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The effect of a uniform through-surface flow of velocity Ub on a rigid cylinder and sphere
(of radius a) fixed in a stream with speed U∞ is analysed analytically and numerically.
The flow is characterised by a dimensionless blow velocity Λ = Ub/U∞ and Reynolds
number Re = 2aU∞/ν, where ν is the kinematic viscosity.

For a −Λ ≪ 1, the flow is viscously dominated in a thin boundary layer of thickness
ν/|Ub| adjacent to the rigid surface which develops in a time ν/U2

b ; the surface vorticity
scales as Ubν/U∞a

2. A boundary layer analysis is developed to analyse the unsteady
viscous forces. For the steady state, numerical calculations of the pressure on the surface
of the body corresponds to the irrotational solution and the distribution of vorticity
within the boundary layer and on the surface of the bodies agrees with a steady state
analysis. The flow downstream of the body is irrotational so the wake volume flux, Qw,
is zero and the drag force is FD = −ρU∞Qb, where Qb is the normal flux through the
body surface. This shows that the drag coefficient is −2πΛ or −8Λ for a cylinder or
sphere, respectively. A dissipation argument is applied to analyse the force; the rate of
working of the drag force is balanced by dissipation and flux of energy and rate of work
by viscous stresses due to sucking. For a cylinder, the force is determined by dissipation,
with a weak contribution by the normal viscous stresses, while for a sphere, only 3/4 of
the force is determined by dissipation. This analysis confirms the drag coefficients.

When −Λ ≫ 1, the boundary layer thickness initially grows linearly with time as
vorticity is blown away from the rigid surfaces. The initial decay of the total force is due
to viscous effects. For later time, the blow velocity causes the shed vorticity to separate,
significantly increasing the wake volume flux. The vorticity in the vicinity of the rigid
body is weakly dependent on viscosity and this is estimated using a boundary layer
analysis. The surface vorticity scales as U2

∞/2aUb and so that the flux of vorticity has a
weak dependence on the blow velocity. For large blow velocity, the vorticity is swept into
two well-separated shear layers and the maximum vorticity decreases due to diffusion.
From global momentum consideration, the drag force is FD = ρU∞(Qw − Qb) and has
a weak dependence on blow velocity. The total drag is weakly dependent on Ub and
decreases for a sphere.

High resolution numerical calculations are compared against the theoretical predictions
over the range −3 ≤ Λ ≤ 3 and Re = 1, 10, 100 for planar flow past a cylinder and
axisymmetric flow past a sphere.

† Email address for correspondence: c.klettner@ucl.ac.uk
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1. Introduction

A rigid surface imposes two boundary conditions on a Newtonian fluid - a normal
or kinematic boundary condition (which can be derived from mass conservation) and
a tangential boundary condition based on (indirect) empirical evidence (see Reynolds
(1886), Batchelor (1967), Lauga, Brenner & Stone 2007). In most problems, the kine-
matic boundary condition reduces to the relative velocity normal to the wall being zero.
There are a number of important practical cases where a through-surface flow is either
deliberately introduced because it has a beneficial effect or is a consequence of other
processes present. These examples include:

a) cooling turbine blades. The thermodynamic efficiency of combustion is usually in-
creased by raising the temperature of the reaction. To cope with raised temperatures,
the surface properties of turbine blades are modified by coating with a ceramic (Goward
1998) or by introducing a flow through surface holes near the leading edge of the blades
(Bogard & Thole 2006). The through surface flow serves two purposes - first the air flows
through the internal structure of the blades and cools the blade internally (Iacovides &
Launder 1995), and second, the flow introduced at the leading edge displaces both the
velocity and thermal boundary layer away from the blade surface reducing the rate of
heat transfer. There is also evidence that introducing a blow flow near to the tip of the
turbine blade reduces the pressure drop by altering flow near the tip gap.
b) controlling the forces on a rigid body. Applying suction to various parts of a lifting

surface of an aerofoil can be used to increase lift by preventing flow separation and stall.
Likewise, applying a blowing flow can serve to increase drag, for instance, by acting as
an air break. In many cases the flow is directed with a tangential component parallel to
the body surface (Nishino & Shariff 2012), either through a slot or holes.
c) phase changes. The evaporation of a fuel droplet leads to it shrinking in time which

generates a change in the volume of the dispersed phase and an associated through-
surface flux (Cowe 1976). The current trend is for direct injection internal combustion
engines where the fuel is injected at pressure, over a short period, to atomise fuel (Zhao,
Harrington & Lai 2002). The fuel droplets are typically sufficiently small that the char-
acteristic Reynolds number is smaller than 50. Likewise, the condensation of vapour
bubbles generated by boiling a liquid leads to a relative flow towards the bubble surface,
but since this relative speed is proportional to the ratio of vapour to fluid density, its
dynamical influence is negligible (Eames 2010).

In examples (a) and (b), the through-surface flow is usually applied over a portion of
the surface of a body surface. The focus in this paper is on the influence of a through-
surface flow applied over the whole of the surface of a bluff body, specifically focussing on
a cylinder and sphere, as this serves as a natural starting point to understand the general
influence of a through-surface flow applied to portions of a rigid body. Specifically we
consider the flow past a rigid surface with an outward flow Ub, normal to the surface.
The flow is characterized by a dimensionless blow velocity Λ = Ub/U∞ (to use the
terminology of the combustion literature); for blowing Λ > 0, and for suction Λ < 0.
As a way of identifying gaps in the previous studies, a scatter plot of the parameter
range which have been analysed to date is shown in figure 1. The first observation is
that the effect of strong sucking flows has not be analysed in great detail numerically
or analytically, although there were some excellent experimental studies in the 1950’s
on cylinders. As we shall see, this is because the boundary layer is extremely thin for
Λ < −1 and the size of the computational domain has a significant and anticipated effect
on the force calculation, especially for two-dimensional flows. The second observation is
that the unsteady and transient component of the flow and forces has not been analysed
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although this is essential for understanding the progression to steady state. These two
gaps form the basis of this paper.
Our discussion of the specific contributions to the research literature starts with the

case of a cylinder, before proceeding to a sphere. Considerable amount of research was
undertaken in the 1950’s to examine the flow and wake profiles behind a porous cylin-
der (Pankhurst & Thwaites 1953, Hurley & Thwaites 1951). They showed that for large
suction the boundary layer is thin and the flow outside the boundary layer largely ir-
rotational, with the pressure distribution corresponding to the irrotational prediction.
A number of remarkable papers emerged during this period because of the interest in
controlling the boundary layer. More recent experimental analysis of the flow and forces
generated by weakly blowing and sucking porous cylinders were undertaken by Fransson,
Konieczny & Alfredsson (2004). Fransson et al. (2004) analysed the drag force by direct
measurement and by evaluating the volume flux in the wake and using Betz relation
to infer the drag force. In circumstances where there is a through-surface flow (and no
thrust) Betz (1925) relationship is invalid (as we discuss later) explaining the difference
between these two measurements. Even for the relatively low through-surface flow ve-
locity, Fransson et al. (2004) demonstrated the rather significant effect of blowing on
the boundary layer and the force on the body. Mathelin, Bataille & Lallemand (2002)
examined the flow past a cylinder a higher Re and concluded that the drag force on a
cylinder increases due to blowing, in contrast to a sphere. However, the domain size was
small and its influence on the drag force needs to be assessed.
For the case of a sphere, Cliffe & Lever (1985) developed a comprehensive numerical

study of a radial through-surface flow (Λ > 0) at moderate Reynolds numbers (< 100)
for an axisymmetric flow past a sphere. They developed a technique that enabled them
to account for an unbounded domain. The physical insight they provided is really quite
excellent which they cast in terms of the surface vorticity field, largely because the solu-
tion technique employed a vorticity-streamfunction formulation. Much of the discussion
in our paper is in relation to the vorticity field as it provides a clear indication on how
the no-slip condition modifies the primary irrotational solution. Also noteworthy is the
analytical work of Dukowicz (1982) who derived an exact solution for Stokes flow past a
sphere with uniform blowing and sucking. Even for moderately large Reynolds numbers
and small |Λ| the flow is ultimately three-dimensional and the component of lift must
also be considered. Baghchi (2007) studied the effects of uniform surface blowing and
suction on the drag and lift forces on a sphere in the range 1 < Re < 300 and |Λ| < 0.2.
Baghchi (2007) categorised the wake flow in terms of the unsteady components of the
lift and drag using a reasonably high resolution of the flow.
Figure 1 shows a scatter plot summarising the research on uniform through-surface

flows for cylinder and spheres. For large |Λ|, a fully resolved three-dimensional calcula-
tion seems to be still too formidable to tackle which is why we restrict our attention to
axisymmetric flows at low to moderate Reynolds numbers past a sphere, where the as-
sumption of axisymmetry is still appropriate. Nevertheless, the allied scaling analysis and
analytical models that we present provide a strong indication of what is to be expected
for Reynolds numbers greater than 100 and |Λ| > 1.
The paper is structured as follows. The general problem is stated in §2, where the gen-

eral feature of the forces and their relationship to the through-surface flow are identified.
A mathematical analysis is developed for the boundary layer flow generated by blowing
and sucking, which identifies the initial characteristics of the force. For strong sucking
inertially dominated flows, the flow is characterised by a thin boundary layer and the
analysis is valid for long time, while for blowing flows, the analysis is valid only when the
boundary layer is thin or short time. This analysis provides a means of interpreting the
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Figure 1: Scatter plot showing a summary of the research on blowing / sucking flow past a
cylinder and sphere. The symbols correspond to ◦ (Baghchi (2007), sphere, numerics), +
(Ling & Fang 2002, cylinder, numerics), ⊳ (Fransson et al. (2004), cylinder, experiments),
⊲ (Cliffe & Lever (1982), sphere, numerics), △ Bashkatov & Shabanov (1975) (sphere,
numerics), ∗ (Mathelin et al. 2002, cylinder, numerics). The red field represents the
validity of Dukowicz’s (1981) low Re analytical solution. The bounding box indicates the
parameter space investigated in this paper.

force and flow for times between the blowing viscous and blowing inertial times scales.
A weakly viscous analysis is developed to understand the features of the vorticity field
far downstream and estimate how strong blowing affects the force on a cylinder and
sphere. To test the analytical results, a numerical study was performed for planar and
axisymetric flow, as discussed in §3 and are compared against analytical results from §2.
The results are discussed within a general context in §4 §7, before concluding in §8.

2. Mathematical model

For a rigid body moving with velocity v, we are exploring the general influence of the
kinematic boundary condition

(u− v) · n̂ = −Ub, (2.1)

imposed on the whole of the body surface, where u is the flow velocity and n̂ is the unit
normal vector pointing into the body surface. The no-slip condition reduces to

(u − v) · ŝ = 0, (2.2)

where ŝ is the unit vector tangential to the body surface. Two cases are considered -
rigid cylinder and sphere (both of radius a) for which we can identify a Reynolds number
Re = 2U∞a/ν.



Effect of a uniform through-surface flow on the force acting on a rigid body 5

2.1. General considerations

For a uniform through-surface flow, the force on a rigid body with surface SB is defined
as

F =

∫

SB

(pI − τ ) · n̂dS, (2.3)

(Legendre, Moree & Magnaudet 1997), where p is the pressure and τ is the viscous stress
tensor. (The momentum flux from the uniform through-surface component is −

∫

SB

ρu(u·
n̂)dS = 0.) For the case of an incident flow U = U∞x̂, the drag coefficients is defined as

CD(t) =
F · x̂

1
2ρAU

2
∞

, (2.4)

where x̂ is a unit vector in the streamwise direction and A is the projected cross-sectional
area (or width) of the body and is equal to 2a, πa2 for a cylinder/sphere respectively.
For steady flows, the steady drag force can be expressed more generally in terms of the

volume flux in the wake and source flow. Eames & Hunt (2002) showed that in general,
the drag force on a body (with no momentum flux through the body surface) is

FD = −ρQsU∞ + 2ρQwU∞, (2.5)

where ρ is density, Qw is the volume flux in the narrow downstream wake and Qs is the
source flow generated by the body (the first term is usually described as the Lamb force
- Lamb 1932). When Ub = 0, the source flow is equal to the volume flux in the wake
Qw = Qs and (2.5) reduces to the classic result attributed to Betz (1925):

FD = ρQwU∞. (2.6)

For a strong uniform sucking flow (−Λ ≫ 1), the boundary thickness for both cylinder
and sphere scale as ν/|Ub| and the boundary layer is thin. Because the flow is irrotational
outside the thin attached boundary layer and downstream of the body, the wake volume
flux Qw will tend to zero as Λ → −∞, so that the drag force tends to

FD = −ρAbUbU∞(> 0), (2.7)

where Ab is the surface area of the rigid body. The integral approach provides details of
the drag force but does not give any insight into the flow field. The expression (2.7) was
also derived by Pankhurst & Thwaites (1950, Appendix I) for flow with large suction and
no thrust.
Much less general information can be gleamed for the case of a strong blow flow

(Λ ≫ 1). From the general discussion of forces, the source flux Qs is a combination of
the wake and blowing flux, Qs = Qw +Qb, which combined with (2.5) gives

FD = ρU∞(Qw −AbUb), (2.8)

(also obtained by Cliffe & Lever (1985, eqn. 17)). As we shall see, the blow flow causes
the wake width to widen so that the wake volume flux increases with the blow flow, i.e.
Qw ∼ AbUb and that the drag force is not as strongly affected by Λ as compared to the
dramatic effect of sucking the boundary layer through the body surface.
The kinematic effect of the rigid surface generates a source flow in the far field and

a dipole contribution for a cylinder or sphere. The irrotational solution, u = ∇φ, is
well-known for a cascade of complexity from a uniform flow past a rigid plate

φ(r, θ) = U∞r cos θ + Ubr sin θ, (2.9)
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(which we place at y = a) for a cylinder

φ(r, θ) = U∞r cos θ

(

1 +
a2

r2

)

+ Uba log r, (2.10)

and a sphere,

φ(r, θ) = U∞r cos θ

(

1 +
a3

2r3

)

− Uba

r
. (2.11)

The slip at the surface of the rigid body in a potential flow is, ∂φ/∂s|r=a = −U∞,
−2U∞ sin θ, −(3/2)U∞ sin θ, (where s = aθ for a cylinder and sphere). To examine the
influence of this component, we decompose the velocity into a primary irrotational com-
ponent and a rotational component to enforce the no slip condition on the rigid surfaces,
i.e.

u = ∇φ+ uR(x, t). (2.12)

The purpose of the discussion in this section is to examine the form and role of the
rotational component of the flow, using a boundary layer analysis for short time, and a
viscous description for blowing for long time. Much of the discussion will center around
the short blowing viscous (Tν) and inertial (Tb) time scales set by the blow velocity and
the advective time scale (Ta) defined as

Tν =
ν

U2
b

, Tb =
a

|Ub|
, Ta =

a

U∞
. (2.14)

2.2. Viscously dominated flows (Re = 0 and Reb 6= 0)

We consider the viscous flow past a cylinder in the limit of Re = 0, the momentum
equation is linear and the two-dimensional vorticity equation is

Uba

r

∂ω

∂r
= ∇

2ω. (2.15)

For a two-dimensional flow, the Laplacian reduces to∇2
H = ∂2/∂r2+1/r∂/∂r+1/r2∂2/∂θ2.

A separable solution to the vorticity equation is sought where ω = f(r)sinθ. Substituting
into (2.15) we obtain

r2f ′′(r) + rf ′(r)

(

1− Uba

ν

)

− f(r) = 0. (2.16)

This admits a power law solution of the form f(r) = B(r/a)α where

α2 − Uba

ν
− 1 = 0, (2.17)

or

α =
Uba

2ν
−

√

(

Uba

2ν

)2

+ 1, (2.18)

where the negative root is chosen. Having obtained ω, we must determine the streamfunc-
tion, ψ, which satisfies ∇2

Hψ = −ω. Again a solution can be constructed which contains
contributions from the mean flow and the blow flow:

ψ = U∞

(

r +
A

r
+B

( r

a

)α+2
)

sinθ + Ubaθ, (2.19)

The velocity field is related to the streamfunction through

uθ = −∂ψ
∂r
, ur =

1

r

∂ψ

∂θ
. (2.20)
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At r = a, we require

uθ = U∞

(

1− A

a
+
B(α+ 2)

a

)

sin θ = 0. (2.21)

Therefore

A = −
(

a+ 1

α+ 3

)

a, B = − 2a

α+ 3
. (2.22)

From this

ω = −∇
2ψ = − 2U∞

a(α+ 3)

(

α2 + 3α+ 1
)

sinθ
( r

a

)α

. (2.23)

When Λ < 0, α < −1 so that the mean flow contribution dominates over the contribution
from the sucking flow. In the limit of a large sucking flow |Λ| ≫ 1, α ∼= −Re|Λ|/2 and

ω̃ =
2aω

U∞

∼= −2Re|Λ| sin θr̃ 1

2
|Λ|Re. (2.24)

The vorticity flux through the top surface of the cylinder is

Fω =

∫ π

0

aωsUbdθ, (2.25)

so that

Fω

U2
∞

= 4

(

α2 + 3α+ 1

α+ 3

)

. (2.26)

For −Λ ≫ 1, the flux is

Fω

U2
∞

= 2ReΛ2. (2.27)

The analysis is approximate. Oseen approximation. Clearly Λ → 0.
For axisymmetric flow past a sphere, te azimuthal vorticity equation in the limit of

Re≪ 1 is

Uba
2

r2
∂ωφ

∂r
= ∇

2ωφ. (2.28)

Dukowicz (1982)† derived an expression for the drag on a rigid sphere for Re ≪ 1
(from ?) and finite values of ΛRe and showed that the distribution of vorticity through
the boundary layer is

ω̃ =
2aω

U∞
= −6r̃ sin θ

1−
(

1 + 1
2ReΛ

1
r̃ + 1

8Re
2Λ2 1

r̃2

)

exp
(

− 1
2ReΛ

1
r̃

)

(

1 + 1
2ReΛ

)

exp
(

− 1
2ReΛ

)

− 1 + 1
8Re

2Λ2
. (2.29)

For strongly sucking flow, the vorticity decays exponentially away from the surface and

ω̃ = −3

2

Re|Λ|
r̃2

sin θ exp

(

−1

2
ReΛ

(

1

r̃
− 1

))

, (2.30)

which agrees with the boundary layer analysis of (2.52); while for blowing flows

ω̃ =
Re3Λ3

8r̃2 exp
(

− 1
2ReΛ

1
r̃

)

(

1 + 1
2ReΛ

)

exp
(

− 1
2ReΛ

)

− 1 + 1
8Re

2Λ2
. (2.31)

† The Reynolds number defined by Dukowicz (1982) is based on the sphere radius, and not
the diameter. This is why there are additional factor of 1/2 in the expressions stated in this
paper.
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The drag coefficient is

CD = 8Λ
1−

(

1 + 1
2ReΛ

)

exp
(

− 1
2ReΛ

)

(

1 + 1
2ReΛ

)

exp
(

− 1
2ReΛ

)

− 1 + 1
8Re

2Λ2
. (2.32)

For strong sucking flows,

CD → −8Λ, (2.33)

which agrees with (2.7). The fraction of the drag force which comes from the viscous
stresses is

Cν

CD
=

4

ReΛ

1−
(

1 + 1
2ReΛ+ 1

8Re
2Λ2

)

exp
(

− 1
2ReΛ

)

1−
(

1 + 1
2ReΛ

)

exp
(

− 1
2ReΛ

) , (2.34)

which at Λ = 0 corresponds to a ratio of 2/3 (for Re ≪ 1). For strongly sucking flows,
Cν/CD = 1, while for strong blowing flows, Cν/CD ∼ 8/ReΛ. The flux of vorticity from
the sphere surface is

Fω =

∫ π

0

2πa2UbωsdS. (2.35)

or in dimensionless form

Fω

2aU2
∞

=
3

2
Λπ2 1−

(

1 + 1
2ReΛ + 1

8Re
2Λ2
)

exp
(

− 1
2ReΛ

)

(

1 + 1
2ReΛ

)

exp
(

− 1
2ReΛ

)

− 1 + 1
8ReΛ

2
. (2.36)

In the limit of large sucking flows, the vorticity flux is

Fω

2aU2
∞

=
3

8
ReΛ2π2. (2.37)

2.3. Inertially dominated flows (Reb ≫ 1)

We consider the growth of a boundary layer on a rigid body in the limit of |Λ| ≫ 1. For
strongly sucking flows, the boundary layer thickness scales as δν ∼ ν/|Ub| and as we shall
see the flow is ultimately steady on a viscous timescale of Tν (2.13a). For blowing flows,
the boundary layer thickness grows with time as it diffuses and through-surface flow.
When Λ ≫ 1, the boundary layer is blown away from the surface and initially δ ∼ Ubt
(δ ≪ a). When the boundary layer is thin, the momentum equation tangential to the
rigid surface for a flat plate (D = 1), cylinder (D = 2) and sphere (D = 3) can be written
as

∂us
∂t

+ Ub

(a

r

)D−1 ∂us
∂r

=
ν

rD−1

∂

∂r

(

rD−1 ∂us
∂r

)

, (2.38)

where us = u · ŝ. The corresponding momentum equation perpendicular to the boundary
layer reduces to

0 =
∂p

∂r
, (2.39)

so that the pressure is

p = p∞ +
1

2
ρU2

∞ − 1

2
ρ|∇φ|2, (2.40)

where p∞ is the pressure far from the body. The velocity satisfies us = 0 at r = a, for
the case of a cylinder and sphere, and uθ = 0 at r = 0 for a flat plate. The boundary
layer flow must match the inviscid flow outside the boundary layer us → ∂φ/∂s|r=a.
Non-dimensionalising using ũs(r̃, T ) = us/(∂φ/∂s)r=a, T = t/Tν and r̃ = r/a gives

∂ũs
∂T

=
4

Re2bΛ
2

∂2ũs
∂r̃2

+

(

4(D − 1)

Λ2Re2b

1

r̃
− 2

ΛReb

(

1

r̃

)D−1
)

∂ũs
∂r̃

. (2.41)
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We first discuss the through-surface flow over a flat wall (D = 1) as there is an exact
solution. The boundary layer solution that satisfies ũs(r̃, 0) = 1, ũs(0, T ) = 0 and ũs(r̃ →
∞, T ) = 1, is

ũs(r̃, T ) = 1− 1

2
erfc

(

n− Ubt√
4νt

)

− 1

2
exp

(

Ubn

ν

)

erfc

(

n+ Ubt√
4νt

)

, (2.42)

where erfc(z) = 2/
√
π
∫∞

z exp(−t2)dt (Abramowitz & Stegun 1972). The vorticity within
the boundary layer is

ω ≈ ∂us
∂n

=

[

1√
πνt

exp

(

−
(

n− Ubt√
4νt

)2
)

− Ub

2ν
exp

(

Ubn

ν

)

erfc

(

n+ Ubt√
4νt

)

]

∂φ

∂s

∣

∣

∣

∣

n=0

.

(2.43)
The circulation across the thin boundary layer,

κ =

∫ ∞

0

ωdn =
∂φ

∂s

∣

∣

∣

∣

n=0

, (2.44)

depends only on the velocity outside the boundary layer, regardless of whether the flow
is sucking or blowing at least over the period that the boundary layer approximation
is valid. The boundary layer circulation corresponds to the circulation per unit length
associated with the bound vorticity. The shear stress on the surface is

τsn = µ
∂us
∂n

∣

∣

∣

∣

n=0

= −ρUb
∂φ

∂s

∣

∣

∣

∣

n=0

g(T ), (2.45)

where

g(T ) =
1

2
erfc

(

sign(Λ)
1

2
T

1

2

)

− sign(Λ)
1

π
1

2T
1

2

exp

(

−T
4

)

. (2.46)

The asymptotic behaviour of the shear stress depends on whether the flow is blowing or
sucking. Since erfc(z) ∼ 2 as z → −∞ and erfc(z) ∼ 2 exp(−z2)/√πz as z → ∞. For
strong sucking flows (Λ ≪ 0), (2.45) is approximately

g(T ) ≃ 1 +
1

π
1

2 T
1

2

exp

(

−T
4

)

, (2.47)

while for strong blowing flows (Λ ≫ 1), (2.46) is approximately

g(T ) ≃ 1

2π
1

2T
1

2

exp

(

−T
4

)

. (2.48)

For small T , the boundary layer thickness initially scales as δν/a ∼ (t/Tb)
1

2 , so that the
viscous shear stress decays slowly as as ρU∞ν

1/2/t1/2. This analysis does not account for
the pressure contribution, which occurs over an advective timescale of Tb (see 2.13). The
vorticity in the boundary layer is

ω̃ = Re|Λ|
[

sign(Λ)√
πT

exp

(

−
(

n/δν − T√
4T

)2
)

− 1

2
exp

(

n

δν

)

erfc

(

n/δν + T√
4T

)

]

1

U∞

∂φ

∂s

∣

∣

∣

∣

n=0

.

(2.49)
To illustrate the development of the boundary with time, (2.38) was solved numerically.
Figure ? shows the influence of the dimensions of the flow on a developing boundary
layer for sucking and blowing flows. For Λ < 0 the boundary layer velocity tends to a
steady state in a short time ∼ T . For Λ > 0, the boundary layer is essentially pushed
away from the wall where its thickness scales as δν ∼ Ubt. By mass conservation, the
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thickness of the boundary layer on a cylinder is a((1 + 2t/Tb)
1/2 − 1); for short time,

the thickness conforms the same as a flat wall, but increases at a slower rate beyond
a/Ub, when δν/a ∼ (2t/Tb)

1/2. Similarly for a sphere, for short time δν/a ∼ t/Tb, while
for longer time δν/a ∼ (3t/Tb)

1/3. For blowing flows, the boundary layer analysis breaks
down when δν/a ∼ (Ub/U∞)1/(D−1) or t ∼ a/U∞.
For both blowing and sucking flows, the viscous stress is independent of the blow

velocity and decays as 1/t
1

2 . The reason for this is that the circulation across the boundary
layer is independent of the blow velocity for short time.

2.4. Sucking flow (Λ < 0)

We explore in more detail the transient and steady force for strong sucking flow, −Λ ≫ 1,
on these rigid bodies. For a sucking flows, the vorticity in the boundary layer of a flat
plate (D = 1) is

lim
T→∞

ω̃ = −Re|Λ| exp
(

−|Λ|Rey
2a

)

. (2.50)

For δν/a≪ 1, the unsteady boundary layer analysis for the flat plate provides a leading
order description of the boundary layer structure on a cylinder and sphere. Specifically
for a sucking flow, the distribution of vorticity in the boundary layer is

lim
T→∞

ω̃ = −2Re|Λ|r̃− 1

2
|Λ|Re sin θ, (2.51)

while for a sphere,

lim
T→∞

ω̃ = − 3

2r̃2
Re|Λ| exp

(

−1

2
|Λ|Re(r̃ − 1)

)

sin θ. (2.52)

Expression (2.52) is the same as (2.30).
When |Λ|Re≫ 1, the vorticity profiles for a cylinder and sphere (2.51) and (2.52) tend

to the flat plate solution (2.50) because the boundary layer becomes much thinner than

the size of the body. (When |Λ| ≫ 1, r̃−
1

2
|Λ|Re = (1+(r̃−1))−

1

2
|Λ|Re → exp(− 1

2 |Λ|Re(r̃−
1))).
The flux of vorticity through the surface can be calculated using (2.51) and (2.52) to

give

Fω

U2
∞

= 2ReΛ2,
Fω

2U2
∞a

=
3

8
π2ReΛ2 (2.53)

for a cylinder and a sphere respectively.
The pressure gradient normal to the boundary layer is small and the surface pressure

(from (2.40)) corresponds to the irrotational solution, which for a cylinder is

CP ≡ p− p∞
1
2ρU

2
∞

= 1− 4 sin2 θ − Λ2, (2.54)

and a sphere is

CP = 1− 9

4
sin2 θ − Λ2. (2.55)

The force on the body can be evaluated from (?). As we see above, the pressure distribu-
tion corresponds to the potential flow prediction and does not contribute to a total force
on the body. From (?), the viscous component of the drag force is

Fν =

∫

SB

τnsnydS = −ρUb

(
∫

SB

∂φ

∂s

∣

∣

∣

∣

r→a

nydS

)

g(T ), (2.56)
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Figure 2: Time sequence of the boundary layer flow for (a) flat plate (D = 1), (b) cylinder
(D = 2) and (c) sphere (D = 3). On the left-hand side the flow is sucking (Λ = −1,
Re = 10) and the right-hand side there is a blowing flow (Λ = 1, Re = 10). The
calculations are run up to time Re/5.

and can be evaluated explicitly to show that the viscous component is

Fν = −2πaρU∞Ubg(T ), −4πa2ρU∞Ubg(T ). (2.57)

For large time, the drag force tends to a constant,

FD = −ρU∞Qs, (2.58)
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which agrees with (2.7). More specifically, the steady drag coefficients are

CD = −Λ (D = 1), −2πΛ (D = 2), −8Λ (D = 3), (2.59)

where

Cν/CD = 1, (2.60)

since the drag associated with the pressure component is zero. The estimates (2.59) are
valid providing the boundary layer is thin, i.e. ν/|Ub| < 0.1a or |Λ| > 10/Re. A more
general proof of (2.58) from (2.56) for two-dimensional bodies symmetric about the x-
axis or axisymmetric bodies is given in Appendix A. When the flow symmetry is broken,
the body may also experience a lift force.
In the limit of −Λ ≫ 1, the flow outside the boundary layer is irrotational and large

gradients in the flow are confined to the boundary layer. This is a special case when
the total dissipation in the entire body of fluid is finite and the energy equation can
be applied to estimate the drag force. This technique is well-known in the context of
Levich’s (1949) estimate of the drag on a clean bubble (see Moore 1963, Stone 1992).
From Landau & Lipshitz (1965, p. 50), the unsteady form of the energy equation (in the
frame of reference with the fluid at infinity at rest) is

∫

V−VB

∂

∂t

1

2
ρu2dV =

∫

SB+S∞

(

−u

(

p+
1

2
ρu2
)

+ u · τ
)

· n̂dS − ǫ, (2.61)

where SB is the surface of the body and S∞ is a control surface far from the body. The
viscous dissipation term ǫ is defined by

ǫ =
1

2µ

∫

V −VB

τ : τdV

(

≡
∫

V−VB

τ : ∇udV

)

, (2.62)

and is evaluated over the whole flow domain (V ) excluding the body (VB). To evaluate
the drag force, we must evaluated (2.61) in the frame of reference with the ambient flow
at rest and the body moving.
In the far field the flow is irrotational, so that p+ 1

2ρu
2 = p0− ρ∂φ/∂t and the viscous

stresses are weak in the far field. Therefore the contribution from the integral over S∞

reduces to
∫

S∞

p0v · n̂dS =

∫

SB

Ubp0dS, (2.63)

since the flux from the surface of the body is independent of the shape of S∞. In addition,
since the body moves with a constant velocity and the flow is steady in the moving frame,
the left-hand side of (2.61) is

∫

V −VB

∂

∂t

1

2
ρu2dV =

∫

V−VB

vi
∂

∂xi

1

2
ρu2dV =

∫

SB

v · n̂1

2
ρu2dS. (2.64)

Under these conditions, the right-hand side of (2.61) can be recast in terms of

v · F =

∫

SB

v · (pI − τ ) · n̂dS. (2.65)

Expressing the viscous stress as τ = τnn̂+τsŝ and using the boundary condition (2.1,2.2),
we can rewrite (2.61) in a general form:

FDU∞ ≡ ǫ+

∫

SB

Ub

(

p+
1

2
ρu2 − p0 − τn

)

dS −
∫

SB

(u− v) · vτsdS. (2.66)

For a clean bubble the tangential shear stress is zero (τs = 0) and Ub = 0, we retrieve
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Levich’s result that FD = ǫ/U∞ for a clean non-blowing bubbles. In our case, there is
no tangential slip velocity and the last term is zero. This provides a scaling analysis to
estimate the relative configuration to drag from the boundary layer and the region out-
side. The coefficient can be determined from an analysis of the boundary layer structure.
We can estimate the various terms on the right-hand side for the case of a cylinder and
sphere, using the boundary layer analysis for the velocity field.
For a cylinder, the boundary layer flow (in the frame in which the far field is at rest)

is

uθ =
U∞a

2

r2
sin θ

(

1− 2e(r−a)Ub/ν
)

, ur =
U∞a

2

r2
cos θ +

Uba

r
. (2.67)

The dissipation term,

ǫ =

∫

V −VB

[

2µ

(

(

∂ur
∂r

)2

+

(

1

r

∂uθ
∂θ

+
ur
r

)2
)

+ µ

(

r
∂

∂r

(uθ
r

)

+
1

r

∂ur
∂θ

)2
]

dV, (2.68)

can be evaluated analytically by substituting

ǫ = 12πU2
∞µ− 64πU2

∞µ

∫ ∞

0

(

1

(1 + z)5
− Uba/4ν

(1 + z)4

)

exp

(

Ubaz

ν

)

dz

−4πU2
∞U

2
b ρa

2

ν

∫ ∞

0

(

1

(1 + z)3
+

6ν/Uba

(1 + z)4
− 11ν2/a2U2

b

(1 + z)5

)

exp

(

2Ubaz

ν

)

dz. (2.69)

In the limit of Re|Λ| < 10, the exponential terms decay sufficiently rapidly that the
dissipation can be integrated

ǫ ∼= −2πρaUbU
2
∞

(

1− 16

ReΛ
+

84

Re2Λ2

)

. (2.70)

The integral of the normal viscous stress over the surface of the cylinder is
∫

SB

τndS ∼= −2πUbµ. (2.71)

As we have already discussed, the irrotational flow outside the boundary layer determines
the pressure field at the cylinder surface and since the velocity normal to the cylinder
surface is continuous,

p+
1

2
ρu2 − p0 =

1

2
ρ(U2

∞ sin2 θ − u2θ)− p0 = 0, (2.72)

because the tangential velocity is reversed in sign across the boundary layer. Combined
together, we find for a cylinder

FD
∼= (ǫ − Ub

∫

SB

τndS)/U∞
∼= −2πaρUbU∞

(

1− 16

ReΛ
+

84

Re2Λ2
− 2Λ

Re

)

. (2.73)

To leading order, the rate at which work is done by the force on the cylinder is balanced by
dissipation because the energy flux due to the sucking flow is small. The largest correction
is due to dissipation caused by the blowing flow and the normal viscous stresses. These
cause the drag to be larger by a factor 1/Re|Λ| than that accounted for in the boundary
layer analysis.
For flow past a sphere, the boundary layer flow (in the frame in which the far field is

at rest) is

uθ =
U∞a

3

2r3
sin θ

(

1− 3e(r−a)Ub/ν
)

, ur =
U∞a

3

r3
cos θ +

Uba
2

r2
. (2.74)
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For axisymmetric flows the dissipation term is,

ǫ =

∫

V−VB

[

2µ

(

(

∂ur
∂r

)2

+

(

1

r

∂uθ
∂θ

+
ur
r

)2
)

+ µ

(

r
∂

∂r

(uθ
r

)

+
1

r

∂ur
∂θ

)2

+ 2µ
(ur
r

+
uθ
r

cot θ
)2
]

dV,

(2.75)

= 28πU2
∞µa+ 108πµaU2

∞

∫ ∞

0

(

1

(1 + z)6
+

4Uba/9ν

(1 + z)6
− 6U2

b a
2/108ν2

(1 + z)5

)

exp

(

2Ubaz

ν

)

dz

(2.76)

+120πµU2
∞a

∫ ∞

0

(1 + Uba/5ν)

(1 + z)6
exp

(

2Ubaz

ν

)

dz.

This can be evaluated to give

ǫ ∼= −3πa2UbU
2
∞ρ

(

1− 32

ReΛ
− 152

Re2Λ2

)

(2.77)

Now, on the surface of the sphere

p+
1

2
ρu2 − p0 =

1

2
ρ(U2

∞ sin2 θ − u2θ)− p0 =
3

8
ρU2

∞ sin2 θ, (2.78)

so the integral over the surface is ρπa2U2
∞Ub. The viscous stress term is

∫

SB

τndS ∼= −8πUbµa. (2.79)

In total, we

FD
∼=
(

ǫ− ρπa2UbU∞ −SB
τndS

)

/U∞
∼= −4πa2UbU∞ρ

(

1− 24

ReΛ
− 114

Re2Λ2
− 4Λ

Re

)

.

(2.80)
This agrees with (2.7). In this case, dissipation only accounts for 75% of the total drag
force with 25% due to the flux of energy due to the sucking flow through the sphere’s
surface.

2.5. Blowing flows

For a large blow velocity, we expect the vorticity to form detached shear layers that bear
a similarity to the shear layers that occur in other types of flows, for instance, flows past
groups of bodies (Nicolle & Eames 2011) or porous sheets (Castro 1971). Typically, at
some distance downstream, the shear layers become unstable and generate a von Kármán
vortex street. During the initial phase, the vortex sheets are well separated and the decay
in the maximum vorticity is extremely slow. Depending on whether the Reynolds number
of the flow is sufficiently low, the transition to a faster rate of decay is likely not to be
observed since it requires the vorticity in adjacent vortex lumps to merge and decay by
diffusion. For example, for Λ = 0, this transition is observable at a distance of O(aRe),
which is usually too far downstream to observe at even moderate Re.
The downstream signature is intrinsically linked to the forces acting the body. Insight

can be gained by analysing the viscous and pressure contribution to the force on the
body. For the case of a cylinder, the tangential momentum equation

1

a

∂

∂θ

(

p+
1

2
ρu2
)

= −ρUbωs + µ

(

ωs

a
+
∂ω

∂r

)

. (2.81)

In the limit of a large blow velocity, we expect physically that the velocity gradients near



Effect of a uniform through-surface flow on the force acting on a rigid body 15

the surface are diminished due to the boundary layer being removed. In this limit, we
expect the drag to be dominated by pressure so that ωs ∼ 1/Ub. An alternative argument
can be developed from the wake flows. On integration this yields

p = −1

2
ρU2

b −
(

ρaUb −
µ

a

)

∫ θ

0

ωsdθ + µ

∫ θ

0

∂ω

∂r
dθ. (2.82)

Since we expect Cp+Λ2 to be unity at the front stagnation point, we can non-dimensionalise
(2.53) to give

Cp + Λ2 = 1− Λ

∫ θ

−π

ω̃sdθ. (2.83)

The drag force is estimated as

CD = − Λ

AXS

∫

SB

nx

∫ θ

−π

ω̃sdθdA. (2.84)

The drag force on the cylinder is dominated by pressure variation and scales as Ubωsρa;
as we shall see later, the drag force is weakly dependence on Ub giving

ωs ∼
U2
∞

2aUb
. (2.85)

The distribution of vorticity in the far field is connected with how it is introduced into the
flow. Although the flow will be unsteady far downstream, a steady analysis can identify
some of the critical physics of the wake flow and its connection with the near field.
Focussing on the two-dimensional case in the limit of Λ ≫ 1, the flow induced by the
vortical component of the flow is weak and the vorticity is advected by the irrotational
flow.
To understand this process, we analyse the flux of vorticity from the cylinder surface.

For a blowing flow (Λ > 0) since ωs ∼ U2
∞/2aUb then the vorticity flux is weakly

dependant on the blow velocity,

Fω

U2
∞

∼= −1. (2.86)

Prior to the shear layers becoming unstable, the flux of positive vorticity along the
streamline is conserved because the cancellation in two-dimensions can only come from
annihilation by combining positive and negative vorticity (Hunt & Eames 2002). The
properties of the shear layer can be explored by considering the diffusion of a thin vortex
sheet. A local similarity solution for the vorticity field across the shear layer is

ω = ωm exp

(

− n2

2Y 2
δ

)

, (2.87)

where ωm is the maximum vorticity and Yδ the thickness of the local shear layer. ωm and
Yδ are functions of s. The flux of vorticity along a shear layer is conserved, so that

Fω =

∫ ∞

−∞

usωdn =
√
2πωmusYδ, (2.88)

is constant where us is the tangential velocity along the streamline that corresponds to
the maximum vorticity. The width of the vortex sheet grows due to diffusion, i.e.

1

2
us

dY 2
δ

ds
= ν. (2.89)
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Combining (2.88) and (2.89) we obtain a relationship between
[

(

U∞

ωma

)2
]s

0

=
8π

Re
ũ2s

1

F 2
ω

∫ s

0

ds̃

ũs
, (2.90)

where s̃ = s/a and ũs = us/U∞. The argument is similar for the shear layers detaching
from a sphere, with Fω/2aU

2
∞

∼= −1. The distance of the vortex sheet from the centreline
must be taken into account, so that the vorticity flux is

Fω =

∫ ∞

−∞

usωmYw exp

(

− n2

2Y 2
δ

)

dn (2.91)

Rearranging, then
(

Fω

U∞ωmYwa

)2

=
8π

Re

us
U∞

∫

ds/a

us/U∞
. (2.92)

The effect of a blow flow is to displace the boundary layer away from the surface of the
body.

3. Numerical formulation

To understand the coupled effect of inertial and viscous forces on through surface flows,
a series of numerical calculations were undertaken for Re = 1 to 100 and −3 ≤ Λ ≤ 3.
Both the two-dimensional flow past a rigid cylinder and axisymmetric flow past a sphere
were considered.

3.1. Geometry, solver and validation

Figure 3 shows a schematic of the finite computational domain, which for the two-
dimensional problem has width 2W and length 2L; for an axisymmetric flow the domain
radius was was W . We chose W/a = 500 and L/a = 200. The challenge is that the force
calculations are sensitive to the finite size of the computation domain. The sensitivity
is related to the fact that the boundary conditions imposed on the computational do-
main are U∞x̂ on the inlet surface, kinematic and no-slip condition on the rigid cylinder,
zero flux on the sidewalls and a constant pressure contraint on the outlet. In addition
to making the domain large, the boundary layer is extremely thin for the case of strong
sucking. Since the boundary layer scales as ν/|Ub| (for Λ < 0) and typically 10 points are
used to resolve these scales, the smallest elements were of thickness h/a ∼ 0.1/|Reb|Λ,
which for Re = 100 and Λ = 3, gives elements which have sides of length 0.0003a. For
a blowing flow, the boundary layer is much thickner and elements of the size of 0.003a
where found to be sufficient. The computational domain in the vicinity of the cylinder
and sphere were refined in two circular regions (R3 and R4) of radius 5a and 1.2a. The
domain was meshed using Gmsh (Geuzaine & Remacle 2009).
The momentum and continuity equations were solved using ACEsim (www.acesim.co.uk)

which is a general finite element code employing a characteristic based split formulation
(Zienkiewicz, Taylor & Nithiarasu 2005). The defining equations are solved in 3 steps:
involving first the calculation of an intermediate velocity field using the forcing by the
viscous forces. The next step is the calculation of the pressure field, from the fact that
the Laplacian of pressure is proportional to the divergence of the intermediate velocity.
The pressure is applied to force the intermediate velocity field to be solenoidal, and the
updated velocity field is calculated in the third step (Nicolle & Eames 2011). The code
has been validate for two-dimensional flows by Nicolle & Eames (2010). An axisymmetric
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(a) (b)

R1

R2

R3

R4

Figure 3: (a) Schematic of the computational domain used for the planar flow calculation;
for axisymmetric flow, the domain is cut in half through the cylinder. The domain has a
width 2W and length 2L, whereW = 500a and L = 200a. In (b), the two circular regions
of inner and outer radius (denoted by R3 and R4), radius 5a and 1.2a, concentric to the
cylinder are shown. For the blowing case, mesh size is 0.0075a in region R4, growing to
0.1a on the outer circle. For a sucking flow, mesh size is 0.005a in region R4, growing to
0.02a in the outer circle.

formulation was developed and applied in this paper and the computational steps are
listed in the Appendix B.

3.2. Effect of boundedness on drag force

Flow boundedness has a significant influence on the drag calculations. We first discuss the
influence of a domain 2W long and 2L wide on the two-dimensional calculations. On the
inlet of the computational domain, a uniform flow of speed U∞ is applied. For a sucking
flow, the bounding side walls generate a symmetric flow perturbation to the flow in the
vicinity of the cylinder, which has a negligible effect on the drag force. As a consequence
of the finite length of the domain, a streamwise flow perturbation is generated in the
vicinity of the cylinder. This perturbation (∆U), can be estimated using the method of
images to account for the kinematic effect of the channel walls and the inlet condition,
to give

∆U =
∑

k=0,±1,±2,...

(

πUbaW

W 2 + L2k2

)

=
aπUb

W

(

1 +
Wπ

L
coth

Wπ

L

)

. (3.1)

The cylinder ‘sees’ an effective streamwise flow U∞ + ∆U . So for Λ < 0, the drag on a
cylinder is

FD = −2πρUba (U∞ +∆U) . (3.2)
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The drag coefficient in an bounded flow CD is related to an unbounded flow CD∞
, for a

sucking flow, through,

CD = CD∞

(

1 +
aπΛ

W

(

1 +
Wπ

L
coth

Wπ

L

))

. (3.3)

When the domain is wide (eg L/W ≫ 1), the correction to the drag is aπ2Λ/L (about
30% of this comes from the nearest image source term). For example, a sucking flow
Λ = −3, where L/a = 200, we expect that the numerical calculations to give a drag
coefficients 15% lower than the unbounded estimates. This technique can be used to
correct the vorticity distribution on the surface of the cylinder.
For a blowing flow, we anticipate that FD∞

∼ ρCD∞
U2
∞ where CD∞

has a weak depen-
dence on Ub. In this case, CD ∼ CD∞

(1 + ∆U/U∞)2 and the effect of flow boundedness
leads to the drag coefficient being over predicted by 30% for Λ = 3. It is so strong that
it changes the reported trend that CD decreases with Λ for cylinders (see later).
For axisymmetric (or three-dimensional) flow through a pipe of radius L, a similar

argument point source calculation can be applied. In this case, we anticipate ∆U ∼
a2U2

b /L
2 and decays so quickly with L that we expect that its influence on the drag

coefficient to be negligible.

4. Unsteady forces

4.1. Cylinder

Figure 4 shows the variation of the drag coefficient with time for Re = 1. The blue
symbols represent the case of blowing and the red symbols sucking. Both CP and CD

are plotted as functions of time and confirm that the drag force shows an initial weak
dependence on the Λ. As expected, the pressure component forms a large fraction of the
total drag force. For the case of Λ < 0, we see the viscous force decays as t−1/2 and tends
to a steady state in a time scale ∼ Tν . For Λ > 0, we see that the drag coefficient initially
decreases as t−1/2, for later time.
Figure 5 shows the results for Re = 100. The scalings for Λ > 0 and < 0 are sufficiently

different, that the drag coefficients are plotted separatel; for comparison the result for
Λ = 0 are included. The calculations for Λ < 0 are run with a finer mesh to capture the
thin boundary layer and this results in a smaller time-step than for Λ > 0. Both figure
5(a,b) confirm that for short time, the drag coefficient decays as t−1/2 weakly dependent
on the blow velocity. For Λ < 0, CD has tended to a constant in a time ∼ Ta; it appears
that there is only one critical time scale. For Λ > 0, it appears clear that there are
multiple timescales. The normalised viscous component of the force is plotted against
time in figure 5(c,d) on linear and logarithmic scales. There is good agreement with
(2.50) confirming that the viscous force scales as 2πaρ|Ub|U∞ and that this component
decays over a timescale of Tν . Figure 4(d) shows that the while the viscous component
as an initial t−1/2 dependence, the later decay is exponential for the blowing case, up to
when the viscous boundary layer becomes thick and advection between important. The
pressure component to the total force is more difficult to interprete largely because the
blowing advective timescale is comparable to the advective timescale.

4.2. Sphere

The results for the axisymmetric flow past a sphere with a through-surface flow, mir-
rors closely observations for a cylinder. For Re = 1, the majority of the force has a
viscous component with both the viscous and pressure components decaying as 1/t1/2.
The pressure component in this case is initially less than 1/3 the total drag force.
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Figure 4: The characteristics of the drag force on a cylinder at Re = 1 and Λ =
−3,−2,−1, 0, 1, 2 and 3. In (a), both the pressure coefficient (CP ) and drag coefficient
(CD) are plotted as functions of t, where t is normalised by the advective timescale. In
(b), the viscous component for the force (for non-zero values of Λ) are plotted as a func-
tion of t, normalised by the viscous blow timescale. The red / blue symbols correspond
to Λ > 0 / < 0 respectively.

Figure 7 shows the variation of the total drag coefficient for a sphere at Re = 100.
Over a timescale of ∼ Tν the drag on a sphere for Λ < 0 quickly decays to a steady state
and the initial decrease is t−1/2, in a similar manner to the cylinder. As with the case of
the cylinder the initial development of the boundary layer structure largely explains the
initial decrease of the viscous component of the force. The pressure component to the
total force for Λ < 0 is negligible and forms less than 2% of the total force. For Λ > 0, the
pressure component partially collapses for intermediate values of t/Tb up to 5Tb, after
which the decay for strong blowing decreasing as t1/6 before asymptoting to a constant
value.

5. Steady forces

5.1. Cylinder

The steady drag coefficient for |Λ| ≤ 3 are shown in figure 8(a) for Re = 1, 10 and 100;
the fraction of the total force which is due to viscous stresses is shown in figure 8(b).
This shows that the drag force tends to increase as Λ decreases owing the increase in the
viscous stresses on the surface of the cylinder. For Re = 1, the variation of the viscous
component with Λ is 30% over the range of Λ considered, with Cν/CD = 1/2.
The influence of the sucking flow has a dramatic effect on the drag coefficient, as shown

in figure ??(a). For Re = 10, 100, the drag coefficient shows an approximately linearly
increase with Λ, in accordance with (2.59). For a blowing flow, the numerical results
show that the drag coefficient has a weak dependence on Λ, with a small tendancy of CD

to increase with Λ. The drag coefficient corrected for flow boundedness is shown for a
cylinder and Re = 100 in figure 9. It is clear that the correction is important even through
the flow domain is extremely large, tending to raise the drag coefficient for Λ < 0. In
addition, correcting for flow boundedness means that the increase of CD is not evident
for Λ > 0; a trend which is consistent with observations for the sphere.
At higher Re, the drag force largely dominated by viscous forces for Λ < 0 and pressure

forces for Λ > 0, consistent the mathematical model.
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Figure 5: The characteristics of the drag force on a cylinder at Re = 100 and Λ =
−3,−2,−1, 0, 1, 2 and 3. In (a,b) the drag coefficient is show as a function of t, normalised
by the advective timescale, for Λ > 0 and < 0 respectively. The viscous component of the
drag force is plotted in (c,d); to highlight the different decay rates (for long and short
time), the viscous force is plotted on a linear scale in (c) and logarithmic scale in (d).

5.2. Sphere

The steady drag coefficient for |Λ| ≤ 3 is shown in figure 8(c) for Re = 1, 10 and 100;
the fraction of the total force which is due to viscous stresses is shown in figure 8(d).
The influence of flow boundedness is negligible for a sphere, which explains the excellent
agreement between calculations and predictions for Re = 100 and the linear increase of
the drag coefficient with Λ. The results for the drag coefficient for Re = 1 agree with
the curve from Lever & Weber (1985); the theoretical prediction by Dukowicz (1981);
the results of Baghchi (2007) for Re = 100 are also plotted. For large Λ, we find that
CD ≈ 0.538 .

The fraction of the drag force which arises from viscous stresses is shown in figure
8(d). For Re = 1, the viscous force is approximately 2/3 of the total force. At higher
Re, the drag force largely dominated by viscous forces for Λ < 0 and pressure forces for
Λ > 0, consistent the mathematical model. The theoretical prediction (2.34) for Cν/CD

by Dukowicz (1981) agrees with the numerical results for Re = 0.1; the agreement for
higher values of Re seems fortuitous because the drag coefficient is under predicted by
his Stokes model.
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Figure 6: The characteristics of the drag force on a sphere at Re = 1 and Λ =
−3,−2,−1, 0, 1, 2 and 3. In (a), both the pressure coefficient (CP ) and drag coefficient
(CD) are plotted as functions of t, where t is normalised by the advective timescale. In
(b), the viscous component for the force (for non-zero values of Λ) are plotted as a func-
tion of t, normalised by the viscous blow timescale. The red / blue symbols correspond
to Λ > 0 / < 0 respectively.

6. Boundary layer structure

6.1. Vorticity field

6.1.1. Cylinder

The boundary layer structure of the vorticity field for a cylinder is shown in figure 10
for Re = 1. A sucking flow increases the rate at which vorticity decays from the cylinder
and also increase the magnitude on the surface of the cylinder; blowing generates the
opposite trend.
At higher Re, the influence of advection becomes much more pronounced. Figure 11(a,

b) shows the vorticity distribution for Re = 100 along the line θ = 90o and Λ = 1, 2, 3.
The scalings serve to demonstrate that the surface vorticity decreases as 1/|Λ| and has
a lateral extend which increases with Λ. In contrast, for a sucking flow, we find that
the vorticity on the surface scales as Re|Λ| and decreases over a distance of a/(Re|Λ|).
The surface vorticity has a sine dependence on θ. The agreement with the theoretical
predictions for Λ < 0 is good; taking into account the influence of flow boundedness
improves the agreement - notice the largest disagreement of 15% occurs with the highest
magnitude of Λ.

6.1.2. Sphere

The boundary layer structure of the vorticity field for a sphere is shown in figure 12
for Re = 1. A sucking flow increases the rate at which vorticity decays from the sphere
and also increase the magnitude on the surface of the cylinder; blowing generates the
opposite trend. A comparison is shown in figure 12(b) for Λ = 0, 1 and 3 (taken from
Cliffe & Lever (1985)); the agreement is good. Although the vorticity distribution is
approximately a sine curve, there is a small asymmetry.
The trend for the boundary layer on a sphere follows that of the cylinder, for Re = 100.

For a blowing flow, figure 13(a,b) shows the vorticity field along θ = π/2 and on the
surface of the sphere. The vorticity increases with distance from the sphere until it
reaches a shear layer, represented as the maximum, and then decreasing rapidly outside.
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Figure 7: The characteristics of the drag force on a sphere at Re = 100 and Λ =
−3,−2,−1, 0, 1, 2 and 3. In (a,b) the drag coefficient is show as a function of t, nor-
malised by the advective timescale, for Λ > 0 and < 0 respectively. This The viscous
component of the drag force is plotted in (c,d); to highlight the different decay rates (for
long and short time), the viscous force is plotted on a linear scale in (c) and logarithmic
scale in (d).

The position of the shear layer approximately scales as Λ1/2a for an axisymmetric flow.
For a sucking flow, we see excellent agreement between the numerical calculations and
(2.54). Since the influence of flow boundedness is greatly reduced for axisymmetric flows,
the agreement for the distribution of vorticity on the surface is excellent, particularly at
higher values of |Λ|.

6.2. Vorticity flux

The convective flux of vorticity from the surface of the cylinder is shown in figure 14.
For Λ < 0.5, the convective flux of vorticity scales as Λ2Re as confirmed in figure 14(a).
Including a correction due to the boundedness of the domain (Appendix C), improves the
agreement between the predictions and calculations. For blowing flows, we observe a weak
dependence of the flux of vorticity on Λ. This is consistent with the scaling ωs ∼ U2

∞/Uba
observed in figure 4(d).
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Figure 8: The influence of Λ on the drag coefficient for a cylinder and sphere are shown in
(a,c) for Re = 1, 10, 100. The relative split between the viscous and total drag coefficient,
as a function of Λ is shown in (b,d) indicating that the force is predominately viscous
dominated for sucking flows (Λ < 0) and pressure dominated for blowing flows (Λ > 0).
◦ corresponds to calculations in this paper. The red line is the asymptotic expression
(2.59). The curves in (c,d) correspond to the analytical result from Dukowicz (1981).

6.3. Pressure field

6.3.1. Cylinder

The steady pressure distribution on the surface of the cylinder is shown in figure 15.
For Λ < 0, the boundary is thin and the pressure is constant across the boundary layer,
the surface pressure conforms to the irrotational prediction, as shown in figure 15(a).
For Λ = 0 (figure 15(d)), the pressure distribution conforms closely to the potential
flow prediction at the front of the cylinder, with an approximately constant pressure
distribution in the wake. The pressure distribution has a weak dependent on Λ for Λ > 0
(see figure 15(b)), and this is consistent with the scalings §2.5.

6.3.2. Sphere

The steady pressure distribution on the surface of the sphere is shown in figure 15.
For Λ < 0, the boundary is thin and the pressure is constant across the boundary layer,
the surface pressure conforms to the irrotational prediction, as shown in figure 15(a).
For Λ = 0 (figure 15(d)), the pressure distribution conforms closely to the potential
flow prediction at the front of the cylinder, with an approximately constant pressure
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Figure 9: The steady drag coefficient for a cylinder at Re = 100 is plotted as a function
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Figure 10: Vorticity distribution in the boundary layer of a cylinder at Re = 1, for
Λ = −3,−2,−1, 0, 1, 2 and 3. In (a), the vorticity through the boundary layer along the
line of θ = π/2, normalise by its value at r̃ = 1. In (b), the vorticity distribution over
the surface of the cylinder.

distribution in the wake. The pressure distribution has a weak dependent on Λ > 0 (see
figure 15(b)), and this is consistent with the scaling (2.85).

7. Flow field

7.1. Cylinder

Figure shows the vorticity distribution and streamlines in the vicinity of a cylinder. For
Λ > 0, the vortex sheets that are formed by the blowing flow separating the positive and
negative vorticity which is then advected downstream. The vorticity decreases due to local
cross-stream diffusion. Further downstream the vortex shear layers become unstable and
form a von Kármán vortex sheet. For Λ < 0, the boundary layer is extremely thin and is
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Figure 11: Vorticity distribution in the boundary layer of a cylinder at Re = 100, in (a,b)
and (c,d) for Λ = 1, 2, 3 and −3,−2,−1 respectively. In (a,c) the vorticity through the
boundary layer, along the line θ = π/2, is plotted; while in (b,d) the vorticity on the
surface of the cylinder is plotted. The blue curve in (c,d) corresponds to (2.53).

localised around the cylinder surface. Outside the boundary layer, the flow is irrotational;
this is also maintained downstream for sufficiently strong enough sucking flow.

7.2. Sphere

Figure shows the vorticity distribution downstream of a sphere. The calculations are
axisymmetric and reflected along the central axis For Λ > 0, the vortex sheets that
are formed by the blowing flow separating the positive and negative vorticity which is
then advected downstream. The flow calculations are axisymmetric and this stabilises
the presence of the wake bubble that is initially seen in behind a cylinder.

8. Conclusions

In this paper we have examined the influence of a uniform through-surface flow on
the flow past a rigid cylinder and sphere and the forces they experience. The new part
of the analysis is a more detailed study over a wider parameter regime, particularly the
influence of a strong through flow, and a detailed analysis of the steady and unsteady
forces which the bodies experience.
To summarise:
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Figure 12: Vorticity distribution in the boundary layer of a sphere at Re = 1, for Λ =
−3,−2,−1, 0, 1, 2 and 3. In (a), the vorticity through the boundary layer along the line
of θ = π/2, normalise by its value at r̃ = 1. In (b), the vorticity distribution over the
surface of the sphere. The full curves correspond to the results of Cliffe & Lever (1985)
for Λ = 0, 1, 3.

a) for sucking flows, the boundary layer is established in a viscous timescale of Tν .
The boundary layer initially grows as δν ∼ (νt)1/2 and tends to a thickness δν ∼ ν/|Ub|.
The drag coefficient for a cylinder and sphere decay as 1/t1/2, initially dominated by
viscous forces and ultimately tends to a constant where the drag force is given by ( ) and
proportional to the sucking velocity, ie FD → −ρAbU∞Ub, since the wake volume flux
is negligible. The pressure on the surface of the pressure corresponds to the irrotational
flow prediction and has a negligible contribution to the total force on the body. The
calculated vorticity distribution over the surface of the cylinder and sphere and through
the boundary layer agree with the theoretical predictions at high Re. The vorticity on the
surface ωs shows a sin dependence on angular position and decays exponentially through
the boundary layer and scales as ωs ∼ |Ub|U∞/aν.
b) for blowing flows, the boundary layer initially has a thickness at/Ub, then growing at

a rate a(t/Tb)
1/D until it settles down to a constant thickness which scales as Λ1/(D−1)a.

The viscous component shows a 1/t1/2 decay for both cylinders and spheres; the pressure
component has a 1/t1/(D−1) dependence before tending to a constant. The viscous force
is negligible at high Re. In contrast to the sucking flow, the drag force shows a weaker
dependence on Λ(> 0). The vorticity on the surface of the body scales as U2

∞/|Ub|a. The
flux of vorticity through the surface has a weak dependence on Ub. After the vorticity is
swept from the surface, it forms a pair of opposite signed local vortex sheets separated by a
distance Λ1/(D−1)a, which can be infered by from a potential flow analysis. They combine
through an instability which occurs at a distance Λ1/(D−1)a downstream. The strength
of the vorticity decays through viscous diffusion, before combining and forming a vortex
street (in the case of a cylinder). The three-dimensional instability does not occur in the
axisymmetric calculations, but as we see from Bagadi, one of the few three-dimensional
flow calculations for a blowing sphere, a similar sort of instability will ultimately occur.
To understand these flow processes, a cascade of models were developed using a mo-

mentum flux argument, analysis of the viscous stresses and pressure distribution, and
dissipation argument to examine the total drag for sucking and these have elucidated
the key mechanisms and are in agreement with the numerical results. For the blowing
case, scaling analysis and conformal mapping have been applied to the cylinder problem,
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Figure 13: Vorticity distribution in the boundary layer of a sphere at Re = 100, in (a,b)
and (c,d) for Λ = 1, 2, 3 and −3,−2,−1 respectively. In (a,c) the vorticity through the
boundary layer, along the line θ = π/2, is plotted; while in (b,d) the vorticity on the
surface of the sphere is plotted. The blue curve in (c,d) corresponds to (2.53).

while scaling analysis has been applied to the blowing case. The initial boundary layer
structure for blowing captures the viscous process, while an inviscid analysis captures
some elements of the initial boundary layer blown away for high Re. There have been a
number of significant hurdles in broadening the parameter range studies (see figure 1), in
particular for high through-flow velocities. The extremely thin boundary layer generate
on a rigid surface for high sucking velocities and the dependence of the drag force (for
|Λ| > 1) on the size of the computational domain represented a significant computa-
tional challenge, which partially explains the absence of published research for Λ < −0.5,
despite the available models from the 1950’s.

The study in this paper is of a uniform through-surface flow applied to bluff bodies,
complementing the work in the 1950s on the drag properties of porous cylinders and
also the evaporation of spherical droplets. But more generally, a through-surface flow
is applied to control the heat transfer properties of turbine blades and the lift/drag
properties of lifting surfaces. In these cases, the characteristics Reynolds numbers are
number higher and the through-surface flow is only applied over portions to their surface.
Future studies should focus on influence of a through-surface flow, partially applied to
streamline bodies, on their lift / drag characteristics.
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Figure 14: Vorticity flux

Appendix A: Drag force acting on a rigid body with sucking

To show that (2.56) is equivalent to (2.58), we need only to demonstrate that

I ≡
∫

SB

∂φ

∂s
nydS = U∞P, (A1)

where P is the perimeter or surface area of the body, Qs = −UbP . In two-dimensions,
(A1) can be rewritten as,

I =

∫

SB

(

∂φ

∂x

dx

ds
+
∂φ

∂y

dy

ds

)

dx

ds
ds, (A2)

where s is the distance along the surface. The kinematic condition requires that the
un = ∂φ

∂x
dy
ds − ∂φ

∂y
dx
ds = 0, so that

I =

∫

SB

∂φ

∂x

[

(

dx

ds

)2

+

(

dy

ds

)2
]

dS = U∞P∞ +

∫

SB

(Ux − U∞)ds. (A3)

For a two-dimensional body, symmetric about the x-axis, the second term is zero by
symmetry and (A1) is recovered. A similar approach can be adopted for an axisymmetric
body, whose shape is R(x) in cylindrical coordinates. By definition, the surface integral
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Figure 15: Pressure distribution on the surface of a (a,b) cylinder and (c,d) sphere. In
(a,c), Re = 1, while for (b,d), Re = 100. The full curves in (b,d) correspond to (2.54)
and () respectively.

I can be expressed as

I ≡
∫

SB

(

∂φ

∂x

dx

ds
+
∂φ

∂R

dR

ds

)

dS =

∫

SB

2πRdsU∞ +

∫

SB

(Ux − U∞) 2πRds.

By symmetry, the second term is zero and the identity (A1) holds.

Appendix B: Axisymmetric formulation

The axisymmetric formulation is similar to the planar case (see Nicolle & Eames (2011),
Appendix A), but the integration is taken over a volume obtained by sweeping the el-
ements around the axis of symmetry. The Navier-Stokes equation for an axisymmetric
flow (ur, uz) is

ρ

(

∂ur
∂t

+ ur
∂ur
∂r

+ uz
∂ur
∂z

)

= −∂p
∂r

+ µ

(

1

r

∂

∂r

(

r
∂ur
∂r

)

+
∂2ur
∂z2

)

− ur
r2
,

ρ

(

∂uz
∂t

+ ur
∂uz
∂r

+ uz
∂uz
∂z

)

= −∂p
∂z

+ µ

(

1

r

∂

∂r

(

r
∂uz
∂r

)

+
∂2uz
∂z2

)

,
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(a) (b)

(c) (d)

(e) (f)

(g)

Figure 16: Vorticity field around a cylinder for Re = 1 and (a) Λ = −3, (b) −2, (c) −1
and (d) 1. The vorticity is normalised so its value extends over the range -1 to 1.
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(a) (b)

(c) (d)

(e) (f)

(g)

Figure 17: Vorticity field around a cylinder for Re = 100 and (a) Λ = −3, (b) −2, (c) −1
and (d) 1. The vorticity is normalised so its value extends over the range -1 to 1.
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where r and z are the radial and axial positions respectively. The mass conservation
equation is

1

r

∂

∂r
(rur) +

∂uz
∂z

= 0.

The Characteristic Based Split (CBS) scheme is a well-known method of numerically
solving the Navier-Stokes equation. A set of linear basis functions, [N ] = [Ni, Nj , Nk],
are introduced which depend on z and r. Within each triangular element, the velocity and
pressure components are uz = [N ]{uz} and ur = [N ]{ur} such that ∂[N ]/∂r = b/2A
and ∂[N ]/∂z = c/2A, where A is the area of the local element. In the CBS scheme, three
numerical steps are applied between tn and tn+1:
Step 1: Momentum solve

[M ]
ũr − u

(n)
r

∆t
= −[KC ]{ur}(n)−ν[K]{ur}(n)−

ν

r2
[M ]{ur}(n)−[KS ]{ur}(n)+ν[F ]{ur}(n),

(C1)
and

[M ]
ũz − u

(n)
z

∆t
= −[KC ]{uz}(n) − ν[K]{uz}(n) − [KS ]{uz}(n) + ν[F ]{uz}(n). (C2)

Step 2: Pressure solve

[K]{p}(n+1) = − ρ

∆t

(

[Gr]{ũr}+
1

r
[M ]{ũr}+ [Gz]{ũz}

)

+[F ]{p}.

Step 3: Velocity correction

[M ]{ur}(n+1) = [M ]{ũr} −
∆t

ρ
[Gr]{p}(n+1),

and

[M ]{uz}(n+1) = [M ]{ũz} −
∆t

ρ
[Gz]{p}(n+1).

The local formulations on each element requires the evaluation of the following matrices
and vectors:

[M ] =
2πrA

12





2 1 1
1 2 1
1 1 2



 , [KC ] =
[M ]

2A

(

{ur}{b}+ {uz}{c}
)

,

[KS ] =
[M ]{ur}∆t

8A2

[

{ur}TbT b+ {uz}TbT c
]

+
[M ]{uz}∆t

8A2

[

{ur}T cT b+ {uz}T cT c
]

[K] =
2πr

4A

[

bTb+ cT c

]

, [Gr] = 2πr





1
1
1



 b, [Gz] = 2πr





1
1
1



 c, [Gr2] = 2π





1
1
1



 b.

The forcing term is

[F ] =
1

2A

∫

Γe

(

NTn1dΓb+NTn2dΓc

)

.

The boundary conditions are Dirichlet which are stenciled onto the global matrix.
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