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Abstract

The research carried out in this thesis concerns two important class of station-
ary surfaces in Differential Geometry, namely isoperimetric surfaces and index
one minimal surfaces. The former are solutions of the so called isoperimetric
problem, which is to determine the regions of least perimeter among regions
of same volume in a given manifold. The latter are critical points of the area
functional with Morse index one, i.e., minimal surfaces which admits only one
direction where the surface can be deformed so to decrease its area. These
are usually constructed via mountain pass arguments. This work focus on the
study of these objects when the ambient space is a 3-dimensional spherical
space forms, i.e., space form with positive curvature. Our main results clas-
sify, at the level of topology, such stationary surfaces in the spherical space
forms with large fundamental group.

Our first result proves that the solutions of the isoperimetric problem in
spherical space forms with large fundamental group are either spheres or tori.
It was previously known that solutions with genus zero and one are respec-
tively totally umbilical and flat. Combining our result and this geometric
description, we derive that the solutions of the isoperimetric problem are ei-
ther geodesic spheres or quotients of Clifford tori. Our second result proves
that orientable minimal surfaces with index one in the aforementioned spher-
ical space forms have genus at most two. This is a sharp estimate as one
can use the continuous one-parameter min-max theory to construct in every
3-dimensional spherical space form an index one minimal surface with genus
equal the Heegaard genus of such space which is known to be at most two. Our
result confirms a conjecture of R. Schoen for an infinite class of 3-manifolds.
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Introduction

0.1 The isoperimetric problem

The isoperimetric problem is a classical subject in Differential Geometry with
its origin in ancient Greece. It consists in finding on a Riemannian manifold
M the regions that minimize the perimeter among sets enclosing the same
volume. The solutions are called isoperimetric regions and their boundaries
isoperimetric hypersurfaces. The Euclidean plane is historically the first space
where the problem started to be investigated rigorously. It is now a well
known fact that the round circles are the optimal curves for the problem.
This geometric fact is often seen through the following classical inequality:

L2 ≥ 4πA,

where L and A stand for the length and the enclosed area of a simple closed
curve γ : S1 → R2 respectively.

The framework of geometric measure theory and its tools work success-
fully well in tackling the aspects of existence and regularity of this variational
problem. When Mn+1 is closed or homogeneous, then isoperimetric hyper-
surfaces do exist and are smooth up to a closed set of Hausdorff dimension
n− 7. The regular part is a stable hypersurface of constant mean curvature.
This major contribution to the isoperimetric problem was achieved thanks
to the efforts of many people, including F. Almgren, R. Schoen, L. Simon,
F. Morgan, and others (see [43] for a comprehensive list). Despite the long
history of the problem, it remains largely open with few 3-manifolds where
the problem is completely understood.
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The simply connected space forms, Sn+1, Rn+1 and Hn+1, are the most
appealing spaces to begin the study of the isoperimetric problem. It turns
out that their symmetries are enough to characterize the geodesic spheres as
the isoperimetric hypersurfaces.

A complete solution on S2 × S1 with the standard product metric can
be found in [49]. For other homogeneous manifolds with certain product
structure, such as H2 × R, H2 × S1, and Sn × R, see [30], [49], and [48]
respectively. The case S1×Rn is also treated in [49] and they show that when
n ≥ 9 unduloids are minimizers rather than cylinders for certain volumes. One
key idea exploited in the results listed above is the use of symmetry to reduce
the problem to an ODE analysis. The case T 2 ×R where T 2 is a flat torus is
not solved in full; great progress can be found in [56, 53, 28]. More generally,
it is known that boundaries of small isoperimetric regions in closed manifolds
are nearly round spheres, see [45, 47]. To finish this brief and not exhaustive
account of results on the isoperimetric problem we mention that Bray and
Morgan ( [7] and [8]) classified the horizon homologous isoperimetric surfaces
in the Schwarzschild manifold. The works in [7, 21] highlighted the interesting
relationship between isoperimetric surfaces and the concept of mass in general
relativity.

We will be interested in spherical space forms in this paper. A significant
result in this direction was given in [56] where A. Ros and M. Ritoré solved
the isoperimetric problem in the projective space RP3. They show that the
solutions are geodesic spheres or flat tori. This geometric description for the
spheres and tori which are solutions of the isoperimetric problem holds true
for every 3-dimensional space form. Later, A. Ros [58] used the above result
to give a proof of the Willmore conjecture in S3 for the special case of surfaces
that are invariant by the antipodal map.

The real projective space is a special case of an important family of Rie-
mannian manifolds, namely the Lens spaces L(p, q). These are spherical space
forms obtained as a quotient of S3 by a finite group of isometries that are iso-
morphic to Zp but which also depend on q. They are, along with S2 × S1,
characterized by having Heegaard genus one.
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We give a complete solution for the isoperimetric problem in the Lens
spaces with large fundamental group:

Theorem 1. There exists a positive integer p0 such that for every p ≥ p0 and
every q ≥ 1 the isoperimetric surfaces in L(p, q) are either geodesic spheres
or quotients of Clifford tori.

The isoperimetric problem in dimension three was previously solved for
only a finite number of non-diffeomorphic 3-manifolds.

We also add to the literature the observation that the proof of the Willmore
conjecture by Marques and Neves [38] can be applied to extend the work of
Ros and Ritoré [56], on the classification of stable cmc surfaces in RP3, to
L(3, 1) and L(3, 2):

Theorem 2. The only immersed stable cmc surfaces in L(3, 1) and L(3, 2) are
either geodesic spheres or projections of Clifford tori. Moreover, the projection
of the minimal Clifford torus is, up to ambient isometries, the only index one
minimal surface in L(3, 1) and L(3, 2).

A version of Theorem 2 for the special case of isoperimetric surfaces in the
lens space L(3, 1) appeared first in [59, Theorem 15].

The idea of the proof of Theorem 1 is as follows. Stability implies that
every isoperimetric surface is connected and its genus is 0, 1, 2 or 3. If follows
from a classical result of Hopf that if the genus is 0, then it is a geodesic
sphere. From [56] we know that if the genus is 1, then it is flat, and this
forces the surface to be a quotient of a Clifford tori. We are left to rule out
other topological types. To do so we argue by contradiction. Because of the
algebraic complexity of the lens spaces we divide the lens space in two classes
for which we give separately proofs. We assume that there exists a sequence
of Lens spaces with increasing fundamental group containing isoperimetric
surfaces of genus 2 or 3. After a suitable rescaling on the metrics we use
compactness results to obtain a limit for the sequence of Lens spaces which
will be a flat three manifold of rank one. In the same way, the sequence of
isoperimetric surfaces will converge to a flat surface in the respective ambient
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manifold. The topology of the surfaces will force the limit to be an union of
planes. On the other hand, the minimization property rules this configuration
out. This argument works for most sequence of lens spaces. For the remaining
cases we use standard compactness applied to the pullback surfaces in the
round three sphere.

A natural question after Theorem 1 is whether its proof can be extended
to the case of spherical space forms with large fundamental group. From the
classification of spherical space forms we observe that these spaces share with
the lens spaces the same crucial properties needed in proof of Theorem 1.
Theorem 1 is now a corollary of the following result:

Theorem 3. There exists p0 such that if M3 is an spherical space form
with |π1(M)| ≥ p0, then the isoperimetric surfaces in M3 are either geodesic
spheres or quotient of Clifford tori.

To the author knowledge, it is not known whether an isoperimetric surface
of genus two exists in any spherical space form. It would be interesting to
investigate this question in the Poincaré Homology Sphere.

The arguments in the proof of Theorem 1 generalize naturally also for the
Berger Spheres S3

ε. This is a well known one parameter family of homogeneous
metrics on the 3-sphere; the case ε = 1 corresponds to the round metric.
When ε is not too small, spheres are the only solutions of the isoperimetric
problem. When ε is very small, some tori are better candidates to solve the
isoperimetric problem rather than spheres for certain volumes.

Theorem 4. There exists ε0 > 0 such that for every ε < ε0 the isoperimetric
surfaces in the Berger spheres S3

ε are either rotationally invariant spheres or
tori.

Remark 1. It follows from the work in [44] and [49] that the minimal Clifford
torus in L(p, 1) (resp. S3

ε) is isoperimetric for every p ≥ 3 (resp. ε ≤ 1
3).
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0.2 Index one minimal surfaces

The Morse index is an important analytic quantity in the study of minimal
surfaces. Roughly speaking, it counts the maximal number of directions a
minimal surface can be deformed in order to decrease its area. Under this
analytical point of view, the simplest minimal surfaces are those with small
index, namely zero or one. Index zero minimal surfaces, also known as stable,
are an well studied topic in Differential Geometry. Among classical results
we mention the Bernstein problem on the classification of complete minimal
graphs in Rn and those connecting stable minimal surfaces and the topology of
manifolds admitting positive scalar curvature metrics due to Schoen-Yau. The
existence of stable minimal surfaces depends on the geometry and topology
of the ambient space and is in general obtained via a minimization procedure.
Such surfaces do not exist in manifolds with positive Ricci curvature. Index
one minimal surfaces, on the other hand, do exist is this setting and are
produced by the one parameter min-max construction of Almgren-Pitts and
Simon-Smith [14, 32, 39, 51]. An important feature about these surfaces is
that they provide optimal geometric Heegaard splitting of closed 3-manifolds.

A guiding principle in the theory asserts that in positively curved mani-
folds, the index of a minimal hypersurface controls its topology and geometry.
For instance, it is proved in [12] that the set of minimal surfaces with bounded
index in a closed 3-manifold with positive scalar curvature cannot contain se-
quences of surfaces with unbounded genus or area. More generally, it is con-
jectured in [37, 47] that if Σ is a minimal hypersurface in a closed manifold
with positive Ricci curvatureM , then index(Σ) ≥ C b1(Σ), where b1(Σ) is the
first Betti number of Σ and C is a constant which depends only on M . Esti-
mates of this type have been studied by many authors, see [3, 11, 33, 57] and
references therein for further discussion. These estimates are, however, far
from being optimal when the index is small in general. A related problem is
to describe the geometry and topology of the minimal surfaces with the small-
est index. In this direction, we mention the classical result that flat planes
and the catenoid are, respectively, the only embedded minimal surfaces with
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index zero and one in R3, see [20, 23, 52, 57, 36]. Similar classification has
also been proved in other non-compact flat space forms, see [54]. In higher
dimensions, we mention the works [19, 66] on the classification of compact
minimal hypersurfaces with index one in RPn and Sn, respectively.

Using test functions coming from meromorphic maps and harmonic forms,
Ros [57] proved that two sided index one minimal surfaces in 3-manifolds with
non-negative Ricci curvature have genus ≤ 3. This result is sharp as the P
Schwarz’s minimal surface in R3 projects to a closed minimal surface with
genus three and index one in the cubic 3-torus [61]. On the other hand, when
the ambient space has positive Ricci curvature, the right estimate is given by
the following conjecture:

Conjecture 1 (Schoen [47]). Let M3 be a closed three manifold with positive
Ricci curvature. If Σ is an orientable minimal surface with index one in M3,
then genus(Σ) ≤ 2.

The interest in this conjecture is in part motivated by its implications for
the classification of 3-manifolds. Namely, it is proved in [32] that every closed
3-manifold with positive Ricci curvature contains an index one minimal sur-
face realizing its Heegaard genus. If Conjecture 1 is true, then this Heegaard
genus is at most two. Combining this result with the classification of genus
two 3-manifolds, one recovers the following classical result of Hamilton:

Theorem 5 (Hamilton [27]). If (M3, g) is a closed 3-manifold with positive
Ricci curvature, then M is diffeomorphic to S3/G, where G is a finite group
of isometries acting freely on (S3, g0).

Remark 2. With the exception of lens spaces, which has Heegaard genus
one, any other spherical space form has Heegaard genus two [46].

The list of 3-manifolds where the Conjecture 1 is verified is small. In
the case of spherical space forms, the only examples are the sphere S3, the
projective space RP3, and the lens spaces L(3, 1) and L(3, 2) [56, 70]. The
conjecture has also been proved on sufficiently pinched convex hypersurfaces
in R4, see [3, Section 5].
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Our main result confirms Schoen’s Conjecture in the class of spherical
space forms with large fundamental group.

Theorem 6. There exists an integer p0 so that if Σ is an orientable index one
minimal surface embedded in a spherical space form M3 with |π1(M3)| ≥ p0,
then genus(Σ) ≤ 2.

Remark 3. Theorem 6 also holds for metrics which are perturbations of the
round metric on the aforementioned spherical space forms by the compactness
theorem of Choi-Schoen [13].

Remark 4. The orientability assumption seems to be necessary in Theorem
6. It is pointed out in [57, 62] that for every integer n, there are lens spaces
containing nonorientable area minimizing surfaces with genus greater than n.

The proof of Theorem 6 is inspired by Ritoré and Ros’ work on the com-
pactness of the space of index one minimal surfaces in flat three torus, see
[55]. Among other results, they proved that the flat three torus with small
injectivity radius and unit volume do not contain orientable index one min-
imal surfaces. Following similar ideas, we show that any rescaled sequence
of orientable index one minimal surfaces with genus three in spherical space
forms with large fundamental group converges to a totally geodesic surface
in a non-compact flat 3-manifold. We contradict this statement by showing
that the curvature of such surfaces is large somewhere by an application of
the Rolling Theorem for minimal surfaces in S3, see Chapter 3 Proposition 6.

14



Chapter 1

Preliminaries

In this chapter, we present the definitions of the objects of interest and state
the basic facts which will be used throughout this work. In Section 1, we list
the basics related to a Riemannian manifold and its submanifolds. In Section
2, we recall the well known first and second variation formulas for the area
functional. In Secton 3, we prove some background result regarding surfaces
with constant mean curvature is space forms.

1.1 Geometry of submanifolds

Let (Mn, g) be a Riemannian manifold of dimension n. The Levi-Civita con-
nection associated to the metric g is denoted by∇. The Riemannian curvature
tensor, denoted by R, is the tensor defined as:

R(X, Y, Z) = ∇X∇YZ −∇Y∇XZ −∇[X,Y ]Z,

for every X, Y, Z ∈ X (M). Here X (M) denotes the space of smooth vector
fields on M . The sectional curvature of M at a point x ∈M in the direction
of a 2-dimensional plane σ ⊂ TxM is given by:

KM(σ, x) = g(R(e1, e2, e1), e2),
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1.1 Geometry of submanifolds

where {e1, e2} is an orthonormal basis for σ. The Ricci tensor, denoted by
Ric, is the symmetric two tensor defined by:

Ric(X, Y )(x) =
n∑
i=1

g(R(X, ei, Y ), ei)(x),

where X, Y ∈ X (M) and x ∈ M . Here, {e1, . . . , en} is an orthonormal basis
for TxM . Similarly, the scalar curvature of M , denoted by Rg, is the scalar
function defined by:

Rg(x) =
n∑
i=1

Ric(ei, ei)(x),

where {e1, . . . , en} is an orthonormal basis for TxM .
The Levi-Civita connections of a submanifold Σ ⊂ M with the induced

Riemannian metric of M is given by:

∇XY = (∇XY )>,

where X, Y ∈ X (Σ). The second fundamental form of Σ, denoted by B, is
then defined by:

B(X, Y ) = (∇XY )⊥,

where X, Y ∈ X (Σ). The second fundamental form plays an important role
in comparing the intrinsic curvatures of Mn and Σk as indicated in the Gauss
equation:

Proposition 1 (Gauss Equation). Given x ∈ Σk and σ a 2-dimensional plane
in TxΣ, then

KM(σ, x)−KΣ(σ, x) = 〈B(e1, e1), B(e2, e2)〉 − |B(e1, e2)|2,

where {e1, e2} is an orthonormal basis for σ.

Let N be a local unit normal vector field along Σ near a point x ∈ Σ. The
mapping B is induces on TxΣ the symmetric bilinear form h : TxΣ×TxΣ→ R
given by h(X, Y ) = 〈B(X, Y ), N〉. The bilinear map h associates a self-
adjoint linear operator AN : X (Σ)→ X (Σ) given by h(X, Y ) = 〈AN(X), Y 〉.
A formula for this linear map is AN(X) = −∇XN . The map AN is also called
the second fundamental form of Σ. When the codimension of Σ in M is one,
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1.2 Variational formulae for submanifolds

we omit the subindex and denote the second fundamental form simply by A.
The eigenvalues of A are called the principal curvatures of Σ.

The mean curvature vector of Σ ⊂ M at a point x is the normal vector
field −→H (x) defined to be

−→
H (x) = 1

k

n∑
i=1

B(ei, ei)(x),

where k is the dimension of Σ and e1, . . . , ek is an orthonormal basis for TxΣ.
The mean curvature H of Σ in the direction of N is given by H := 〈−→HΣ, N〉.
The geometric significance of the mean curvature vector is justified by the
first variation formula for the area functional as we will se below.

1.2 Variational formulae for submanifolds

A smooth variation of a hypersurface Σn in Mn+1 is a smooth map ϕ : Σ ×
[0, ε) → Mn+1 such that ϕ(x, 0) = x. When Σ is non-compact, then we say
that ϕ has compact support if ϕ(x, t) = x outside a compact set. Using the
map ϕ, we construct for every t ∈ [0, ε) the hypersurface Σt = ϕ(Σ, t). The
vector field X = ∂ϕ

∂t
(x, t) is called the variational vector field. Associated to

the variation ϕ we define the area functional A(t) = Area(Σt). The change in
the area, up to first order, is given by the following proposition:

First variation of area. If Σt is a compactly supported variation of Σ in
the direction of X, then

d

dt

∣∣∣∣∣
t=0
A(t) = −n

∫
Σ

〈−→
H,X

〉
dΣ. (1.1)

It follows from (1.1) that Σ ⊂ M is a critical point of the area functional
if, and only if, −→H = 0. A hypersurface Σ is called minimal if −→H = 0.

A hypersurface Σ ⊂M is called two-sided if it has a globally defined unit
normal vector field N along Σ. A variation of Σ is called normal if X ⊥ TΣ.
When Σ is two-sided, then the function ft = 〈Nt, Xt〉 is well defined; it is
called the lapse function.
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1.2 Variational formulae for submanifolds

First variation of the mean curvature. If Σt is a normal variation of Σ
with lapse function f ∈ C∞(Σ), then

d

dt

∣∣∣∣∣
t=0
Ht = ∆Σf + (RicM(N,N) + |AΣ|2)f. (1.2)

The operator LΣ = ∆Σ + RicM(N,N) + |A|2 is called the Jacobi operator of
Σ.

Second variation of area. If Σt is a normal variation of a minimal surface
Σ with lapse function f ∈ C∞(Σ), then

d2

dt2

∣∣∣∣∣
t=0
A(t) = −

∫
Σ
f LΣf =

∫
Σ
|∇f |2 − (RicM(N,N) + |A|2)f 2 dΣ. (1.3)

The second variation of area induces on the minimal surface Σ the quadratic
form I(f, f) given by

I(f, f) := d

dt

∣∣∣∣∣
t=0
A(t).

Definition 1. The Morse index of a closed orientable minimal hypersurface
Σ ⊂ M is defined as the maximal dimension of a linear subspace W where
I(·, ·) is negative definite.

We say λ ∈ R is an eigenvalue of the Jacobi operator L if there exists a
smooth function φ ∈ C∞(Σ) such that Lφ+ λφ = 0. It is an well known fact
that the spectrum of L satisfies

λ1 < λ2 ≤ · · · ≤ λk ≤ . . .→∞.

Moreover, the first eigenspace of L is simple and generated by a positive
function.

Lemma 7. If Σ is a compact orientable minimal hypersurface in M , then
the index of Σ is equal the number of negative eigenvalues of L counted with
multiplicities.

18



1.3 Alexandrov and Hopf Theorems

Minimal hypersurfaces are a special examples of hypersurfaces with con-
stant mean curvature (known as cmc hypersurfaces). Like minimal hyper-
surfaces, cmc hypersurfaces also enjoy a variational characterization in terms
of the area functional. To precise this, we introduce the volume functional
associated to a variation ϕ : Σ× [0, ε)→M . Namely,

V (t) =
∫

Σ×[0,t]
ϕ∗(dM).

Geometrically, V (t) measures the enclosed volume between Σ and Σt =
ϕ(Σ, t).

First variation of the volume. If Σt is a compactly supported variation
of Σ, then

d

dt

∣∣∣∣∣
t=0
V (t) =

∫
Σ
〈X,N〉dΣ.

We say ϕ is a volume preserving variation if V (t) = 0 for every t. The
existence of volume preserving variation is given below:

Lemma 8. If f ∈ C∞(Σ) satisfies
∫

Σ fdΣ = 0, then there exists a volume
preserving variation ϕ such that X = fN .

It follows from Lemma 8 and from the first variation of area (1.1) that Σ is
a cmc hypersurface if, and only if, Σ is a critical point of area functional among
volume preserving variations. This is equivalent to require that A′(0) = 0 for
every variation of Σ such that

∫
Σ fdΣ = 0. Similarly, if we define the functional

J(t) = A(t) + nH0V (t), with H0 = 1
|Σ|

∫
Σ
HdΣ,

then Σ has constant mean curvature H0 if, and only if, it is a critical point of
J for every smooth variation.

1.3 Alexandrov and Hopf Theorems

Theorem 9 (Alexandrov). A closed hypersurface with constant mean curva-
ture embedded in Rn+1 is a round sphere.

19



1.3 Alexandrov and Hopf Theorems

The proof of Theorem 9 below is from Montiel and Ros [42].

Proof. For simplicity let us restrict to the case n + 1 = 3, the proof in the
general case is essentially the same. The proof relies on the following lemma:

Lemma 10. If Σ = ∂Ω is a closed surface embedded in R3 such that H > 0
(not necessarily constant), then

3 |Ω| ≤
∫

Σ

1
H
dΣ.

Moreover, the equality holds if and only if Ω is a geodesic ball.

Proof. Let N be the unit normal vector of Σ pointing inwards, define the
set Ac = {x + tN(x) : x ∈ Σ, 0 ≤ t ≤ c} where c is a smooth positive
function on Σ. Given a point y ∈ Ω, pick x ∈ Σ such that d(y,Σ) = |y − x|.
Let α(s) be a curve on Σ such that α(0) = x and consider the function
g(s) = |α(s) − y|2. One can easily check that g′(s) = 2〈α′(s), α(s) − y〉 and
that y − x = tN(x) for some constant t. Since g′(0) = 0. In the same way,
we check that g′′(s) = 2〈α′′(s), α(s)− y〉+ 2|α′(s)|2 and since x is the closest
point to y, we have that

0 ≤ g′′(0) = −2〈α′(0), AN(α′(0))〉〈N(x), y − x〉+ 2|α′(0)|2.

Let λ1 and λ2 be the principal curvatures of Σ. Choosing α′(0) to be the
principal direction associated to the principal curvature λ2, we observe that
0 ≤ −2λ2t+ 2 and this implies that t ≤ 1

λ2(x) ≤
1

H(x) . Let F : Σ× [0, a]→ R3

be the map defined by F (x, t) = x+ tN(x). The previous computations show
that Ω ⊂ A 1

λ2
. The Jacobian of F satisfies |Jac(F )(x)| = |(1 − λ1(x)t)(1 −

λ2(x)t)| ≤ (1 + Ht)2. The equality occur if, and only if, x is an umbilical
point of Σ. By standard integration properties, we have

vol(Ω) ≤ vol(A 1
H

) ≤
∫

Σ

∫ 1
H

0
|Jac(F )|dtdΣ ≤

∫
Σ

∫ 1
H

0
(1 + tH)2dtdΣ.

It follows that 3|Ω| ≤
∫

Σ
1
H
dΣ. Moreover, the equality occurs if, and only if,

Σ is totally umbilical.
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1.3 Alexandrov and Hopf Theorems

Using Lemma 10, we complete the proof of the theorem. Let us consider in
R3 the vector field X = (x, y, z) (the position vector). A simple computation
gives that divR3X = 3 and divΣX = 2. If we compute the variation of Σ in the
direction of X, then J ′(0) = A′(0) + 2HV ′(0) = 0, where A′(0) =

∫
Σ divΣ =

2|Σ| and V ′(0) =
∫

Σ〈X,N〉 = −
∫

Ω divR3 = −3vol(Ω). Hence, 3|Ω| = 1
H
|Σ|

and Σ is totally umbilical by Lemma 10. It is a classical result from geometry
that this implies that Σ is a round sphere.

We point out that Lemma 10 holds true in much more general situations:

Theorem 11 (A. Ros [60]). Let Ω ⊂Mn+1 be a compact domain with smooth
boundary Σn. If RicM ≥ 0 and the mean curvature H of Σ is positive,then

(n+ 1)volg(Ω) ≤
∫

Σ

1
H
dM .

The equality holds if, and only if, Ω is isometric to a round ball in Rn+1.

The remaining of this section is devoted to immersed cmc surfaces inside
a 3-dimensional space form M3(c). Let φ : Σ → M3(c) be an isometric
immersion and z = x + yi be local conformal coordinates on Σ. In this
coordinate system, we define the quadratic differential A2,0 as follows

A2,0 = 4A(∂z, ∂z) dz2 =
(
A(∂x, ∂x)− A(∂y, ∂y)− 2A(∂x, ∂y)i

)
dz2.

One can check that A2,0 is globally well defined over Σ. The importance of
this quadratic differential relies on the following fact:

Proposition 2. A2,0 is holomorphic if, and only if, H is constant.

Proof. By definition a function Φ(z) is holomorphic if, and only if, ∂zΦ(z) = 0.
Recall that 2 ∂z = ∂x + ∂y i. Here we consider Φ to be

Φ(z) = A(∂x, ∂x)− A(∂y, ∂y)− 2A(∂x, ∂y) i.

A direct computation gives

∂zΦ(z) = 1
2

(
∂

∂x
+ ∂

∂y
i

)(
A(∂x, ∂x)− A(∂y, ∂y)− 2A(∂x, ∂y) i

)

= 1
2
∂

∂x
A(∂x, ∂x)−

1
2
∂

∂x
A(∂y, ∂y) + ∂

∂y
A(∂x, ∂y)

+
(

1
2
∂

∂y
A(∂x, ∂x)−

1
2
∂

∂y
A(∂y, ∂y)−

∂

∂x
A(∂x, ∂y)

)
i.
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1.3 Alexandrov and Hopf Theorems

We will use the following notation E = 〈∂x, ∂x〉, F = 〈∂x, ∂y〉 and G = 〈∂y, ∂y〉.
Because we are using conformal coordinates, we have that E = G and F = 0.
In the same way, we denote e = A(∂x, ∂x), f = A(∂x, ∂y) and g = A(∂y, ∂y).
Using these notations the above expression takes the form

∂zΦ(z) =
(1

2ex −
1
2gx + fy

)
+
(1

2ey −
1
2gy − fx

)
i. (1.4)

We use the Codazzi equation to expand (1.4). Recall first that Codazzi equa-
tion in this setting takes the following form:

∇XA(Y )−∇YA(X) = A([X, Y ]) =⇒ ∇∂xA(∂y) = ∇∂yA(∂x).

Using that A(∂x, ∂y) = 〈A(∂x), ∂y〉, we obtain that

∂ye = ∂y〈A(∂x), ∂x〉 = 〈∇∂yA(∂x), ∂x〉+ 〈A(∂x),∇∂y∂x〉.

∂xf = ∂x〈A(∂x), ∂y〉 = 〈∇∂xA(∂y), ∂x〉+ 〈A(∂y),∇∂x∂x〉.

Subtracting these two equations and applying the Codazzi equation we arrive
at

ey − fx = 〈A(∂x),∇∂y∂x〉 − 〈A(∂y),∇∂x∂x〉.

Now expressing ∇∂y∂x in the base {∂x, ∂y} we get

ey − fx = 1
E
〈∇∂y∂x, ∂x〉 e+ 1

E
〈∇∂y∂x, ∂y〉 f

− 1
E
〈∇∂x∂x, ∂x〉 f −

1
E
〈∇∂x∂x, ∂y〉 g.

Recalling that H = 1
2E

(
e+ g

)
, we obtain

ey − fx = 1
2EEy

(
e+ g

)
= EyH. (1.5)

The same argumentation gives

fy − gx = −ExH. (1.6)

On the other hand, a derivation of the equation EH = e+g
2 gives

ex + gx
2 = ExH + EHx and ey + gy

2 = EyH + EHy. (1.7)
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1.4 Stable cmc tori in space forms

Therefore, (1.5), (1.6), and (1.7) combined implies that

EHx = ex − gx
2 + fy and EHy = gy − ey

2 + fx.

Finally, substituting this information in (1.4) we obtain that

∂zΦ(z) = EHx − EHy i = 2E ∂zH.

This completes the prof of the proposition.

Corollary 1 (Hopf). If φ : S2 → M3(c) is a immersion with constant mean
curvature H, then φ(Σ) is a totally umbilical and, hence, a geodesic sphere.

Lemma 12. Let Σ be a closed orientable surface and φ : Σ → M3(c) an
immersion with constant mean curvature in a space form M3(c). If g(Σ) > 0
then the number of umbilical points, counted with multiplicities is 4g − 4.

1.4 Stable cmc tori in space forms

As we saw in previous sections, a cmc hypersurface is a critical point of the
area functional among volume preserving variations. In this section, we study
stable critical points, namely minimize area up to second order.

Let Σn be a two sided cmc hypersurface in a given manifold Mn+1. If Σt

is a smooth variation of Σ, then

A′(t) = −
∫

Σt
nHtftdΣt and V ′(t) =

∫
Σ
ftdΣt+

∫ t

0

∫
Σ
∂tftdΣt+

∫ t

0

∫
Σ
ft∂tdΣt ,

where ft = 〈Xt, Nt〉 and Xt is the variational vector field. The precise com-
putations are given in the Appendix. Computing the second derivative, we
obtain

A′′(0) = −
∫

Σ
n
d

dt
|t=0HtfdΣ − nH

∫
Σ
∂tftdΣ − nH

∫
Σ
f∂tdΣt .

Similarly, we check that V ′′(0) = 2
∫

Σ ∂tftdΣ + 2
∫

Σ ft∂tdΣt . If Σt is volume
preserving, then V (t) ≡ 0. Therefore,

d2

dt2

∣∣∣∣∣
t=0
|Σt| =

∫
Σ
|∇f |2 −

(
RicM(N,N) + |A|2

)
f 2dΣ = −

∫
Σ
fLΣfdΣ.
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1.4 Stable cmc tori in space forms

A hypersurface Σ with constant mean curvature is called stable cmc if
d2

dt2
|Σt|

∣∣∣∣∣
t=0
≥ 0

for any volume preserving variation Σt. By Lemma 8, this is equivalent to
have

I(f, f) := −
∫

Σ
fLΣfdΣ =

∫
Σ
|∇f |2 −

(
RicM(N,N) + |A|2

)
f 2dΣ ≥ 0. (1.8)

for any f ∈ C∞(Σ) with
∫
Σ fdΣ = 0.

The study of stable cmc hypersurfaces was initiated in [4, 5] with a new
characterization of the round spheres as the only immersed stable cmc hyper-
surfaces in the space forms Hn, Rn, and Sn.

Theorem 13 (Ros-Ritore [56]). Let Σ2 be either a closed stable cmc surface
or a closed orientable index one minimal surface immersed in (M3, g). If
RicM > 0, then g(Σ) ≤ 3.

Proof. By Riemann Surface Theory, there exists a meromorphic map φ : Σ→
S2 with degree

deg(φ) ≤ 1 +
[
g + 1

2

]
.

Lemma 14. Let w be a smooth positive function on Σ. There exists a
conformal diffeomorphism ϕ : S2 → S2 such that∫

Σ
wϕ ◦ φ dΣ = 0.

Proof. Let Πa : S2 → R2 be the stereographic projection with respect the
pole a ∈ S2. For every t ∈ R, we consider the map γat : S2 → S2 defined
by γat (x) = Π−1

a (etΠa(x)). For a fixed x ∈ S2 we see γat (x) as a curve on S2

which at t = 0 pass through x with velocity a − 〈x, a〉x. Hence, γat (x) is the
tangent flow of the vector field a(x) = a− 〈x, a〉x on S2. Thus, for every t γat
represents a conformal diffeormorphism of S2. We claim that at least one map
γat satisfies the property of the lemma. Arguing by contradiction, we assume
that

∫
Σ w(x)γat ◦ φ(x)dΣ 6= 0 for every t and every a ∈ S2. Let us consider the

following map

F : [0,∞)× S2 → S2 defined by F (t, a) =
∫

Σ w(x)γat ◦ φ(x)dΣ

‖
∫

Σ w(x)γat ◦ φ(x)dΣ‖
.
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1.4 Stable cmc tori in space forms

The map F satisfies the following properties:

F (0, a) =
∫
Σ w(x)φ(x) dΣ

‖
∫
Σ w(x)φ(x) dΣ‖

= const and F (+∞, a) = a.

In other words, F induces a homotopy between the identity map and the
constant map. This is a contradiction since S2 is non-contractible.

From now on we work with the map γat ◦ φ given in Lemma 14, note that
γat ◦ φ and φ have the same degree. We abuse notation and denote it still
by φ. If Σ is a stable cmc, we choose w = 1 in Lemma 14. If Σ is an index
one minimal surface, we choose w = u1, the first eigenfuction of the Jacobi
operator L. Thus, by Lemma 14, the coordinate functions of φ are valid test
functions for the stability inequality (2.1). Hence,

∫
Σ

(
Ric(N,N) + |A|2

) 3∑
i=1

φ2
i dΣ ≤

∫
Σ

3∑
i=1
|∇φi|2dΣ.

Now we observe that ∑3
i=1 φ

2
i = 1 since φ(Σ) = S2. Since φ is conformal,

〈dφ(v), dφ(u)〉 = λ 〈v, u〉 for some non-negative function λ.. One can check
that ∑3

i=1 |∇φi|2 = 2λ and Jac(φ) = λ. Hence,

∫
Σ

3∑
i=1
|∇φi|2dΣ = 2

∫
Σ
Jac(φ)dΣ = 2

∫
Σ
φ∗
(
dS2

)
= 2deg(φ)

∫
S2
dS2 = 8πdeg(φ).

Let {e1, e2} be a orthonormal base for TΣ. By the Gauss equation 1, we can
write

Ric(N,N) + |A|2 = Ric(e1) +Ric(e2)− 2KΣ + 4H2,

where KΣ denotes the Gaussian curvature of Σ. Hence,
∫

Σ

(
Ric(e1) + Ric(e2)− 2KΣ + 4H2

)
dΣ ≤ 8πdeg(φ).

The Gauss-Bonnet theorem then implies that(
1
2 inf

Σ
RicM +H2

)
|Σ| ≤ 2π

(
2− g +

[
g + 1

2

])
. (1.9)

Since the left hand side is strictly positive, we conclude that g(Σ) ≤ 3.

25



1.4 Stable cmc tori in space forms

Corollary 2. Under the same assumptions of Theorem 13, if g = 2 or g = 3,
then (

1
2 inf

Σ
RicM +H2

)
|Σ| ≤ 2π.

By the Hopf Theorem, stable cmc surfaces with genus zero in space forms
are totally umbilical. For the remaining of the section, we focus on the ge-
ometry of stable cmc tori in space forms. The main result, due to Ritore and
Ros [56], asserts that such surfaces are flat.

Let us start with stable cmc immersions φ : Σ → M3(c), where M3(c) is
a space form with curvature c and satisfying c+H2 > 0. In this case, we set
b2 = 4(c+H2). Let ds2

0 be a metric on Σ defined by

ds2
0 = b |Φ(z)| |dz2|,

where Φ(z) is the map discussed in Proposition 2. Let P be the set of umbilical
points of the immersion φ. The metric ds2

0 is well defined in Σ−P , Note that
ds2 is conformal to ds2

0. Hence, there exists a smooth function u ∈ C∞(Σ−P )
such that

ds2 = e2u

4(c+H2)ds
2
0.

It is a standart computation to check that

g̃ = e2u g =⇒ e2uK̃ = K −∆gu,

where K̃ and K are the Gaussian curvatures of the metrics g̃ and g respec-
tively. In our setting we have

e2u

4(c+H2)K = K0 −
1
2∆0 ln

( e2u

4(c+H2)
)
.

Lemma 15. ds2
0 is a flat metric.

Proof. Recall that, in our local conformal coordinates, ds2
0 = b |Φ(z)||dz2|,

where |dz2| = dx2 + dy2 is the canonical flat metric on R2. Therefore,

b |Φ|K0 = −1
2∆ ln b |Φ| where ∆ = ∂2

x + ∂2
y .
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1.4 Stable cmc tori in space forms

We proved in Propostion 2 that Φ(z) = f + g i is holomorphic. Hence, f and
g are harmonic functions. The lemma will follows from the claim below:
Claim:

∆ ln
(
f 2 + g2

)
= 0

To see this we use the following information ∆f = ∆g = 0 and the Cauchy-
Riemann equations: |∇f |2 = |∇g|2 and 〈∇f,∇g〉 = 0. Since it is standard
computation we will omit it. The claim implies K0 = 0 and ds2

0 is flat.

The function u from ds2 = e2u

b2 ds
2
0 satisfies an elliptic differential equation:

Proposition 3. (Sinh-Gordon equation)

∆0u+ sinh(u) cosh(u) = 0. (1.10)

Proof. The first information we have is that

e2u

4(c+H2)K = −∆0u. (1.11)

The next step is to express K in terms of the function u. To do so we use the
following two facts

|Φ(z)|2
E2 = 4

(
H2 − det(A)

)
and c = K − det(A).

The first identity follows from the definition of Φ and the second identity is
just the Gauss equation. Hence,

K = c+H2 − |Φ(z)|2
4E2

On the other hand, we have that

E|dz2| = ds2 = e2u

4(c+H2)ds
2
0 = e2u

4(c+H2)2
√
c+H2|Φ(z)||dz2|

Therefore,
|Φ(z)|
E

= 2
√
c+H2

e2u .

The Gaussian curvature can now be expressed as

K = (c+H2)
(
1− 1

e4u

)
. (1.12)
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1.4 Stable cmc tori in space forms

The equations (1.11) and (1.12) imply

∆0u+ 1
2
e2u − e−2u

2 = 0,

which is precisely equation (1.10).

It follows from the proof that the Gaussian curvature K of Σ is given by

K = b2

4
(
1− e−4u

)
.

In particular, K and u have the same sign. Moreover, at a umbilical point we
have that u = +∞ and K = c+H2.

Let us now use the conformal change of the metric to write the stability
inequality (2.1) in terms of the metric ds2

0. Firstly, the volume element dΣ

and the gradients in terms of the new metric is given by

dΣ = e2u

b2 dA0 and ∇f = b2

e2u∇
0f.

In particular,
|∇f |2 = b2

e2u |∇
0f |2.

The Gauss equation implies Ric(N,N) + |A|2 = 2c+ |A|2 = b2 − 2K. Hence,

I(f, f) =
∫

Σ
|∇f |2 −

(
b2 − 2K

)
f 2 dΣ

=
∫

Σ

(
b2

e2u |∇
0f |2 −

(
b2 − 2K

)
f 2
)
e2u

b2 dA0.

Using the expression for K we obtain

e2u

b2

(
b2 − 2K

)
= e2u + e−2u

2 = cosh(2u) = cosh2(u) + sinh2(u)

Therefore, the index form I(f, f) takes the form

I(f, f) =
∫

Σ
|∇0f |2 −

(
cosh2(u) + sinh2(u)

)
f 2 dA0

for every f ∈ C∞0 (Σ/P ) satisfying
∫

Σ f
e2u

b2 dA0 = 0.

Theorem 16 (Ros-Ritore [56]). Let φ : Σ → M3(c) be a stable cmc immer-
sion or an orientable index one minimal surface such that c+H2 > 0. Then
{p ∈ Σ : K(p) < 0} is connected and each component of {p ∈ Σ : K(p) > 0}
contains an umbilical point.
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1.4 Stable cmc tori in space forms

Proof. We may assume that g(Σ) ≥ 1 and that Σ is not flat. Let Ω = {p ∈
Σ : K(p) 6= 0} and let Ω1 be the component of Ω without umbilic points.
It follows from the assumptions and from the Gauss-Bonnet Theorem that
Ω1 6= ∅. This allows us to define

f = sinh(u) on Ω1 and f ≡ 0 on Σ − Ω1

The boundary of Ω1 is contained in the set where the Gaussian curvature
vanishes, hence where u vanishes. This implies that f is in the Sobolev space
H1(Σ). Hence,

I(f, f) =
∫

Ω1
|∇0 sinh(u)|2 −

(
cosh2(u) + sinh2(u)

)
sinh2(u) dA0

=
∫

Ω1

〈
∇0f,∇0 sinh(u)

〉
0
−
(

cosh2(u) + sinh2(u)
)

sinh2(u) dA0

=
∫

Ω1
− sinh(u)∆0 sinh(u)−

(
cosh2(u) + sinh2(u)

)
sinh2(u) dA0

= −
∫

Ω1
sinh(u)

(
sinh(u)|∇0u|2 + cosh(u)∆0u

)
dA0

−
∫

Ω1

(
cosh2(u) + sinh2(u)

)
sinh2(u) dA0

= −
∫

Ω1
sinh2(u)|∇0u|2 dA0 −

∫
Ω1

sinh4(u) dA0 < 0.

The last equality follows from the Sinh-Gordon equation (1.10). Therefore, we
cannot find two disconnected regions without umbilical points otherwise we
could change f , by multiplying it by constants in each connected component,
so that f has mean zero on Σ.

Corollary 3. Let φ : Σ→M3(c) be a immersion with constant mean curva-
ture. If g(Σ) = 1 then Σ is flat.

Proof. Since g(Σ) = 1, mo umbilical points exist on Σ. If b2 = 4(c+H2) > 0
and K is not identically zero, then we can construct f such that I(f, f) < 0
as shown in the proof above, contradiction. If c + H2 ≤ 0, then the Gauss
equation implies that K = 2(H2 + c) − (c + 1

2 |A|
2) ≤ 0. Therefore, by the

Gauss-Bonnet Theorem, K ≡ 0.

29



1.4 Stable cmc tori in space forms

Example 1 (Clifford Torus). For each r ∈ (0, π2 ) we define the Clifford Torus
Tr as:

Tr = S1(cos(r))× S1(sin(r)) ⊂ S3. (1.13)

Let us study the intrinsic and extrinsic geometry of Tr as a submanifold of
S3. A parametrization for Tr is given by

X(θ, ϕ) =
(

cos(r) cos(θ), cos(r) sin(θ), sin(r) cos(ϕ), sin(r) sin(ϕ)
)
.

The correspondent coordinate base {Xθ, Xϕ} is computed below:

Xθ = cos(r)
(
− sin(θ), cos(θ), 0, 0

)
and Xϕ = sin(r)

(
0, 0,− sin(ϕ), cos(ϕ)

)
.

One can now check that E = cos2(r), F = 0 and G = sin2(r). Next, we
compute the unit normal vector

N =
(

sin(r) cos(θ), sin(r) sin(θ),− cos(r) cos(ϕ),− cos(r) sin(ϕ)
)
.

A simple computation gives:

AN(Xθ) = −Nθ = sin(r)
(

sin(θ),− cos(θ), 0, 0
)

= − sin(r)
cos(r)Xθ

AN(Xϕ) = −Nϕ = cos(r)
(
0, 0,− sin(ϕ), cos(ϕ)

)
= cos(r)

sin(r)Xϕ.

It follows immediately from above formulas that the principal curvatures of
Tr are λ2 = cos(r)

sin(r) and λ1 = − sin(r)
cos(r) . The mean curvature and norm do the

second fundamental form satisfy:

H = cos(r)
sin(r) −

sin(r)
cos(r) and |A|2 = 4− 2 sin2(2r)

sin2(2r) .

The Gauss equation implies that the Gauss curvature of Tr is identically zero.

Proposition 4. Every flat tori with constant mean curvature in S3 is con-
gruent to a Clifford torus Tr.

Proof. This follows from the Rigidity theorem, pg. 49 in [10]. Indeed, if Σ ⊂
S3 is flat and with constant mean curvature H, then its principal curvatures
are constant. Hence, the Clifford torus Tr with mean curvature H has the
same second fundamental form as Σ.
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Chapter 2

The isoperimetric problem for

lens spaces

In this chapter we present the first contribution of this thesis. We solve
the isoperimetric problem in the Lens spaces with large fundamental group.
Namely, we prove that the isoperimetric surfaces are geodesic spheres or tubes
about geodesics. The isoperimetric problem in other spherical space forms will
be discussed in Chapter 3.

2.1 The isoperimetric problem

Let (Mn+1, g) be an orientable Riemannian manifold of dimension n+ 1. The
n + 1-dimensional Hausdorff measure of a region Ω ⊂ M is denoted by |Ω|.
Similarly, we denote the n-dimensional Hausdorff measure of the hypersurface
∂Ω ⊂ M by |∂Ω|. The class of regions considered here are those of finite
perimeter, see [66].

A region Ω ⊂M is called an Isoperimetric region if

|∂Ω| = inf{|∂Ω′| : Ω′ ⊂M and |Ω′| = |Ω|}.

In this case, the hypersurface Σ = ∂Ω is called an Isoperimetric hypersurface.
The existence of isoperimetric hypersurfaces is, in general, handled by

a compactness theorem from geometric measure theory. For non-compact
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manifolds one needs to be careful since a minimizing sequence of regions of
fixed volume may drift off to infinity. We recommend [43] for a recent reference
on the regularity of isoperimetric hypersurfaces:

Theorem 17. Let (Mn+1, g) be a closed Riemannian manifold. For every
0 < t < vol(M) there exists an isoperimetric region Ω satisfying |Ω| = t.
Moreover, Σ = ∂Ω is smooth up to a closed set of Hausdorff dimension n− 7.

Stability

Isoperimetric hypersurfaces are stable critical points of the area functional
for variations that preserve the enclosed volume; thus, the regular part of
isoperimetric hypersurfaces has constant mean curvature. More generally, we
say a two-sided isometric immersion φ : Σn → Mn+1, i.e., it has a globally
defined unit normal vector field, has constant mean curvature (cmc) if it is a
critical point of the area functional for volume preserving variations. Critical
points are called stable cmc if the second derivative of the area is non-negative
for such variations.

Equivalently, φ is stable if for every f ∈ C∞(Σ) with compact support
such that

∫
Σ f dvolΣ = 0, we have

I(f, f) = −
∫

Σ
fL f dΣ :=

∫
Σ
|∇f |2 − (Ric(N,N) + |A|2) f 2 dΣ ≥ 0. (2.1)

N is the unit normal vector of Σ and A is the second fundamental form of
the immersion φ. The mean curvature of Σ, denoted by H, is defined by
2H = trace(A).

The study of immersed stable cmc hypersurfaces started in [4] and [5] with
a new characterization of the geodesic spheres in the simply connected space
forms Rn+1, Sn+1 and Hn+1. The classification of stable cmc surfaces is often
a way to approach the isoperimetric problem in reasonable spaces. With this
purpose in mind, A. Ros and M. Ritoré in [56] used the Hersch-Yau trick
to study orientable stable cmc surfaces on 3-manifolds with positive Ricci
curvature.
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Theorem 18 (Ros-Ritoré [56]). Let (M, g) be a closed three manifold with
positive Ricci curvature. If φ : Σ → M3 is a stable cmc immersion, then
g(Σ) ≤ 3. Moreover, if g(Σ) = 2 or 3, then

(1
2 inf

Σ
RicM +H2

)
|Σ| ≤ 2π.

We use the recent resolution of the Willmore conjecture by Marques and
Neves to improve the main result in [56]:

Proposition 5. Let φ : Σ → M3 be a stable immersion with constant mean
curvature H into an elliptic space form M = S3/G. Then

1. If g(Σ) = 2 or 3, then
(
1 +H2

)
|Σ| ≤ 2π.

2. If g(Σ) = 2 or 3 and |G| ≤ 4, then φ is an embedding. Moreover, if
|G| ≤ 6, then the pullback of Σ, through the covering map Π : S3 →M3,
is connected.

3. If |G| = 2 or 3, then g(Σ) = 0 or 1.

Proof. The first statement follows from the previous theorem since RicM = 2.
Let φ∗ : π1(Σ) → π1(M) be the induced map in fundamental groups. As
K = Ker(φ∗) has finite index there exists a finite covering ψ : Σ̃ → Σ such
that Im

(
ψ∗
)

= K and
(
φ ◦ ψ

)
∗

= 0. This means there exists a lifting of this
map into S3 and we denote it by φ̃ : Σ̃ → S3. It follows that

(
1 + H2

)
|Σ̃| ≤

|G| 2π. If φ is not an embedding, then φ̃ is not embedding either. By the
work of Li and Yau [35] the Willmore energy of the immersed surface Σ̃,
i.e. W(Σ̃) =

∫
Σ̃

(
1 + H2

)
dvolΣ, is strictly greater1 than 8π. Therefore, if

|G| ≤ 4, we obtain a contradiction and φ̃ is an embedding. Moreover, for
closed surfaces with genus greater than or equal to 1 in S3 the Willmore
conjecture, recently proved in [38], states that W(Σ) ≥ 2π2. Let ∪li=1Σ̃i be
the pre-image of Σ by the universal covering map, then

2 l π2 ≤
l∑

i=1
W
(
Σ̃i

)
= |G|W(Σ) ≤ |G|2π ⇒ |G|

l
≥ π

1The case W(Σ) = 8π is discussed in [55].
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2.1 The isoperimetric problem

Therefore, if |G| ≤ 6, then l = 1 and |G| ≥ π. In particular, if |G| = 2 or 3,
then there exist no stable cmc surface Σ with g(Σ) ≥ 2.

Corollary 4. The stable cmc surfaces in L(3, 1) and L(3, 2) are totally um-
bilical spheres or flat tori. In addition, the index one minimal surfaces in
L(3, 1) and L(3, 2) are congruent to the projection of minimal Clifford torus.

Proof. Let Σ ⊂ L(3, q), q = 1, 2, be in the conditions of the corollary. By
Proposition 5, g(Σ) = 0 or 1. If g(Σ) = 0, then it follows from the Hopf
holomorphic quadratic differential that Σ is totally umbilical. If g(Σ) = 1,
then by Corollary 3 Σ is flat, the result now follows from Proposition 4.

2.1.1 The isoperimetric profile

The isoperimetric properties of M can be encapsulated in a single function
called the isoperimetric profile. This is the function IM : [0, vol(M)] →
[0,+∞) defined by

IM(v) = inf{|∂Ω| : Ω ⊂M and |Ω| = v}. (2.2)

We finish the section with some well known facts on the analytic nature of
IM . These will be used later in Section 3.

Let Ω be an isoperimetric region in M such that |Ω| = v for some v ∈
(0,Vol(M)). The function IM has left and right derivatives (IM)′−(v) and
(IM)′+(v). In addition, if H is the mean curvature of Σ = ∂Ω in the direction
of the inward unit vector, then

(IM)′+(v) ≤ 2H ≤ (IM)′−(v). (2.3)

The second derivative also exists but weakly in the sense of comparison func-
tions. More precisely, we say f ′′ ≤ h weakly at x0 if there exists a smooth
function g such that f ≤ g, f(x0) = g(x0), and g′′ ≤ h. In this sense we have

IM(v)2 I ′′M(v) +
∫

Σ

(
Ricg(N,N) + |A|2

)
dΣ ≤ 0. (2.4)

The equations (2.3) and (2.4) are first presented on [6] (see also Section 5 in
[27]). We sketch the proof of (2.3) and (2.4).
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2.2 Some aspects of the lens spaces

Let ΣV be the variation Σt = expΣ(tN) of Σ reparametrized in terms of the
enclosed volume v(t). In addition, let φ(t) (resp. φ(v)) be the area of Σt (resp.
Σv). By the first variation formula for the area and volume we have φ′(0) =
2H |Σ| and v′(0) = |Σ| respectively. Since φ′(t) = φ′(v)v′(t), we conclude
that φ′(v(0)) = 2H and also that v′(0)2φ′′(v(0)) = φ′′(0)− φ′(v(0))v′′(0). On
the other hand, the second derivative of area for general variations implies
the following:

φ′′(0) = −
∫

Σ
1L 1 dΣ + 2H v′′(0)

= −
∫

Σ

(
Ricg(N,N) + |A|2

)
dΣ + 2H v′′(0).

Hence, in the sense of comparison functions, (2.4) follows from:

φ(v(0))2 φ′′(v(0)) +
∫

Σ

(
Ricg(N,N) + |A|2

)
dΣ = 0. (2.5)

2.2 Some aspects of the lens spaces

In order to define the Lens spaces, we first recall the round three sphere as:

S3 = {(z, w) ∈ C2 : |z|2 + |w|2 = 1}.

Fix p, q integers with the following property 1 ≤ q < p and gcd(p, q) = 1. Let
Zp be the group Z/pZ acting on S3 as follows:

m ∈ Zp 7→ m · (z, w) = (e
2πiqm
p z, e

2πim
p w). (2.6)

The group Zp acts freely and properly discontinuously on S3. The orbit space
S3/Zp is a closed three manifold called the lens space, it is denoted by L(p, q).

The Hopf fibration, which is the Riemannian submersion h : S3 → S2(1
2) =

C∪{∞} defined by h(z, w) = z
w
, can be extended naturally to L(p, q). Indeed,

the group Zp acts on the set of Hopf fibers through the cyclic action of Γp =
〈e

2πi(q−1)
p 〉 on S2(1

2) given by

e
2πi(q−1)

p : C −→ C, λ 7−→ e
2πi(q−1)

p · λ.
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2.2 Some aspects of the lens spaces

The Hopf fibration for L(p, q) is then defined as h : L(p, q) → S2(1/2)/Γp.
The set S2(1/2)/Γp is a two dimensional orbifold with conical singularities
at the north and south pole when q 6= 1. The pre-image of each of these
singularities is called a critical fiber of h.

The preimage of horizontal slices of S2(1/2)/Γp via h corresponds to the
Clifford torus described in (1.13). They are natural candidates to solve the
Isoperimetric problem in L(p, q).

2.2.1 Comments on Steiner Symmetrization

Steiner and Schwarz symmetrization theorems were proved in [44] for certain
fiber bundles such as the Lens spaces. To explain this symmetrization pro-
cedure we restrict to the case L(p, 1) where the Hopf fibration h : L(p, 1) →
S2(1

2) is a smooth Riemannian submersion.
The symmetrization consists of associating to each set of finite perimeter

R ⊂ L(p, 1) the set Sym(R) in the product manifold S2(1
2) × S1(1

p
) defined

by replacing the slice of R in each fiber with a ball of the same volume
about the respective fiber in the product. The coarea formula for Riemannian
submersions implies that Sym(R) and R have the same volume. It is proved
in [44] that Sym(R) has no greater perimeter than R.

One immediate consequence is that IL(p,1) ≥ IS2( 1
2 )×S1( 1

p
). Applying the

classification of the isoperimetric problem on S2(1
2)× S1(1

p
), [49], we conclude

that IL(p,1) = IS2( 1
2 )×S1( 1

p
) in a interval around V = Vol(L(p,1))

2 . In particular, the
minimal Clifford torus is isoperimetric in L(p, 1) for every p ≥ 3. The isoperi-
metric profiles, however, do not coincide as the profile of geodesic spheres on
the respective spaces are different. Therefore, this technique is not enough to
completely solve the isoperimetric problem.

It is important to point out that, for general Lens spaces L(p, q), there is no
analogue of [49] for S2(1

2)/Γp×S1( 1
np

) which is a manifold having codimension
two singularities.
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2.2 Some aspects of the lens spaces

2.2.2 Description and geometry

For every x ∈ L(p, q) the injectivity radius of L(p, q) at x satisfies injxL(p, q) ≥
π
p
, with equality only at points in the critical fibers. Indeed, for θ = e

2πi
p we

have:

a2 := d2
R4 [(θkqz, θkw), (z, w)] = |θkq − 1|2|z|2 + |θk − 1|2|w|2 ≥ |θ − 1|2

dS3 [(θkqz, θkw), (z, w)] = 2 arcsin(a2) ≥ 2 arcsin
(2

2 sin 2π
2p
)

= 2π
p
.

However, it is not true in general that inj(L(p, q), x) = O(1
p
) as p→∞.

Example 2. Let’s consider L(k2, k+1), k ∈ Z+. We show that the injectivity
radius at points far away from the critical fibres are O( 1

k
). If the round metric

is scaled by the factor k2, then we have the Riemannian submersion:

h :
(
L(k2, k + 1), k2g0, xk

)
→
(
S2/Zk, k2gS2 , h(xk)

)
.

The fibers have constant length 2π except the critical fibres which have length
2π
p
. The right hand side will converge, as k →∞, to S1×R. It follows from the

coarea formula for Riemannian submersions that the volume of the geodesic
ball B4π(xk) in

(
L(k2, k + 1), k2g0, xk

)
is bounded from below. Therefore, by

Cheeger’s inequality, Lemma 51 in [50], the injectivity radius of the sequence(
L(k2, k + 1), k2g0, xk

)
is bounded from below. This sequence converges to a

flat T 2 × R.

If x, y ∈ Tπ
4
/Zp ⊂ L(p, q), then dL(p,q)(x, y) ≥ CdTπ

4
/Zp(x, y) for some

constant C > 0 independent of p, q. Thus intrinsic and extrinsic distances on
Tπ

4
/Zp are equivalent.

Lemma 19. If x ∈ Tπ
4
/Zp ⊂ L(p, q) and the extrinsic diameter of Tπ

4
/Zp in

L(p, q) is bounded from below, then injxL(p, q) = O(1
p
).

Proof. Let λp = 1
injxL(p,q) and recall that 1

λp
≥ π

p
. Without loss of generality,

let’s assume that diameterL(p,q)(Tπ
4
/Zp) ≥ 1. Hence, under the rescaled metric

λ2
p gS3 , the extrinsic diameter of Tπ

4
/Zp is greater than or equal to λp. Let

γp(t) be a geodesic segment realizing the intrinsic diameter of Tπ
4
/Zp. Thus,
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2.2 Some aspects of the lens spaces

we can find disjoint balls BR(xi) ⊂ L(p, q), with R < C
2 , xi ∈ γp(t), and

i = 1, . . . , [λp] + 1. Hence,

[λp]+1∑
i=1
H2(BR(xi0) ∩ Tπ

4
/Zp) ≤ |Tπ

4
/Zp| = λ2

p

2π2

p
.

Therefore, there exists i0 ∈ {1, . . . , [λp] + 1} such that:

C1 ≤ H2(BR(xi0) ∩ Tπ
4
/Zp) ≤

2π2 · λp
p

.

The first inequality follows from the Monotonicity Formula, Proposition 10 in
the Appendix, applied to Tπ

4
⊂ (L(p, q), λ2

p gS3 , x). This finishes the proof of
the lemma.

Let’s use the notation Zqp to represent the group Zp acting on S3 and its
dependence on the parameter q. By using the toroidal coordinate system for
S3,

ϕr : R2 → Tr : ϕr(u, v) = (cos(r)e2πiu, sin(r)e2πiv) ∈ S3,

the action of Zqp on Tr corresponds to the following action on R2:

(u, v) 7−→ (u+ kq

p
, v + k

p
).

In these coordinates , the Zqp orbit at the point (z0, w0) = ϕ(Z × Z) ∈ Tr is
given by:

Orbitp,q(z0, w0) = {(m,n) + k(1
p
,
q

p
) : m,n, k ∈ Z}. (2.7)

Lemma 20. Given a sequence {L(p, q)}p∈N, there exist b,m0, n0 ∈ Z and a
subsequence {L(pl, ql)}l∈N such that one of the following holds:

1. For every (z0, w0) ∈ Tr, ϕr(Orbitpl,ql(z0, w0)) is becoming dense on Tr as
l→∞.

2. ϕr(Orbitpl,ql(z0, w0)) is contained in b integral curves of the vector field
X(z, w) = (m0

√
−1 z, n0

√
−1w) ∈ X (S3).
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2.2 Some aspects of the lens spaces

Proof. To prove the lemma it is enough to consider (z0, w0) ∈ Tπ
4
. If there is a

subsequence for which the diameter of Tπ
4
/Zqp is going to zero as p→∞, then

ϕπ
4
(Orbitp,q(z0, w0)) is clearly becoming dense on Tπ

4
and item 1 is proved.

Let’s consider now the case where the diameter of Tπ
4
in L(p, q) is bounded

away from zero. From the equivalence between extrinsic and intrinsic distance
and by Lemma 2.9 we conclude that the Euclidean injectivity radius satisfies
inj(z0,w0)Tπ

4
/Zp = O(1

p
). In particular, there exist kp,mp, np ∈ Z such that

0 < ||kp(
1
p
,
q

p
)− (mp, np)||R2 ≤ C

p
.

Therefore, there exists (m0, n0) ∈ BC(0)∩Z×Z ⊂ R2 such that (kp−pmp, kpq−
npp) = (m0, n0) infinitely often and

√
m2

0+n2
0

2p is the Euclidean injectivity radius
of Tπ

4
/Zp at (z0, w0) for this subsequence. Hence, the sub-orbit generated by

the translation (u, v) → (u, v) + kp(1
p
, q
p
) is contained in the line Z × Z +

{t(m0, n0) : t ∈ R}. It follows that the Orbitp,q(z0, w0) is contained in a
union of equidistant lines parallel to the one described above by homogeneity.
Modulo Z×Z the number of such lines is finite, let’s denote it by bp. Modulo
Z× Z there are p

bp
points of Orbitp,q(z0, w0) in each of these lines. Hence,

p

bp
(kp
p
,
kpq

p
)− p

bp
(mp, np) = p

bp
(m0

p
,
n0

p
) ∈ Z× Z.

Therefore, bp divides m0 and, hence, it is independent of p. In other words,
ϕπ

4
(Orbitp,q(z0, w0)) is contained in b integral curves of the vector fieldX(z, w) =

(m0
√
−1z, n0

√
−1w) ∈ X (S3).

2.2.3 Cheeger-Gromov convergence

A sequence of pointed Riemannian manifolds (Mi, gi, xi) (Riemannian mani-
folds (Mi, gi) with points xi ∈Mi) is said to converge, in the sense of Cheeger-
Gromov, to a pointed Riemannian manifold (M, g, x) as i→∞ if the following
two conditions hold true:

1. There exists an exhaustion of M by compact sets Ωi ⊂ M : Ωi ⊂ Ωn+1

and ⋃∞i=1 Ωi = M .
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2.2 Some aspects of the lens spaces

2. There exists a family of smooth maps φi : Ωi → Mi which are diffeo-
morphic onto their image such that φi(x) = xi for all i and φ∗i (gi) → g

in the C∞ topology.

In the next lemma we study the Cheeger-Gromov convergence for a se-
quence of Lens spaces.

Recall that the rank of an orientable flat 3-manifold R3/G is the rank of
the subgroup of translations in G.

Lemma 21. Let (L(p, q), p2 gS3 , xp) be a sequence of Lens spaces. There exists
a flat 3-manifold (M, δ, x∞) of rank at most one such that after passing to
some subsequence (L(p, q), p2gS3 , xp) C−G−−−→ (M, δ, x∞).

Proof. Since the sequence (L(p, q), p2 gS3) has constant curvature which is
converging to zero as p→∞ and inj(L(p, q), p2 gS3) ≥ π, the Cheeger-Gromov
Compactness Theorem implies that (L(p, q), p2gS3 , xp) C−G−−−→ (M, δ, x∞), where
(M, δ) is an orientable flat 3-manifold. Every non-compact flat 3-manifold is
finitely covered by either S1×R2 or T 2×R; hence, to show that rank of M is
one, it is enough to prove that that the volume growth of balls of large radius
are at least quadratic.

Below we denote Tr/Zp by Tr. Let Trp be the Clifford torus through xp

enclosing a region Ωrp . Under the scaling by λp = p2 we have that |Ωrp | =
2π2p2 sin2(rp). If limp→∞ |Ωrp| < ∞, then limp→∞ |Trp| = 2π2p sin(2rp) < ∞.
Moreover, the second fundamental form Arp of Trp satisfies limp→∞ |Arp|2 =
limp→∞

1
p2 ( cos2(rp)

sin2(rp) + sin2(rp)
cos2(rp)) < ∞. The critical fiber T0 ⊂ Ωrp is distant

from xp by O(1
p
) since Ωrp is converging to a compact region in M . Instead

of using base points xp we choose new base points yp ∈ T0; it follows that
(L(p, q), p2gS3 , yp)→ (N, δ, y∞) and rank(N) = rank(M). We claim that rank
of N is at most one:

|B2R(y∞)| = lim
p→∞
|Bp

2R(yp)| ≥ lim
p→∞
|ΩR

p
| = lim

p→∞
2π2p2 sin2(R

p
) = cR2.

Let’s assume now that limp→∞ |Ωrp| =∞, consequently limp→∞ |Trp| =∞ and
limp→∞ |Arp|2 = 0. Recall the function r = r(x), the distance from the Clifford
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2.3 Proof of Theorem 1

torus through x to the critical fiber T0 with respect to the round metric. The
unit vector field ∂r is orthogonal to Tr for every r and it is well defined on
L(p, q)−{T0∪Tπ

2
}. Let γ(r) be the geodesic whose velocity is ∂r and such that

γ(rp) = xp. Consider Krp,R = {x ∈ Tr : dL(p,q)(x, γ(r)) ≤ R
p
and |r − rp| ≤ R

p
}.

By the triangle inequality Krp,R ⊂ B2R(xp) under the metric p2gS3 . Applying
the coarea formula for f(r) = p r, |∇f |p2gS3 = 1, we obtain:

|Krp,R| =
∫ rp+R

p

rp−Rp
|BR(γ(u)) ∩ Tu|p du = |BR(γ(u0)) ∩ Tu0|p2gS3R ≥ cR2,

where u0 ∈ [rp− R
p
, rp + R

p
] is from the mean value theorem for integrals. The

last inequality is justified as follows. Either the extrinsic diameter of Tu0 is
going to infinity and Tu0 is converging with multiplicity to a flat surface or the
extrinsic diameter of Tu0 is bounded. The former implies that |BR(γ(u0)) ∩
Tu0|p2gS3 ≥ cR. The latter implies that BR(γ(u0)) ∩ Tu0 = Tu0 , which is a
contradiction since |Tu0 |p2gS3 →∞. We conclude that V ol(B2R) ≥ cR2 which
implies that the rank of M is at most one.

2.3 Proof of Theorem 1

Lemma 22. Let (L(p, q), p2gS3 , xp)→ (M, δ, x∞) be as in Lemma 21 and let
Σp be an isoperimetric surface in L(p, q) such that xp ∈ Σp and g(Σp) ≥ 1 .
There exists a constant C > 0 such that |AΣp |p2gS3 ≤ C.

Proof. Let yp ∈ Σp ⊂ L(p, q) be such that |Ap|(yp) = maxΣp |Ap|2 and define
λp = maxΣp |Ap|(yp). Arguing by contradiction, let’s assume that λp

p
→ ∞.

In local coordinates around yp we consider the surface Σ′p = λpΣp on the
Euclidean ball Bλp

π
10p

(0) endowed with the rescaled metric λ2
p gS3 . Therefore,

(Bλp
π

10p
(0), λ2

p gS3 , yp) converges to (R3, δ, 0) as p → ∞. The surface Σ′p now
has the property that maxΣ′p |A′p(0)|2 = 1.

By the strong compactness for a sequence of isoperimetric surfaces with
bounded second fundamental form, see Corollary 6 in the Appendix, there
exists a subsequence converging to a properly embedded surface Σ′ ⊂ R3, the
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2.3 Proof of Theorem 1

convergence is in the sense of graphs and with multiplicity one. Moreover, Σ′

is also stable, i.e.:

IΣ′(f, f) ≥ 0, ∀f ∈ C∞0 (Σ′) satisfying
∫

Σ′
f dΣ′ = 0.

If Σ′ is compact, then it has to be a round sphere by Alexandrov’s Theorem,
which is a contradiction since strong convergence preserves topology. If Σ′ is
non-compact, then it has infinite area by the monotonicity formula: indeed,
by Proposition 10 in the Appendix there exists a positive constant C such
that

d

dr

(
eC r |Σ′ ∩Br(x)|

r2

)
≥ 0.

In particular, |Σ′ ∩ Br(x)| ≥ πr2. As Σ′ is properly embedded, it has infinite
extrinsic diameter and the claim follows. Therefore, Σ′ is totally geodesic
by Da Silveira’s Theorem 42 in the Appendix, which is a contradiction since
maxΣ′ |A| = 1.

The following lemma gives a description of IL(p,q) for small volumes:

Lemma 23. For p large enough there exist vp and εp > 0 such that IL(p,q)

is given by the profile of spheres on (0, vp] and by the profile of flat tori on
[vp, vp+εp). Moreover, if Σp is an isoperimetric surface such that IL(p,q)(vp) =
|Σp|, then g(Σp) = 0 or 1.

Proof. For each p we consider the first volume, vp, for which there is transition
on topology of isoperimetric surfaces from spheres to something else. If v∗ is
the volume for which the profile of geodesic spheres intersect the profile of
flat tori, then vp ≤ v∗. The value of v∗ is computed by solving the following
system of equations:

2π2

p
sin2(r) = 2πs− π sin(2s) and 2π2

p
sin(2r) = 4π sin2(s). (2.8)

The left hand sides (right hand sides) of the identities in (2.8) correspond to
the enclosed volume and area of the Clifford torus Tr (geodesic spheres Ss of
radius s), respectively. It follows that s ≤ π

p
; another way to see this is by
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2.3 Proof of Theorem 1

recalling that the injectivity radius of L(p, 1) is π
p
at every point. Therefore,

IL(p,q)(vp) ≤ C
p2 .

Let Σp be an isoperimetric surface with genus g(Σp) ≥ 1 and satisfying
IL(p,q)(vp) = |Σp|. By Lemma 22 the sequence {Σp}p∈N has bounded second
fundamental form in (L(p, q), p2gS3 , xp); thus, it strongly converges to a prop-
erly embedded surface Σ of finite area in some orientable flat three manifold
(M, δ) of rank at most one by Lemma 21. By the monotonicity formula,
Proposition 10 in the Appendix, Σ has bounded extrinsic diameter. Since Σ
is properly embedded, we conclude Σ is closed. It follows that the pre-image
Σ̂ of Σ in R3 is contained in a solid cylinder. Hence, Σ̂ is an union of round
spheres by Alexandrov’s Theorem or is a surface of revolution about the axis
of the cylinder by Theorem 41 in the Appendix. Therefore, g(Σ) = 0 or 1.
From the strong compactness for isoperimetric surfaces, see Corollary 6, we
have that g(Σp) = 0 or 1, vp = v∗ and the existence of the desired εp > 0.

Claim 1. Theorem 1 follows if we can show that the isoperimetric surfaces
separating L(p, q) in two regions of the same volume are tori.

Proof. By the strong compactness for isoperimetric surfaces, Corollary 6,
there exists v̂ such that if Σ is an isoperimetric surface enclosing volume
v ∈ [v̂, π2

p
], then Σ is a flat torus. It follows from Lemma 23 and for large p

that the isoperimetric profile IL(p,q) is given by the area of geodesic spheres
for volumes in (0, vp] and by the area of flat tori for volumes in [vp, εp]∪ [v̂, π2

p
].

In other words, if f(v) is the function defined by f(v) = |Tr(v)|, where Tr(v)

is the Clifford torus enclosing a volume equal to v, then IL(p,q)(v) = f(v) on
[vp, εp] ∪ [v̂, π2

p
]. It follows that φ(v) = f(v)− IL(p,q)(v) has a local maximum

point at t∗ ∈ (εp, v̂).
The claim will follow by exploring the weak differential equation for IL(p,q).

From (2.5) we have

f 2(v)f ′′(v) +
∫
Tr(v)

(2 + |Ar(v)|2) dTr(v) = 0.

Let Σ be an isoperimetric surface such that IL(p,q)(t∗) = |Σ|. Note that
g(Σ) ≥ 2 since the profile of the spheres lies above the profile of Clifford
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2.3 Proof of Theorem 1

tori. If Σv is the unit normal variation of Σ parametrized by the enclosed
volume, then we define h(v) = Area(Σv). Since h ≥ IL(p,q), we have that
φ1 = f − h has also a local maximum point at t∗. Hence, φ′1(t∗) = 0, i.e.,
Hr = H, and φ′′1(t∗) ≤ 0. Applying equation (2.5) for h together with the
Gauss equation and the Gauss-Bonnet theorem we obtain:

φ′′1(t∗) ≤ 0 ⇒ 1
h2

∫
Σ

(2 + |A|2) dΣ ≤
1
f 2

∫
Tr(t∗)

(2 + |Ar(v)|2) dTr(t∗)

⇒ 4(1 +H2)h+ 8π (g − 1) ≤
(
4(1 +H2

r ) f
) h2

f 2

⇒ 1 +H2 + 2π(g − 1)
h

≤ (1 +H2
r ) h
f
≤ 1 +H2.

Therefore, g(Σ) = 1 and IL(p,q) = f in [vp, π
2

p
].

Proof of Theorem 1.1. Arguing by contradiction, let us assume that there ex-
ists an infinite sequence of Lens spaces L(p, q) containing an isoperimetric
surface Σp of genus g ≥ 2 for each p. By the claim above, we may assume
that Σp divides L(p, q) in two regions of equal volume.

We consider the pointed manifolds (L(p, q), p2gS3 , xp), where the base point
xp are chosen to belong to Σp. By the Cheeger-Gromov Compactness Theo-
rem, (L(p, q), p2gS3 , xp) C−G−−−→ (M, δ, x∞), where (M, δ) is a flat three manifold.
The inclusion of Σp into M through the diffeomorphism φp is still denoted by
Σp.

By Lemma 20, the proof of Theorem 1 reduces to investigating the Cases
I and II below.

Case I: There is a subsequence whose Zqp orbit of a point is contained in a
finite number (independent of p) integral curves of a vector field
X(z, w) = (m0

√
−1 z, n0

√
−1w) ∈ X (S3).

We claim that the injectivity radius of L(p, q) at every point is O(1
p
). Indeed,

let Orbitp,q(z0, w0) be the orbit of (z0, w0) ∈ S3 with respect to Zqp. As before,
p
b
points of Orbitp,q(z0, w0) lie on the curve β(t) = ψ(z0, w0, t). Here, ψ is the

one parameter family of diffeomorphisms associated to X:

ψ : S3 × R→ S3 : ψ(z, w, t) = (em0itz, en0itw).
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2.3 Proof of Theorem 1

When ordered according the orientation of β(t), those points determine a
piecewise closed geodesic γp(t) with γp(0) = (z0, w0). As p → ∞, γp(t) con-
verges to β(t). The claim now follows from :

lim
p→∞

p

b
inj(z0,w0)L(p, q) ≤ lim

p→∞
H1(γp) = 2π

√
m2

0|z0|2 + n2
0|w0|2. (2.9)

By the Cheeger-Gromov Compactness Theorem we obtain, up to subse-
quence, the following convergence:

(L(p, q), p2 · gS3 , xp) C−G−−−→ (M, δ, x∞), (2.10)

where (M, δ, x∞) is a flat three manifold of rank at most one by Lemma 21.
By (2.9) M = R3/Sθ, where θ ∈ Q.

The curves t → β(t) = ψ(x, t) represent integral curves of X through
x ∈ L(p, q); they have bounded geodesic curvature andH1(β) = O(1

p
). Hence,

the integral curves of X converge to closed geodesics in M under (33). As
sets, they coincide with the standard vertical fibers of M .

By the Poincare-Hopf index theorem there exists a zero for the vector field
X>

|X| ∈ X (Σp) since g(Σp) ≥ 2. Hence, we can choose the base points xp to
satisfy gS3( X

|X|(xp), N(xp)) = ±1, here N is the unit normal vector of Σp.

Lemma 24. There exists a properly embedded surface Σ∞ ⊂ M such that
(Σp, xp) → (Σ∞, x∞) with multiplicity one. Moreover, Σ∞ is totally geodesic
and perpendicular to the standard fibers of M .

Proof. By Lemma 22, the isoperimetric surfaces (Σp, xp) ⊂ (L(p, q), p2gS3 , xp)
have uniformly bounded second fundamental form. Applying the strong com-
pactness theorem for isoperimetric surfaces, Corollary 6, we conclude that Σp

converges smoothly and with multiplicity one to a properly embedded stable
CMC surface Σ∞ ⊂ S1×R2. If lim infp→∞ |Σp|p2gS3 <∞, then the monotonic-
ity formula, Proposition 10, implies that the extrinsic diameter of Σp and Σ∞
are bounded. This is impossible since the sequence Σp separates L(p, q) in two
regions of the same volume that goes to infinity as p→∞. Therefore, Σ∞ is
a complete properly embedded stable CMC surface in M with infinite area.
Applying Da Silveira’s Theorem 42 once more, we obtain that Σ∞ is totally
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2.3 Proof of Theorem 1

geodesic. As gS3( X
|X|(xp), N(xp)) = ±1, we conclude that Σ∞ is orthogonal to

the standard fibers of M .

We claim that Σ∞ separatesM . If it does not separate, then there exists a
loop γ intersecting Σ∞ at a single point. As Σp → Σ∞ with multiplicity one,
the same conclusion holds for Σp, which contradicts the fact that Σp separates
L(p, q). Therefore, there is k ≥ 1 such that Σ∞ = ∂Ω∞ = ⋃2k

i=1 σi, where σi is
a flat plane for each i.

Claim 2. This configuration cannot be a limit of isoperimetric surfaces.

We regard M as a slab in R3 with height 2π. Now, we construct a defor-
mation of Σ∞ which decreases its area as follows. First, we cut off the k solid
cylinders obtained from the intersection of Ω∞ with a vertical solid torus of
radius R. To balance the enclosed volume we add a vertical solid torus of
radius r, see Figure 1 for the case k = 1. If ai is the distance between σ2i and
σ2i−1, then the radius r is given by:

k∑
i=1

π R2ai = π r22π ⇒ r = R

√∑
i ai

2π .

The boundary of this new region is denoted by Σ̃∞ and

Area(Σ̃∞ ∩K) = Area(Σ∞ ∩K)− 2kπ R2 + 2π R ·
∑
i

ai + 2π r · 2π.

If R is large enough, then Σ̃∞ has less area than Σ∞. This is impossible since
the strong multiplicity one convergence allow us to carry out this deformation
of Σ∞ to Σp which contradicts the fact that Σp is an isoperimetric surface.

Case II: There is a subsequence p→∞ where the Zqp orbit of a point is
becoming dense on the Clifford torus containing such point.

We use geometric measure theory methods to analyse the pre-image sequence
{Σ′p}p∈N ⊂ S3.

It is proved in [60] that if Σ = ∂Ω has positive mean curvature, then

3 |Ω| ≤
∫

Σ

1
H
dΣ.
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2.3 Proof of Theorem 1

Figure 2.1: Compact support deformation of Σ∞.

Applying this formula to the sequence of isoperimetric surfaces, we conclude
that the mean curvature of Σp satisfies Hp ≤ |Σp|

3|Ωp| ≤
2
3 since |Σp| ≤ 2π2

p
and

|Ωp| = π2

p
. We have used that Σp separates L(p, q) into regions of the same

volume.
As {Σp}p∈S3 has area and mean curvature bounded, we apply Allard’s

compactness theorem, Theorem 42.7 and Remark 42.8 in [67], to obtain an
integral varifold 0 6= V2 ⊂ S3 that, up to subsequence, is V2 = limp→∞Σ′p.
Recall that S1 × S1 acts on S3 via (z, w)→ (α1, α2)(z, w) := (α1 z, α2w). We
claim that V2 is S1×S1 invariant: indeed, if (z, w) ∈ supp(V2) and (α1, α2) ∈
S1 × S1, then for each p there is lp ∈ Z such that limp→∞(e

2πilpq
p z, e

2πilp
p w) =

(α1z, α2w). On the other hand, as (z, w) ∈ V2, there is (zp, wp) ∈ Σ′p such
that (e

2πilpq
p zp, e

2πilp
p wp) ∈ Σ′p and limp→∞(zp, wp) = (z, w). It follows that

limp→∞(e
2πilpq
p zp, e

2πilp
p wp) = (α1z, α2w) and (α1, α2)(z, w) ∈ supp(V2) by the

monotonicity formula Proposition 10. In particular, suppV2 = ⋃k
j=1 Trj where

Trj is a Clifford torus. The monotonicity formula implies that the convergence
Σ′p → V2 is also in Hausdorff distance; hence, we have that Σ′p = ∪kj=1Σ′jp
and supp (limp→∞Σ′jp ) = Trj . Since Σ′p is Zqp invariant there exists θj1j2p ∈
Zqp ⊂ S1 × S1 for which θj1j2p (Σ′j2i ) = Σ′j1p . By taking the limit we obtain
(α1, α2)(Trj2 ) = Trj1 for some (α1, α2) ∈ S1 × S1. As this is impossible, we
conclude that k = 1 and all Σ′p are connected for p large.
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2.4 Berger spheres

Now we consider {Σ′p}p=1 ⊂ I2(S3,Z), the space of 2-dimensional integral
currents on S3. Each Σ′p = ∂Ω′p and Ω′p ∈ I3(S3,Z). As Ω′p is a region of
finite perimeter (XΩ′p is BV function with uniform bounded variation), then
Ω′i → Ω′ and Σ′p → ∂Ω′ as currents, Ω′ is an open set of finite perimeter, see
Theorem 6.3 and proof of Theorem 37.2 in [67]. Since |Ωp| = π2 we conclude
that |Ω′| = π2. Applying the Constancy theorem, Theorem 26.27 in [67], we
conclude that Ω′ is the handlebody bounded by the Clifford torus Tr1 , and
consequently r1 = π

4 .
We proved that V2 = mTπ

4
for some positive integer m ∈ N. Since Σp is

isoperimetric, it follows that m = 1. Indeed,

m |Tπ
4
| = |V2| = lim

p→∞
|Σ′p| ≤ |Tπ

4
|.

As Tπ
4

is smooth, we have for r > 0 sufficiently small that the density
θ(Tπ

4
, r, x) ≤ 1 + ε

2 , where ε > 0 is from Theorem 40 in the Appendix.
On the other hand, as Σ′p is converging to Tπ

4
with multiplicity one, then

θ(Σ′p, x, r) ≤ 1 + ε for p large enough. Now we invoke the smooth version of
Allard’s Regularity Theorem, Theorem 40, to concluded that the convergence
Σ′p → Tπ

4
is strong, i.e., graphical with multiplicity one. As strong conver-

gence preserves topology, we conclude that g(Σp) = 1. This completes the
proof of Theorem 1.

2.4 Berger spheres

Let g0 be the round metric on S3 and J the vector field on S3 defined as
J(z, w) = (

√
−1 z,

√
−1w). Recall that J is tangent to the fibers of the Hopf

fibration h : S3 → S2(1
2).

The Berger metrics are Riemannian metrics gε on S3 defined as:

gε(X, Y ) = g0(X, Y ) + (ε2 − 1)g0(X, J)g0(Y, J), ε > 0.

The Riemannian manifolds (S3, gε) are called the Berger spheres, they are
denoted by S3

ε. Geometrically, the metric gε shrinks the Hopf fibers to have
length 2π ε.
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2.4 Berger spheres

The Berger metrics are also homogeneous and their group of isometries has
dimension four. It follows from the work of Abresch and Rosenberg [1] that
every constant mean curvature surface in S3

ε admits a holomorphic quadratic
differential. In particular, every CMC sphere in S3

ε is rotationally invariant.
A precise study of closed orientable surfaces with constant mean curvature

on the Berger spheres is given in [69]. It is proved there the existence of ε1 > 0
with the following property: if ε ∈ [ε1, 1], then every stable constant mean
curvature surface in S3

ε has genus zero or one. Moreover, if ε2 ∈ [1
3 , 1], then

these stable CMC surfaces are totally umbilical spheres or the minimal Clifford
torus, the latter only occurring when ε2 = 1

3 . In particular, rotationally
invariant spheres are the only solutions of the isoperimetric problem in S3

ε for
ε2 ∈ [1

3 , 1].

Theorem 25. There exists ε0 > 0 such that for every ε < ε0 the isoperimet-
ric surfaces in the Berger spheres S3

ε are either rotationally invariant spheres
or tori.

Proof of Theorem 2. Arguing by contradiction, let us assume the existence of
a sequence ε → 0 such that for every ε there exists an isoperimetric surface
Σε in S3

ε with g(Σε) ≥ 2.
We rescale the metric gε of S3

ε by the factor λε = 1
ε2 . The Hopf fibers have

constant length equal to 2π under the new metric λεgε. It follows that the
injectivity radius of S3

ε at a point p is equal to injpS3
ε = π for every p ∈ S3

ε.
Since h is a local trivial fibration, we have that for each pε ∈ S3

ε there exist
a neighbourhood V of h(pε) and a diffeomorphism φε : V ×S1 → h−1(V ) such
that h ◦ φε = π1, where π1 : V × S1 → V given by π(x, y) = x. Moreover,
φ∗ε( 1

ε2 gε)→ δ in the C∞ topology. Therefore, in the sense of Cheeger-Gromov
we have: (

S3
ε,

1
ε2 gε, pε

)
→
(
S1 × R2, δ, 0

)
.

We pick the points pε ∈ Σε with the property that gε(J,Nε)(pε) = ± ε, this
means J and Nε are parallel at pε. These points exist by the Poincaré-Hopf
index theorem. By Lemma 22 the inclusion of Σε in

(
S1 ×R2, φ∗ε(ε−2gε)

)
has
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2.4 Berger spheres

the following property:

There exists C > 0 such that sup
Σε
|Aε| ≤ C for every ε.

By the strong compactness theorem for isoperimetric surfaces, Corollary 6 in
the Appendix, we can extract a subsequence, {Σεn}, which converges with
multiplicity one to a properly embedded surface Σ∞ ⊂ (S1 × R2, δ).

If Area(Σ∞) <∞, then the monotonicity formula, Proposition 10, implies
that Σ∞ is compact. We apply Theorem 41 to conclude that Σ∞ is either a
round sphere or torus. This is impossible since we have strong convergence
and g(Σε) = 2 or 3. Therefore, Σ∞ is a complete non-compact surface with
infinite area. Moreover, Σ∞ is also a stable CMC surface in S1 × R2:

IΣ∞(f, f) ≥ 0, ∀f ∈ C∞0 (Σ∞) such that
∫

Σ∞
f dΣ∞ = 0.

It follows from Theorem 42 that Σ∞ is totally geodesic. By the choice of pε
we conclude that Σ∞ is orthogonal to the S1 fibers of S1 × R2. Since Σ∞
separates S1×R2, we also conclude that Σ∞ is an union of at least two totally
geodesic planes. As shown in the proof of Theorem 1.1, this configuration
cannot be a limit of isoperimetric surfaces.
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Chapter 3

Index one minimal surfaces in

spherical space forms

In this chapter we study classification results for orientable minimal surfaces
with Morse index one embedded in spherical space forms with large funda-
mental group. In the last section we extend the classification of isoperimetric
surfaces from previous chapter to spherical space forms with large fundamen-
tal group.

3.1 Preliminaries

3.1.1 Morse index

A surface Σ ⊂ (M3, g) is called minimal when the trace of its second funda-
mental form is identically zero. Equivalently, the first variation of its area is
zero for all variations generated by flows of compact supported vector fields
X ∈ X0(M). If Σ is two sided, then its second variation formula is given by:

I(f) := d2

dt2

∣∣∣∣∣
t=0

area(Σt) =
∫

Σ
|∇f |2 − (Ric(N,N) + |A|2)f 2 dΣ, (3.1)

where f = 〈X,N〉 is the normal component of X, Ric(·, ·) is the Ricci curva-
ture of M , and A is the second fundamental form of Σ. The quantity I(f) is
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3.1 Preliminaries

called the Morse index form of Σ and is the quadratic form associated to the
Jacobi operator

L = ∆ + (Ric(N,N) + |A|2).

The Morse index of Σ is defined as the number of negative eigenvalues of L.

3.1.2 Spherical space forms

We regard S3 as the unit quaternions, i.e., (z, w) = z1 + z2 i + (w1 + w2 i) j
and |z|2 + |w|2 = 1. Let φ : S3×S3 → SO(4) be the homomorphism of groups
which associate for each pair (u1, u2) ∈ S3 × S3 the isometry φ(u1, u2) ∈
SO(4) given by x 7→ φ(u1, u2)(x) = u1xu

−1
2 . The map φ is surjective and

Kerφ = C = {(±1,±1)} . Similarly, one can construct the homomorphism
ψ : S3 → SO(3) ⊂ SO(4) defined by x ∈ S3 7→ ψ(u)(x) = uxu−1. This map
is also surjective and its kernel is {±1}. It follows that there exists an unique
homomorphism ϕ : SO(4)→ SO(3)× SO(3) such that ϕ ◦ φ = ψ × ψ.

For each finite subgroup G ⊂ SO(4) we associate H = ϕ(G) ⊂ SO(3) ×
SO(3). The projection of H on each factor of SO(3) × SO(3) is denoted by
H1 and H2 respectively. If G acts freely on S3, then H1 or H2 must be cyclic
[65]. The pre-images in S3 of H1 and H2 via the homomorphism ψ are denoted
by Ĥ1 and Ĥ2 respecively. Since H1 and H2 are finite subgroups of SO(3),
they must be isomorphic to either the cyclic group, the dihedral group Dn,
the tetrahedral group T , the octahedral group O or the icosahedral group I.

It is showed in [65] that any finite subgroup G ⊂ SO(4) is conjugated in
SO(4) to a finite subgroup of either φ(S1× S3) or φ(S3× S1). Two important
remarks that we will use are the following: φ(S1 × S3) preserves the Hopf
fibers in S3 and left multiplication by unit quaternions leaves the Hopf fibers
invariant. Recall that the Hopf map h : S3 → S2(1

2) sends (z, w) to z/w

where we think of S2 as C ∪ {∞}. In particular, up to conjugation in O(4),
we may assume that G is a subgroup of φ(S1 × S3). The following describes
the classical classification of 3-dimensional spherical space forms:

Theorem 26. Let G be a finite subgroup of φ(S1 × S3) acting freely on S3.
Then one of the following holds:
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3.1 Preliminaries

1. G is cyclic;

2. H2 is T , O, I, or Dn and H1 is cyclic of order coprime to the order of
H2. Moreover, G = φ(Ĥ1 × Ĥ2);

3. H2 = T and H1 is cyclic. Moreover, G is a subgroup of index three in
φ(Ĥ1 × Ĥ2);

4. H2 = Dn and H1 is cyclic. Moreover, G is a subgroup of index two in
φ(Ĥ1 × Ĥ2).

Proof. See page 455 in [65].

The spherical space forms obtained when G is cyclic are called lens spaces.
If p and q are relative primes, then we denote by L(p, q) the lens space defined
by the action of Zp on S3 as follows: given m ∈ Zp, we define m · (z, w) =
(e2πmq i

p z, e2πmi
p w). The Clifford torus Tr ⊂ S3, defined as

Tr := S1(cos(r))× S1(sin(r)) ⊂ S3 (3.2)

where r ∈ [0, π2 ], is invariant by the group Zp and the projection of this family
foliates L(p, q) by tori of constant mean curvature. One can check that Tπ

4

projects to an index one minimal tori in L(p, q) for every p ≥ 2 and q ≥ 1.

Example 3 (Immersed minimal tori with index one). Let T be a Clifford
torus in S3 containing the geodesics T0 and Tπ

2
. For each p, let Vp be the

varifold defined by Vp = ∪g∈Zpg · T , where Zp is the group defined above.
The projection of Vp in L(p, q) is a minimal immersed torus which fails to
be embedded at the critical fibers T0 and Tπ

2
when q 6= 1. If p is even, then

Index(Vp/Zp) = 1. Moreover, if p, q are chosen so that limp→∞ diam(Tπ
4
/Zp) =

0, then the varifold V = limp→∞ Vp is the foliation of S3 where the leaves are
Clifford torus containing T0 and Tπ

2
.

Remark 5 (Doubling the Clifford torus). If the group G satisfies item (4)
in Theorem 26, i.e., H2 = Dn, then we call S3/G a Prism manifold. These
spherical space forms are double covered by lens spaces. In particular, one
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3.1 Preliminaries

can sweep-out each Prism manifold with surfaces whose area does not exceed
twice the volume of S3/G, see [32]. Applying the min-max theory, one obtains
an orientable index one minimal surface with area bounded as above. If the
order of G is sufficiently large, then Theorem 6 implies that the genus of these
min-max surfaces is two. We remark that these manifolds do not contain
minimal tori by Frankel’s Theorem [24]. One can visualize these surfaces
better when the Prism manifold they live have a double cover L(p, q) which
satisfies limp→∞ diam(Tπ

4
/Zp) = 0. In this case, the orbit of a point x ∈ Tr

with respect to Gp is becoming dense in the Clifford torus Tr. For every
p, let Σ̂p be the pre-image of these index one minimal surfaces in S3. By
Frankel’s Theorem Σ̂p ∩ Tπ

4
6= ∅ for every p; hence, Σ̂p converges as varifolds

to the Clifford torus Tπ
4
with multiplicity two. The surface Σ̂p pictures like a

doubling of the minimal Clifford torus.

Remark 6 (Desingularizing stationary varifolds). Another family of spherical
space forms is given by the quotients S3/(I∗×Zm), wherem satisfies (m, 30) =
1. By Frankel’s Theorem, there are no minimal spheres or minimal tori in
S3/(I∗ × Zm). With the help of the Hopf fibration h : S3 → S2, it is possible
to construct a sweep-out of S3 which is invariant by I∗×Zm and that projects
to a sweep-out in S3/(I∗×Zm) by surfaces with genus two and area bounded
from above by C

m
, see [31, Section 6]. Applying the min-max theory, one

obtains an index one minimal surface Σm with genus two in S3/(I∗×Zm) and
area satisfying |Σm| ≤ C

m
. Its pre-image Σ̂m ⊂ S3 has uniform bounded area

and converges, as m→∞, to a stationary varifold V which is invariant by the
Hopf fibration. In particular, V = h−1(T ), where T is a I∗ invariant geodesic
net in S2. By Allard’s Regularity Theorem, the genus of Σ̂m is concentrated
near h−1(V ), where V is the set of vertices of T . The surface Σ̂m pictures like
a desingularization of h−1(T ) near h−1(V ) through Scherk towers.

3.1.3 Non compact flat space forms

Every non-compact orientable flat space form is the quotient of R3 by a dis-
crete subgroup G of the group Iso(R3) of affine orientation preserving isome-
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3.1 Preliminaries

tries acting properly and discontinuously in R3. For every subgroup G we
denote by Γ(G) the subgroup of translations in G. The following describe all
the possible types of affine diffeomorphic complete non compact orientable
flat three manifolds (see [73] for a comprehensive discussion):

If rank(Γ(G)) = 0 or 1, then either G = {Id} or G = Sθ, with 0 ≤ θ ≤ π,
where Sθ is the subgroup generated by a screw motion given by a rotation of
angle θ followed by a non trivial translation in the direction of the rotation
axis.

If rank(Γ(G)) = 2, then either G is generated by two linearly independent
translations and R3/G is the Riemannian product T 2 × R, where T 2 is a flat
torus, or G is generated by a screw motion with angle π and a translation
orthogonal to the axis of the screw motion.

Theorem 27 (Ritoré [54]). If Σ is a complete orientable index one minimal
surface properly embedded in a non-compact orientable flat 3-manifold R3/G

, then
−8π <

∫
Σ
KΣ dΣ ≤ −2π.

Remark 7. By [40, 41], the total curvature of a properly embedded minimal
surface in R3/G is a multiple of 2π if finite.

Example 4 (Index one Helicoids with total curvature −2π). Let Σ the he-
licoid in R3 parametrized by X(u, v) = (u cos(v), u sin(v), v). One can check
that ∫

Σ∩{0≤v≤4π}
KΣdΣ = −4π. (3.3)

Now consider Σ/Z4π in R3/Z4π, where Z4π is the group of vertical translations
by multiples of 4π. Recall that the Gauss map N : Σ/Z4π → S2 is conformal
and with degree one by (3.3). A standard argument implies that ind(LΣ/Z4π) =
ind(L0), where LΣ = ∆ + |∇N |2 is the Jacobi operator of Σ and L0 is the
operator L0 = ∆ + 2 on S2. Hence, ind(Σ/Z4π) = 1. Let Sπ be the subgroup
of isometries generated by the screw motion R(x, y, z) = (−x,−y, z + 2π).
Using that Sπ is a subgroup of order two in Σ/Z4π, we conclude that Σ/Sπ is
a minimal surface with index one and total curvature −2π in R3/Sπ.
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3.2 Proof of Theorem 6

Remark 8. It is an open question weather there exists an index one minimal
surface Σ in R3/G such that

∫
Σ KΣ dΣ = −6π. If Σ is an index one mini-

mal surface in a non-compact flat 3-manifold R3/G where G contains only
translations, then

∫
ΣKΣ dΣ = −4π [55].

Example 5. Let us show that R3/S 2π
l

can be obtained as a limit of Lens
spaces under the Cheeger-Gromov convergence. To see this, consider the
sequence of Lens spaces (L(pk, k), p2

k g0, xk), where xk lies on the critical fiber
Tπ

2
and pk = l(k−1). This sequence has curvature close to zero and injectivity

radius at xk bounded from below by π. We claim that

(L(pk, k), p2
k g0, xk) C−G−−−→ (R3/S 2π

l
, δ, x∞).

The observation is that the critical fiber Tπ
2
has length 2π whereas the nearby

Hopf fibers are equidistant and have length 2π l.

3.2 Proof of Theorem 6

Proposition 6. Let Σ be a closed minimal surface in S3 and N : Σp → S3 be
the unit normal vector field of Σ. If we denote by

c = c(Σ) = min
{

arctan
(

1
max{λ2(x) : x ∈ Σ}

)
,
π

4

}
,

where λ2(x) is the non-negative principal curvature at x, and by F : Σ ×
[0, c)→ S3 the exponential map on Σ, which is given by

(x, t) 7→ F (x, t) = cos(t)x+ sin(t)N(x),

then F is a diffeomorphism onto its image.

Proof. We may assume that g(Σ) ≥ 1 since a minimal sphere in S3 is an
equator and the Proposition trivially holds.

Let {e1, e2} be an orthonormal basis with eigenvectors of the second fun-
damental form AΣ and {λ1, λ2} the respective eigenvalues. It follows that
dF (ei) = (cos(t) − sin(t)λi)ei and dF (∂t) = − sin(t)x + cos(t)N(x). Since
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3.2 Proof of Theorem 6

tan(t) ≤ 1/maxΣ{λ2} for every t ∈ (0, c), we conclude that F is a lo-
cal diffeomorphism. The unit normal vector field along Σt = F (Σ, t) is
Nt = − sin(t)x + cos(t)N(x). Moreover, if we denote the mean curvature
of Σt = by Ht, then

Ht = 1
2

(1 + λ2
2) sin(2t)

(cos2(t)− sin2(t)λ2
2) > 0,

for every t ∈ (0, c). Let t0 = sup{t > 0 : F : Σ × [0, t] → S3 is injective}. If
t0 < c, then there exist (x1, t1) and (x2, t2) in Σ× [0, t0] with the same image
under F . Since Σ separates S3, these points must lie on Σ × {t0}. Hence,
we may assume that F (x1, t0) = F (x2, t0) and that x1 6= x2. Since Σt0 has a
tangential self intersection at F (x1, t0), we conclude that Nt0(x1) = ±Nt0(x2).
If Nt0(x1) = Nt0(x2), then t0 = π

4 , contradiction. Consequently, Nt0(x1) =
−Nt0(x2) since x1 6= x2. Hence, Σt0 is locally at F (x1, t0), an union of two
tangential surfaces Γ1 and Γ2 with Γ1 ≤ Γ2. Moreover, the mean curvatures
in the Nt0(x1) direction say satisfies HΓ1 ≤ 0 ≤ HΓ1 . Applying the Maximum
Principle [63, Lemma 1], we conclude the existence of neighborhoods of x1

and x2 in Σ with the same image under Ft0 and Ht0 = 0 there. This is a
contradiction and the result follows.

Lemma 28. Let Σ be a orientable minimal surface embedded in S3. If R <

c(Σ), then there exists C > 0 independent of Σ such that vol(B2R(x)) ≥
C R · area(Σ ∩BR(x)) for every x ∈ Σ.

Proof. By Proposition 6, the following map is a diffeomorphism onto its image:

F : Σ ∩BR(x)× [0, R2 )→ S3.

Let us denote the image by Ω. By the change of variables formula,

Vol(Ω) =
∫ R

2

0

∫
Σ∩BR(x)

(
cos2(s)− λ2

2 sin2(s)
)
dΣ ds.

Hence, we can choose 0 < C < min{cos2(s)(1− tan2(s/2)
tan2(s) ) : s ∈ [0, c2 ]} such that

Vol(Ω) ≥ CRArea(Σ ∩BR(x)). As Ω ⊂ B2R(x), the lemma is proved.
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Let {Σn} be a sequence of minimal hypersurfaces in a Riemannian mani-
fold (M, g). We say that {Σn} converges, in the C∞ topology, to a surface Σ
if for every x ∈ Σ and for n large, the hypersurface Σn can be written locally
as graphs over an open set of TpΣ, and these graphs converge smoothly to the
graph of Σ.

We say that {Σn} satisfy local area bounds if there exist r > 0 and C > 0
such that |Σn ∩Br(x)| ≤ C for every x ∈M .

Proposition 7. Let {Σn} ⊂ (M, gn) be a sequence of properly embedded min-
imal surfaces such that supΣn |An| ≤ C and with local area bounds. Assume
that gn converges to g, in the C∞ topology.

If {Σn}n=1 has an accumulation point, then we can extract a subsequence
which converges to a minimal surface Σ properly embedded in (M, g).

Recall from Theorem 13 that the genus of an orientable index one minimal
surface in a 3-manifold with positive Ricci curvature is at most 3.

Lemma 29. Let Mp be a 3-manifold with positive Ricci curvature and Σp ⊂
Mp a closed orientable minimal surface with index one and genus h. Assume
that (Mp, gp, xp) converges, in the Cheeger-Gromov sense, to a flat manifold
(M, δ, x∞) and that (Σp, xp) converges graphically with multiplicity one to a
properly embedded minimal surface (Σ∞, x∞) in (M, δ, x∞).

1. If h = 2, then
∫
Σ∞ K∞ dΣ∞ = −6π, −4π, or 0.

2. If h = 3, then
∫
Σ∞ K∞ dΣ∞ = 0.

Proof. Since the Cheeger-Gromov convergence preserves topology in the com-
pact setting, we conclude that M is non compact. It follows that Σ∞ is a
complete non compact minimal surface in M since h ≥ 2. The multiplicity
one convergence implies that Σ∞ is two sided. Moreover, the index of Σ∞ is
at most one by the lower semi continuity of the index. If Ind(Σ∞) = 0, then
Σ∞ is flat and we are done. Hence, we may assume that Ind(Σ∞) = 1. By
classical arguments in [22], Σ∞ is conformally equivalent to Σ − {q1, . . . , ql},
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3.2 Proof of Theorem 6

where Σ is a closed Riemann surface. Let Di(qi) be conformal disks on Σ
centered at qi. Given ε > 0 we define Uε to be Σ−∪li=1{z ∈ Di(qi); |zi| ≤ ε}.
On the set Uε2 we define the function uε by:

uε = 0 on Uε and uε =
ln( |z|

ε
)

ln(ε) for z ∈ Uε2 − Uε.

One can check that limε→0
∫
Σ |∇uε|2dΣ = 0. The set Uε is seen as a subset

of Σ∞ and, by choosing ε small, we may assume that Index(Uε) = 1. It
follows that for p large depending on ε, there exist Up ⊂ U ′p ⊂ Σp for which
Index(Up) = 1 and such that Up and U ′p converge graphically to Uε and Uε2 ,
respectively. Moreover, by means of uε we can construct, for each p large
enough, an function up on Σp satisfying up = 0 on Up, up = 1 at Σp − U ′p,
and such that limp→∞

∫
Σp |∇up|

2 dΣp = 0, i.e.,
∫

Σp |∇up|
2 dΣp = O1(ε). As Σp

and Up both have index one, we concluded that Indice(Σp − Up) = 0. As
supp(up) ⊂ Σp − Up, we obtain

0 ≤
∫

Σp

(
|∇up|2 − (Ricgp(Np, Np) + |Ap|2)u2

p

)
dΣp .

By the Gauss equation, 2Kp = 2Kp+|Ap|2, whereKp is the sectional curvature
of M in the direction of TΣp. Therefore,

0 ≤
∫

Σp

(
|∇up|2 − (Ricgp(Np) + 2Kp)u2

p + 2Kpu
2
p

)
dΣp

=
∫

Σp
(|∇up|2dΣp + 2

∫
{Kp≤0}

Kpu
2
p)dΣp + 2

∫
{Kp>0}

|Kp|u2
pdΣp

−
∫
Kp≤0

(Ricgp(Np) + 2Kp)u2
p −

∫
Kp>0

(Ricgp(Np) + 2Kp)u2
p.

If {e1, e2} is an orthonormal base for TΣp, then Ricgp(e1) = Kp + K(e1, N),
Ricg2(e2) = Kp + Kp(e2, N), and Ricgp(Np) = K(e1, N) + K(e2, N). This

59



3.2 Proof of Theorem 6

immediately implies that 2K + Ricgp(Np) = Ricgp(e1) + Ricgp(e2). Hence,

0 ≤
∫

Σp
|∇up|2dΣp + 2

∫
{Kp≤0}

Kpu
2
pdΣp

+
∫
{Kp>0}

(
2|Kp| − Ricgp(Np)− 2Kp

)
u2
p

=
∫

Σp
|∇up|2dΣp + 2

∫
{Kp≤0}

Kpu
2
pdΣp

−
∫
{Kp>0}

(
|Ap|2 + Ricgp(Np)

)
u2
p.

≤
∫

Σp
|∇up|2dΣp +

∫
{up≡1}∩{Kp≤0}

2Kp dΣp

= O1(ε) +
∫

Σp∩{Kp≤0}
2Kp dΣp −

∫
Up∩{Kp≤0}

2Kp dΣp .

On the other hand, we have that
∫
Up∩{Kp≤0}Kp dΣp =

∫
Σ∞ K∞dΣ∞+O2(ε), for

the total curvature of Σ∞ is uniformly close to that of Uε which is uniformly
close to that of

∫
Up∩{Kp≤0}Kp dΣp . Hence,∫

Σ∞
K∞ dΣ∞ ≤ O1(ε) +O2(ε) +

∫
Σp∩{Kp≤0}

Kp dΣp .

This implies that
∫
Σ∞ K∞ dΣ∞ ≤

∫
Σp∩{Kp≤0}Kp dΣp since

∫
Σ∞ K∞dΣ∞ and∫

Σp∩{Kp≤0}KpdΣp are independent of ε. On the other hand,∫
Σp∩{Kp≤0}

Kp dΣp ≤
∫

Σ∞
K∞ dΣ∞

by the upper semi continuity of the limit of non-positive functions. Therefore,

− 8π <
∫

Σ∞
K∞ dΣ∞ = lim

p→∞

∫
Σp∩{Kp≤0}

Kp dΣp ≤ 4π(1− h). (3.4)

The first strictly inequality is from Theorem 27 and the second inequality if
from the Gauss-Bonnet Theorem. If h = 2, then

∫
Σ∞ KΣ∞ dΣ∞ = −4π or −6π

by Remark 7. If h = 3, then (3.4) becomes a contradiction and the lemma is
proved.

Corollary 5. If Mp is a spherical space form and genus(Σp) = 2, then∫
Σ∞

K∞ dΣ∞ = −4π or 0.
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Proof. Since there is no loss of negative Gaussian curvature, then

lim
p→∞

∫
{Kp>0}

(2Kp − Ricgp(Np)− 2Kp dΣp = 0.

By the scale invariance of this quantity, we can assume that Kp = 1. The
Gauss equation then implies that limp→∞ |Σp ∩ {Kp > 0}| = 0. Therefore,
limp→∞

∫
{Kp>0}Kp dΣp = 0. The corollary now follows from the Gauss-Bonnet

Theorem.

Theorem 30. There exists an integer p0 such that if Σ is an orientable index
one minimal surface in an spherical space form M3 with |π1(M)| ≥ p0, then
genus(Σ) ≤ 2.

Proof. By Theorem 13, we only need to rule out orientable index one minimal
surfaces of genus 3. The proof is by contradiction. In what followsMp denotes
an spherical space form such that |π1(Mp)| = p, i.e., Mp = S3/Gp and |Gp| =
p. Arguing by contradiction, let us assume the existence of a sequence of
spherical space forms {Mpi}∞i=1 such that each Mpi contains an index one
minimal surface Σpi of genus three and that limi→∞ pi =∞.

We consider the rescaled sequence (Mpi , λ
2
pi
gS3 , xpi), where xpi ∈ Σpi

and λpi > 0 is such that limi→∞ λpi injxpiMpi > 0. Similarly, we consider
(Σpi , xpi) ⊂ (Mpi , λ

2
pi
gS3 , xpi). By Cheeger-Gromov’s compactness theorem,

there exists a subsequence {Mpi}i∈N which converges in the Cheeger-Gromov
sense to a flat manifold (M, δ, x∞).

Lemma 31. Let (Mpi , λ
2
pi
gS3 , xpi)

C−G−−−→ (M, δ, x∞) as above and assume
that lim infi→∞ λpic(Σpi) > 0. Then {(Σpi , λ

2
pi
gS3 , xpi)}i∈N satisfies local area

bounds in BR(xi) for some R > 0.

Proof. Since Σ′p is invariant by the group Gp, then F : Σ′p × [0, c(Σ′p)) → S3

is also Gp invariant. Hence, it makes sense to consider F : Σp × [0, c(Σp))→
Mp which is a diffeomorphism onto its image by Proposition 6. Let r <

1
4 min{1, lim infi→∞ λpic(Σpi)}, then for every yi ∈ Σpi ∩ BR(xi) we have that
Vol(B 2r

λpi

(yp)) ≥ C1 rArea(Σp ∩ B r
λpi

(yp)) by Lemma 28. Since this formula
is scale invariant, the lemma is proved.
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Lemma 32. Let Ap be the second fundamental form of Σp in Mp. There exist
C > 0 such that supΣp |Ap|λ2

pgS3 = supΣp
1
λ2
p
|Ap|2 ≤ C.

Proof. Let yp ∈ Σp ⊂ Mp be such that |Ap|(yp) = maxΣp |Ap|2 and define
the quantity ρp = maxΣp |Ap|(yp). Arguing by contradiction, we assume that
ρp
λp
→ ∞. We consider the surface Σ̂p = (Σp, yp) ⊂ (Mp), ρ2

p gS3 , yp). Under
this scale, the sequence (Mp), ρ2

p gS3 , yp) converges to (R3, δ, 0) as p → ∞.
Moreover, the surface Σ̂p satisfies maxΣ̂p |A

′
p(x)|2 = |A′p(0)|2 = 1 and enjoys

local area bounds by previous lemma. By Proposition 11, Σ̂p converges to
a non-flat properly embedded minimal surface Σ∞ ⊂ R3 of index one. The
convergence is with multiplicity one. Indeed, applying Proposition 6 to N
and −N we obtain that F : (Σp, xp) × (−α, α) → (Mpi , ρ

2
pi
gS3 , xp), with

0 < α < lim infi→∞ ρpic(Σpi), is a diffeomorphism onto its image. Hence, there
exists a tubular neighbourhood of radius α around each Σpi in (Mpi , ρ

2
pi
gS3)

and the convergence is with multiplicity one. Since g(Σpi) = 3, Lemma 29
implies that

∫
Σ∞ K∞ dΣ∞ = 0. This contradicts |AΣ∞|(0) = 1.

Combining Lemma 31, Lemma 32, and Proposition 11 we obtain:

Lemma 33. There exist a properly embedded orientable minimal surface
Σ∞ ⊂ (M, δ, x∞) such that:

{Σpl}l∈N ⊂ (Mpl , λ
2
pl
gS3 , xpl)→ Σ∞ in the Ck topology.

The convergence is with multiplicity one and the Morse index of Σ∞ is at
most one.

Lemma 34. Let xp ∈ Σp be such that supΣp |Ap| = |Ap|(xp). If limp→∞ λp c(Σp) <
∞, then

lim
p→∞

|Ap|2(xp)
λ2
p

> 0.

Proof. As limp→∞ λp c(Σp) <∞, there exists a positive constant C such that
c(Σpi) ≤ Cπ

λpi
for every i ≥ 1. Hence,

c(Σp) ≤
Cπ

λp
⇔ arctan

(
1

λ2(xp)

)
≤ Cπ

λp
⇔ λ2(xp) ≥

1
tan(Cπ

λp
)
,
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where λ2(x) is the largest principal curvature of Σp at x. Therefore,

lim
p→∞

|Ap|2(x′p)
λ2
p

= lim
p→∞

2λ2
2(xp)
λ2
p

≥ lim
p→∞

2
λ2
p tan2(Cπ

λp
)

= 2C2

π2

and the lemma is proved.

Lemma 35. If for each p there exists λp such that injxMp ≥ C
λp

for every
x ∈ Σp, then limp→∞ λp c(Σp) =∞.

Proof. Let xp ∈ Σp be such that supΣp |Ap| = |Ap|(xp). By Lemma 33, the
sequence of pointed manifolds (Mp, λ

2
pg0, xp) converges to (M, δ, x∞) in the

Cheeger-Gromov convergence and Σp → Σ∞ in (M, δ, x∞). If limp→∞ λp c(Σp) <
∞, then, by Lemma 34, Σ∞ is not totally geodesic. This contradicts Lemma
29.

By Theorem 26, we may assume that the subsequence {Mpi}i∈N satisfies
either Case I, II, or III below:

Case I: The sequence {Mpi}i∈N is such that Hp
2 = π2(ϕ(Gp)) is either T , O,

or I.

Lemma 36. If Mp is such that Hp
2 = T , O, or I, then injxMp = O(1

p
) for

every x ∈Mp.

Proof. Since the group Gp preserves the Hopf fibers, the Hopf fibers have size
O(1

p
). Let h : (Mp, p

2 gS3) → (S2(1
2)/Hp

2 , p
2 gS2) be the Hopf fibration. Let

Br(xp) be the ball of radius r in (Mp, p
2 gS3). Since Hp

2 = T , O, or I, there
exists c0 > 0 such that vol(h(Br(xp)) ≥ c0r

2. By the co-area formula,

vol(B2r(xp)) ≥
∫
h(Br(xp))

H1(h−1(y)) dH2(y) ≥ C c0 r
2.

Cheeger’s inequality implies that injxp(Mp, p
2 gS3) ≥ i0 for i0 > 0.

Since g(Σp) ≥ 3, there exist a point yp ∈ Σp such that the Hopf fiber
through yp is orthogonal to Σp. If we parametrize such fiber by γ : [0, 2π]→
Mp, then the map F from Proposition 6 satisfies F (yp, t) = γ(t). It follows
from Lemma 36 that c(Σp) ≤ C

p
. This contradicts Lemma 35.
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Case II: The sequence {Mpi}i∈N is such that Hp
2 = π2(ϕ(Gp)) is Zm.

This corresponds to a subsequence of Lens spaces L(pi, qi). The next lemma
is useful for the analysis of this case:

Lemma 37. If Mp = L(p, q) and diameter(Tπ
4
/Zp) > ε for every p, then

injxpMp = O(1
p
) and (Mp, p

2 gS3 , xp) C−G−−−→ (S1 × R2, δ, x∞). Moreover, there
exist a unit vector field X ∈ X (S3) which is Zp invariant and such that its
orbits converge to the standard S1 fibers of S1 × R2.

Proof. See Section 3 in [70].

For subsequences as in Lemma 37, we pick yp such that gS3(N(yp), X(yp)) =
±1. The existence of yp ∈ Σp is from the Poincaré-Hopf Index Theorem ap-
plied to the vector field XT ∈ X (Σp). Applying Lemmas 33 and 29, we
conclude that Σ∞ is an union of planes orthogonal to the fibers of S1 × R2.
This implies that limp→∞ p c(Σp) <∞ which contradicts Lemma 35.

It remains to study subsequences of Lens spaces L(pi, qi) such that

lim
i→∞

diameter(Tπ
4
/Zpi) = 0.

Let us prove that the pre-image of Σp in S3, denoted by Σ̂p, converges in the
Hausdorff sense to Tπ

4
as p→∞.

Lemma 38.
lim
i→∞

dH(Σ̂pi , Tπ
4
) = 0.

Proof. Without loss of generality, we assume that Σp ∩ Ap, where Ap =
{x ∈ L(p, q) : r(x) ≥ π

4}, is stable. Let us define the quantities a =
lim infp→∞ inf{r(x) : x ∈ Σp} and b = lim supp→∞ sup{r(x) : x ∈ Σp}. If
b < π

2 , then Tb can be obtained as a limit of Σ̂p as p→∞ since the curvature
of Σp∩ Âp is uniformly bounded and since each orbit of Zpi is becoming dense
on the Clifford torus that contains it. Thus, b = π

4 which implies that a = π
4

and the lemma is proved in this case. Indeed, if a < π
4 , then Tπ

4
would be a

stable minimal surface, contradiction. Hence, we may assume that b = π
2 .
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First we study the case where Σp∩Tπ
2

= ∅ for every p. Let xp ∈ Σ̂p be the
closest point to Tπ

2
. By the stability assumption, the connected components

of Σ̂p in Âp converge to leafs of a minimal lamination F in Âp. Since Tπ
2
is

tangent to every such leaf that it intersects, we conclude that Tπ
2
is contained

in a leaf Fα. Let Γp ⊂ S3 be a minimal torus containing the geodesics T0

and Tπ
2
and perpendicular to Σ̂p at xp. The minimal tori Γp is a leaf of the

singular lamination E = {Eβ} by the union of minimal tori containing T0 and
Tπ

2
. By compactness, Γp converge to a leaf Eβ perpendicular to Fα along Tπ

2
.

Consequently, there exist another leaf Eβ1 which is tangent to Fα along Tπ
2
.

By the analytical continuation, the lamination F coincide with the singular
lamination E, contradiction.

Now we study the case Σp ∩ Tπ
2
6= ∅. By choosing xp ∈ Σp ∩ Tπ

2
, we

have that (L(p, q), p2g0, xp) → (M, δ, x∞), where M is a quotient of R3 by a
screw motion with angle θ and (Σp, p

2g0, xp) → (Σ∞, δ, x∞), where Σ∞ ⊂ M

is totally geodesic by Lemma 29. If Σ∞ is a plane, then limp→∞ p c(Σp) <
∞. As this contradicts Lemma 35 (note that injxL(p, q) ≥ π

p
for every x),

we conclude that Σ∞ is flat cylinder. It is enough to proving that θ 6= 0,
since there are no totally geodesic cylinders in M in this case. Let Trp be
the Clifford torus such that limp→∞ p dL(p,q)(Trp , Tπ

2
) = c0. It follows that

(Trp , p2 g0) converges to a tube of radius c0 around the central fiber in (M, δ)
through x∞. Recall h : S3 → S2(1

2) the Hopf fibration. If γp : [0, 1]→ S3 is the
geodesic segment such that |γp| = 2 injγp(0)L(p, q) with γp(0) ∈ Trp , then h(γp)
is a geodesic whose extremities determine an arc βp : [0, 1] → h(Trp). Note
that injypL(p, q) ≥ |h(γp)|. Under the scale λ = p2 of the round metric g0, βp
converge to an arc β in the geodesic circle with radius c0 centered at the origin
in R2 and h(γp) converges to a linear segment γ whose extremities are those
of β. The angle |β|

c0
is independent of the choice of c0. Hence, |γ| increases

as c0 increases. In particular, the injective radius of M is not constant and,
hence, θ 6= 0.

By Lemma 38, for each p there exists λp > 0 such that injxL(p, q) =
O( 1

λp
) for every x ∈ Σp. Lemmas 29 and 33 imply that (L(p, q), λ2

pg0, xp) →
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(M, δ, x∞) and that Σp → Σ∞, where Σ∞ is a totally geodesic surface in
(M, δ). If M is diffeomorphic to T 2 × R, then limp→∞ λp c(Σp) < ∞ and we
reach a contradiction with Lemma 35. The same argument applies if R3/Tv

and Σ∞ is a union of planes. Therefore, we assume, regardless the choices
of base points, that M is diffeomorphic to S1 × R2 and that Σ∞ is a totally
geodesic S1 × R. Let us show that this is incompatible with genus(Σp) > 1.

Lemma 39. For each j, let Σj be a closed minimal surface of genus g in Mj

and assume that (Mj, λ
2
jg0, xj) → (S1 × R2, δ, x∞) and that Σj → S1 × R for

every choice of base points xj ∈ Σj. Then g = 1.

Proof. It follows from the assumptions, that there exist positive constants
C1 and C2 such that C1

λj
≤ injxΣj ≤ C2

λj
and C1

λj
≤ injxMj ≤ C2

λj
for every

x ∈ Σj and every j. For each j, let Fj = {B1, . . . , BNj} be a maximal
disjoint collection of balls Bi = B R

λj

(xij) in Mj where xij ∈ Σj and R > 4C2.
By the assumption of the lemma, there exists j0 such that Σj ∩ B R

λj

(xij) is
an annular surface for every j ≥ j0. For j sufficiently large, let Kj be a
connected component of Σj − ∪

Nj
i=1Bi and take yj ∈ Kj. By assumption,

(Σj, λ
2
jg0, yj) → (S1 × R, δ, y∞). We consider F∞ the disjoint collection of

regions in Σ∞ obtained as the limit of Σj ∩ Bij. Note that each element of
F∞ is the intersection of geodesic balls in S1×R2 centered on Σ∞ and radius
R ∈ [C1, C2], hence, an annulus where each boundary component generates
π1(Σ∞). Moreover, each connected component of Σ∞ − F∞ is compact by
the maximality of Fj. Since Kj is connected and y∞ /∈ F∞, we conclude that
K∞ is also an annulus. Hence, there exists an integer j2 such that Σj is an
union of disjoint annulus for every j ≥ j2. By the Gauss-Bonnet Theorem,
genus(Σj) = 1.

Case III: The sequence {Mpi}i∈N is such that Hp
2 = π2(ϕ(Gp)) is D2n.

The spherical space forms in this case are double covered by lens spaces.
The arguments in Case II apply mutatis mutandis.
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3.3 Proof of Theorem 3

In this section we complete the classification of isoperimetric surfaces in the
spherical space forms with large fundamental group.

Proof of Theorem 3. Let {Mp} be a sequence of spherical space forms satis-
fying the following two properties: Mp contains an isoperimetric surface Σp

of genus 2 or 3 for each p and π1(Mp) = p. By Theorem 26 and after passing
to a subsequence, we can assume that {Mp} is of one of the following types:

• Type A : H2(Mp) = Zn.

• Type B : H2(Mp) = D2n.

• Type C : H2(Mp) = T, O, or I.

A sequence of type A corresponds to the case of lens spaces discussed in
Chapter 2. Hence, we assume that the sequence {Mp} is of Type B or of
Type C. Let us first deal with sequences which are of Type B. In this case Mp

is double covered by a Lens space L(p2 , q) for each p. One first observation is
that

1
2 injx̃L(p2 , q) ≤ injxMp ≤ injx̃L(p2 , q).

As in the proof of Theorem 1, we can assume that each isoperimetric surface
Σp divides Mp in two regions of equal volume. In Chapter 2, we show that
every sequence of lens space has a subsequence which satisfies item 1 or 2 in
Lemma 20. This information was used in the proof of Theorem 1 where we
divide the proof in the Cases I and Case II. Let us assume that {L(p2 , q)} is
as in Case I. In this case, we have that

(L(p2 , q), p
2gS3 , x̂p)→ (M, δ, x∞),

whereM is orientable flat 3-manifold of rank one regardless the choice of base
points x̂p; topologically M ∼= S1 × R2. Therefore,

(Mp, , p
2gS3 , xp)→ (N, δ, x∞),
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where N is also an orientable flat 3-manifold of rank one. Moreover, the se-
quence {Σp} has uniform bounded second fundamental form in (Mp, p

2gS3 , xp)
and converges with multiplicity one to a totally geodesic surface Σ∞ in N .
As shown in the proof of Theorem 1, it is possible to choose base points x̃p
for which Σ̃p (the pre-image of Σp in L(p2 , q)) converges to an union of par-
allel planes. Hence, for this particular choice of base points we obtain that
Σp converges to an union of parallel planes in N as well. This configuration
cannot be a limit of isoperimetric surfaces.

Next, we assume that {L(p2 , q)} is as in Case II. In this case, we take the
pre-image of Σp in S3, which we denote by Σ′p, and take its limit in the sense
of varifolds. Following the arguments in the proof of Case II in Chapter 2, we
conclude that Σ′p converge to an union of Clifford torus Tr1 ∪ . . . ∪ Trk . Since
such union is transitive with respect to D2n, we conclude that k = 2. The case
k = 1 cannot happen because otherwise Σ′p would be Hausdorff close to Tπ

4

which contradicts the fact that Σ′p divides S3 in two regions of equal volume.
Using the theory of currents we conclude that Σ′p bounds a connected region
Ω′p which converge to the region Ω′ bounded by two Clifford tori. Since the
projection of Ω′ on Mp is a valid competitor for the isoperimetric problem,
Σ′p converges with multiplicity one. The result now follows from Allard’s
Regularity Theorem, Theorem 40 in the Appendix.

Finally, we assume that {Mp} is of Type C. Hence, injxMp = O(1
p
) and

it is computed by computing the size of the Hopf fibers. Moreover, we claim
that

(Mp, p
2gS3 , xp) → (M, δ, x∞),

where M is a flat orientable non-compact three manifold with rank one. To
see this we consider the Hopf fibration which in this case takes the form
h : Mp → S2/H2, where S2/H2 is a fixed two dimension orbifold. Applying
the Coarea Formula to the fibration h implies that for every xp ∈ Mp that
the ball Br(xp) in (Mp, p

2gS3 , xp) satisfies volBr(x) ≥ C r2 for every r large
enough. This proves the claim. The argument follows the same lines as in the
proof of Case I in the proof of Theorem 1.
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Chapter 4

Appendix

In this chapter, now collect some background results for surfaces with constant
mean curvature in 3-manifolds.

4.1 Variational formulas

In this section, we consider two-sided hypersurfaces Σn ⊂Mn+1 and variations
of Σ given by smooth maps ϕ : Σ× (−ε, ε)→ M with Σ = ϕ(Σ, 0) and such
that ϕt : x ∈ Σ 7−→ ϕ(x, t) ∈ M is an immersion of Σ in M for every
t ∈ (−ε, ε).

It will be useful for the computations to introduce local coordinates x1, . . . , xn

in Σ. We will also use the simplified notation

∂t = ∂ϕ

∂t
and ∂i = ∂ϕ

∂xi
,

where i runs from 1 to n. The unit normal vector field along Σt = ϕ(Σ, t)
is denoted by Nt. Regarding the indexes, we use the usual summation and
notational conventions. For example, the mean curvature of Σ is given by
H = gijAij, where Aij = 〈B(∂i, ∂j), N〉 for every 1 ≤ i, j ≤ n.

Let us recall the lapse function ft = 〈∂t, Nt〉 and the volume functional
V (t) associated to the variation ϕ and defined by

V (t) =
∫

Σ×[0,t]
ϕ∗(dM).
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4.1 Variational formulas

Proposition 8.

d

dt
|Σt| = −n

∫
Σt
Ht ft dΣt and V ′(0) =

∫
Σ
f dΣ.

Proof. The induced metric gij(t) on Σ is given by gij = 〈∂xiϕ, ∂xjϕ〉. Conse-
quently, we have

∂t gij = ∂t〈∂xi , ∂xj〉 = 〈∇∂t∂xi , ∂xj〉+ 〈∇∂t∂xj , ∂xi〉

= 〈∇∂xi
∂t, ∂xj〉+ 〈∇∂xj

∂t, ∂xi〉 = 2〈∇∂xi
∂t, ∂xj〉.

The area of Σt is given by

|Σt| =
∫

Σ

√
det(gij(t))

√
det(gij(t0))

−1
dΣt0 .

Recall that DId(det)T = Tr(T ) for every linear map T : Rn → Rn. Without
lost of generality, we may assume that gij(t0) = δij. Therefore,

d

dt

∣∣∣∣∣
t=t0
|Σt| =

∫
Σ

1
2 Tr

(
2 〈∇∂xi

∂t, ∂xj〉
)
dΣ =

∫
Σ
divΣ ∂t dΣ

=
∫

Σ
divΣ ∂

>
t + divΣ

(
f N

)
dΣ = −n

∫
Σ
H f dΣ.

To compute the variation of the volume just notice that the volume element
of Σ× [0, t] with the induced metric coming from ϕ is

dvolt = 〈∂t, Nt〉 dt ∧ dΣt .

Therefore,
V ′(0) = d

dt

∣∣∣
t=0

∫ t

0

∫
Σ
〈∂t, Nt〉 dΣt =

∫
Σ
f dΣ.

Proposition 9. Let ϕ : Σn × [−ε, ε] → Mn+1 be a normal variation of Σ.
Then

d

dt
Ht = 1

n

(
∆Σtft + (RicM(Nt, Nt) + |AΣt |2)ft

)
= 1
n
LΣt ft.

Proof. In the coordinates given by ϕ, we have the coordinate base {∂x1 , . . . , ∂xn , ∂t}
on M . The mean curvature Ht is given by nHt = gijAij, so we have

n ∂tHt = ∂t g
ij Aij + gij∂tAij. (4.1)
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4.1 Variational formulas

Since
(
g · g−1

)
ij

= δij, we have that ∂t g−1 · g = −g−1 · ∂tg. Using this fact
and that ∂tgij = −2Aij ft, we obtain

∂t g
ij = 2gikAkl glj ft.

On the other hand,

∂tAij = ∂t〈∇∂xi
∂xj , N〉 = 〈∇∂t∇∂xi

∂xj , Nt〉+ 〈∇∂xi∂xj
,∇∂tNt〉

= R(Nt, ∂xi , ∂xj , Nt) ft + 〈∇∂xi
∇∂xj

∂t, Nt〉+ 〈∇∂xi
∂xj ,∇∂tNt〉.

Let’s study the second term above:

〈∇∂xi
∇∂xj

∂t, Nt〉 = ∂xi〈∇∂xj
ftNt, Nt〉 − 〈∇∂xj

ftNt,∇∂xj
Nt〉

= ∂xi∂xj ft − ft〈∇xiNt,∇xjNt〉.

Let us now study ∇∂tNt:

〈∇∂tNt, ∂xk〉 = −〈Nt,∇∂t∂xk〉 = −〈Nt,∇∂xk
∂t〉 − 〈N, [∂t, ∂xk ]〉

= −〈Nt,∇∂xk

(
ftNt

)
〉 = −∂xkft = −〈∂xk ,∇Σft〉.

Since 〈∇∂tNt, Nt〉 = 0, we conclude that ∇∂tNt = −∇Σft. Therefore,

∂tAij = R(Nt, ∂xi , ∂xj , Nt) ft +
(
∂xi∂xj − Γkij∂xk

)
ft − 〈∇xiNt,∇∂xj

Nt〉 ft

= R(Nt, ∂xi , ∂xj , Nt) ft +∇ij
Σft − 〈∇xiNt,∇∂xj

Nt〉 ft.

It follows from above identity that

gij∂tAij = Ric(Nt, Nt) ft + ∆Σft − |A|2ft. (4.2)

On the other hand,

∂tg
ijAij = 2gik Akl glj Aijft = 2 |A|2 ft. (4.3)

Combining (4.1), (4.2) and (4.3), we obtain

d

dt
Ht = 1

n

(
∆Σtft + (RicM(Nt, Nt) + |AΣt|2)ft

)
= 1
n
LΣtft.
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4.2 Monotonicity formula

4.2 Monotonicity formula

Proposition 10 (Monotonicity Formula). Let Σ2 be a smooth surface with
bounded mean curvature H inside a 3-manifoldM with bounded curvature, i.e.
|KM | ≤ k, and with positive lower bound on the injective radius inj(M) ≥ i0.
Then there exists a positive constant C = C(H, i0, k) such that

d

dr

(eC r Area(Σ ∩Br(p))
r2

)
≥ 0, (4.4)

for every p ∈ Σ and r ≤ min{i0, 1√
k
}.

Proof. Since −k ≤ KM ≤ k then by the Hessian Comparison Theorem, there
exists a constant C = C(k, i0) > 0 such that |∇2dM | ≤ C where this function
is smooth. The hessian of dM with the induced metric satisfies

∇2
Md

2
M(X, Y ) = ∇2

Σd
2
M(X, Y )− A(X, Y )〈∇Md

2
M , N〉.

This implies

∆Σd
2
M = ∇2

Md
2
M(e1, e1) +∇2

Md
2
M(e2, e2) + 2H〈∇Md

2
M , N〉.

Since |∇MdM | = 1, we have that ∇2
Md

2
M = 2dM∇2

MdM + 2 and

|∆Σd
2
M − 4| = |∇Md

2
M(e1, e1) +∇2

Md
2
M(e2, e2)− 4 + 2H〈∇Md

2
M , N〉|

= dM

∣∣∣∣∣2∇2
MdM(e1, e1) + 2∇2

MdM(e2, e2) + 4H〈∇MdM , N〉
∣∣∣∣∣.

Hence, there exists C = C(k, i0, H) > 0 such that

|∆Σd
2
M − 4| ≤ C dM .

By the coarea formula we have

Area(Σ ∩Br(p)) =
∫

Σ∩Br(p)
|∇ΣdM | |∇ΣdM |−1 =

∫ r

0

∫
Σ∩∂Bs

1
|∇ΣdM |

.

From this we obtain that

r
d

dr
Area(Σ ∩Br) =

∫
Σ∩∂Br

r

|∇ΣdM |
.
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4.3 Compactness for cmc surfaces

On other hand, by Stoke’s theorem∫
Σ∩Br

∆Σd
2
m =

∫
Σ∩∂Br

2r 〈∇ΣdM , ν〉 =
∫

Σ∩∂Br
2r 〈∇ΣdM ,

∇ΣdM
|∇ΣdM |

〉

≤
∫

Σ∩∂Br

2r
|∇ΣdM |

.

Therefore,

2r d
dr
Area(Σ ∩Br) ≥

∫
Σ∩Br

∆Σd
2
M ≥ (4− C r)Area(Σ ∩Br).

A simple computation now gives

d

dr

eC rArea(Σ ∩Br(p))
r2 ≥ 0.

Let Σ be a CMC surface in a closed manifold M3. The density of Σ at x
is given by

θ(Σ, x, r) = Area(Σ ∩Br(x))
π r2 .

Theorem 40 (Allard’s Regularity Theorem). Let M3 be a closed manifold
and ρ > 0. There exist ε = ε(M,ρ) > 0 and C = C(M,ρ) with the following
property: if Σ ⊂M is a smooth embedded CMC surface satisfying

θ(Σ, x, r) ≤ 1 + ε

for every x ∈ M and r < ρ, then its second fundamental form is uniformly
bounded, i.e., |AΣ| ≤ C.

Proof. See Theorem 1.1 in [72].

4.3 Compactness for cmc surfaces

Let {Σn}n∈N be a sequence of surfaces in a manifold M . We say that Σn

converge to Σ in the sense of graphs if near any point p ∈ Σ and for large n
the surface Σn is locally a graph over an open set of TpΣ and these graphs
converge smoothly to the graph of Σ. In addition, we say that {Σn} satisfy
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4.3 Compactness for cmc surfaces

local area bounds if there exist r > 0 and C > 0 such that |Σn ∩ Br(x)| ≤ C

for every x ∈M .
A hypersurface Σ is said to be weakly embedded if it admits only tangential

self intersections.

Proposition 11. Let {Σn} ⊂ (M, gn) be a sequence of embedded surfaces with
constant mean curvature satisfying local area bounds and such that supΣn |An| ≤
C. Let’s assume that gn converges to a metric δ in the C∞ topology. If
{Σn}n=1 has an accumulation point, then we can extract a subsequence that
converges to a properly weakly embedded CMC surface Σ in (M, δ).

Sketch of the Proof. Let’s first recall the constant mean curvature equation
for graphs. If Σ′ is a surface with constant mean curvature H in (M, g), then
Σ′ can be written locally as a graph over a neighbourhood Up ⊂ TpΣ′:

Σ′ = Graph(u ) = {(x1, x2, u(x1, x2) : x1, x2 ∈ Up)}.

In coordinates gij := g(ei, ej) where {e1, e2, e3} is the coordinate base as-
sociated to (x1, x2, x3). Let {E1, E2} be the coordinate base for Σn, i.e.,
Ei = ei + uxie3 = T li el. The induced metric h is expressed by hij = h(Ei, Ej).
A simple computation gives:

g(N, ei) = −uxi√
1 + gijuxiuxj

and g(N, e3) = 1√
1 + gijuxiuxj

.

We also have

∇EiEj = T li∇elT
m
j em = T liT

m
j ∇elem + Ei(Tmj )em

= T liT
m
j Γkmlek + uxixje3,

where Γkml are the Christoffel symbols of g. Therefore,

g(N,∇EiEj) = −
∑2
k=1 T

l
iT

m
j Γkmluxk√

1 + gijuxiuxj
+

(
uxixj + T liT

m
j Γ3

ml

)
√

1 + gijuxiuxj
.

Finally, the mean curvature equation is written as:

H
√

1 + gijuxiuxj = hijuxixj + hijT liT
m
j Γ3

ml −
2∑

k=1
hijT liT

m
j uxkΓkml. (4.5)
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4.3 Compactness for cmc surfaces

Since hij = T liT
m
j gml and T 3

i = uxi , then |hij| ≤ C1(gij, uxi , uxj). The equation
(4.5) is uniformly elliptic as long as |∇u|, |∇2u| < C̃.

Let p ∈ M be an accumulation point for the sequence {Σn}. By the
upper bound on the second fundamental form, supΣn |An| < C, there exists
r0 = r0(C) such that for every q ∈ Br0(p) ∩ Σn we have that Σn ∩ Br0(q) is
locally a graph un over a neighbourhood Uq ⊂ TqΣn. Moreover, there exists
C2 = C2(C) > 0 for which max{∇un,∇2un} ≤ C2. As |gn − δ|C2,α → 0, the
Schauder estimates for solutions of elliptic equations, see [25], imply that un
have C2,α estimates on Br0/2(q), i.e., |un|C2,α ≤ C3(|Hn| + |un|). Therefore,
un,∇un,∇2un are uniformly bounded and equicontinuous.

As {Σn}n∈N satisfy local area bounds, then |Σn ∩ B(r0/2)(y)| ≤ C4.
On the other hand, the monotonicity formula, Proposition 10, gives that
|Σj

n ∩Br0(y)| ≥ C5r
2
0, where Σj

n is a connected component of Σn ∩Br. It fol-
lows that the number of components of Σn∩Br0/2(p) is finite and independent
of n. By the Arzelà-Ascoli theorem we can extract a subsequence for which
{ujn} converges to u for every j. Moreover, u also satisfies the constant mean
curvature equation (4.5). As the set of accumulation points of {Σn} is com-
pact in BR(p) we can cover this set by finite balls Br0(pk) with k = 1, . . . , N .
Repeating the arguments in each of these balls and applying a diagonal argu-
ment we obtain a properly immersed surface Σ on BR(p) ⊂M with constant
mean curvature H. Since the surfaces Σn are embedded, it follows that Σ does
not cross itself though it may have tangential self-intersections. Therefore, Σ
is properly weakly embedded in M .

Corollary 6. Let (Σn, xn) ⊂ (Mn, gn, xn) be a sequence of isoperimetric sur-
faces with |An| ≤ C. Assume that (Mn, gn, xn) converges, in the sense of
Cheeger-Gromov, to a three manifold (M, g, x). There exists a properly em-
bedded surface Σ ⊂ (M, g, x) such that Σn → Σ in the sense of graphs and the
convergence is with multiplicity one.

Sketch of the Proof. First we remark that {Σn} satisfy local area bounds.
Indeed, Area(Σn ∩ Br(p)) ≤ 2|∂Br(p)|. By Proposition 11 we only need to
rule out possibly multiplicities for the convergence Σn → Σ and points where
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4.3 Compactness for cmc surfaces

Σ fails to be embedded. If the multiplicity of the limit is bigger than two,

Figure 4.1: Example of higher multiplicity

then Σn ∩ Br(p) has several components getting arbitrarily close. This allow
us to do a local cut and past deformation, as shown in Figure 2, that preserves
the enclosed volume. If δ is the Euclidean metric, then 1

C̃
δ ≤ gn ≤ C̃δ and

1
C′
Areaδ ≤ Areagn ≤ C ′Areaδ. Thus, if h� r, then

Areagn(Σ′n) ≤ Areagn(Σn)− C ′1r2 + C ′2rh < Areagn(Σn).

The deformation needed for the multiplicity two case is shown in Figure 3.

Figure 4.2: Example of multiplicity two

The constraint on the enclosed volume implies that 4
3πR

3 ≈ πr2h. Hence, if
h� r, then

Area(Σ′n) ≤ Area(Σ′n)− C ′1r2 + C ′2r h− C ′3R2 + C ′4R
2 < Area(Σ′n).

The construction to deal with points where Σ has tangential self intersections
is similar to the multiplicity two case. The corollary now follows since these
constructions contradict the fact that Σn is isoperimetric for every n.
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4.3 Compactness for cmc surfaces

Theorem 41 (Korevaar-Kusner-Solomon [34]). If Σ is a complete properly
embedded constant mean curvature surface contained in a solid cylinder, then
Σ is rotationally symmetric with respect to a line parallel to the axis of the
cylinder.

Theorem 42 (Da Silveira [16]). Let (Σ, ds2) be a complete orientable Rie-
mannnian surface conformally equivalent to a compact Riemann surface punc-
tured at a finite number of points. Let L = ∆ + q be an operator satisfying
q ≥ 0 and q 6= 0, let us also assume that Σ has infinite area. Then there exists
a piecewise smooth function f with compact support satisfying

−
∫

Σ
f L fdΣ < 0 and

∫
Σ
f dΣ = 0.
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