page et al. 2009).

Because of this, maps that identify these areas of fern

reliably are of interest to understand their local context

and degree of connectivity with other areas of forest, in

order to assess how suitable they are for restoration. The

Table 4. Producer’s and user’s accuracies (%) for forest, plantation-acacia and plantation-palm, resulting from the three different approaches to

fusion.

Pixel-based classification using

OPVs Object-based classification

Pixel-based classification using

PCs

Producer’s

Accuracy

User’s

Accuracy

Producer’s

Accuracy

User’s

Accuracy

Producer’s

Accuracy

User’s

Accuracy

Peat swamp forest 84.8 87.4 90.8 94.8 85.3 86.8

Plantation - palm 86.8 75.9 89.3 82.5 83.5 74.6

Plantation - acacia 78.3 91.8 80.5 89.2 75.3 88.8

A comparison for all the classes can be found in Data S4.
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Figure 4. Land cover maps and subsets based on data fusion in the (A–D) pixel-based classification using OPVs, (E–H) object-based classification

and (I–L) pixel-based classification using PCs.
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fact that composite optical scenes can be used on their

own to reliably map peat swamp forest loss also means

that long-term studies of land cover change are possible

in our study region, as medium resolution, open access

optical data is available from the 1980s onwards thanks

to the Landsat data policy (Wulder et al. 2016). These

long-term studies on land cover change can provide

important information on past patterns of peat swamp

forest loss and speed of recovery.

Conclusion

Our work mapping deforestation in tropical areas with

high cloud cover highlights that optical data are still the

main source of information for classification purposes

and that using radar data on its own does not produce

good results. Fusion of optical and radar data did not

increase overall accuracy in the case of the object-based

classification or the pixel-based classification using PCs,

and led to a small (but statistically significant) improve-

ment in accuracy in the case of the pixel-based classifica-

tion using OPVs, compared to the use of only optical

data. This means that it is important to balance the gains

in accuracy from fusion against the extra time needed to

preprocess the radar data and incorporate it into the

workflow of the mapping project.

This study applies data fusion and machine learning

techniques to map peat swamp forest loss, and as such

continues the work towards automated regional level

mapping in Southeast Asia (Miettinen et al. 2017). The

main barrier to scaling up the methods described in this

paper is the technique used to create the composite opti-

cal scene, as the cloud probability raster in the Sentinel-2

Level 2A products was not good enough to be used as a

cloud mask. Multi-temporal approaches to cloud detec-

tion are being developed to mask cloud (Hagolle et al.

2010; Mateo-Garc�ıa et al. 2018) and more work needs to

be done to test their functionality in areas with very high

cloud cover, adapt them for use with Sentinel-2 data and

make the algorithms more accessible to a wider commu-

nity of users. Traditionally, low computational power has

limited those working in smaller institutions and NGOs,

making it hard to map large areas and work with meth-

ods that rely on time-series analysis. However, this has

changed thanks to the availability of services such as the

cloud-based platform Google Earth Engine (Gorelick et al.

2017) and the free virtual machines provided by the

European Space Agency’s Research and User Support Ser-

vice (RUS 2018). There is currently a growing interest in

the potential of big data (Liu et al. 2018), which in a

remote sensing context refers to the recent increase in the

volume and variety of remote sensing data available, as

well as the increase in processing velocity (Chi et al.

2016). These developments in online platforms and vir-

tual machines should help those working in conservation

to capitalize on the potential of big data to monitor large

areas.

With conversion of tropical peatland to agriculture

projected to continue (Wijedasa et al. 2018), long-term

and large-scale monitoring of tropical peat swamp forests

will remain relevant in the coming years. Knowledge

about land cover and how it is changing in peatland areas

will support restoration projects by giving them the infor-

mation they need to identify suitable sites for restoration

work, understand connectivity in the landscape and link

fieldwork to the wider landscape.
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