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Abstract—Estimating the instantaneous respiratory rate (Rr)
from the electrocardiogram (ECG) is of interest as respiration
direct measurement in clinical situations is often cumbersome.
In this study, the Rr was estimated from the same Final
Directions of maximum projection (FD) used for multi lead
ECG automatic delineation. Power spectral analysis over the
directions based on QRS complex main peak and T wave on-
set, peak and end spatial loops was used for Rr estimation.
On a subset of the Physionet MGH/MF dataset, the proposed
method yielded more accurate Rr estimates (minimum mean
absolute error (MAE), 2.82 bpm) than the frequency tracking
algorithm (minimum MAE, 4.53 bpm) and Fourier-based fre-
quency estimation (minimum MAE, 4.94 bpm) using each lead
alone, outperforming also the weighted multi-signal oscillator-
based algorithm estimates for two or three lead (minimum
MAE, 3.04 bpm). It was also shown that the FD of the three
orthogonalized leads from Principal Component algorithm,
improve the performance of Rr estimation.

I. INTRODUCTION

HE respiratory rate ([2r) needs to be monitored in

different applications, which can be done estimating
it directly over the respiratory signal itself, or indirectly
from other biological signals such as the ECG. The interest
of the indirect estimation of Rr appear because the direct
estimation is done with devices that are intrusive, expen-
sive and uncomfortable for the patient [1]-[3]. It is well
known that respiratory and cardiac activities are related by
physiological processes. The respiration modulates the heart
rate such that it increases during inspiration and decreases
during expiration [4]. In the same way, during the respiratory
cycle, chest movements and changes in the thorax impedance
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distribution due to filling and emptying of the lungs cause
a rotation of the electrical axis of the heart which has an
effect over beat morphology [5], [6]. Several studies have
developed signal processing techniques to extract respiratory
information from the modulation of the ECG morphology and
heart rate, using both time and frequency based methods [3],
[5], [7]-[9]. However, the R-peak amplitudes (RPA) based Rr
estimates depend on the given ECG lead, as beat respiratory
related morphological changes differ lead to lead and most
influenced lead is subject dependent. When several ECG
leads are available methods relying in multilead QRS area
or vectocardiographic (VCG) loops are preferable [5].
Often in ambulatory and clinical applications multilead ECG
recordings are available. This make possible to construct
ECG loops based in orthogonal or orthogonalized no parallel
leads. The main directions on the wavelet transform (WT) of
those loops, token as parallel to each fiducial point, have been
successfully used for multilead delineation [10]. Moreover a
strong relation between the respiration and the T wave end
based Final Directions of maximum projection (FD) used
the by multilead ECG delineation system (ML) was found in
[11]. In the present study, we propose and validate a method
for Rr estimation from the FD found in the delineation of
QRS peak and T wave on-set, peak and end.

II. MATERIALS AND METHODS

A. Data

For the sake of comparison, the evaluation data used in
this study was the same as in [12]: a subset of 20 different
lengths recordings (7 female, 13 male, aged 29-84) from the
Physionet MGH/MF waveform database [13], [14] in total
of 41.73 hours, with characteristics reported Table 1. This
dataset was recorded from stable and unstable patients at
the Massachusetts General Hospital at various physiological
conditions. The selected subset of interest to this study
contains the respiratory impedance, ECG leads I, II and an
unidentified V lead, digitized at a rate of 360 Hz. Reference
Rr values reported by [12] are included in Table I.

B. Estimated breathing pattern from ML ECG delineation

ML delineation system considered was previously pro-
posed and validated by Almeida R. in [10] and is included in
the user-friendly interface in Matlab®), BioSigBrowser [15].
It uses simultaneously two or three orthogonal leads of the
ECG (VCG loops) to define spacial WT loops. Denoting the



TABLE I
EVALUATION DATA CHARATERISTICS AS IN [12]. CARDIAC RHYTHM -
SR: SINUS RHYTHM, ST: SINUS TACHYCARDIA, SB: SINUS
BRADYCARDIA, VP: VENTRICULAR PACING, AP: ATRIAL PACING, AF:
ATRIAL FIBRILLATION, AFL: ATRIAL FLUTTER, JR: JUNCTIONAL
RHYTHM. RESPIRATORY CONDITION - S: SPONTANEOUS, C:
CONTROLLED, IMV: INTERMITTENT MANDATORY VENTILATION. FOR
IMV, THE Rr RANGE IS REPORTED.

Cardiac  Respiratory

Rhythm  Condition  Rr (bpm)
mgh005 ST C 12
mgh006 VP MV 8-22
mgh007 SR S 16
mgh008 AF S 16
mgh009 ST IMV 6-20
mghO013 AF S 20
mghO14 AP S 18
mgh016 VP MV 2-18
mgh020 JR C 7
mgh024 AFL S 16
mgh026 ST S 16
mgh027 AF S 18
mgh028 VP S 20
mgh029 ST C 10
mgh030 AF C 18
mgh031 ST S 30
mgh034 SB S 16
mgh035 SB IMV 5-8
mgh037 SR S 16
mgh038 SR S 16

WT of a signal s(n) € {z(n),y(n),z(n)} at scale m by
Ws.m [n], the spatial WT loop is defined as:

Wi, (n) = [wx,m (n) » Wy,m (n) y Wz,m (n)]T (D

As a consequence of the WT prototype used, the WT
loop Wy, () |ner is proportional to the VCG derivative and
describes the velocity of evolution of the electric heart vector
(EHV) in a time interval L. Assuming that the noise is
spatially homogeneous, the direction with maximum projec-
tion of the WT in the region close to the fiducial point of
interest would define the ECG lead maximizing the local
SNR, and thus, the most appropriate for the delineation. The
main direction u = [u,,u,, u.]” of EHV variations on any
time interval L is given by the director vector of the best
straight linear fit to all points in the WT loop. By choosing
adequately the time interval L, around the fiducial point of
interest, it is possible to find the direction u corresponding
to the lead most suited for delineation purposes [10], here
called Final Directions of maximum projection (FD).

The projection of the WT loop (w,, (n)) over the direction
u allows to obtain a derived wavelet signal wg,,, (n) that
combines the information provided by the 3 or 2 leads:

T

w,, (n)-u

inel )
[[ull

Wa,m (n) =
The time intervals I (used for projecting) and L (used for
linear fitting) can be different, depending on each wave
specificities.
The strategy proposed for ML boundary delineation using

WT loops is based in a multi-step iterative search for a
better spatial lead (with steeper slopes) for each boundary
delineation. The goal is to construct a derived wavelet signal
well suited for boundaries location [16], using the same
detection criteria as in the SL delineator proposed in [17].
As we have shown in [11], the direction u based in the
T wave end relates closely with the respiratory signal. In
this study we aim to obtain the signal corresponding to
the breathing pattern from the same direction u used for
delineation, taking advantage of this relation. The directions
found in the delineation of QRS peak and T wave on-set,
peak and end (w;, where h € R, T,,T),,T., respectively)
were considered comparatively.

As the leads recorded in Physionet MGH/MF database, are
not orthogonal, they must be orthogonalized before applying
the ML delineation system. In this paper three variants
orthogonalization is used:

Construction of a pair of orthogonal leads from two
known leads (O2KL): As matter of fact, any hypothetical
lead in a plane can be synthesized from a lead system with
at least two no parallel leads in that plane. In this case, a
new ECG lead orthogonal, not necessarily from the standard
system, is constructed from the provided leads. Notice that
with this approach only 2 dimensional loops are considered.
Orthogonalization of the three ECG lead by Gram-
Schmidt algorithm (O3GS): In this case the orthogonaliza-
tion is performed using the Gram-Schmidt algorithm [18].
We consider all the three leads as vectorial spaces. The syn-
thesized leads are not necessarily in the frontal or transverse
plane used to define the standard lead system.

Obtaining three orthogonal leads using principal compo-
nents decomposition (O3PC): In this alternative is consid-
ered the VCG defined by the three principal components (PC)
obtained from the 3 available leads. The PC are ortogonal
ECG like signals which can be interpreted as synthesized
leads that are not necessarily in the frontal or transverse plane
used to define the standard lead system.

The application of the ML delineation strategy to the 20
records was then performed over the orthogonalized leads
using each of the three variants. From this delineation
are obtained the vectors defining FD for each heartbeat
corresponding to the directions of interestnof the fiducial
points considered (up(7), where h € R,,T,,T,,T.). The
coordinates of each u, originally with one value per heart
beat, were re-sampled uniformly at 2 Hz using cubic spline
interpolation.

C. Estimating the R, from directions u

The R, estimation is performed spectrally from interpo-
lated directions uy. Estimation of the power spectrum is
accomplished with Burg’s method [19]. The spectrum of each
directions series (Up(f)) is estimated with nonoverlapping
windows of 60 s duration. Individual running power spec-
tra of each direction are averaged in order to reduce the
frequential peaks not related to breathing. The respiratory
frequency for each fiducial point studied was estimated on
average spectrum for each window n (f5(n)). Estimation of



the respiratory frequency as the largest peak of Uy (f) comes
with the risk of choosing the location of a spurious peak. This
risk is, however, considerably reduced by narrowing down the
search interval to only include frequencies between 0.15H 2z
and 0.45H z of respiratory frequency. The Rr in breaths-per-
minute (bpm) is calculated from the respiratory frequencies:

Rry, (n) = 60 % fy(n) 3)

D. Estimation of the reference R,

To evaluate the Rr estimated from the directions u
one needs to compare it with the [Rr estimated with
Burg’s method as from the respiratory impedance waveform
(Rryiw). Prior to the reference Rr estimation process, the
respiratory impedance waveform was re-sampled uniformly
at 2 Hz using cubic spline interpolation and band-pass filtered
between 0.1 Hz and 0.5 Hz.

In addition, as in [12], in this study five frequency estimation
algorithms were used to estimate an additional reference Rr
(Rryry,) from the Physionet MGH/MF respiratory signals.
The five methods used in this study are Fourier maximum
frequency estimate, the number of respiratory peaks in 60
second-long centered windows, Frequency estimate using
the empirical mode decomposition followed by the Hilbert
transform (EMD) [20], the inverse of the time-lapse between
two consecutive respiratory peaks and frequency estimate
based on the autocorrelation [21]. The median of the five
estimates and the two estimates closest to it were averaged
and low pass filtered to produce the final reference Rryy.y,.
The accuracy of the ECG-based Rr estimates were evaluated
by computing their mean absolute error (MAE) in terms
of breaths-per-minute with respect to the Rr,.r, where
ref € riw, tru. Window-based errors were computed, where
both the estimated [Rr and the Rr,.; were averaged in 60 s
windows.

M
1
MAFE = M 7;1 |R7"h (n) - Rrre,f (n)| 4)

where M is the number of windows in which the window-
based error is computed, Rrp(n) is the estimated Rr and
Rryep(n) is the reference Rr.

III. RESULTS AND DISCUSSION

Figure 1 shows the MAE values (per register and consid-
ering all files) in bmp with respect to Rr,;,,, from directions
u estimated with each of the three ortogonalization methods.
Table II reports the MAE: across files, estimated with the
three orthogonalization methods and the two reference esti-
mate methods. The MAE of the Rr estimated using O3PC
orthogonalization were found to be typically lower than both
the errors of the O3GS and O2KL. Notice that for O2KL
by having only two leads, some information is lost and the
error is expected to be greater. This loss have been already
reported in T wave end delineation in [22]. In respect to the
Rr estimated based in different fiducial points, best results
are obtained for Te, in two out of the three orthogonalization

TABLE 11
ERRORS AVERAGE (BPM) ACROSS FILES OF ESTIMATED R, FOR EACH
ORTHOGONALIZATION METHOD (OM) - 2 ORTHOGONAL LEADS FROM 2
KNOWN LEADS (O2KL), GRAM-SCHMIDT ALGORITHM (O3GS),
PRINCIPAL COMPONENTS (O3PC) -, WITH RESPECT TO THE REFERENCE
VALUES BASED ON RESPIRATORY IMPEDANCE WAVEFORM: R7Tiq
(BURG ESTIMATION) OR Rrtyqy (COMBINATION OF 5 ESTIMATIONS).

OM reference Rrr, Rrr, Rrr, Rrr,
estimate method

O2KL Rrriw 383 452 396 3.1
O2KL Rriry 3.80 4.50 3.90 3.67
03GS Rryiw 319 374 329 335
03GS Rripu 3.16 3.71 3.27 3.34
03pC Rryiw 305 3.67 294 283
O3PC Rriry 302 3.64 293 282

methods (O3PC and O2KL. This result is surprising as QRS
complex, as more preeminent, is usually used as reference for
morphologic changes and electrical axes rotation. It could be
the case that the ML lead system for delineation is more
well tuned for T wave end FD search or that the FD is
more unstable for main QRS wave loop. In spite of the
best combination orthogonalization method / fiducial point
varied across files, O3PC using the direction defined for 7T,
delineation can be considered as presenting the best global
performance for obtaining the Rr.

For the sake of comparison, the Table III contains the
minimum global MAE for the Fourier based estimates
(FB), oscillator-based adaptive frequency tracking algorithm
(OSC) estimates for each lead and the weighted multi-signal
oscillator-based algorithm (W-OSC) estimates for two or
three leads reported by [12].

TABLE III
MINIMUM AVERAGE ERROR IN BPM OBTAINED IN [12] FROM THE RPA
SIGNALS OF THE PHYSIONET MGH/MF DATABASE.

Rr estimation minimum
method average MAFE
FB 4.94
OsC 4.53
W-0OSC 3.04

Note that for both single lead based methods, FB and
OSC, all average MAE obtained are higher than any global
MAE obtained from the directions u of ML. For the
multilead based method W-OSC, best result is equivalent to
the value obtained with O3PC for the main QRS wave, but
higher than the values for T wave peak and end.

IV. CONCLUSION

In this study, we have shown that it is possible to extract
accurately the Rr from directions u, obtained from the ML
delineator. Thus, the beat-to-beat estimation of respiratory
rate can be obtained as an extra output of ML delineation with
almost no extra effort, allowing easy, unintrusive, cheap and
possibly ambulatory respiratory monitoring, with no extra
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Fig. 1. The MAE values in bmp with respect to Rr.;q, from the directions u estimated with each of the three ortogonalization methods.

discomfort for the patient. Additionally is evidenced that
the best estimate of the Rr is obtained when using the
orthogonalization with principal component decomposition.
It was also verified that using only two orthogonal leads
spatial resolution is lost and therefore the accuracy decreased.
Finally, the mean absolute errors for the strategy using the
T wave end based final direction obtained in this work, are
lower that the best results reported with the OSC and FB
algorithms applied to each lead and than the weighted multi-
signal oscillator-based algorithm (W-OSC, outperforming R-
peak amplitudes based approaches the reported in the litera-
ture.
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