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Abstract

The Tree Augmented Naive Bayes classifier
is a type of probabilistic graphical model that
can represent some feature dependencies. In
this work, we propose a Hierarchical Redun-
dancy Eliminated Tree Augmented Naive Bayes
(HRE-TAN) algorithm, which considers remov-
ing the hierarchical redundancy during the classi-

represent some feature dependencies and scales to large
datasets more efficiently than other Bayesian classifiers
that represent more complex feature dependencies. In
this work, we focus on one of the most computationally
efficient TAN classifiers (Friedman et al., 1997; Keogh

& Pazzani, 1999; Jiang et al., 2005; Zhang & Ling,
2001), which essentially computes the conditional mutual
information (CMI) for each pair of features given the class

attribute and then builds a Maximum Weight Spanning
Tree (MST), where an edge’s weight is given by its CMI
(Friedman et al., 1997). Then, a randomly selected vertex
of the MST acts as the tree’s root, and the edge directions
are propagated accordingly.

fier learning process, when coping with data con-
taining hierarchically structured features. The
experiments showed that HRE-TAN obtains sig-
nificantly better predictive performance than the
conventional Tree Augmented Naive Bayes clas-
sifier, and enhanced the robustness against imbal-
anced class distributions, in aging-related gene
datasets with Gene Ontology terms used as fea-
tures.

2. Background
2.1. The Gene Ontology and Hierarchical Redundancy

The Gene Ontology (GO) uses unified and structured vo-
1 ducti cabularies to describe gene functions (The Gene Ontology
- Introduction Consortium, 2000). Most GO terms are hierarchically

This work proposes a new type of Tree Augmented_structure_d t_)y an “is—g” relationship, where ea_lch GO term
Naive Bayes (TAN) classifier, namely the Hierarchical!S a specialization of its ancestor (more g_eneﬂc) terms. Fo
Redundancy Eliminated Tree Augmented Naive Baye§X@mple, GO:0003674 (mole_zcular function) _|s_the root of
(HRE-TAN) algorithm, which is designed for coping with the DAG for molecular function terms, and it is also the
features organized into a hierarchy (e.g., a tree or a DAGarent of GO:0003824 (catalytic activity), whlf:h is in turn
— directed acyclic graph). In this paper the features aréhe parent of GO:0004803 (transposase activity).
DAG-structured Gene Ontology (GO) terms, in datasets ) ) )
where instances represent genes to be classified intbis feature hierarchy has two types of hierarchical
pro-longevity or anti-longevity genes. However, the pro_redundancy. First, if a GO term (feature) takes the value

posed algorithm can also be applied to other classificationl” for @ given instance (gene), this implies its ancestor
datasets with hierarchical features. terms in the GO DAG also take the value “1” for that

instance. Conversely, if the GO term takes the value “0”
Tree Augmented Naive Bayes (TAN) is a type of for a given instance, its descendants in the DAG also take

semi-Naive Bayes classifier that relaxes Naive Bayestn€ value “0” for that instance. In order to cope with
feature independence assumption, by allowing each featuf@0se types of hierarchical redundancy, in our previous
to depend on at most one non-class variable feature. Thi§Orks (Wan & Freitas, 2013; Wan et al., 2015; Wan, 2015;
type of tree structure-based Bayesian classifier is able t8016), three types of filter hierarchical feature selection
algorithms were proposed, i.e., MR, HIP and the hybrid

The 33rd International Conference on Machine Learning (IGM HIP-MR. Those three algorithms eliminate/alleviate the
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above types of hierarchical redundancy in a data prelearning approach) by calling the procedure HRE-MST()
processing phase, before learning the classifier. In cattra for building the Hierarchical Redundancy Eliminated
the proposed HRE-TAN eliminates the hierarchicalMaximum Weight Spanning Tree (HRE-MST). Then

redundancy during the classifier learning phase. the TrainSet and the current testing instantast .,
will be re-created with the séf of the features included
2.2. Lazy Learning in the tree, so that only those features will be used for

I ) ) _ classifying the re-created testing instance. The re-edeat
A “lazy” learning method performs the learning process iny... . get T andTInst_ T, with treeT are then used

the testing phase, building a specific classification mode}, i a lazy TAN model that classifidist -, in line
for each testing instance to be classified (Aha, 1997; Rereir; 7. Finally, in lines 18-20 all edges in the DAG have

etal., 2011), rather than building a general classifier for a {air status re-assigned to “Available”, as a preparation t
testing instances. The newly proposed TAN classifier inprocess the next testing instance.

this work is based on lazy learning, since it selects feature
for each testing instance separately. Algorithm 1 Lazy Hierarchical Redundancy Eliminated
Tree Augmented Naive Bayes (HRE-TAN)
3. Hierarchical Redundancy Eliminated Tree 1: Initialize DAG with all features in Dataset;
Augmented Ndve Bayes (HRE-TAN) 2: Initialize TrainSet;

3: Initialize TestSet;

This is a new type of tree-based Bayesian classifier
based on the lazy learning approach, and it performs aré: for each feature; € X do
embedded hierarchical feature redundancy elimination,5: Initialize A(z;) in DAG;
rather than in a pre-processing step. As mentioned ing. Initialize D(z;) in DAG:
Section 1, a conventional TAN method builds a MST to __

- . 7: end for
detect dependencies among features, but it assumes that
the features are “flat’, not hierarchical. In contrast, the 8: for eachE(z;, z;) € E do
proposed method eliminates the hierarchical redundancy®:  CalculateCMI« g (;, ;) usingTrainSet;
between features when it builds the MST for each testingo:  InitializeStatus < g~ (1, 2;) + “Available’;
instance. As discussed in Section 2.1, two vertices arg;. and for
hierarchically redundant if one of them is an ancestor or, _ : .
descendant of the other and they have the same featutd SOt allE(#:,z;) € E by descending order &ML,
value (“1” or “0”). In essence, HRE-TAN checks the 13: for eachinstancénst.> < TestSet do
status of each edge before adding it into the Undirected4: T =HRE-MSTDAG, Inst<.>,A(X), D(X), E);
Acyclic Graph (UDAG) that will be transformed into the 15. Re-creat&rainSet_T with feature seK < T:
MST Igter. The status of an edge will be set to “Unavail_- 16:  Re-creatdnst.T -, with feature seK’ € T:
able” if either of the vertices connected by the edge is _ .
hierarchically redundant, with respect to the vertices thal’-  C1assify by TANT, TrainSet.T, Inst. T <. );
have already been included in the UDAG. The pseudocodé8: ~ for eachE(x;, z;) € E do
of HRE-TAN is described in Algorithms 1 and 2. 19: Re-assigi$tatus< g (z;, ;) + “Available’;

20: end for

In Algorithm 1, in the first part of the HRE-TAN al- 21 end for

gorithm (lines 1-12), HRE-TAN firstly generates the
Directed Acyclic Graph (DAG) for the current dataset with pjgorithm 2 shows the pseudocode for building the
a corresponding set of vertices (featufgg)nd set of edges HRE-MST. NR(z;, z;, Inst.,., DAG) is a

E. Then it generates the set of ancestor and descendaghglean function that returns “True” if nodes; and
features for each feature;, denotedA(z;) and D(z;), xz; are non-hierarchically-redundant in the current
respectively. Status<ps (z;,2;), which is initialized  tegting instanceInst.,-, given the feature DAG.
as “Available”, denotes the selection status of the edgq\TOCycle(E(xi,xj),UDAG) is a Boolean function
connecting vertices; andz;. CMI<p> (i, 7;) denotes  that returns “True” if there is no cycle in thEDAG
the value of CMI (conditional mutual information) for the after adding edgd(z;, z;). If the edge satisfies all the
edgeE(z;, z;). All edges are sorted in descending ordercongitions in line 3 of Algorithm 2, it will be added
of their CMI value(a greater CMI value means a higher jnto the UDAG (line 4). Once the algorithm has added
priority of adding the edge into the UDAGIN the second e edgeE(z;, z;) to the UDAG, for each of the two
part of the HRE-TAN algorithm (lines 13-21), the tree nodes connected by that edge, denoted aéline 5), the

T will be built for each testing instance (adopting a 1azy ggorithm will consider each of the nodes which is either
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Figure 1.Example of HRE-TAN operation initially with a set of featarstructured as a DAG

an ancestor or a descendantagf in the featureDAG, D (i.e.,E(E,D), E(C,D), E(B,D), E(A, D), E(F, D))

denoting each such ancestor/descendant;agline 6).  will be unavailable to be added into tHEDAG. Note

If featurez, and its ancestor/descendant featufehave that this hierarchical redundancy elimination process

the same value in the current testing instafinst .~ will dramatically reduce the size of the search space of

(line 7), indicating a hierarchical redundancy in that paircandidate TAN structures.

of features, then thé&r eachloop in lines 8-10 will set

to “Unavailable” the status of all edges where one of theAlgorithm 2 Hierarchical Redundancy Eliminated Maxi-

nodes isz;, — line 8, where the symbok™ is a wildcard ~ mum Weight Spanning Tree (HRE-MST)

matching any node. In other words, among the set of1: Initialize an EmptyUDAG;

hierarchically-redundant nodes (features) with the same,. ¢, eachE(z;, z;) € E do

value, HRE-TAN selects the node included in the edge

having higher conditional mutual information (CMI), since

Algorithm 2 processes edges in descending order of CMI. {NR(zs, zj, Inst<w>, DAG)} A
{NoCycle(E(z;, z;), UDAG)} then

addE(z;, x;) into UDAG;

3. if {Status<ps (x4, z;) = “Availablé' } A

To explain how Algorithms 1 and 2 work, we use the 4

example DAG shown in Figure 1.a, where the left part is a 5: for eachz, in {z:, z;} do
feature hierarchy consisting of three paths from a root to 6: for eachz, in {A(zy) UD(zy)} do
a leaf node of thdDAG, i.e., node F to node B; node F 7. if V(zg,Inst<w>) =V (zs, Inst<,>) then

to node D; and node E to node D. The right part of Figure

1.a shows the edges (for all pair of nodes) in descending : for eachf(zs, ) do

order of CMI. HRE-TAN firstly adds edg&(F, A) into 9 Status<p> (25, *) ¢ "Unavailable;
the UDAG, since its selection status i&vailable’; nodes  10: end for

F and A are not hierarchically-redundant; and there is na.1: end if

cycle in theUDAG after adding edgd&(F, A). Then, 1. end for

Algorithm 2 will delete all edges that contain hierarchigal 13: end for

redundant nodes with respect to node F or node A, in order )

to minimize feature redundancy. Node C is redundant witht4: ~ end if

respect to node F, because both of them have value “1” antb: end for

are located in the same path in Figure 1.a. So, all edgess: ChooséRoot by Randomly selecting vertexin UDAG;
containing node C(i.e., E(C,E), E(C,D), E(F,C),
E(B,C), E(C, A)) will be unavailable to be added into
the UDAG. Also, node D is redundant with respect to
node A, because both of them have value “0” and are'8: Returrl;
located in the same path. Then, all edges containing node

17: Build the tree T) by marking direction of all edges from the
Root outwards to other vertices;
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Table 1.Sensitivity ¢+ standard error), specificityt{ standard error) and GMean values obtained by HRE-TAN and d¥e\ 28 datasets

Caenorhabditis elegans Datasets Drosophila melanogaster Datasets
HRE-TAN TAN HRE-TAN TAN
Sens. Spec. GMean Sens. Spec. GMean Sens. Spec. GMean Senspec. SGMean
BP 411+24 76.8t21 56.2 34.0+£32 79.6+23 52.0 86.8: 3.2 30.6+10.2 515 92.3+2.9 19.4+84 42.3
MF 23.1+4.8 753t54 417 37.2t58 61.4+50 478 86.8+-3.4 41.2+88 59.8 91.2+3.3 20.6+5.0 43.3
cC 245+3.6 80.8£3.0 445 39.8£3.0 78.2+22 55.8 75.8+5.8 28.6+9.7 46.6 90.3t3.6 32.1+11.6 53.8
BP+MF 42.3+2.3 80.0£26 582 352+19 80.3+:2.2 53.2 87.0t3.3 31665 524 92.4+3.3 23.7£6.9 46.8

BP+CC 446+3.0 74.4£36 57.6 4274 3.1 81.7+27 59.1 84.6+24 324+10.6 524 86.8+4.0 18.9+7.6 40.5
MF+CC 324+33 79832 508 40.6:3.4 74.4+36 550 87.1+44 395t+55 587 90.6+3.3 31.6+5.0 53.5

BP+MF+CC 44.2+3.9 79.3t29 59.2 39.5+£2.8 80.1+2.6 56.2 82.6:3.4 47.4+8.7 626 92.4+24 18.4+53 41.2
Mus musculus Datasets Saccharomyces cerevisiae Datasets
HRE-TAN TAN HRE-TAN TAN
Sens. Spec. GMean Sens. Spec. GMean Sens. Spec. GMean Senspec. SGMean
BP 86.8+55 47.1+4.7 639 89.7+ 3.7 41.2+-4.9 60.8 20.0t7.4 93.5+17 43.2 3.3+£33 989+11 18.1
MF 83.1+3.3 42.4t93 594 89.2+4.0 33.3:9.4 54.5 0.0£ 0.0 96.9+ 1.7 0.0 0.0+£0.0 97.7£1.2 0.0
CcC 86.4+4.0 41.2+£9.7 59.7 758+ 4.4 41.2+83 55.9 125 6.1 93.5t29 34.2 16.A#7.0 959+21 400

BP+MF 83.8+45 41.2+6.8 5838 86.8+3.4 353+54 55.4 264109 95.8+15 50.6 3.3+3.3 99.0+£0.7 18.1
BP+CC 79.4+4.9 47.1+£9.7 612 88.2:3.6 47.1£9.7 645 26.7+£6.7 941+21 50.1 10.0£5.1 99.0+0.7 315
MF+CC 89.7+£3.0 353t9.6 56.3 88.2t4.2 41.2+10.0 60.3 10.3+6.1 954+19 313 50+£5.0 985+0.8 22.2
BP+MF+CC 85.3+3.7 44.1+89 613 91.2£3.2 41.2+8.6 61.3 23.3t7.1 96.2+14 473 0.0£0.0 99.0+0.6 0.0

After edges with node C or D had their selection status se¢t. Computational Experiments
to “Unavailablé, edge E(F, B) — the next one available
in the sorted list — will be added into tiEDAG, since

nodes F and B are not redundant (although both of themye adopted the aging-related genes datasets used by our
are in the same path in Figure 1.a, their values are differprevious work (Wan & Freitas, 2015). The datasets consist
ent), and there is no cycle in tlDAG after adding that  of aging-related genes as instances and 7 different types of
edge. Node B is not redundant with respect to any othegombination of Gene Ontology terms as features, e.g., bi-
node, so no edge has its status set to “Unavailable” in thig|ogical process (BP) terms with molecular function (MF)
step. ThenE(B, E) will be added into thdJDAG as the  terms, or molecular function (MF) terms with cellular com-
next available edge in the sorted edge "St, since this edgﬁonent (CC) terms. The aging-re|ated genes information
also satisfies all conditions in line 3 of Algorlthm 2. Then, was about 4 different modal OrganismS, i.@aenorhab-
E(B, A), E(F, E) andE(E, A) will be processed in turn.  ditis elegans(CE), Drosophila melanogastefDM), Mus
However, none of them will be added into théDAG, muscu|us(|\/|M) and Saccharomyces CerevisiﬁSC), ob-
since this would create a cycle in thetDAG. Figure tained from Human Ageing Genomic Resources (HAGR)
1.b shows the selection status of features after processingenAge database (Tacutu et al., 2013). Therefore, in total

all edges, while green color denotes the features were kepje have 28 different datasets (4 model organisms times 7
and included in the UDAG, whereas red color denotes featypes of GO terms combinations).

tures were removed and notincluded in the UDAG. Finally,

HRE-TAN rand_oml)_/ selects a node as the root, which iS40, Experimental Results and Discussion

used to mark directions of all edges in order to build the

MST. Figure 1.c shows the final tree classifier including allWe conducted a head-to-head comparison between the
selected features, with choosing feature B as the root. Afnewly proposed HRE-TAN and the conventional TAN
ter finding the HRE—-MST (i.e., tréE), the training dataset classifier based on their predictive accuracy. We used a
and current testing instance will be re-created, and thie teswell-known 10-fold cross validation procedure to evaluate
ing instance will be classified using the built tree (line 17the predictive accuracy measured by the geometric mean
in Algorithm 1). Then the selection status of all edges will (Gmean) of Sensitivity and Specificity, i.e., the square roo
be re-assigned as “Available” in line 19 of Algorithm 1, as of the product of Sensitivity and Specificity. Sensitivity

a preparation for processing the next testing instance. ~ denotes the proportion of positive (pro-longevity) genes
correctly classified as positive; whilst Specificity dersote

4.1. Aging-related Genes Datasets
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